X86RegisterInfo.cpp revision b371f457b0ea4a652a9f526ba4375c80ae542252
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the X86 implementation of the MRegisterInfo class. This 11// file is responsible for the frame pointer elimination optimization on X86. 12// 13//===----------------------------------------------------------------------===// 14 15#include "X86.h" 16#include "X86RegisterInfo.h" 17#include "X86InstrBuilder.h" 18#include "X86MachineFunctionInfo.h" 19#include "X86Subtarget.h" 20#include "X86TargetMachine.h" 21#include "llvm/Constants.h" 22#include "llvm/Function.h" 23#include "llvm/Type.h" 24#include "llvm/CodeGen/ValueTypes.h" 25#include "llvm/CodeGen/MachineInstrBuilder.h" 26#include "llvm/CodeGen/MachineFunction.h" 27#include "llvm/CodeGen/MachineFrameInfo.h" 28#include "llvm/CodeGen/MachineLocation.h" 29#include "llvm/Target/TargetFrameInfo.h" 30#include "llvm/Target/TargetInstrInfo.h" 31#include "llvm/Target/TargetMachine.h" 32#include "llvm/Target/TargetOptions.h" 33#include "llvm/Support/CommandLine.h" 34#include "llvm/ADT/BitVector.h" 35#include "llvm/ADT/STLExtras.h" 36using namespace llvm; 37 38namespace { 39 cl::opt<bool> 40 NoFusing("disable-spill-fusing", 41 cl::desc("Disable fusing of spill code into instructions")); 42 cl::opt<bool> 43 PrintFailedFusing("print-failed-fuse-candidates", 44 cl::desc("Print instructions that the allocator wants to" 45 " fuse, but the X86 backend currently can't"), 46 cl::Hidden); 47} 48 49X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm, 50 const TargetInstrInfo &tii) 51 : X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP), 52 TM(tm), TII(tii) { 53 // Cache some information. 54 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); 55 Is64Bit = Subtarget->is64Bit(); 56 if (Is64Bit) { 57 SlotSize = 8; 58 StackPtr = X86::RSP; 59 FramePtr = X86::RBP; 60 } else { 61 SlotSize = 4; 62 StackPtr = X86::ESP; 63 FramePtr = X86::EBP; 64 } 65} 66 67void X86RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 68 MachineBasicBlock::iterator MI, 69 unsigned SrcReg, int FrameIdx, 70 const TargetRegisterClass *RC) const { 71 unsigned Opc; 72 if (RC == &X86::GR64RegClass) { 73 Opc = X86::MOV64mr; 74 } else if (RC == &X86::GR32RegClass) { 75 Opc = X86::MOV32mr; 76 } else if (RC == &X86::GR16RegClass) { 77 Opc = X86::MOV16mr; 78 } else if (RC == &X86::GR8RegClass) { 79 Opc = X86::MOV8mr; 80 } else if (RC == &X86::GR32_RegClass) { 81 Opc = X86::MOV32_mr; 82 } else if (RC == &X86::GR16_RegClass) { 83 Opc = X86::MOV16_mr; 84 } else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) { 85 Opc = X86::FpST64m; 86 } else if (RC == &X86::FR32RegClass) { 87 Opc = X86::MOVSSmr; 88 } else if (RC == &X86::FR64RegClass) { 89 Opc = X86::MOVSDmr; 90 } else if (RC == &X86::VR128RegClass) { 91 Opc = X86::MOVAPSmr; 92 } else { 93 assert(0 && "Unknown regclass"); 94 abort(); 95 } 96 addFrameReference(BuildMI(MBB, MI, TII.get(Opc)), FrameIdx).addReg(SrcReg); 97} 98 99void X86RegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 100 MachineBasicBlock::iterator MI, 101 unsigned DestReg, int FrameIdx, 102 const TargetRegisterClass *RC) const{ 103 unsigned Opc; 104 if (RC == &X86::GR64RegClass) { 105 Opc = X86::MOV64rm; 106 } else if (RC == &X86::GR32RegClass) { 107 Opc = X86::MOV32rm; 108 } else if (RC == &X86::GR16RegClass) { 109 Opc = X86::MOV16rm; 110 } else if (RC == &X86::GR8RegClass) { 111 Opc = X86::MOV8rm; 112 } else if (RC == &X86::GR32_RegClass) { 113 Opc = X86::MOV32_rm; 114 } else if (RC == &X86::GR16_RegClass) { 115 Opc = X86::MOV16_rm; 116 } else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) { 117 Opc = X86::FpLD64m; 118 } else if (RC == &X86::FR32RegClass) { 119 Opc = X86::MOVSSrm; 120 } else if (RC == &X86::FR64RegClass) { 121 Opc = X86::MOVSDrm; 122 } else if (RC == &X86::VR128RegClass) { 123 Opc = X86::MOVAPSrm; 124 } else { 125 assert(0 && "Unknown regclass"); 126 abort(); 127 } 128 addFrameReference(BuildMI(MBB, MI, TII.get(Opc), DestReg), FrameIdx); 129} 130 131void X86RegisterInfo::copyRegToReg(MachineBasicBlock &MBB, 132 MachineBasicBlock::iterator MI, 133 unsigned DestReg, unsigned SrcReg, 134 const TargetRegisterClass *RC) const { 135 unsigned Opc; 136 if (RC == &X86::GR64RegClass) { 137 Opc = X86::MOV64rr; 138 } else if (RC == &X86::GR32RegClass) { 139 Opc = X86::MOV32rr; 140 } else if (RC == &X86::GR16RegClass) { 141 Opc = X86::MOV16rr; 142 } else if (RC == &X86::GR8RegClass) { 143 Opc = X86::MOV8rr; 144 } else if (RC == &X86::GR32_RegClass) { 145 Opc = X86::MOV32_rr; 146 } else if (RC == &X86::GR16_RegClass) { 147 Opc = X86::MOV16_rr; 148 } else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) { 149 Opc = X86::FpMOV; 150 } else if (RC == &X86::FR32RegClass) { 151 Opc = X86::FsMOVAPSrr; 152 } else if (RC == &X86::FR64RegClass) { 153 Opc = X86::FsMOVAPDrr; 154 } else if (RC == &X86::VR128RegClass) { 155 Opc = X86::MOVAPSrr; 156 } else { 157 assert(0 && "Unknown regclass"); 158 abort(); 159 } 160 BuildMI(MBB, MI, TII.get(Opc), DestReg).addReg(SrcReg); 161} 162 163static MachineInstr *FuseTwoAddrInst(unsigned Opcode, unsigned FrameIndex, 164 MachineInstr *MI, 165 const TargetInstrInfo &TII) { 166 unsigned NumOps = TII.getNumOperands(MI->getOpcode())-2; 167 // Create the base instruction with the memory operand as the first part. 168 MachineInstrBuilder MIB = addFrameReference(BuildMI(TII.get(Opcode)), 169 FrameIndex); 170 171 // Loop over the rest of the ri operands, converting them over. 172 for (unsigned i = 0; i != NumOps; ++i) { 173 MachineOperand &MO = MI->getOperand(i+2); 174 if (MO.isReg()) 175 MIB = MIB.addReg(MO.getReg(), false, MO.isImplicit()); 176 else if (MO.isImm()) 177 MIB = MIB.addImm(MO.getImm()); 178 else if (MO.isGlobalAddress()) 179 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset()); 180 else if (MO.isJumpTableIndex()) 181 MIB = MIB.addJumpTableIndex(MO.getJumpTableIndex()); 182 else if (MO.isExternalSymbol()) 183 MIB = MIB.addExternalSymbol(MO.getSymbolName()); 184 else 185 assert(0 && "Unknown operand type!"); 186 } 187 return MIB; 188} 189 190static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo, 191 unsigned FrameIndex, MachineInstr *MI, 192 const TargetInstrInfo &TII) { 193 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode)); 194 195 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 196 MachineOperand &MO = MI->getOperand(i); 197 if (i == OpNo) { 198 assert(MO.isReg() && "Expected to fold into reg operand!"); 199 MIB = addFrameReference(MIB, FrameIndex); 200 } else if (MO.isReg()) 201 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit()); 202 else if (MO.isImm()) 203 MIB = MIB.addImm(MO.getImm()); 204 else if (MO.isGlobalAddress()) 205 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset()); 206 else if (MO.isJumpTableIndex()) 207 MIB = MIB.addJumpTableIndex(MO.getJumpTableIndex()); 208 else if (MO.isExternalSymbol()) 209 MIB = MIB.addExternalSymbol(MO.getSymbolName()); 210 else 211 assert(0 && "Unknown operand for FuseInst!"); 212 } 213 return MIB; 214} 215 216static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, 217 unsigned Opcode, unsigned FrameIndex, 218 MachineInstr *MI) { 219 return addFrameReference(BuildMI(TII.get(Opcode)), FrameIndex).addImm(0); 220} 221 222 223//===----------------------------------------------------------------------===// 224// Efficient Lookup Table Support 225//===----------------------------------------------------------------------===// 226 227namespace { 228 /// TableEntry - Maps the 'from' opcode to a fused form of the 'to' opcode. 229 /// 230 struct TableEntry { 231 unsigned from; // Original opcode. 232 unsigned to; // New opcode. 233 234 // less operators used by STL search. 235 bool operator<(const TableEntry &TE) const { return from < TE.from; } 236 friend bool operator<(const TableEntry &TE, unsigned V) { 237 return TE.from < V; 238 } 239 friend bool operator<(unsigned V, const TableEntry &TE) { 240 return V < TE.from; 241 } 242 }; 243} 244 245/// TableIsSorted - Return true if the table is in 'from' opcode order. 246/// 247static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) { 248 for (unsigned i = 1; i != NumEntries; ++i) 249 if (!(Table[i-1] < Table[i])) { 250 cerr << "Entries out of order " << Table[i-1].from 251 << " " << Table[i].from << "\n"; 252 return false; 253 } 254 return true; 255} 256 257/// TableLookup - Return the table entry matching the specified opcode. 258/// Otherwise return NULL. 259static const TableEntry *TableLookup(const TableEntry *Table, unsigned N, 260 unsigned Opcode) { 261 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode); 262 if (I != Table+N && I->from == Opcode) 263 return I; 264 return NULL; 265} 266 267#define ARRAY_SIZE(TABLE) \ 268 (sizeof(TABLE)/sizeof(TABLE[0])) 269 270#ifdef NDEBUG 271#define ASSERT_SORTED(TABLE) 272#else 273#define ASSERT_SORTED(TABLE) \ 274 { static bool TABLE##Checked = false; \ 275 if (!TABLE##Checked) { \ 276 assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \ 277 "All lookup tables must be sorted for efficient access!"); \ 278 TABLE##Checked = true; \ 279 } \ 280 } 281#endif 282 283 284MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, 285 unsigned i, 286 int FrameIndex) const { 287 // Check switch flag 288 if (NoFusing) return NULL; 289 290 // Table (and size) to search 291 const TableEntry *OpcodeTablePtr = NULL; 292 unsigned OpcodeTableSize = 0; 293 bool isTwoAddrFold = false; 294 unsigned NumOps = TII.getNumOperands(MI->getOpcode()); 295 bool isTwoAddr = NumOps > 1 && 296 MI->getInstrDescriptor()->getOperandConstraint(1, TOI::TIED_TO) != -1; 297 298 MachineInstr *NewMI = NULL; 299 // Folding a memory location into the two-address part of a two-address 300 // instruction is different than folding it other places. It requires 301 // replacing the *two* registers with the memory location. 302 if (isTwoAddr && NumOps >= 2 && i < 2 && 303 MI->getOperand(0).isReg() && 304 MI->getOperand(1).isReg() && 305 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { 306 static const TableEntry OpcodeTable[] = { 307 { X86::ADC32ri, X86::ADC32mi }, 308 { X86::ADC32ri8, X86::ADC32mi8 }, 309 { X86::ADC32rr, X86::ADC32mr }, 310 { X86::ADC64ri32, X86::ADC64mi32 }, 311 { X86::ADC64ri8, X86::ADC64mi8 }, 312 { X86::ADC64rr, X86::ADC64mr }, 313 { X86::ADD16ri, X86::ADD16mi }, 314 { X86::ADD16ri8, X86::ADD16mi8 }, 315 { X86::ADD16rr, X86::ADD16mr }, 316 { X86::ADD32ri, X86::ADD32mi }, 317 { X86::ADD32ri8, X86::ADD32mi8 }, 318 { X86::ADD32rr, X86::ADD32mr }, 319 { X86::ADD64ri32, X86::ADD64mi32 }, 320 { X86::ADD64ri8, X86::ADD64mi8 }, 321 { X86::ADD64rr, X86::ADD64mr }, 322 { X86::ADD8ri, X86::ADD8mi }, 323 { X86::ADD8rr, X86::ADD8mr }, 324 { X86::AND16ri, X86::AND16mi }, 325 { X86::AND16ri8, X86::AND16mi8 }, 326 { X86::AND16rr, X86::AND16mr }, 327 { X86::AND32ri, X86::AND32mi }, 328 { X86::AND32ri8, X86::AND32mi8 }, 329 { X86::AND32rr, X86::AND32mr }, 330 { X86::AND64ri32, X86::AND64mi32 }, 331 { X86::AND64ri8, X86::AND64mi8 }, 332 { X86::AND64rr, X86::AND64mr }, 333 { X86::AND8ri, X86::AND8mi }, 334 { X86::AND8rr, X86::AND8mr }, 335 { X86::DEC16r, X86::DEC16m }, 336 { X86::DEC32r, X86::DEC32m }, 337 { X86::DEC64_16r, X86::DEC16m }, 338 { X86::DEC64_32r, X86::DEC32m }, 339 { X86::DEC64r, X86::DEC64m }, 340 { X86::DEC8r, X86::DEC8m }, 341 { X86::INC16r, X86::INC16m }, 342 { X86::INC32r, X86::INC32m }, 343 { X86::INC64_16r, X86::INC16m }, 344 { X86::INC64_32r, X86::INC32m }, 345 { X86::INC64r, X86::INC64m }, 346 { X86::INC8r, X86::INC8m }, 347 { X86::NEG16r, X86::NEG16m }, 348 { X86::NEG32r, X86::NEG32m }, 349 { X86::NEG64r, X86::NEG64m }, 350 { X86::NEG8r, X86::NEG8m }, 351 { X86::NOT16r, X86::NOT16m }, 352 { X86::NOT32r, X86::NOT32m }, 353 { X86::NOT64r, X86::NOT64m }, 354 { X86::NOT8r, X86::NOT8m }, 355 { X86::OR16ri, X86::OR16mi }, 356 { X86::OR16ri8, X86::OR16mi8 }, 357 { X86::OR16rr, X86::OR16mr }, 358 { X86::OR32ri, X86::OR32mi }, 359 { X86::OR32ri8, X86::OR32mi8 }, 360 { X86::OR32rr, X86::OR32mr }, 361 { X86::OR64ri32, X86::OR64mi32 }, 362 { X86::OR64ri8, X86::OR64mi8 }, 363 { X86::OR64rr, X86::OR64mr }, 364 { X86::OR8ri, X86::OR8mi }, 365 { X86::OR8rr, X86::OR8mr }, 366 { X86::ROL16r1, X86::ROL16m1 }, 367 { X86::ROL16rCL, X86::ROL16mCL }, 368 { X86::ROL16ri, X86::ROL16mi }, 369 { X86::ROL32r1, X86::ROL32m1 }, 370 { X86::ROL32rCL, X86::ROL32mCL }, 371 { X86::ROL32ri, X86::ROL32mi }, 372 { X86::ROL64r1, X86::ROL64m1 }, 373 { X86::ROL64rCL, X86::ROL64mCL }, 374 { X86::ROL64ri, X86::ROL64mi }, 375 { X86::ROL8r1, X86::ROL8m1 }, 376 { X86::ROL8rCL, X86::ROL8mCL }, 377 { X86::ROL8ri, X86::ROL8mi }, 378 { X86::ROR16r1, X86::ROR16m1 }, 379 { X86::ROR16rCL, X86::ROR16mCL }, 380 { X86::ROR16ri, X86::ROR16mi }, 381 { X86::ROR32r1, X86::ROR32m1 }, 382 { X86::ROR32rCL, X86::ROR32mCL }, 383 { X86::ROR32ri, X86::ROR32mi }, 384 { X86::ROR64r1, X86::ROR64m1 }, 385 { X86::ROR64rCL, X86::ROR64mCL }, 386 { X86::ROR64ri, X86::ROR64mi }, 387 { X86::ROR8r1, X86::ROR8m1 }, 388 { X86::ROR8rCL, X86::ROR8mCL }, 389 { X86::ROR8ri, X86::ROR8mi }, 390 { X86::SAR16r1, X86::SAR16m1 }, 391 { X86::SAR16rCL, X86::SAR16mCL }, 392 { X86::SAR16ri, X86::SAR16mi }, 393 { X86::SAR32r1, X86::SAR32m1 }, 394 { X86::SAR32rCL, X86::SAR32mCL }, 395 { X86::SAR32ri, X86::SAR32mi }, 396 { X86::SAR64r1, X86::SAR64m1 }, 397 { X86::SAR64rCL, X86::SAR64mCL }, 398 { X86::SAR64ri, X86::SAR64mi }, 399 { X86::SAR8r1, X86::SAR8m1 }, 400 { X86::SAR8rCL, X86::SAR8mCL }, 401 { X86::SAR8ri, X86::SAR8mi }, 402 { X86::SBB32ri, X86::SBB32mi }, 403 { X86::SBB32ri8, X86::SBB32mi8 }, 404 { X86::SBB32rr, X86::SBB32mr }, 405 { X86::SBB64ri32, X86::SBB64mi32 }, 406 { X86::SBB64ri8, X86::SBB64mi8 }, 407 { X86::SBB64rr, X86::SBB64mr }, 408 { X86::SHL16r1, X86::SHL16m1 }, 409 { X86::SHL16rCL, X86::SHL16mCL }, 410 { X86::SHL16ri, X86::SHL16mi }, 411 { X86::SHL32r1, X86::SHL32m1 }, 412 { X86::SHL32rCL, X86::SHL32mCL }, 413 { X86::SHL32ri, X86::SHL32mi }, 414 { X86::SHL64r1, X86::SHL64m1 }, 415 { X86::SHL64rCL, X86::SHL64mCL }, 416 { X86::SHL64ri, X86::SHL64mi }, 417 { X86::SHL8r1, X86::SHL8m1 }, 418 { X86::SHL8rCL, X86::SHL8mCL }, 419 { X86::SHL8ri, X86::SHL8mi }, 420 { X86::SHLD16rrCL, X86::SHLD16mrCL }, 421 { X86::SHLD16rri8, X86::SHLD16mri8 }, 422 { X86::SHLD32rrCL, X86::SHLD32mrCL }, 423 { X86::SHLD32rri8, X86::SHLD32mri8 }, 424 { X86::SHLD64rrCL, X86::SHLD64mrCL }, 425 { X86::SHLD64rri8, X86::SHLD64mri8 }, 426 { X86::SHR16r1, X86::SHR16m1 }, 427 { X86::SHR16rCL, X86::SHR16mCL }, 428 { X86::SHR16ri, X86::SHR16mi }, 429 { X86::SHR32r1, X86::SHR32m1 }, 430 { X86::SHR32rCL, X86::SHR32mCL }, 431 { X86::SHR32ri, X86::SHR32mi }, 432 { X86::SHR64r1, X86::SHR64m1 }, 433 { X86::SHR64rCL, X86::SHR64mCL }, 434 { X86::SHR64ri, X86::SHR64mi }, 435 { X86::SHR8r1, X86::SHR8m1 }, 436 { X86::SHR8rCL, X86::SHR8mCL }, 437 { X86::SHR8ri, X86::SHR8mi }, 438 { X86::SHRD16rrCL, X86::SHRD16mrCL }, 439 { X86::SHRD16rri8, X86::SHRD16mri8 }, 440 { X86::SHRD32rrCL, X86::SHRD32mrCL }, 441 { X86::SHRD32rri8, X86::SHRD32mri8 }, 442 { X86::SHRD64rrCL, X86::SHRD64mrCL }, 443 { X86::SHRD64rri8, X86::SHRD64mri8 }, 444 { X86::SUB16ri, X86::SUB16mi }, 445 { X86::SUB16ri8, X86::SUB16mi8 }, 446 { X86::SUB16rr, X86::SUB16mr }, 447 { X86::SUB32ri, X86::SUB32mi }, 448 { X86::SUB32ri8, X86::SUB32mi8 }, 449 { X86::SUB32rr, X86::SUB32mr }, 450 { X86::SUB64ri32, X86::SUB64mi32 }, 451 { X86::SUB64ri8, X86::SUB64mi8 }, 452 { X86::SUB64rr, X86::SUB64mr }, 453 { X86::SUB8ri, X86::SUB8mi }, 454 { X86::SUB8rr, X86::SUB8mr }, 455 { X86::XOR16ri, X86::XOR16mi }, 456 { X86::XOR16ri8, X86::XOR16mi8 }, 457 { X86::XOR16rr, X86::XOR16mr }, 458 { X86::XOR32ri, X86::XOR32mi }, 459 { X86::XOR32ri8, X86::XOR32mi8 }, 460 { X86::XOR32rr, X86::XOR32mr }, 461 { X86::XOR64ri32, X86::XOR64mi32 }, 462 { X86::XOR64ri8, X86::XOR64mi8 }, 463 { X86::XOR64rr, X86::XOR64mr }, 464 { X86::XOR8ri, X86::XOR8mi }, 465 { X86::XOR8rr, X86::XOR8mr } 466 }; 467 ASSERT_SORTED(OpcodeTable); 468 OpcodeTablePtr = OpcodeTable; 469 OpcodeTableSize = ARRAY_SIZE(OpcodeTable); 470 isTwoAddrFold = true; 471 } else if (i == 0) { // If operand 0 472 if (MI->getOpcode() == X86::MOV16r0) 473 NewMI = MakeM0Inst(TII, X86::MOV16mi, FrameIndex, MI); 474 else if (MI->getOpcode() == X86::MOV32r0) 475 NewMI = MakeM0Inst(TII, X86::MOV32mi, FrameIndex, MI); 476 else if (MI->getOpcode() == X86::MOV64r0) 477 NewMI = MakeM0Inst(TII, X86::MOV64mi32, FrameIndex, MI); 478 else if (MI->getOpcode() == X86::MOV8r0) 479 NewMI = MakeM0Inst(TII, X86::MOV8mi, FrameIndex, MI); 480 if (NewMI) { 481 NewMI->copyKillDeadInfo(MI); 482 return NewMI; 483 } 484 485 static const TableEntry OpcodeTable[] = { 486 { X86::CMP16ri, X86::CMP16mi }, 487 { X86::CMP16ri8, X86::CMP16mi8 }, 488 { X86::CMP32ri, X86::CMP32mi }, 489 { X86::CMP32ri8, X86::CMP32mi8 }, 490 { X86::CMP8ri, X86::CMP8mi }, 491 { X86::DIV16r, X86::DIV16m }, 492 { X86::DIV32r, X86::DIV32m }, 493 { X86::DIV64r, X86::DIV64m }, 494 { X86::DIV8r, X86::DIV8m }, 495 { X86::FsMOVAPDrr, X86::MOVSDmr }, 496 { X86::FsMOVAPSrr, X86::MOVSSmr }, 497 { X86::IDIV16r, X86::IDIV16m }, 498 { X86::IDIV32r, X86::IDIV32m }, 499 { X86::IDIV64r, X86::IDIV64m }, 500 { X86::IDIV8r, X86::IDIV8m }, 501 { X86::IMUL16r, X86::IMUL16m }, 502 { X86::IMUL32r, X86::IMUL32m }, 503 { X86::IMUL64r, X86::IMUL64m }, 504 { X86::IMUL8r, X86::IMUL8m }, 505 { X86::MOV16ri, X86::MOV16mi }, 506 { X86::MOV16rr, X86::MOV16mr }, 507 { X86::MOV32ri, X86::MOV32mi }, 508 { X86::MOV32rr, X86::MOV32mr }, 509 { X86::MOV64ri32, X86::MOV64mi32 }, 510 { X86::MOV64rr, X86::MOV64mr }, 511 { X86::MOV8ri, X86::MOV8mi }, 512 { X86::MOV8rr, X86::MOV8mr }, 513 { X86::MOVAPDrr, X86::MOVAPDmr }, 514 { X86::MOVAPSrr, X86::MOVAPSmr }, 515 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr }, 516 { X86::MOVPQIto64rr,X86::MOVPQIto64mr }, 517 { X86::MOVPS2SSrr, X86::MOVPS2SSmr }, 518 { X86::MOVSDrr, X86::MOVSDmr }, 519 { X86::MOVSDto64rr, X86::MOVSDto64mr }, 520 { X86::MOVSS2DIrr, X86::MOVSS2DImr }, 521 { X86::MOVSSrr, X86::MOVSSmr }, 522 { X86::MOVUPDrr, X86::MOVUPDmr }, 523 { X86::MOVUPSrr, X86::MOVUPSmr }, 524 { X86::MUL16r, X86::MUL16m }, 525 { X86::MUL32r, X86::MUL32m }, 526 { X86::MUL64r, X86::MUL64m }, 527 { X86::MUL8r, X86::MUL8m }, 528 { X86::SETAEr, X86::SETAEm }, 529 { X86::SETAr, X86::SETAm }, 530 { X86::SETBEr, X86::SETBEm }, 531 { X86::SETBr, X86::SETBm }, 532 { X86::SETEr, X86::SETEm }, 533 { X86::SETGEr, X86::SETGEm }, 534 { X86::SETGr, X86::SETGm }, 535 { X86::SETLEr, X86::SETLEm }, 536 { X86::SETLr, X86::SETLm }, 537 { X86::SETNEr, X86::SETNEm }, 538 { X86::SETNPr, X86::SETNPm }, 539 { X86::SETNSr, X86::SETNSm }, 540 { X86::SETPr, X86::SETPm }, 541 { X86::SETSr, X86::SETSm }, 542 { X86::TEST16ri, X86::TEST16mi }, 543 { X86::TEST32ri, X86::TEST32mi }, 544 { X86::TEST64ri32, X86::TEST64mi32 }, 545 { X86::TEST8ri, X86::TEST8mi }, 546 { X86::XCHG16rr, X86::XCHG16mr }, 547 { X86::XCHG32rr, X86::XCHG32mr }, 548 { X86::XCHG64rr, X86::XCHG64mr }, 549 { X86::XCHG8rr, X86::XCHG8mr } 550 }; 551 ASSERT_SORTED(OpcodeTable); 552 OpcodeTablePtr = OpcodeTable; 553 OpcodeTableSize = ARRAY_SIZE(OpcodeTable); 554 } else if (i == 1) { 555 static const TableEntry OpcodeTable[] = { 556 { X86::CMP16rr, X86::CMP16rm }, 557 { X86::CMP32rr, X86::CMP32rm }, 558 { X86::CMP64ri32, X86::CMP64mi32 }, 559 { X86::CMP64ri8, X86::CMP64mi8 }, 560 { X86::CMP64rr, X86::CMP64rm }, 561 { X86::CMP8rr, X86::CMP8rm }, 562 { X86::CMPPDrri, X86::CMPPDrmi }, 563 { X86::CMPPSrri, X86::CMPPSrmi }, 564 { X86::CMPSDrr, X86::CMPSDrm }, 565 { X86::CMPSSrr, X86::CMPSSrm }, 566 { X86::CVTSD2SSrr, X86::CVTSD2SSrm }, 567 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm }, 568 { X86::CVTSI2SDrr, X86::CVTSI2SDrm }, 569 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm }, 570 { X86::CVTSI2SSrr, X86::CVTSI2SSrm }, 571 { X86::CVTSS2SDrr, X86::CVTSS2SDrm }, 572 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm }, 573 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm }, 574 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm }, 575 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm }, 576 { X86::FsMOVAPDrr, X86::MOVSDrm }, 577 { X86::FsMOVAPSrr, X86::MOVSSrm }, 578 { X86::IMUL16rri, X86::IMUL16rmi }, 579 { X86::IMUL16rri8, X86::IMUL16rmi8 }, 580 { X86::IMUL32rri, X86::IMUL32rmi }, 581 { X86::IMUL32rri8, X86::IMUL32rmi8 }, 582 { X86::IMUL64rr, X86::IMUL64rm }, 583 { X86::IMUL64rri32, X86::IMUL64rmi32 }, 584 { X86::IMUL64rri8, X86::IMUL64rmi8 }, 585 { X86::Int_CMPSDrr, X86::Int_CMPSDrm }, 586 { X86::Int_CMPSSrr, X86::Int_CMPSSrm }, 587 { X86::Int_COMISDrr, X86::Int_COMISDrm }, 588 { X86::Int_COMISSrr, X86::Int_COMISSrm }, 589 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm }, 590 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm }, 591 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm }, 592 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm }, 593 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm }, 594 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm }, 595 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm }, 596 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm }, 597 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm }, 598 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm }, 599 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm }, 600 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm }, 601 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm }, 602 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm }, 603 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm }, 604 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm }, 605 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm }, 606 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm }, 607 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm }, 608 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm }, 609 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm }, 610 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm }, 611 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm }, 612 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm }, 613 { X86::MOV16rr, X86::MOV16rm }, 614 { X86::MOV32rr, X86::MOV32rm }, 615 { X86::MOV64rr, X86::MOV64rm }, 616 { X86::MOV64toPQIrr, X86::MOV64toPQIrm }, 617 { X86::MOV64toSDrr, X86::MOV64toSDrm }, 618 { X86::MOV8rr, X86::MOV8rm }, 619 { X86::MOVAPDrr, X86::MOVAPDrm }, 620 { X86::MOVAPSrr, X86::MOVAPSrm }, 621 { X86::MOVDDUPrr, X86::MOVDDUPrm }, 622 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm }, 623 { X86::MOVDI2SSrr, X86::MOVDI2SSrm }, 624 { X86::MOVSD2PDrr, X86::MOVSD2PDrm }, 625 { X86::MOVSDrr, X86::MOVSDrm }, 626 { X86::MOVSHDUPrr, X86::MOVSHDUPrm }, 627 { X86::MOVSLDUPrr, X86::MOVSLDUPrm }, 628 { X86::MOVSS2PSrr, X86::MOVSS2PSrm }, 629 { X86::MOVSSrr, X86::MOVSSrm }, 630 { X86::MOVSX16rr8, X86::MOVSX16rm8 }, 631 { X86::MOVSX32rr16, X86::MOVSX32rm16 }, 632 { X86::MOVSX32rr8, X86::MOVSX32rm8 }, 633 { X86::MOVSX64rr16, X86::MOVSX64rm16 }, 634 { X86::MOVSX64rr32, X86::MOVSX64rm32 }, 635 { X86::MOVSX64rr8, X86::MOVSX64rm8 }, 636 { X86::MOVUPDrr, X86::MOVUPDrm }, 637 { X86::MOVUPSrr, X86::MOVUPSrm }, 638 { X86::MOVZX16rr8, X86::MOVZX16rm8 }, 639 { X86::MOVZX32rr16, X86::MOVZX32rm16 }, 640 { X86::MOVZX32rr8, X86::MOVZX32rm8 }, 641 { X86::MOVZX64rr16, X86::MOVZX64rm16 }, 642 { X86::MOVZX64rr8, X86::MOVZX64rm8 }, 643 { X86::PSHUFDri, X86::PSHUFDmi }, 644 { X86::PSHUFHWri, X86::PSHUFHWmi }, 645 { X86::PSHUFLWri, X86::PSHUFLWmi }, 646 { X86::PsMOVZX64rr32, X86::PsMOVZX64rm32 }, 647 { X86::TEST16rr, X86::TEST16rm }, 648 { X86::TEST32rr, X86::TEST32rm }, 649 { X86::TEST64rr, X86::TEST64rm }, 650 { X86::TEST8rr, X86::TEST8rm }, 651 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 652 { X86::UCOMISDrr, X86::UCOMISDrm }, 653 { X86::UCOMISSrr, X86::UCOMISSrm }, 654 { X86::XCHG16rr, X86::XCHG16rm }, 655 { X86::XCHG32rr, X86::XCHG32rm }, 656 { X86::XCHG64rr, X86::XCHG64rm }, 657 { X86::XCHG8rr, X86::XCHG8rm } 658 }; 659 ASSERT_SORTED(OpcodeTable); 660 OpcodeTablePtr = OpcodeTable; 661 OpcodeTableSize = ARRAY_SIZE(OpcodeTable); 662 } else if (i == 2) { 663 static const TableEntry OpcodeTable[] = { 664 { X86::ADC32rr, X86::ADC32rm }, 665 { X86::ADC64rr, X86::ADC64rm }, 666 { X86::ADD16rr, X86::ADD16rm }, 667 { X86::ADD32rr, X86::ADD32rm }, 668 { X86::ADD64rr, X86::ADD64rm }, 669 { X86::ADD8rr, X86::ADD8rm }, 670 { X86::ADDPDrr, X86::ADDPDrm }, 671 { X86::ADDPSrr, X86::ADDPSrm }, 672 { X86::ADDSDrr, X86::ADDSDrm }, 673 { X86::ADDSSrr, X86::ADDSSrm }, 674 { X86::ADDSUBPDrr, X86::ADDSUBPDrm }, 675 { X86::ADDSUBPSrr, X86::ADDSUBPSrm }, 676 { X86::AND16rr, X86::AND16rm }, 677 { X86::AND32rr, X86::AND32rm }, 678 { X86::AND64rr, X86::AND64rm }, 679 { X86::AND8rr, X86::AND8rm }, 680 { X86::ANDNPDrr, X86::ANDNPDrm }, 681 { X86::ANDNPSrr, X86::ANDNPSrm }, 682 { X86::ANDPDrr, X86::ANDPDrm }, 683 { X86::ANDPSrr, X86::ANDPSrm }, 684 { X86::CMOVA16rr, X86::CMOVA16rm }, 685 { X86::CMOVA32rr, X86::CMOVA32rm }, 686 { X86::CMOVA64rr, X86::CMOVA64rm }, 687 { X86::CMOVAE16rr, X86::CMOVAE16rm }, 688 { X86::CMOVAE32rr, X86::CMOVAE32rm }, 689 { X86::CMOVAE64rr, X86::CMOVAE64rm }, 690 { X86::CMOVB16rr, X86::CMOVB16rm }, 691 { X86::CMOVB32rr, X86::CMOVB32rm }, 692 { X86::CMOVB64rr, X86::CMOVB64rm }, 693 { X86::CMOVBE16rr, X86::CMOVBE16rm }, 694 { X86::CMOVBE32rr, X86::CMOVBE32rm }, 695 { X86::CMOVBE64rr, X86::CMOVBE64rm }, 696 { X86::CMOVE16rr, X86::CMOVE16rm }, 697 { X86::CMOVE32rr, X86::CMOVE32rm }, 698 { X86::CMOVE64rr, X86::CMOVE64rm }, 699 { X86::CMOVG16rr, X86::CMOVG16rm }, 700 { X86::CMOVG32rr, X86::CMOVG32rm }, 701 { X86::CMOVG64rr, X86::CMOVG64rm }, 702 { X86::CMOVGE16rr, X86::CMOVGE16rm }, 703 { X86::CMOVGE32rr, X86::CMOVGE32rm }, 704 { X86::CMOVGE64rr, X86::CMOVGE64rm }, 705 { X86::CMOVL16rr, X86::CMOVL16rm }, 706 { X86::CMOVL32rr, X86::CMOVL32rm }, 707 { X86::CMOVL64rr, X86::CMOVL64rm }, 708 { X86::CMOVLE16rr, X86::CMOVLE16rm }, 709 { X86::CMOVLE32rr, X86::CMOVLE32rm }, 710 { X86::CMOVLE64rr, X86::CMOVLE64rm }, 711 { X86::CMOVNE16rr, X86::CMOVNE16rm }, 712 { X86::CMOVNE32rr, X86::CMOVNE32rm }, 713 { X86::CMOVNE64rr, X86::CMOVNE64rm }, 714 { X86::CMOVNP16rr, X86::CMOVNP16rm }, 715 { X86::CMOVNP32rr, X86::CMOVNP32rm }, 716 { X86::CMOVNP64rr, X86::CMOVNP64rm }, 717 { X86::CMOVNS16rr, X86::CMOVNS16rm }, 718 { X86::CMOVNS32rr, X86::CMOVNS32rm }, 719 { X86::CMOVNS64rr, X86::CMOVNS64rm }, 720 { X86::CMOVP16rr, X86::CMOVP16rm }, 721 { X86::CMOVP32rr, X86::CMOVP32rm }, 722 { X86::CMOVP64rr, X86::CMOVP64rm }, 723 { X86::CMOVS16rr, X86::CMOVS16rm }, 724 { X86::CMOVS32rr, X86::CMOVS32rm }, 725 { X86::CMOVS64rr, X86::CMOVS64rm }, 726 { X86::DIVPDrr, X86::DIVPDrm }, 727 { X86::DIVPSrr, X86::DIVPSrm }, 728 { X86::DIVSDrr, X86::DIVSDrm }, 729 { X86::DIVSSrr, X86::DIVSSrm }, 730 { X86::HADDPDrr, X86::HADDPDrm }, 731 { X86::HADDPSrr, X86::HADDPSrm }, 732 { X86::HSUBPDrr, X86::HSUBPDrm }, 733 { X86::HSUBPSrr, X86::HSUBPSrm }, 734 { X86::IMUL16rr, X86::IMUL16rm }, 735 { X86::IMUL32rr, X86::IMUL32rm }, 736 { X86::MAXPDrr, X86::MAXPDrm }, 737 { X86::MAXPSrr, X86::MAXPSrm }, 738 { X86::MINPDrr, X86::MINPDrm }, 739 { X86::MINPSrr, X86::MINPSrm }, 740 { X86::MULPDrr, X86::MULPDrm }, 741 { X86::MULPSrr, X86::MULPSrm }, 742 { X86::MULSDrr, X86::MULSDrm }, 743 { X86::MULSSrr, X86::MULSSrm }, 744 { X86::OR16rr, X86::OR16rm }, 745 { X86::OR32rr, X86::OR32rm }, 746 { X86::OR64rr, X86::OR64rm }, 747 { X86::OR8rr, X86::OR8rm }, 748 { X86::ORPDrr, X86::ORPDrm }, 749 { X86::ORPSrr, X86::ORPSrm }, 750 { X86::PACKSSDWrr, X86::PACKSSDWrm }, 751 { X86::PACKSSWBrr, X86::PACKSSWBrm }, 752 { X86::PACKUSWBrr, X86::PACKUSWBrm }, 753 { X86::PADDBrr, X86::PADDBrm }, 754 { X86::PADDDrr, X86::PADDDrm }, 755 { X86::PADDSBrr, X86::PADDSBrm }, 756 { X86::PADDSWrr, X86::PADDSWrm }, 757 { X86::PADDWrr, X86::PADDWrm }, 758 { X86::PANDNrr, X86::PANDNrm }, 759 { X86::PANDrr, X86::PANDrm }, 760 { X86::PAVGBrr, X86::PAVGBrm }, 761 { X86::PAVGWrr, X86::PAVGWrm }, 762 { X86::PCMPEQBrr, X86::PCMPEQBrm }, 763 { X86::PCMPEQDrr, X86::PCMPEQDrm }, 764 { X86::PCMPEQWrr, X86::PCMPEQWrm }, 765 { X86::PCMPGTBrr, X86::PCMPGTBrm }, 766 { X86::PCMPGTDrr, X86::PCMPGTDrm }, 767 { X86::PCMPGTWrr, X86::PCMPGTWrm }, 768 { X86::PINSRWrri, X86::PINSRWrmi }, 769 { X86::PMADDWDrr, X86::PMADDWDrm }, 770 { X86::PMAXSWrr, X86::PMAXSWrm }, 771 { X86::PMAXUBrr, X86::PMAXUBrm }, 772 { X86::PMINSWrr, X86::PMINSWrm }, 773 { X86::PMINUBrr, X86::PMINUBrm }, 774 { X86::PMULHUWrr, X86::PMULHUWrm }, 775 { X86::PMULHWrr, X86::PMULHWrm }, 776 { X86::PMULLWrr, X86::PMULLWrm }, 777 { X86::PMULUDQrr, X86::PMULUDQrm }, 778 { X86::PORrr, X86::PORrm }, 779 { X86::PSADBWrr, X86::PSADBWrm }, 780 { X86::PSLLDrr, X86::PSLLDrm }, 781 { X86::PSLLQrr, X86::PSLLQrm }, 782 { X86::PSLLWrr, X86::PSLLWrm }, 783 { X86::PSRADrr, X86::PSRADrm }, 784 { X86::PSRAWrr, X86::PSRAWrm }, 785 { X86::PSRLDrr, X86::PSRLDrm }, 786 { X86::PSRLQrr, X86::PSRLQrm }, 787 { X86::PSRLWrr, X86::PSRLWrm }, 788 { X86::PSUBBrr, X86::PSUBBrm }, 789 { X86::PSUBDrr, X86::PSUBDrm }, 790 { X86::PSUBSBrr, X86::PSUBSBrm }, 791 { X86::PSUBSWrr, X86::PSUBSWrm }, 792 { X86::PSUBWrr, X86::PSUBWrm }, 793 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm }, 794 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm }, 795 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm }, 796 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm }, 797 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm }, 798 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm }, 799 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm }, 800 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm }, 801 { X86::PXORrr, X86::PXORrm }, 802 { X86::RCPPSr, X86::RCPPSm }, 803 { X86::RSQRTPSr, X86::RSQRTPSm }, 804 { X86::SBB32rr, X86::SBB32rm }, 805 { X86::SBB64rr, X86::SBB64rm }, 806 { X86::SHUFPDrri, X86::SHUFPDrmi }, 807 { X86::SHUFPSrri, X86::SHUFPSrmi }, 808 { X86::SQRTPDr, X86::SQRTPDm }, 809 { X86::SQRTPSr, X86::SQRTPSm }, 810 { X86::SQRTSDr, X86::SQRTSDm }, 811 { X86::SQRTSSr, X86::SQRTSSm }, 812 { X86::SUB16rr, X86::SUB16rm }, 813 { X86::SUB32rr, X86::SUB32rm }, 814 { X86::SUB64rr, X86::SUB64rm }, 815 { X86::SUB8rr, X86::SUB8rm }, 816 { X86::SUBPDrr, X86::SUBPDrm }, 817 { X86::SUBPSrr, X86::SUBPSrm }, 818 { X86::SUBSDrr, X86::SUBSDrm }, 819 { X86::SUBSSrr, X86::SUBSSrm }, 820 // FIXME: TEST*rr -> swapped operand of TEST*mr. 821 { X86::UNPCKHPDrr, X86::UNPCKHPDrm }, 822 { X86::UNPCKHPSrr, X86::UNPCKHPSrm }, 823 { X86::UNPCKLPDrr, X86::UNPCKLPDrm }, 824 { X86::UNPCKLPSrr, X86::UNPCKLPSrm }, 825 { X86::XOR16rr, X86::XOR16rm }, 826 { X86::XOR32rr, X86::XOR32rm }, 827 { X86::XOR64rr, X86::XOR64rm }, 828 { X86::XOR8rr, X86::XOR8rm }, 829 { X86::XORPDrr, X86::XORPDrm }, 830 { X86::XORPSrr, X86::XORPSrm } 831 }; 832 ASSERT_SORTED(OpcodeTable); 833 OpcodeTablePtr = OpcodeTable; 834 OpcodeTableSize = ARRAY_SIZE(OpcodeTable); 835 } 836 837 // If table selected... 838 if (OpcodeTablePtr) { 839 // Find the Opcode to fuse 840 unsigned fromOpcode = MI->getOpcode(); 841 // Lookup fromOpcode in table 842 if (const TableEntry *Entry = TableLookup(OpcodeTablePtr, OpcodeTableSize, 843 fromOpcode)) { 844 if (isTwoAddrFold) 845 NewMI = FuseTwoAddrInst(Entry->to, FrameIndex, MI, TII); 846 else 847 NewMI = FuseInst(Entry->to, i, FrameIndex, MI, TII); 848 NewMI->copyKillDeadInfo(MI); 849 return NewMI; 850 } 851 } 852 853 // No fusion 854 if (PrintFailedFusing) 855 cerr << "We failed to fuse (" 856 << ((i == 1) ? "r" : "s") << "): " << *MI; 857 return NULL; 858} 859 860 861const unsigned *X86RegisterInfo::getCalleeSavedRegs() const { 862 static const unsigned CalleeSavedRegs32Bit[] = { 863 X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 864 }; 865 static const unsigned CalleeSavedRegs64Bit[] = { 866 X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 867 }; 868 869 return Is64Bit ? CalleeSavedRegs64Bit : CalleeSavedRegs32Bit; 870} 871 872const TargetRegisterClass* const* 873X86RegisterInfo::getCalleeSavedRegClasses() const { 874 static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = { 875 &X86::GR32RegClass, &X86::GR32RegClass, 876 &X86::GR32RegClass, &X86::GR32RegClass, 0 877 }; 878 static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = { 879 &X86::GR64RegClass, &X86::GR64RegClass, 880 &X86::GR64RegClass, &X86::GR64RegClass, 881 &X86::GR64RegClass, &X86::GR64RegClass, 0 882 }; 883 884 return Is64Bit ? CalleeSavedRegClasses64Bit : CalleeSavedRegClasses32Bit; 885} 886 887BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const { 888 BitVector Reserved(getNumRegs()); 889 Reserved.set(X86::RSP); 890 Reserved.set(X86::ESP); 891 Reserved.set(X86::SP); 892 Reserved.set(X86::SPL); 893 if (hasFP(MF)) { 894 Reserved.set(X86::RBP); 895 Reserved.set(X86::EBP); 896 Reserved.set(X86::BP); 897 Reserved.set(X86::BPL); 898 } 899 return Reserved; 900} 901 902//===----------------------------------------------------------------------===// 903// Stack Frame Processing methods 904//===----------------------------------------------------------------------===// 905 906// hasFP - Return true if the specified function should have a dedicated frame 907// pointer register. This is true if the function has variable sized allocas or 908// if frame pointer elimination is disabled. 909// 910bool X86RegisterInfo::hasFP(const MachineFunction &MF) const { 911 return (NoFramePointerElim || 912 MF.getFrameInfo()->hasVarSizedObjects() || 913 MF.getInfo<X86FunctionInfo>()->getForceFramePointer()); 914} 915 916void X86RegisterInfo:: 917eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 918 MachineBasicBlock::iterator I) const { 919 if (hasFP(MF)) { 920 // If we have a frame pointer, turn the adjcallstackup instruction into a 921 // 'sub ESP, <amt>' and the adjcallstackdown instruction into 'add ESP, 922 // <amt>' 923 MachineInstr *Old = I; 924 unsigned Amount = Old->getOperand(0).getImmedValue(); 925 if (Amount != 0) { 926 // We need to keep the stack aligned properly. To do this, we round the 927 // amount of space needed for the outgoing arguments up to the next 928 // alignment boundary. 929 unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); 930 Amount = (Amount+Align-1)/Align*Align; 931 932 MachineInstr *New = 0; 933 if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) { 934 New=BuildMI(TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri), StackPtr) 935 .addReg(StackPtr).addImm(Amount); 936 } else { 937 assert(Old->getOpcode() == X86::ADJCALLSTACKUP); 938 // factor out the amount the callee already popped. 939 unsigned CalleeAmt = Old->getOperand(1).getImmedValue(); 940 Amount -= CalleeAmt; 941 if (Amount) { 942 unsigned Opc = (Amount < 128) ? 943 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : 944 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri); 945 New = BuildMI(TII.get(Opc), StackPtr) 946 .addReg(StackPtr).addImm(Amount); 947 } 948 } 949 950 // Replace the pseudo instruction with a new instruction... 951 if (New) MBB.insert(I, New); 952 } 953 } else if (I->getOpcode() == X86::ADJCALLSTACKUP) { 954 // If we are performing frame pointer elimination and if the callee pops 955 // something off the stack pointer, add it back. We do this until we have 956 // more advanced stack pointer tracking ability. 957 if (unsigned CalleeAmt = I->getOperand(1).getImmedValue()) { 958 unsigned Opc = (CalleeAmt < 128) ? 959 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : 960 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri); 961 MachineInstr *New = 962 BuildMI(TII.get(Opc), StackPtr).addReg(StackPtr).addImm(CalleeAmt); 963 MBB.insert(I, New); 964 } 965 } 966 967 MBB.erase(I); 968} 969 970void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II) const{ 971 unsigned i = 0; 972 MachineInstr &MI = *II; 973 MachineFunction &MF = *MI.getParent()->getParent(); 974 while (!MI.getOperand(i).isFrameIndex()) { 975 ++i; 976 assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); 977 } 978 979 int FrameIndex = MI.getOperand(i).getFrameIndex(); 980 // This must be part of a four operand memory reference. Replace the 981 // FrameIndex with base register with EBP. Add an offset to the offset. 982 MI.getOperand(i).ChangeToRegister(hasFP(MF) ? FramePtr : StackPtr, false); 983 984 // Now add the frame object offset to the offset from EBP. 985 int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) + 986 MI.getOperand(i+3).getImmedValue()+SlotSize; 987 988 if (!hasFP(MF)) 989 Offset += MF.getFrameInfo()->getStackSize(); 990 else 991 Offset += SlotSize; // Skip the saved EBP 992 993 MI.getOperand(i+3).ChangeToImmediate(Offset); 994} 995 996void 997X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{ 998 if (hasFP(MF)) { 999 // Create a frame entry for the EBP register that must be saved. 1000 int FrameIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize,SlotSize * -2); 1001 assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() && 1002 "Slot for EBP register must be last in order to be found!"); 1003 } 1004} 1005 1006void X86RegisterInfo::emitPrologue(MachineFunction &MF) const { 1007 MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB 1008 MachineBasicBlock::iterator MBBI = MBB.begin(); 1009 MachineFrameInfo *MFI = MF.getFrameInfo(); 1010 unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); 1011 const Function* Fn = MF.getFunction(); 1012 const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>(); 1013 MachineInstr *MI; 1014 MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 1015 1016 // Prepare for frame info. 1017 unsigned FrameLabelId = 0; 1018 1019 // Get the number of bytes to allocate from the FrameInfo 1020 unsigned NumBytes = MFI->getStackSize(); 1021 1022 if (NumBytes) { // adjust stack pointer: ESP -= numbytes 1023 if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) { 1024 // Function prologue calls _alloca to probe the stack when allocating 1025 // more than 4k bytes in one go. Touching the stack at 4K increments is 1026 // necessary to ensure that the guard pages used by the OS virtual memory 1027 // manager are allocated in correct sequence. 1028 MI = BuildMI(TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes); 1029 MBB.insert(MBBI, MI); 1030 MI = BuildMI(TII.get(X86::CALLpcrel32)).addExternalSymbol("_alloca"); 1031 MBB.insert(MBBI, MI); 1032 } else { 1033 unsigned Opc = (NumBytes < 128) ? 1034 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : 1035 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri); 1036 MI= BuildMI(TII.get(Opc), StackPtr).addReg(StackPtr).addImm(NumBytes); 1037 MBB.insert(MBBI, MI); 1038 } 1039 } 1040 1041 if (MMI && MMI->needsFrameInfo()) { 1042 // Mark effective beginning of when frame pointer becomes valid. 1043 FrameLabelId = MMI->NextLabelID(); 1044 BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(FrameLabelId); 1045 } 1046 1047 if (hasFP(MF)) { 1048 // Get the offset of the stack slot for the EBP register... which is 1049 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. 1050 int EBPOffset = MFI->getObjectOffset(MFI->getObjectIndexBegin())+SlotSize; 1051 // Update the frame offset adjustment. 1052 MFI->setOffsetAdjustment(SlotSize-NumBytes); 1053 1054 // Save EBP into the appropriate stack slot... 1055 // mov [ESP-<offset>], EBP 1056 MI = addRegOffset(BuildMI(TII.get(Is64Bit ? X86::MOV64mr : X86::MOV32mr)), 1057 StackPtr, EBPOffset+NumBytes).addReg(FramePtr); 1058 MBB.insert(MBBI, MI); 1059 1060 // Update EBP with the new base value... 1061 if (NumBytes == SlotSize) // mov EBP, ESP 1062 MI = BuildMI(TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr). 1063 addReg(StackPtr); 1064 else // lea EBP, [ESP+StackSize] 1065 MI = addRegOffset(BuildMI(TII.get(Is64Bit ? X86::LEA64r : X86::LEA32r), 1066 FramePtr), StackPtr, NumBytes-SlotSize); 1067 1068 MBB.insert(MBBI, MI); 1069 } 1070 1071 if (MMI && MMI->needsFrameInfo()) { 1072 std::vector<MachineMove> &Moves = MMI->getFrameMoves(); 1073 1074 if (NumBytes) { 1075 // Show update of SP. 1076 MachineLocation SPDst(MachineLocation::VirtualFP); 1077 MachineLocation SPSrc(MachineLocation::VirtualFP, -NumBytes); 1078 Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); 1079 } else { 1080 MachineLocation SP(StackPtr); 1081 Moves.push_back(MachineMove(FrameLabelId, SP, SP)); 1082 } 1083 1084 // Add callee saved registers to move list. 1085 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); 1086 for (unsigned I = 0, E = CSI.size(); I != E; ++I) { 1087 int Offset = MFI->getObjectOffset(CSI[I].getFrameIdx()); 1088 unsigned Reg = CSI[I].getReg(); 1089 MachineLocation CSDst(MachineLocation::VirtualFP, Offset); 1090 MachineLocation CSSrc(Reg); 1091 Moves.push_back(MachineMove(FrameLabelId, CSDst, CSSrc)); 1092 } 1093 1094 // Mark effective beginning of when frame pointer is ready. 1095 unsigned ReadyLabelId = MMI->NextLabelID(); 1096 BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(ReadyLabelId); 1097 1098 MachineLocation FPDst(hasFP(MF) ? FramePtr : StackPtr); 1099 MachineLocation FPSrc(MachineLocation::VirtualFP); 1100 Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc)); 1101 } 1102 1103 // If it's main() on Cygwin\Mingw32 we should align stack as well 1104 if (Fn->hasExternalLinkage() && Fn->getName() == "main" && 1105 Subtarget->isTargetCygMing()) { 1106 MI= BuildMI(TII.get(X86::AND32ri), X86::ESP) 1107 .addReg(X86::ESP).addImm(-Align); 1108 MBB.insert(MBBI, MI); 1109 1110 // Probe the stack 1111 MI = BuildMI(TII.get(X86::MOV32ri), X86::EAX).addImm(Align); 1112 MBB.insert(MBBI, MI); 1113 MI = BuildMI(TII.get(X86::CALLpcrel32)).addExternalSymbol("_alloca"); 1114 MBB.insert(MBBI, MI); 1115 } 1116} 1117 1118void X86RegisterInfo::emitEpilogue(MachineFunction &MF, 1119 MachineBasicBlock &MBB) const { 1120 const MachineFrameInfo *MFI = MF.getFrameInfo(); 1121 MachineBasicBlock::iterator MBBI = prior(MBB.end()); 1122 1123 switch (MBBI->getOpcode()) { 1124 case X86::RET: 1125 case X86::RETI: 1126 case X86::TAILJMPd: 1127 case X86::TAILJMPr: 1128 case X86::TAILJMPm: break; // These are ok 1129 default: 1130 assert(0 && "Can only insert epilog into returning blocks"); 1131 } 1132 1133 if (hasFP(MF)) { 1134 // mov ESP, EBP 1135 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr). 1136 addReg(FramePtr); 1137 1138 // pop EBP 1139 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr); 1140 } else { 1141 // Get the number of bytes allocated from the FrameInfo... 1142 unsigned NumBytes = MFI->getStackSize(); 1143 1144 if (NumBytes) { // adjust stack pointer back: ESP += numbytes 1145 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1146 // instruction, merge the two instructions. 1147 if (MBBI != MBB.begin()) { 1148 MachineBasicBlock::iterator PI = prior(MBBI); 1149 unsigned Opc = PI->getOpcode(); 1150 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 1151 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 1152 PI->getOperand(0).getReg() == StackPtr) { 1153 NumBytes += PI->getOperand(2).getImmedValue(); 1154 MBB.erase(PI); 1155 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 1156 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 1157 PI->getOperand(0).getReg() == StackPtr) { 1158 NumBytes -= PI->getOperand(2).getImmedValue(); 1159 MBB.erase(PI); 1160 } 1161 } 1162 1163 if (NumBytes > 0) { 1164 unsigned Opc = (NumBytes < 128) ? 1165 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : 1166 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri); 1167 BuildMI(MBB, MBBI, TII.get(Opc), StackPtr) 1168 .addReg(StackPtr).addImm(NumBytes); 1169 } else if ((int)NumBytes < 0) { 1170 unsigned Opc = (-NumBytes < 128) ? 1171 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : 1172 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri); 1173 BuildMI(MBB, MBBI, TII.get(Opc), StackPtr) 1174 .addReg(StackPtr).addImm(-NumBytes); 1175 } 1176 } 1177 } 1178} 1179 1180unsigned X86RegisterInfo::getRARegister() const { 1181 return X86::ST0; // use a non-register register 1182} 1183 1184unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const { 1185 return hasFP(MF) ? FramePtr : StackPtr; 1186} 1187 1188void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves) 1189 const { 1190 // Initial state of the frame pointer is esp. 1191 MachineLocation Dst(MachineLocation::VirtualFP); 1192 MachineLocation Src(StackPtr, 0); 1193 Moves.push_back(MachineMove(0, Dst, Src)); 1194} 1195 1196namespace llvm { 1197unsigned getX86SubSuperRegister(unsigned Reg, MVT::ValueType VT, bool High) { 1198 switch (VT) { 1199 default: return Reg; 1200 case MVT::i8: 1201 if (High) { 1202 switch (Reg) { 1203 default: return 0; 1204 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1205 return X86::AH; 1206 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1207 return X86::DH; 1208 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1209 return X86::CH; 1210 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1211 return X86::BH; 1212 } 1213 } else { 1214 switch (Reg) { 1215 default: return 0; 1216 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1217 return X86::AL; 1218 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1219 return X86::DL; 1220 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1221 return X86::CL; 1222 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1223 return X86::BL; 1224 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1225 return X86::SIL; 1226 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1227 return X86::DIL; 1228 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1229 return X86::BPL; 1230 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1231 return X86::SPL; 1232 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1233 return X86::R8B; 1234 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1235 return X86::R9B; 1236 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1237 return X86::R10B; 1238 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1239 return X86::R11B; 1240 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1241 return X86::R12B; 1242 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1243 return X86::R13B; 1244 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1245 return X86::R14B; 1246 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1247 return X86::R15B; 1248 } 1249 } 1250 case MVT::i16: 1251 switch (Reg) { 1252 default: return Reg; 1253 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1254 return X86::AX; 1255 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1256 return X86::DX; 1257 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1258 return X86::CX; 1259 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1260 return X86::BX; 1261 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1262 return X86::SI; 1263 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1264 return X86::DI; 1265 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1266 return X86::BP; 1267 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1268 return X86::SP; 1269 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1270 return X86::R8W; 1271 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1272 return X86::R9W; 1273 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1274 return X86::R10W; 1275 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1276 return X86::R11W; 1277 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1278 return X86::R12W; 1279 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1280 return X86::R13W; 1281 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1282 return X86::R14W; 1283 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1284 return X86::R15W; 1285 } 1286 case MVT::i32: 1287 switch (Reg) { 1288 default: return Reg; 1289 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1290 return X86::EAX; 1291 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1292 return X86::EDX; 1293 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1294 return X86::ECX; 1295 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1296 return X86::EBX; 1297 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1298 return X86::ESI; 1299 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1300 return X86::EDI; 1301 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1302 return X86::EBP; 1303 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1304 return X86::ESP; 1305 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1306 return X86::R8D; 1307 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1308 return X86::R9D; 1309 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1310 return X86::R10D; 1311 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1312 return X86::R11D; 1313 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1314 return X86::R12D; 1315 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1316 return X86::R13D; 1317 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1318 return X86::R14D; 1319 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1320 return X86::R15D; 1321 } 1322 case MVT::i64: 1323 switch (Reg) { 1324 default: return Reg; 1325 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1326 return X86::RAX; 1327 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1328 return X86::RDX; 1329 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1330 return X86::RCX; 1331 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1332 return X86::RBX; 1333 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1334 return X86::RSI; 1335 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1336 return X86::RDI; 1337 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1338 return X86::RBP; 1339 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1340 return X86::RSP; 1341 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1342 return X86::R8; 1343 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1344 return X86::R9; 1345 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1346 return X86::R10; 1347 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1348 return X86::R11; 1349 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1350 return X86::R12; 1351 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1352 return X86::R13; 1353 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1354 return X86::R14; 1355 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1356 return X86::R15; 1357 } 1358 } 1359 1360 return Reg; 1361} 1362} 1363 1364#include "X86GenRegisterInfo.inc" 1365 1366