X86RegisterInfo.cpp revision bbe2bbeac834dfe60fe98cfdeff9a9cc94858b7e
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetRegisterInfo class.
11// This file is responsible for the frame pointer elimination optimization
12// on X86.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86RegisterInfo.h"
18#include "X86InstrBuilder.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/Type.h"
25#include "llvm/CodeGen/ValueTypes.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineLocation.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/BitVector.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/ErrorHandling.h"
42using namespace llvm;
43
44X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
45                                 const TargetInstrInfo &tii)
46  : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() ?
47                         X86::ADJCALLSTACKDOWN64 :
48                         X86::ADJCALLSTACKDOWN32,
49                       tm.getSubtarget<X86Subtarget>().is64Bit() ?
50                         X86::ADJCALLSTACKUP64 :
51                         X86::ADJCALLSTACKUP32),
52    TM(tm), TII(tii) {
53  // Cache some information.
54  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
55  Is64Bit = Subtarget->is64Bit();
56  IsWin64 = Subtarget->isTargetWin64();
57  StackAlign = TM.getFrameInfo()->getStackAlignment();
58
59  if (Is64Bit) {
60    SlotSize = 8;
61    StackPtr = X86::RSP;
62    FramePtr = X86::RBP;
63  } else {
64    SlotSize = 4;
65    StackPtr = X86::ESP;
66    FramePtr = X86::EBP;
67  }
68}
69
70/// getDwarfRegNum - This function maps LLVM register identifiers to the DWARF
71/// specific numbering, used in debug info and exception tables.
72int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const {
73  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
74  unsigned Flavour = DWARFFlavour::X86_64;
75
76  if (!Subtarget->is64Bit()) {
77    if (Subtarget->isTargetDarwin()) {
78      if (isEH)
79        Flavour = DWARFFlavour::X86_32_DarwinEH;
80      else
81        Flavour = DWARFFlavour::X86_32_Generic;
82    } else if (Subtarget->isTargetCygMing()) {
83      // Unsupported by now, just quick fallback
84      Flavour = DWARFFlavour::X86_32_Generic;
85    } else {
86      Flavour = DWARFFlavour::X86_32_Generic;
87    }
88  }
89
90  return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour);
91}
92
93/// getX86RegNum - This function maps LLVM register identifiers to their X86
94/// specific numbering, which is used in various places encoding instructions.
95unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
96  switch(RegNo) {
97  case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
98  case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
99  case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
100  case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
101  case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
102    return N86::ESP;
103  case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
104    return N86::EBP;
105  case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
106    return N86::ESI;
107  case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
108    return N86::EDI;
109
110  case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
111    return N86::EAX;
112  case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
113    return N86::ECX;
114  case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
115    return N86::EDX;
116  case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
117    return N86::EBX;
118  case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
119    return N86::ESP;
120  case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
121    return N86::EBP;
122  case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
123    return N86::ESI;
124  case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
125    return N86::EDI;
126
127  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
128  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
129    return RegNo-X86::ST0;
130
131  case X86::XMM0: case X86::XMM8: case X86::MM0:
132    return 0;
133  case X86::XMM1: case X86::XMM9: case X86::MM1:
134    return 1;
135  case X86::XMM2: case X86::XMM10: case X86::MM2:
136    return 2;
137  case X86::XMM3: case X86::XMM11: case X86::MM3:
138    return 3;
139  case X86::XMM4: case X86::XMM12: case X86::MM4:
140    return 4;
141  case X86::XMM5: case X86::XMM13: case X86::MM5:
142    return 5;
143  case X86::XMM6: case X86::XMM14: case X86::MM6:
144    return 6;
145  case X86::XMM7: case X86::XMM15: case X86::MM7:
146    return 7;
147
148  default:
149    assert(isVirtualRegister(RegNo) && "Unknown physical register!");
150    llvm_unreachable("Register allocator hasn't allocated reg correctly yet!");
151    return 0;
152  }
153}
154
155const TargetRegisterClass *
156X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
157                                          const TargetRegisterClass *B,
158                                          unsigned SubIdx) const {
159  switch (SubIdx) {
160  default: return 0;
161  case 1:
162    // 8-bit
163    if (B == &X86::GR8RegClass) {
164      if (A->getSize() == 2 || A->getSize() == 4 || A->getSize() == 8)
165        return A;
166    } else if (B == &X86::GR8_ABCD_LRegClass || B == &X86::GR8_ABCD_HRegClass) {
167      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
168          A == &X86::GR64_NOREXRegClass ||
169          A == &X86::GR64_NOSPRegClass ||
170          A == &X86::GR64_NOREX_NOSPRegClass)
171        return &X86::GR64_ABCDRegClass;
172      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
173               A == &X86::GR32_NOREXRegClass ||
174               A == &X86::GR32_NOSPRegClass)
175        return &X86::GR32_ABCDRegClass;
176      else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
177               A == &X86::GR16_NOREXRegClass)
178        return &X86::GR16_ABCDRegClass;
179    } else if (B == &X86::GR8_NOREXRegClass) {
180      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
181          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
182        return &X86::GR64_NOREXRegClass;
183      else if (A == &X86::GR64_ABCDRegClass)
184        return &X86::GR64_ABCDRegClass;
185      else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
186               A == &X86::GR32_NOSPRegClass)
187        return &X86::GR32_NOREXRegClass;
188      else if (A == &X86::GR32_ABCDRegClass)
189        return &X86::GR32_ABCDRegClass;
190      else if (A == &X86::GR16RegClass || A == &X86::GR16_NOREXRegClass)
191        return &X86::GR16_NOREXRegClass;
192      else if (A == &X86::GR16_ABCDRegClass)
193        return &X86::GR16_ABCDRegClass;
194    }
195    break;
196  case 2:
197    // 8-bit hi
198    if (B == &X86::GR8_ABCD_HRegClass) {
199      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
200          A == &X86::GR64_NOREXRegClass ||
201          A == &X86::GR64_NOSPRegClass ||
202          A == &X86::GR64_NOREX_NOSPRegClass)
203        return &X86::GR64_ABCDRegClass;
204      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
205               A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
206        return &X86::GR32_ABCDRegClass;
207      else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
208               A == &X86::GR16_NOREXRegClass)
209        return &X86::GR16_ABCDRegClass;
210    }
211    break;
212  case 3:
213    // 16-bit
214    if (B == &X86::GR16RegClass) {
215      if (A->getSize() == 4 || A->getSize() == 8)
216        return A;
217    } else if (B == &X86::GR16_ABCDRegClass) {
218      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
219          A == &X86::GR64_NOREXRegClass ||
220          A == &X86::GR64_NOSPRegClass ||
221          A == &X86::GR64_NOREX_NOSPRegClass)
222        return &X86::GR64_ABCDRegClass;
223      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
224               A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
225        return &X86::GR32_ABCDRegClass;
226    } else if (B == &X86::GR16_NOREXRegClass) {
227      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
228          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
229        return &X86::GR64_NOREXRegClass;
230      else if (A == &X86::GR64_ABCDRegClass)
231        return &X86::GR64_ABCDRegClass;
232      else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
233               A == &X86::GR32_NOSPRegClass)
234        return &X86::GR32_NOREXRegClass;
235      else if (A == &X86::GR32_ABCDRegClass)
236        return &X86::GR64_ABCDRegClass;
237    }
238    break;
239  case 4:
240    // 32-bit
241    if (B == &X86::GR32RegClass || B == &X86::GR32_NOSPRegClass) {
242      if (A->getSize() == 8)
243        return A;
244    } else if (B == &X86::GR32_ABCDRegClass) {
245      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
246          A == &X86::GR64_NOREXRegClass ||
247          A == &X86::GR64_NOSPRegClass ||
248          A == &X86::GR64_NOREX_NOSPRegClass)
249        return &X86::GR64_ABCDRegClass;
250    } else if (B == &X86::GR32_NOREXRegClass) {
251      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
252          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
253        return &X86::GR64_NOREXRegClass;
254      else if (A == &X86::GR64_ABCDRegClass)
255        return &X86::GR64_ABCDRegClass;
256    }
257    break;
258  }
259  return 0;
260}
261
262const TargetRegisterClass *
263X86RegisterInfo::getPointerRegClass(unsigned Kind) const {
264  switch (Kind) {
265  default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
266  case 0: // Normal GPRs.
267    if (TM.getSubtarget<X86Subtarget>().is64Bit())
268      return &X86::GR64RegClass;
269    return &X86::GR32RegClass;
270  case 1: // Normal GRPs except the stack pointer (for encoding reasons).
271    if (TM.getSubtarget<X86Subtarget>().is64Bit())
272      return &X86::GR64_NOSPRegClass;
273    return &X86::GR32_NOSPRegClass;
274  }
275}
276
277const TargetRegisterClass *
278X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
279  if (RC == &X86::CCRRegClass) {
280    if (Is64Bit)
281      return &X86::GR64RegClass;
282    else
283      return &X86::GR32RegClass;
284  }
285  return NULL;
286}
287
288const unsigned *
289X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
290  bool callsEHReturn = false;
291
292  if (MF) {
293    const MachineFrameInfo *MFI = MF->getFrameInfo();
294    const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
295    callsEHReturn = (MMI ? MMI->callsEHReturn() : false);
296  }
297
298  static const unsigned CalleeSavedRegs32Bit[] = {
299    X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
300  };
301
302  static const unsigned CalleeSavedRegs32EHRet[] = {
303    X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
304  };
305
306  static const unsigned CalleeSavedRegs64Bit[] = {
307    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
308  };
309
310  static const unsigned CalleeSavedRegs64EHRet[] = {
311    X86::RAX, X86::RDX, X86::RBX, X86::R12,
312    X86::R13, X86::R14, X86::R15, X86::RBP, 0
313  };
314
315  static const unsigned CalleeSavedRegsWin64[] = {
316    X86::RBX,   X86::RBP,   X86::RDI,   X86::RSI,
317    X86::R12,   X86::R13,   X86::R14,   X86::R15,
318    X86::XMM6,  X86::XMM7,  X86::XMM8,  X86::XMM9,
319    X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13,
320    X86::XMM14, X86::XMM15, 0
321  };
322
323  if (Is64Bit) {
324    if (IsWin64)
325      return CalleeSavedRegsWin64;
326    else
327      return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit);
328  } else {
329    return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit);
330  }
331}
332
333const TargetRegisterClass* const*
334X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
335  bool callsEHReturn = false;
336
337  if (MF) {
338    const MachineFrameInfo *MFI = MF->getFrameInfo();
339    const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
340    callsEHReturn = (MMI ? MMI->callsEHReturn() : false);
341  }
342
343  static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = {
344    &X86::GR32RegClass, &X86::GR32RegClass,
345    &X86::GR32RegClass, &X86::GR32RegClass,  0
346  };
347  static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = {
348    &X86::GR32RegClass, &X86::GR32RegClass,
349    &X86::GR32RegClass, &X86::GR32RegClass,
350    &X86::GR32RegClass, &X86::GR32RegClass,  0
351  };
352  static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = {
353    &X86::GR64RegClass, &X86::GR64RegClass,
354    &X86::GR64RegClass, &X86::GR64RegClass,
355    &X86::GR64RegClass, &X86::GR64RegClass, 0
356  };
357  static const TargetRegisterClass * const CalleeSavedRegClasses64EHRet[] = {
358    &X86::GR64RegClass, &X86::GR64RegClass,
359    &X86::GR64RegClass, &X86::GR64RegClass,
360    &X86::GR64RegClass, &X86::GR64RegClass,
361    &X86::GR64RegClass, &X86::GR64RegClass, 0
362  };
363  static const TargetRegisterClass * const CalleeSavedRegClassesWin64[] = {
364    &X86::GR64RegClass,  &X86::GR64RegClass,
365    &X86::GR64RegClass,  &X86::GR64RegClass,
366    &X86::GR64RegClass,  &X86::GR64RegClass,
367    &X86::GR64RegClass,  &X86::GR64RegClass,
368    &X86::VR128RegClass, &X86::VR128RegClass,
369    &X86::VR128RegClass, &X86::VR128RegClass,
370    &X86::VR128RegClass, &X86::VR128RegClass,
371    &X86::VR128RegClass, &X86::VR128RegClass,
372    &X86::VR128RegClass, &X86::VR128RegClass, 0
373  };
374
375  if (Is64Bit) {
376    if (IsWin64)
377      return CalleeSavedRegClassesWin64;
378    else
379      return (callsEHReturn ?
380              CalleeSavedRegClasses64EHRet : CalleeSavedRegClasses64Bit);
381  } else {
382    return (callsEHReturn ?
383            CalleeSavedRegClasses32EHRet : CalleeSavedRegClasses32Bit);
384  }
385}
386
387BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
388  BitVector Reserved(getNumRegs());
389  // Set the stack-pointer register and its aliases as reserved.
390  Reserved.set(X86::RSP);
391  Reserved.set(X86::ESP);
392  Reserved.set(X86::SP);
393  Reserved.set(X86::SPL);
394
395  // Set the instruction pointer register and its aliases as reserved.
396  Reserved.set(X86::RIP);
397  Reserved.set(X86::EIP);
398  Reserved.set(X86::IP);
399
400  // Set the frame-pointer register and its aliases as reserved if needed.
401  if (hasFP(MF)) {
402    Reserved.set(X86::RBP);
403    Reserved.set(X86::EBP);
404    Reserved.set(X86::BP);
405    Reserved.set(X86::BPL);
406  }
407
408  // Mark the x87 stack registers as reserved, since they don't behave normally
409  // with respect to liveness. We don't fully model the effects of x87 stack
410  // pushes and pops after stackification.
411  Reserved.set(X86::ST0);
412  Reserved.set(X86::ST1);
413  Reserved.set(X86::ST2);
414  Reserved.set(X86::ST3);
415  Reserved.set(X86::ST4);
416  Reserved.set(X86::ST5);
417  Reserved.set(X86::ST6);
418  Reserved.set(X86::ST7);
419  return Reserved;
420}
421
422//===----------------------------------------------------------------------===//
423// Stack Frame Processing methods
424//===----------------------------------------------------------------------===//
425
426/// hasFP - Return true if the specified function should have a dedicated frame
427/// pointer register.  This is true if the function has variable sized allocas
428/// or if frame pointer elimination is disabled.
429bool X86RegisterInfo::hasFP(const MachineFunction &MF) const {
430  const MachineFrameInfo *MFI = MF.getFrameInfo();
431  const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
432
433  return (NoFramePointerElim ||
434          needsStackRealignment(MF) ||
435          MFI->hasVarSizedObjects() ||
436          MFI->isFrameAddressTaken() ||
437          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
438          (MMI && MMI->callsUnwindInit()));
439}
440
441bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const {
442  const MachineFrameInfo *MFI = MF.getFrameInfo();
443  return (RealignStack &&
444          !MFI->hasVarSizedObjects());
445}
446
447bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
448  const MachineFrameInfo *MFI = MF.getFrameInfo();
449  bool requiresRealignment =
450    RealignStack && (MFI->getMaxAlignment() > StackAlign);
451
452  // FIXME: Currently we don't support stack realignment for functions with
453  //        variable-sized allocas.
454  // FIXME: Temporary disable the error - it seems to be too conservative.
455  if (0 && requiresRealignment && MFI->hasVarSizedObjects())
456    llvm_report_error(
457      "Stack realignment in presense of dynamic allocas is not supported");
458
459  return (requiresRealignment && !MFI->hasVarSizedObjects());
460}
461
462bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
463  return !MF.getFrameInfo()->hasVarSizedObjects();
464}
465
466bool X86RegisterInfo::hasReservedSpillSlot(MachineFunction &MF, unsigned Reg,
467                                           int &FrameIdx) const {
468  if (Reg == FramePtr && hasFP(MF)) {
469    FrameIdx = MF.getFrameInfo()->getObjectIndexBegin();
470    return true;
471  }
472  return false;
473}
474
475int
476X86RegisterInfo::getFrameIndexOffset(MachineFunction &MF, int FI) const {
477  const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
478  MachineFrameInfo *MFI = MF.getFrameInfo();
479  int Offset = MFI->getObjectOffset(FI) - TFI.getOffsetOfLocalArea();
480  uint64_t StackSize = MFI->getStackSize();
481
482  if (needsStackRealignment(MF)) {
483    if (FI < 0) {
484      // Skip the saved EBP.
485      Offset += SlotSize;
486    } else {
487      unsigned Align = MFI->getObjectAlignment(FI);
488      assert( (-(Offset + StackSize)) % Align == 0);
489      Align = 0;
490      return Offset + StackSize;
491    }
492    // FIXME: Support tail calls
493  } else {
494    if (!hasFP(MF))
495      return Offset + StackSize;
496
497    // Skip the saved EBP.
498    Offset += SlotSize;
499
500    // Skip the RETADDR move area
501    X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
502    int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
503    if (TailCallReturnAddrDelta < 0)
504      Offset -= TailCallReturnAddrDelta;
505  }
506
507  return Offset;
508}
509
510void X86RegisterInfo::
511eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
512                              MachineBasicBlock::iterator I) const {
513  if (!hasReservedCallFrame(MF)) {
514    // If the stack pointer can be changed after prologue, turn the
515    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
516    // adjcallstackdown instruction into 'add ESP, <amt>'
517    // TODO: consider using push / pop instead of sub + store / add
518    MachineInstr *Old = I;
519    uint64_t Amount = Old->getOperand(0).getImm();
520    if (Amount != 0) {
521      // We need to keep the stack aligned properly.  To do this, we round the
522      // amount of space needed for the outgoing arguments up to the next
523      // alignment boundary.
524      Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
525
526      MachineInstr *New = 0;
527      if (Old->getOpcode() == getCallFrameSetupOpcode()) {
528        New = BuildMI(MF, Old->getDebugLoc(),
529                      TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri),
530                      StackPtr)
531          .addReg(StackPtr)
532          .addImm(Amount);
533      } else {
534        assert(Old->getOpcode() == getCallFrameDestroyOpcode());
535
536        // Factor out the amount the callee already popped.
537        uint64_t CalleeAmt = Old->getOperand(1).getImm();
538        Amount -= CalleeAmt;
539
540      if (Amount) {
541          unsigned Opc = (Amount < 128) ?
542            (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
543            (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri);
544          New = BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), StackPtr)
545            .addReg(StackPtr)
546            .addImm(Amount);
547        }
548      }
549
550      if (New) {
551        // The EFLAGS implicit def is dead.
552        New->getOperand(3).setIsDead();
553
554        // Replace the pseudo instruction with a new instruction.
555        MBB.insert(I, New);
556      }
557    }
558  } else if (I->getOpcode() == getCallFrameDestroyOpcode()) {
559    // If we are performing frame pointer elimination and if the callee pops
560    // something off the stack pointer, add it back.  We do this until we have
561    // more advanced stack pointer tracking ability.
562    if (uint64_t CalleeAmt = I->getOperand(1).getImm()) {
563      unsigned Opc = (CalleeAmt < 128) ?
564        (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
565        (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri);
566      MachineInstr *Old = I;
567      MachineInstr *New =
568        BuildMI(MF, Old->getDebugLoc(), TII.get(Opc),
569                StackPtr)
570          .addReg(StackPtr)
571          .addImm(CalleeAmt);
572
573      // The EFLAGS implicit def is dead.
574      New->getOperand(3).setIsDead();
575      MBB.insert(I, New);
576    }
577  }
578
579  MBB.erase(I);
580}
581
582unsigned
583X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
584                                     int SPAdj, int *Value,
585                                     RegScavenger *RS) const{
586  assert(SPAdj == 0 && "Unexpected");
587
588  unsigned i = 0;
589  MachineInstr &MI = *II;
590  MachineFunction &MF = *MI.getParent()->getParent();
591
592  while (!MI.getOperand(i).isFI()) {
593    ++i;
594    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
595  }
596
597  int FrameIndex = MI.getOperand(i).getIndex();
598  unsigned BasePtr;
599
600  if (needsStackRealignment(MF))
601    BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
602  else
603    BasePtr = (hasFP(MF) ? FramePtr : StackPtr);
604
605  // This must be part of a four operand memory reference.  Replace the
606  // FrameIndex with base register with EBP.  Add an offset to the offset.
607  MI.getOperand(i).ChangeToRegister(BasePtr, false);
608
609  // Now add the frame object offset to the offset from EBP.
610  if (MI.getOperand(i+3).isImm()) {
611    // Offset is a 32-bit integer.
612    int Offset = getFrameIndexOffset(MF, FrameIndex) +
613      (int)(MI.getOperand(i + 3).getImm());
614
615    MI.getOperand(i + 3).ChangeToImmediate(Offset);
616  } else {
617    // Offset is symbolic. This is extremely rare.
618    uint64_t Offset = getFrameIndexOffset(MF, FrameIndex) +
619                      (uint64_t)MI.getOperand(i+3).getOffset();
620    MI.getOperand(i+3).setOffset(Offset);
621  }
622  return 0;
623}
624
625void
626X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
627                                                      RegScavenger *RS) const {
628  MachineFrameInfo *MFI = MF.getFrameInfo();
629
630  // Calculate and set max stack object alignment early, so we can decide
631  // whether we will need stack realignment (and thus FP).
632  MFI->calculateMaxStackAlignment();
633
634  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
635  int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
636
637  if (TailCallReturnAddrDelta < 0) {
638    // create RETURNADDR area
639    //   arg
640    //   arg
641    //   RETADDR
642    //   { ...
643    //     RETADDR area
644    //     ...
645    //   }
646    //   [EBP]
647    MFI->CreateFixedObject(-TailCallReturnAddrDelta,
648                           (-1U*SlotSize)+TailCallReturnAddrDelta,
649                           true, false);
650  }
651
652  if (hasFP(MF)) {
653    assert((TailCallReturnAddrDelta <= 0) &&
654           "The Delta should always be zero or negative");
655    const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
656
657    // Create a frame entry for the EBP register that must be saved.
658    int FrameIdx = MFI->CreateFixedObject(SlotSize,
659                                          -(int)SlotSize +
660                                          TFI.getOffsetOfLocalArea() +
661                                          TailCallReturnAddrDelta,
662                                          true, false);
663    assert(FrameIdx == MFI->getObjectIndexBegin() &&
664           "Slot for EBP register must be last in order to be found!");
665    FrameIdx = 0;
666  }
667}
668
669/// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
670/// any DEBUG_VALUE instructions.  Return UnknownLoc if there is none.
671static
672DebugLoc findDebugLoc(MachineBasicBlock::iterator &MBBI, MachineBasicBlock &MBB) {
673  DebugLoc DL;
674  if (MBBI != MBB.end()) {
675    // Skip debug declarations, we don't want a DebugLoc from them.
676    MachineBasicBlock::iterator MBBI2 = MBBI;
677    while (MBBI2 != MBB.end() &&
678           MBBI2->getOpcode()==TargetInstrInfo::DEBUG_VALUE)
679      MBBI2++;
680    if (MBBI2 != MBB.end())
681      DL = MBBI2->getDebugLoc();
682  }
683  return DL;
684}
685
686/// emitSPUpdate - Emit a series of instructions to increment / decrement the
687/// stack pointer by a constant value.
688static
689void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
690                  unsigned StackPtr, int64_t NumBytes, bool Is64Bit,
691                  const TargetInstrInfo &TII) {
692  bool isSub = NumBytes < 0;
693  uint64_t Offset = isSub ? -NumBytes : NumBytes;
694  unsigned Opc = isSub
695    ? ((Offset < 128) ?
696       (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
697       (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri))
698    : ((Offset < 128) ?
699       (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
700       (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri));
701  uint64_t Chunk = (1LL << 31) - 1;
702  DebugLoc DL = findDebugLoc(MBBI, MBB);
703
704  while (Offset) {
705    uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
706    MachineInstr *MI =
707      BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
708        .addReg(StackPtr)
709        .addImm(ThisVal);
710    MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
711    Offset -= ThisVal;
712  }
713}
714
715/// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
716static
717void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
718                      unsigned StackPtr, uint64_t *NumBytes = NULL) {
719  if (MBBI == MBB.begin()) return;
720
721  MachineBasicBlock::iterator PI = prior(MBBI);
722  unsigned Opc = PI->getOpcode();
723  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
724       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
725      PI->getOperand(0).getReg() == StackPtr) {
726    if (NumBytes)
727      *NumBytes += PI->getOperand(2).getImm();
728    MBB.erase(PI);
729  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
730              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
731             PI->getOperand(0).getReg() == StackPtr) {
732    if (NumBytes)
733      *NumBytes -= PI->getOperand(2).getImm();
734    MBB.erase(PI);
735  }
736}
737
738/// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator.
739static
740void mergeSPUpdatesDown(MachineBasicBlock &MBB,
741                        MachineBasicBlock::iterator &MBBI,
742                        unsigned StackPtr, uint64_t *NumBytes = NULL) {
743  // FIXME: THIS ISN'T RUN!!!
744  return;
745
746  if (MBBI == MBB.end()) return;
747
748  MachineBasicBlock::iterator NI = llvm::next(MBBI);
749  if (NI == MBB.end()) return;
750
751  unsigned Opc = NI->getOpcode();
752  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
753       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
754      NI->getOperand(0).getReg() == StackPtr) {
755    if (NumBytes)
756      *NumBytes -= NI->getOperand(2).getImm();
757    MBB.erase(NI);
758    MBBI = NI;
759  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
760              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
761             NI->getOperand(0).getReg() == StackPtr) {
762    if (NumBytes)
763      *NumBytes += NI->getOperand(2).getImm();
764    MBB.erase(NI);
765    MBBI = NI;
766  }
767}
768
769/// mergeSPUpdates - Checks the instruction before/after the passed
770/// instruction. If it is an ADD/SUB instruction it is deleted argument and the
771/// stack adjustment is returned as a positive value for ADD and a negative for
772/// SUB.
773static int mergeSPUpdates(MachineBasicBlock &MBB,
774                           MachineBasicBlock::iterator &MBBI,
775                           unsigned StackPtr,
776                           bool doMergeWithPrevious) {
777  if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
778      (!doMergeWithPrevious && MBBI == MBB.end()))
779    return 0;
780
781  MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
782  MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI);
783  unsigned Opc = PI->getOpcode();
784  int Offset = 0;
785
786  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
787       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
788      PI->getOperand(0).getReg() == StackPtr){
789    Offset += PI->getOperand(2).getImm();
790    MBB.erase(PI);
791    if (!doMergeWithPrevious) MBBI = NI;
792  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
793              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
794             PI->getOperand(0).getReg() == StackPtr) {
795    Offset -= PI->getOperand(2).getImm();
796    MBB.erase(PI);
797    if (!doMergeWithPrevious) MBBI = NI;
798  }
799
800  return Offset;
801}
802
803void X86RegisterInfo::emitCalleeSavedFrameMoves(MachineFunction &MF,
804                                                unsigned LabelId,
805                                                unsigned FramePtr) const {
806  MachineFrameInfo *MFI = MF.getFrameInfo();
807  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
808  if (!MMI) return;
809
810  // Add callee saved registers to move list.
811  const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
812  if (CSI.empty()) return;
813
814  std::vector<MachineMove> &Moves = MMI->getFrameMoves();
815  const TargetData *TD = MF.getTarget().getTargetData();
816  bool HasFP = hasFP(MF);
817
818  // Calculate amount of bytes used for return address storing.
819  int stackGrowth =
820    (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
821     TargetFrameInfo::StackGrowsUp ?
822     TD->getPointerSize() : -TD->getPointerSize());
823
824  // FIXME: This is dirty hack. The code itself is pretty mess right now.
825  // It should be rewritten from scratch and generalized sometimes.
826
827  // Determine maximum offset (minumum due to stack growth).
828  int64_t MaxOffset = 0;
829  for (std::vector<CalleeSavedInfo>::const_iterator
830         I = CSI.begin(), E = CSI.end(); I != E; ++I)
831    MaxOffset = std::min(MaxOffset,
832                         MFI->getObjectOffset(I->getFrameIdx()));
833
834  // Calculate offsets.
835  int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
836  for (std::vector<CalleeSavedInfo>::const_iterator
837         I = CSI.begin(), E = CSI.end(); I != E; ++I) {
838    int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
839    unsigned Reg = I->getReg();
840    Offset = MaxOffset - Offset + saveAreaOffset;
841
842    // Don't output a new machine move if we're re-saving the frame
843    // pointer. This happens when the PrologEpilogInserter has inserted an extra
844    // "PUSH" of the frame pointer -- the "emitPrologue" method automatically
845    // generates one when frame pointers are used. If we generate a "machine
846    // move" for this extra "PUSH", the linker will lose track of the fact that
847    // the frame pointer should have the value of the first "PUSH" when it's
848    // trying to unwind.
849    //
850    // FIXME: This looks inelegant. It's possibly correct, but it's covering up
851    //        another bug. I.e., one where we generate a prolog like this:
852    //
853    //          pushl  %ebp
854    //          movl   %esp, %ebp
855    //          pushl  %ebp
856    //          pushl  %esi
857    //           ...
858    //
859    //        The immediate re-push of EBP is unnecessary. At the least, it's an
860    //        optimization bug. EBP can be used as a scratch register in certain
861    //        cases, but probably not when we have a frame pointer.
862    if (HasFP && FramePtr == Reg)
863      continue;
864
865    MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
866    MachineLocation CSSrc(Reg);
867    Moves.push_back(MachineMove(LabelId, CSDst, CSSrc));
868  }
869}
870
871/// emitPrologue - Push callee-saved registers onto the stack, which
872/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
873/// space for local variables. Also emit labels used by the exception handler to
874/// generate the exception handling frames.
875void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
876  MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
877  MachineBasicBlock::iterator MBBI = MBB.begin();
878  MachineFrameInfo *MFI = MF.getFrameInfo();
879  const Function *Fn = MF.getFunction();
880  const X86Subtarget *Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
881  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
882  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
883  bool needsFrameMoves = (MMI && MMI->hasDebugInfo()) ||
884                          !Fn->doesNotThrow() || UnwindTablesMandatory;
885  uint64_t MaxAlign  = MFI->getMaxAlignment(); // Desired stack alignment.
886  uint64_t StackSize = MFI->getStackSize();    // Number of bytes to allocate.
887  bool HasFP = hasFP(MF);
888  DebugLoc DL;
889
890  // Add RETADDR move area to callee saved frame size.
891  int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
892  if (TailCallReturnAddrDelta < 0)
893    X86FI->setCalleeSavedFrameSize(
894      X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
895
896  // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
897  // function, and use up to 128 bytes of stack space, don't have a frame
898  // pointer, calls, or dynamic alloca then we do not need to adjust the
899  // stack pointer (we fit in the Red Zone).
900  if (Is64Bit && !Fn->hasFnAttr(Attribute::NoRedZone) &&
901      !needsStackRealignment(MF) &&
902      !MFI->hasVarSizedObjects() &&                // No dynamic alloca.
903      !MFI->hasCalls() &&                          // No calls.
904      !Subtarget->isTargetWin64()) {               // Win64 has no Red Zone
905    uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
906    if (HasFP) MinSize += SlotSize;
907    StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
908    MFI->setStackSize(StackSize);
909  } else if (Subtarget->isTargetWin64()) {
910    // We need to always allocate 32 bytes as register spill area.
911    // FIXME: We might reuse these 32 bytes for leaf functions.
912    StackSize += 32;
913    MFI->setStackSize(StackSize);
914  }
915
916  // Insert stack pointer adjustment for later moving of return addr.  Only
917  // applies to tail call optimized functions where the callee argument stack
918  // size is bigger than the callers.
919  if (TailCallReturnAddrDelta < 0) {
920    MachineInstr *MI =
921      BuildMI(MBB, MBBI, DL, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri),
922              StackPtr)
923        .addReg(StackPtr)
924        .addImm(-TailCallReturnAddrDelta);
925    MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
926  }
927
928  // Mapping for machine moves:
929  //
930  //   DST: VirtualFP AND
931  //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
932  //        ELSE                        => DW_CFA_def_cfa
933  //
934  //   SRC: VirtualFP AND
935  //        DST: Register               => DW_CFA_def_cfa_register
936  //
937  //   ELSE
938  //        OFFSET < 0                  => DW_CFA_offset_extended_sf
939  //        REG < 64                    => DW_CFA_offset + Reg
940  //        ELSE                        => DW_CFA_offset_extended
941
942  std::vector<MachineMove> &Moves = MMI->getFrameMoves();
943  const TargetData *TD = MF.getTarget().getTargetData();
944  uint64_t NumBytes = 0;
945  int stackGrowth =
946    (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
947     TargetFrameInfo::StackGrowsUp ?
948       TD->getPointerSize() : -TD->getPointerSize());
949
950  if (HasFP) {
951    // Calculate required stack adjustment.
952    uint64_t FrameSize = StackSize - SlotSize;
953    if (needsStackRealignment(MF))
954      FrameSize = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
955
956    NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
957
958    // Get the offset of the stack slot for the EBP register, which is
959    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
960    // Update the frame offset adjustment.
961    MFI->setOffsetAdjustment(-NumBytes);
962
963    // Save EBP/RBP into the appropriate stack slot.
964    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
965      .addReg(FramePtr, RegState::Kill);
966
967    if (needsFrameMoves) {
968      // Mark the place where EBP/RBP was saved.
969      unsigned FrameLabelId = MMI->NextLabelID();
970      BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId);
971
972      // Define the current CFA rule to use the provided offset.
973      if (StackSize) {
974        MachineLocation SPDst(MachineLocation::VirtualFP);
975        MachineLocation SPSrc(MachineLocation::VirtualFP, 2 * stackGrowth);
976        Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
977      } else {
978        // FIXME: Verify & implement for FP
979        MachineLocation SPDst(StackPtr);
980        MachineLocation SPSrc(StackPtr, stackGrowth);
981        Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
982      }
983
984      // Change the rule for the FramePtr to be an "offset" rule.
985      MachineLocation FPDst(MachineLocation::VirtualFP,
986                            2 * stackGrowth);
987      MachineLocation FPSrc(FramePtr);
988      Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc));
989    }
990
991    // Update EBP with the new base value...
992    BuildMI(MBB, MBBI, DL,
993            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
994        .addReg(StackPtr);
995
996    if (needsFrameMoves) {
997      // Mark effective beginning of when frame pointer becomes valid.
998      unsigned FrameLabelId = MMI->NextLabelID();
999      BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId);
1000
1001      // Define the current CFA to use the EBP/RBP register.
1002      MachineLocation FPDst(FramePtr);
1003      MachineLocation FPSrc(MachineLocation::VirtualFP);
1004      Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc));
1005    }
1006
1007    // Mark the FramePtr as live-in in every block except the entry.
1008    for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end();
1009         I != E; ++I)
1010      I->addLiveIn(FramePtr);
1011
1012    // Realign stack
1013    if (needsStackRealignment(MF)) {
1014      MachineInstr *MI =
1015        BuildMI(MBB, MBBI, DL,
1016                TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri),
1017                StackPtr).addReg(StackPtr).addImm(-MaxAlign);
1018
1019      // The EFLAGS implicit def is dead.
1020      MI->getOperand(3).setIsDead();
1021    }
1022  } else {
1023    NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1024  }
1025
1026  // Skip the callee-saved push instructions.
1027  bool PushedRegs = false;
1028  int StackOffset = 2 * stackGrowth;
1029
1030  while (MBBI != MBB.end() &&
1031         (MBBI->getOpcode() == X86::PUSH32r ||
1032          MBBI->getOpcode() == X86::PUSH64r)) {
1033    PushedRegs = true;
1034    ++MBBI;
1035
1036    if (!HasFP && needsFrameMoves) {
1037      // Mark callee-saved push instruction.
1038      unsigned LabelId = MMI->NextLabelID();
1039      BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId);
1040
1041      // Define the current CFA rule to use the provided offset.
1042      unsigned Ptr = StackSize ?
1043        MachineLocation::VirtualFP : StackPtr;
1044      MachineLocation SPDst(Ptr);
1045      MachineLocation SPSrc(Ptr, StackOffset);
1046      Moves.push_back(MachineMove(LabelId, SPDst, SPSrc));
1047      StackOffset += stackGrowth;
1048    }
1049  }
1050
1051  DL = findDebugLoc(MBBI, MBB);
1052
1053  // Adjust stack pointer: ESP -= numbytes.
1054  if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) {
1055    // Check, whether EAX is livein for this function.
1056    bool isEAXAlive = false;
1057    for (MachineRegisterInfo::livein_iterator
1058           II = MF.getRegInfo().livein_begin(),
1059           EE = MF.getRegInfo().livein_end(); (II != EE) && !isEAXAlive; ++II) {
1060      unsigned Reg = II->first;
1061      isEAXAlive = (Reg == X86::EAX || Reg == X86::AX ||
1062                    Reg == X86::AH || Reg == X86::AL);
1063    }
1064
1065    // Function prologue calls _alloca to probe the stack when allocating more
1066    // than 4k bytes in one go. Touching the stack at 4K increments is necessary
1067    // to ensure that the guard pages used by the OS virtual memory manager are
1068    // allocated in correct sequence.
1069    if (!isEAXAlive) {
1070      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1071        .addImm(NumBytes);
1072      BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
1073        .addExternalSymbol("_alloca");
1074    } else {
1075      // Save EAX
1076      BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1077        .addReg(X86::EAX, RegState::Kill);
1078
1079      // Allocate NumBytes-4 bytes on stack. We'll also use 4 already
1080      // allocated bytes for EAX.
1081      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1082        .addImm(NumBytes - 4);
1083      BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
1084        .addExternalSymbol("_alloca");
1085
1086      // Restore EAX
1087      MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
1088                                              X86::EAX),
1089                                      StackPtr, false, NumBytes - 4);
1090      MBB.insert(MBBI, MI);
1091    }
1092  } else if (NumBytes) {
1093    // If there is an SUB32ri of ESP immediately before this instruction, merge
1094    // the two. This can be the case when tail call elimination is enabled and
1095    // the callee has more arguments then the caller.
1096    NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
1097
1098    // If there is an ADD32ri or SUB32ri of ESP immediately after this
1099    // instruction, merge the two instructions.
1100    mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
1101
1102    if (NumBytes)
1103      emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
1104  }
1105
1106  if ((NumBytes || PushedRegs) && needsFrameMoves) {
1107    // Mark end of stack pointer adjustment.
1108    unsigned LabelId = MMI->NextLabelID();
1109    BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId);
1110
1111    if (!HasFP && NumBytes) {
1112      // Define the current CFA rule to use the provided offset.
1113      if (StackSize) {
1114        MachineLocation SPDst(MachineLocation::VirtualFP);
1115        MachineLocation SPSrc(MachineLocation::VirtualFP,
1116                              -StackSize + stackGrowth);
1117        Moves.push_back(MachineMove(LabelId, SPDst, SPSrc));
1118      } else {
1119        // FIXME: Verify & implement for FP
1120        MachineLocation SPDst(StackPtr);
1121        MachineLocation SPSrc(StackPtr, stackGrowth);
1122        Moves.push_back(MachineMove(LabelId, SPDst, SPSrc));
1123      }
1124    }
1125
1126    // Emit DWARF info specifying the offsets of the callee-saved registers.
1127    if (PushedRegs)
1128      emitCalleeSavedFrameMoves(MF, LabelId, HasFP ? FramePtr : StackPtr);
1129  }
1130}
1131
1132void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
1133                                   MachineBasicBlock &MBB) const {
1134  const MachineFrameInfo *MFI = MF.getFrameInfo();
1135  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1136  MachineBasicBlock::iterator MBBI = prior(MBB.end());
1137  unsigned RetOpcode = MBBI->getOpcode();
1138  DebugLoc DL = MBBI->getDebugLoc();
1139
1140  switch (RetOpcode) {
1141  default:
1142    llvm_unreachable("Can only insert epilog into returning blocks");
1143  case X86::RET:
1144  case X86::RETI:
1145  case X86::TCRETURNdi:
1146  case X86::TCRETURNri:
1147  case X86::TCRETURNri64:
1148  case X86::TCRETURNdi64:
1149  case X86::EH_RETURN:
1150  case X86::EH_RETURN64:
1151  case X86::TAILJMPd:
1152  case X86::TAILJMPr:
1153  case X86::TAILJMPm:
1154    break;  // These are ok
1155  }
1156
1157  // Get the number of bytes to allocate from the FrameInfo.
1158  uint64_t StackSize = MFI->getStackSize();
1159  uint64_t MaxAlign  = MFI->getMaxAlignment();
1160  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1161  uint64_t NumBytes = 0;
1162
1163  if (hasFP(MF)) {
1164    // Calculate required stack adjustment.
1165    uint64_t FrameSize = StackSize - SlotSize;
1166    if (needsStackRealignment(MF))
1167      FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
1168
1169    NumBytes = FrameSize - CSSize;
1170
1171    // Pop EBP.
1172    BuildMI(MBB, MBBI, DL,
1173            TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
1174  } else {
1175    NumBytes = StackSize - CSSize;
1176  }
1177
1178  // Skip the callee-saved pop instructions.
1179  MachineBasicBlock::iterator LastCSPop = MBBI;
1180  while (MBBI != MBB.begin()) {
1181    MachineBasicBlock::iterator PI = prior(MBBI);
1182    unsigned Opc = PI->getOpcode();
1183
1184    if (Opc != X86::POP32r && Opc != X86::POP64r &&
1185        !PI->getDesc().isTerminator())
1186      break;
1187
1188    --MBBI;
1189  }
1190
1191  DL = MBBI->getDebugLoc();
1192
1193  // If there is an ADD32ri or SUB32ri of ESP immediately before this
1194  // instruction, merge the two instructions.
1195  if (NumBytes || MFI->hasVarSizedObjects())
1196    mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
1197
1198  // If dynamic alloca is used, then reset esp to point to the last callee-saved
1199  // slot before popping them off! Same applies for the case, when stack was
1200  // realigned.
1201  if (needsStackRealignment(MF)) {
1202    // We cannot use LEA here, because stack pointer was realigned. We need to
1203    // deallocate local frame back.
1204    if (CSSize) {
1205      emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
1206      MBBI = prior(LastCSPop);
1207    }
1208
1209    BuildMI(MBB, MBBI, DL,
1210            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1211            StackPtr).addReg(FramePtr);
1212  } else if (MFI->hasVarSizedObjects()) {
1213    if (CSSize) {
1214      unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
1215      MachineInstr *MI =
1216        addLeaRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr),
1217                        FramePtr, false, -CSSize);
1218      MBB.insert(MBBI, MI);
1219    } else {
1220      BuildMI(MBB, MBBI, DL,
1221              TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr)
1222        .addReg(FramePtr);
1223    }
1224  } else if (NumBytes) {
1225    // Adjust stack pointer back: ESP += numbytes.
1226    emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
1227  }
1228
1229  // We're returning from function via eh_return.
1230  if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
1231    MBBI = prior(MBB.end());
1232    MachineOperand &DestAddr  = MBBI->getOperand(0);
1233    assert(DestAddr.isReg() && "Offset should be in register!");
1234    BuildMI(MBB, MBBI, DL,
1235            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1236            StackPtr).addReg(DestAddr.getReg());
1237  } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
1238             RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) {
1239    // Tail call return: adjust the stack pointer and jump to callee.
1240    MBBI = prior(MBB.end());
1241    MachineOperand &JumpTarget = MBBI->getOperand(0);
1242    MachineOperand &StackAdjust = MBBI->getOperand(1);
1243    assert(StackAdjust.isImm() && "Expecting immediate value.");
1244
1245    // Adjust stack pointer.
1246    int StackAdj = StackAdjust.getImm();
1247    int MaxTCDelta = X86FI->getTCReturnAddrDelta();
1248    int Offset = 0;
1249    assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
1250
1251    // Incoporate the retaddr area.
1252    Offset = StackAdj-MaxTCDelta;
1253    assert(Offset >= 0 && "Offset should never be negative");
1254
1255    if (Offset) {
1256      // Check for possible merge with preceeding ADD instruction.
1257      Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1258      emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII);
1259    }
1260
1261    // Jump to label or value in register.
1262    if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64)
1263      BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPd)).
1264        addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1265    else if (RetOpcode== X86::TCRETURNri64)
1266      BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64), JumpTarget.getReg());
1267    else
1268      BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr), JumpTarget.getReg());
1269
1270    // Delete the pseudo instruction TCRETURN.
1271    MBB.erase(MBBI);
1272  } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
1273             (X86FI->getTCReturnAddrDelta() < 0)) {
1274    // Add the return addr area delta back since we are not tail calling.
1275    int delta = -1*X86FI->getTCReturnAddrDelta();
1276    MBBI = prior(MBB.end());
1277
1278    // Check for possible merge with preceeding ADD instruction.
1279    delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1280    emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII);
1281  }
1282}
1283
1284unsigned X86RegisterInfo::getRARegister() const {
1285  return Is64Bit ? X86::RIP     // Should have dwarf #16.
1286                 : X86::EIP;    // Should have dwarf #8.
1287}
1288
1289unsigned X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
1290  return hasFP(MF) ? FramePtr : StackPtr;
1291}
1292
1293void
1294X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves) const {
1295  // Calculate amount of bytes used for return address storing
1296  int stackGrowth = (Is64Bit ? -8 : -4);
1297
1298  // Initial state of the frame pointer is esp+4.
1299  MachineLocation Dst(MachineLocation::VirtualFP);
1300  MachineLocation Src(StackPtr, stackGrowth);
1301  Moves.push_back(MachineMove(0, Dst, Src));
1302
1303  // Add return address to move list
1304  MachineLocation CSDst(StackPtr, stackGrowth);
1305  MachineLocation CSSrc(getRARegister());
1306  Moves.push_back(MachineMove(0, CSDst, CSSrc));
1307}
1308
1309unsigned X86RegisterInfo::getEHExceptionRegister() const {
1310  llvm_unreachable("What is the exception register");
1311  return 0;
1312}
1313
1314unsigned X86RegisterInfo::getEHHandlerRegister() const {
1315  llvm_unreachable("What is the exception handler register");
1316  return 0;
1317}
1318
1319namespace llvm {
1320unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) {
1321  switch (VT.getSimpleVT().SimpleTy) {
1322  default: return Reg;
1323  case MVT::i8:
1324    if (High) {
1325      switch (Reg) {
1326      default: return 0;
1327      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1328        return X86::AH;
1329      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1330        return X86::DH;
1331      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1332        return X86::CH;
1333      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1334        return X86::BH;
1335      }
1336    } else {
1337      switch (Reg) {
1338      default: return 0;
1339      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1340        return X86::AL;
1341      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1342        return X86::DL;
1343      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1344        return X86::CL;
1345      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1346        return X86::BL;
1347      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1348        return X86::SIL;
1349      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1350        return X86::DIL;
1351      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1352        return X86::BPL;
1353      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1354        return X86::SPL;
1355      case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1356        return X86::R8B;
1357      case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1358        return X86::R9B;
1359      case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1360        return X86::R10B;
1361      case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1362        return X86::R11B;
1363      case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1364        return X86::R12B;
1365      case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1366        return X86::R13B;
1367      case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1368        return X86::R14B;
1369      case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1370        return X86::R15B;
1371      }
1372    }
1373  case MVT::i16:
1374    switch (Reg) {
1375    default: return Reg;
1376    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1377      return X86::AX;
1378    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1379      return X86::DX;
1380    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1381      return X86::CX;
1382    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1383      return X86::BX;
1384    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1385      return X86::SI;
1386    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1387      return X86::DI;
1388    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1389      return X86::BP;
1390    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1391      return X86::SP;
1392    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1393      return X86::R8W;
1394    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1395      return X86::R9W;
1396    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1397      return X86::R10W;
1398    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1399      return X86::R11W;
1400    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1401      return X86::R12W;
1402    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1403      return X86::R13W;
1404    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1405      return X86::R14W;
1406    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1407      return X86::R15W;
1408    }
1409  case MVT::i32:
1410    switch (Reg) {
1411    default: return Reg;
1412    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1413      return X86::EAX;
1414    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1415      return X86::EDX;
1416    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1417      return X86::ECX;
1418    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1419      return X86::EBX;
1420    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1421      return X86::ESI;
1422    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1423      return X86::EDI;
1424    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1425      return X86::EBP;
1426    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1427      return X86::ESP;
1428    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1429      return X86::R8D;
1430    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1431      return X86::R9D;
1432    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1433      return X86::R10D;
1434    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1435      return X86::R11D;
1436    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1437      return X86::R12D;
1438    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1439      return X86::R13D;
1440    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1441      return X86::R14D;
1442    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1443      return X86::R15D;
1444    }
1445  case MVT::i64:
1446    switch (Reg) {
1447    default: return Reg;
1448    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1449      return X86::RAX;
1450    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1451      return X86::RDX;
1452    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1453      return X86::RCX;
1454    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1455      return X86::RBX;
1456    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1457      return X86::RSI;
1458    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1459      return X86::RDI;
1460    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1461      return X86::RBP;
1462    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1463      return X86::RSP;
1464    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1465      return X86::R8;
1466    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1467      return X86::R9;
1468    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1469      return X86::R10;
1470    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1471      return X86::R11;
1472    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1473      return X86::R12;
1474    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1475      return X86::R13;
1476    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1477      return X86::R14;
1478    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1479      return X86::R15;
1480    }
1481  }
1482
1483  return Reg;
1484}
1485}
1486
1487#include "X86GenRegisterInfo.inc"
1488