X86RegisterInfo.cpp revision bfd23c9961d6a02df0982fe45d7f21a72a1075e1
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the X86 implementation of the TargetRegisterInfo class. 11// This file is responsible for the frame pointer elimination optimization 12// on X86. 13// 14//===----------------------------------------------------------------------===// 15 16#include "X86.h" 17#include "X86RegisterInfo.h" 18#include "X86InstrBuilder.h" 19#include "X86MachineFunctionInfo.h" 20#include "X86Subtarget.h" 21#include "X86TargetMachine.h" 22#include "llvm/Constants.h" 23#include "llvm/Function.h" 24#include "llvm/Type.h" 25#include "llvm/CodeGen/ValueTypes.h" 26#include "llvm/CodeGen/MachineInstrBuilder.h" 27#include "llvm/CodeGen/MachineFunction.h" 28#include "llvm/CodeGen/MachineFunctionPass.h" 29#include "llvm/CodeGen/MachineFrameInfo.h" 30#include "llvm/CodeGen/MachineLocation.h" 31#include "llvm/CodeGen/MachineModuleInfo.h" 32#include "llvm/CodeGen/MachineRegisterInfo.h" 33#include "llvm/Target/TargetAsmInfo.h" 34#include "llvm/Target/TargetFrameInfo.h" 35#include "llvm/Target/TargetInstrInfo.h" 36#include "llvm/Target/TargetMachine.h" 37#include "llvm/Target/TargetOptions.h" 38#include "llvm/ADT/BitVector.h" 39#include "llvm/ADT/STLExtras.h" 40#include "llvm/Support/Compiler.h" 41using namespace llvm; 42 43X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm, 44 const TargetInstrInfo &tii) 45 : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() ? 46 X86::ADJCALLSTACKDOWN64 : 47 X86::ADJCALLSTACKDOWN32, 48 tm.getSubtarget<X86Subtarget>().is64Bit() ? 49 X86::ADJCALLSTACKUP64 : 50 X86::ADJCALLSTACKUP32), 51 TM(tm), TII(tii) { 52 // Cache some information. 53 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); 54 Is64Bit = Subtarget->is64Bit(); 55 IsWin64 = Subtarget->isTargetWin64(); 56 StackAlign = TM.getFrameInfo()->getStackAlignment(); 57 if (Is64Bit) { 58 SlotSize = 8; 59 StackPtr = X86::RSP; 60 FramePtr = X86::RBP; 61 } else { 62 SlotSize = 4; 63 StackPtr = X86::ESP; 64 FramePtr = X86::EBP; 65 } 66} 67 68// getDwarfRegNum - This function maps LLVM register identifiers to the 69// Dwarf specific numbering, used in debug info and exception tables. 70 71int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const { 72 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); 73 unsigned Flavour = DWARFFlavour::X86_64; 74 if (!Subtarget->is64Bit()) { 75 if (Subtarget->isTargetDarwin()) { 76 if (isEH) 77 Flavour = DWARFFlavour::X86_32_DarwinEH; 78 else 79 Flavour = DWARFFlavour::X86_32_Generic; 80 } else if (Subtarget->isTargetCygMing()) { 81 // Unsupported by now, just quick fallback 82 Flavour = DWARFFlavour::X86_32_Generic; 83 } else { 84 Flavour = DWARFFlavour::X86_32_Generic; 85 } 86 } 87 88 return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour); 89} 90 91// getX86RegNum - This function maps LLVM register identifiers to their X86 92// specific numbering, which is used in various places encoding instructions. 93// 94unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) { 95 switch(RegNo) { 96 case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; 97 case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; 98 case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; 99 case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; 100 case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH: 101 return N86::ESP; 102 case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH: 103 return N86::EBP; 104 case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH: 105 return N86::ESI; 106 case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH: 107 return N86::EDI; 108 109 case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B: 110 return N86::EAX; 111 case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B: 112 return N86::ECX; 113 case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B: 114 return N86::EDX; 115 case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B: 116 return N86::EBX; 117 case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B: 118 return N86::ESP; 119 case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B: 120 return N86::EBP; 121 case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B: 122 return N86::ESI; 123 case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B: 124 return N86::EDI; 125 126 case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3: 127 case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: 128 return RegNo-X86::ST0; 129 130 case X86::XMM0: case X86::XMM8: case X86::MM0: 131 return 0; 132 case X86::XMM1: case X86::XMM9: case X86::MM1: 133 return 1; 134 case X86::XMM2: case X86::XMM10: case X86::MM2: 135 return 2; 136 case X86::XMM3: case X86::XMM11: case X86::MM3: 137 return 3; 138 case X86::XMM4: case X86::XMM12: case X86::MM4: 139 return 4; 140 case X86::XMM5: case X86::XMM13: case X86::MM5: 141 return 5; 142 case X86::XMM6: case X86::XMM14: case X86::MM6: 143 return 6; 144 case X86::XMM7: case X86::XMM15: case X86::MM7: 145 return 7; 146 147 default: 148 assert(isVirtualRegister(RegNo) && "Unknown physical register!"); 149 assert(0 && "Register allocator hasn't allocated reg correctly yet!"); 150 return 0; 151 } 152} 153 154const TargetRegisterClass * 155X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const { 156 if (RC == &X86::CCRRegClass) { 157 if (Is64Bit) 158 return &X86::GR64RegClass; 159 else 160 return &X86::GR32RegClass; 161 } 162 return NULL; 163} 164 165const unsigned * 166X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { 167 bool callsEHReturn = false; 168 169 if (MF) { 170 const MachineFrameInfo *MFI = MF->getFrameInfo(); 171 const MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 172 callsEHReturn = (MMI ? MMI->callsEHReturn() : false); 173 } 174 175 static const unsigned CalleeSavedRegs32Bit[] = { 176 X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 177 }; 178 179 static const unsigned CalleeSavedRegs32EHRet[] = { 180 X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 181 }; 182 183 static const unsigned CalleeSavedRegs64Bit[] = { 184 X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 185 }; 186 187 static const unsigned CalleeSavedRegs64EHRet[] = { 188 X86::RAX, X86::RDX, X86::RBX, X86::R12, 189 X86::R13, X86::R14, X86::R15, X86::RBP, 0 190 }; 191 192 static const unsigned CalleeSavedRegsWin64[] = { 193 X86::RBX, X86::RBP, X86::RDI, X86::RSI, 194 X86::R12, X86::R13, X86::R14, X86::R15, 195 X86::XMM6, X86::XMM7, X86::XMM8, X86::XMM9, 196 X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13, 197 X86::XMM14, X86::XMM15, 0 198 }; 199 200 if (Is64Bit) { 201 if (IsWin64) 202 return CalleeSavedRegsWin64; 203 else 204 return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit); 205 } else { 206 return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit); 207 } 208} 209 210const TargetRegisterClass* const* 211X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const { 212 bool callsEHReturn = false; 213 214 if (MF) { 215 const MachineFrameInfo *MFI = MF->getFrameInfo(); 216 const MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 217 callsEHReturn = (MMI ? MMI->callsEHReturn() : false); 218 } 219 220 static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = { 221 &X86::GR32RegClass, &X86::GR32RegClass, 222 &X86::GR32RegClass, &X86::GR32RegClass, 0 223 }; 224 static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = { 225 &X86::GR32RegClass, &X86::GR32RegClass, 226 &X86::GR32RegClass, &X86::GR32RegClass, 227 &X86::GR32RegClass, &X86::GR32RegClass, 0 228 }; 229 static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = { 230 &X86::GR64RegClass, &X86::GR64RegClass, 231 &X86::GR64RegClass, &X86::GR64RegClass, 232 &X86::GR64RegClass, &X86::GR64RegClass, 0 233 }; 234 static const TargetRegisterClass * const CalleeSavedRegClasses64EHRet[] = { 235 &X86::GR64RegClass, &X86::GR64RegClass, 236 &X86::GR64RegClass, &X86::GR64RegClass, 237 &X86::GR64RegClass, &X86::GR64RegClass, 238 &X86::GR64RegClass, &X86::GR64RegClass, 0 239 }; 240 static const TargetRegisterClass * const CalleeSavedRegClassesWin64[] = { 241 &X86::GR64RegClass, &X86::GR64RegClass, 242 &X86::GR64RegClass, &X86::GR64RegClass, 243 &X86::GR64RegClass, &X86::GR64RegClass, 244 &X86::GR64RegClass, &X86::GR64RegClass, 245 &X86::VR128RegClass, &X86::VR128RegClass, 246 &X86::VR128RegClass, &X86::VR128RegClass, 247 &X86::VR128RegClass, &X86::VR128RegClass, 248 &X86::VR128RegClass, &X86::VR128RegClass, 249 &X86::VR128RegClass, &X86::VR128RegClass, 0 250 }; 251 252 if (Is64Bit) { 253 if (IsWin64) 254 return CalleeSavedRegClassesWin64; 255 else 256 return (callsEHReturn ? 257 CalleeSavedRegClasses64EHRet : CalleeSavedRegClasses64Bit); 258 } else { 259 return (callsEHReturn ? 260 CalleeSavedRegClasses32EHRet : CalleeSavedRegClasses32Bit); 261 } 262} 263 264BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const { 265 BitVector Reserved(getNumRegs()); 266 // Set the stack-pointer register and its aliases as reserved. 267 Reserved.set(X86::RSP); 268 Reserved.set(X86::ESP); 269 Reserved.set(X86::SP); 270 Reserved.set(X86::SPL); 271 // Set the frame-pointer register and its aliases as reserved if needed. 272 if (hasFP(MF)) { 273 Reserved.set(X86::RBP); 274 Reserved.set(X86::EBP); 275 Reserved.set(X86::BP); 276 Reserved.set(X86::BPL); 277 } 278 // Mark the x87 stack registers as reserved, since they don't 279 // behave normally with respect to liveness. We don't fully 280 // model the effects of x87 stack pushes and pops after 281 // stackification. 282 Reserved.set(X86::ST0); 283 Reserved.set(X86::ST1); 284 Reserved.set(X86::ST2); 285 Reserved.set(X86::ST3); 286 Reserved.set(X86::ST4); 287 Reserved.set(X86::ST5); 288 Reserved.set(X86::ST6); 289 Reserved.set(X86::ST7); 290 return Reserved; 291} 292 293//===----------------------------------------------------------------------===// 294// Stack Frame Processing methods 295//===----------------------------------------------------------------------===// 296 297static unsigned calculateMaxStackAlignment(const MachineFrameInfo *FFI) { 298 unsigned MaxAlign = 0; 299 for (int i = FFI->getObjectIndexBegin(), 300 e = FFI->getObjectIndexEnd(); i != e; ++i) { 301 if (FFI->isDeadObjectIndex(i)) 302 continue; 303 unsigned Align = FFI->getObjectAlignment(i); 304 MaxAlign = std::max(MaxAlign, Align); 305 } 306 307 return MaxAlign; 308} 309 310// hasFP - Return true if the specified function should have a dedicated frame 311// pointer register. This is true if the function has variable sized allocas or 312// if frame pointer elimination is disabled. 313// 314bool X86RegisterInfo::hasFP(const MachineFunction &MF) const { 315 const MachineFrameInfo *MFI = MF.getFrameInfo(); 316 const MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 317 318 return (NoFramePointerElim || 319 needsStackRealignment(MF) || 320 MFI->hasVarSizedObjects() || 321 MFI->isFrameAddressTaken() || 322 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 323 (MMI && MMI->callsUnwindInit())); 324} 325 326bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const { 327 const MachineFrameInfo *MFI = MF.getFrameInfo();; 328 329 // FIXME: Currently we don't support stack realignment for functions with 330 // variable-sized allocas 331 return (RealignStack && 332 (MFI->getMaxAlignment() > StackAlign && 333 !MFI->hasVarSizedObjects())); 334} 335 336bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const { 337 return !MF.getFrameInfo()->hasVarSizedObjects(); 338} 339 340int 341X86RegisterInfo::getFrameIndexOffset(MachineFunction &MF, int FI) const { 342 int Offset = MF.getFrameInfo()->getObjectOffset(FI) + SlotSize; 343 uint64_t StackSize = MF.getFrameInfo()->getStackSize(); 344 345 if (needsStackRealignment(MF)) { 346 if (FI < 0) 347 // Skip the saved EBP 348 Offset += SlotSize; 349 else { 350 unsigned Align = MF.getFrameInfo()->getObjectAlignment(FI); 351 assert( (-(Offset + StackSize)) % Align == 0); 352 return Offset + StackSize; 353 } 354 355 // FIXME: Support tail calls 356 } else { 357 if (!hasFP(MF)) 358 return Offset + StackSize; 359 360 // Skip the saved EBP 361 Offset += SlotSize; 362 363 // Skip the RETADDR move area 364 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 365 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 366 if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta; 367 } 368 369 return Offset; 370} 371 372void X86RegisterInfo:: 373eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 374 MachineBasicBlock::iterator I) const { 375 if (!hasReservedCallFrame(MF)) { 376 // If the stack pointer can be changed after prologue, turn the 377 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 378 // adjcallstackdown instruction into 'add ESP, <amt>' 379 // TODO: consider using push / pop instead of sub + store / add 380 MachineInstr *Old = I; 381 uint64_t Amount = Old->getOperand(0).getImm(); 382 if (Amount != 0) { 383 // We need to keep the stack aligned properly. To do this, we round the 384 // amount of space needed for the outgoing arguments up to the next 385 // alignment boundary. 386 Amount = (Amount+StackAlign-1)/StackAlign*StackAlign; 387 388 MachineInstr *New = 0; 389 if (Old->getOpcode() == getCallFrameSetupOpcode()) { 390 New = BuildMI(MF, TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri), 391 StackPtr).addReg(StackPtr).addImm(Amount); 392 } else { 393 assert(Old->getOpcode() == getCallFrameDestroyOpcode()); 394 // factor out the amount the callee already popped. 395 uint64_t CalleeAmt = Old->getOperand(1).getImm(); 396 Amount -= CalleeAmt; 397 if (Amount) { 398 unsigned Opc = (Amount < 128) ? 399 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : 400 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri); 401 New = BuildMI(MF, TII.get(Opc), StackPtr) 402 .addReg(StackPtr).addImm(Amount); 403 } 404 } 405 406 // The EFLAGS implicit def is dead. 407 New->getOperand(3).setIsDead(); 408 409 // Replace the pseudo instruction with a new instruction... 410 if (New) MBB.insert(I, New); 411 } 412 } else if (I->getOpcode() == getCallFrameDestroyOpcode()) { 413 // If we are performing frame pointer elimination and if the callee pops 414 // something off the stack pointer, add it back. We do this until we have 415 // more advanced stack pointer tracking ability. 416 if (uint64_t CalleeAmt = I->getOperand(1).getImm()) { 417 unsigned Opc = (CalleeAmt < 128) ? 418 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : 419 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri); 420 MachineInstr *New = 421 BuildMI(MF, TII.get(Opc), StackPtr).addReg(StackPtr).addImm(CalleeAmt); 422 // The EFLAGS implicit def is dead. 423 New->getOperand(3).setIsDead(); 424 425 MBB.insert(I, New); 426 } 427 } 428 429 MBB.erase(I); 430} 431 432void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, 433 int SPAdj, RegScavenger *RS) const{ 434 assert(SPAdj == 0 && "Unexpected"); 435 436 unsigned i = 0; 437 MachineInstr &MI = *II; 438 MachineFunction &MF = *MI.getParent()->getParent(); 439 while (!MI.getOperand(i).isFI()) { 440 ++i; 441 assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); 442 } 443 444 int FrameIndex = MI.getOperand(i).getIndex(); 445 446 unsigned BasePtr; 447 if (needsStackRealignment(MF)) 448 BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr); 449 else 450 BasePtr = (hasFP(MF) ? FramePtr : StackPtr); 451 452 // This must be part of a four operand memory reference. Replace the 453 // FrameIndex with base register with EBP. Add an offset to the offset. 454 MI.getOperand(i).ChangeToRegister(BasePtr, false); 455 456 // Now add the frame object offset to the offset from EBP. Offset is a 457 // 32-bit integer. 458 int Offset = getFrameIndexOffset(MF, FrameIndex) + 459 (int)(MI.getOperand(i+3).getImm()); 460 461 MI.getOperand(i+3).ChangeToImmediate(Offset); 462} 463 464void 465X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF, 466 RegScavenger *RS) const { 467 MachineFrameInfo *FFI = MF.getFrameInfo(); 468 469 // Calculate and set max stack object alignment early, so we can decide 470 // whether we will need stack realignment (and thus FP). 471 unsigned MaxAlign = std::max(FFI->getMaxAlignment(), 472 calculateMaxStackAlignment(FFI)); 473 474 FFI->setMaxAlignment(MaxAlign); 475} 476 477void 478X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{ 479 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 480 int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 481 if (TailCallReturnAddrDelta < 0) { 482 // create RETURNADDR area 483 // arg 484 // arg 485 // RETADDR 486 // { ... 487 // RETADDR area 488 // ... 489 // } 490 // [EBP] 491 MF.getFrameInfo()-> 492 CreateFixedObject(-TailCallReturnAddrDelta, 493 (-1*SlotSize)+TailCallReturnAddrDelta); 494 } 495 if (hasFP(MF)) { 496 assert((TailCallReturnAddrDelta <= 0) && 497 "The Delta should always be zero or negative"); 498 // Create a frame entry for the EBP register that must be saved. 499 int FrameIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, 500 (int)SlotSize * -2+ 501 TailCallReturnAddrDelta); 502 assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() && 503 "Slot for EBP register must be last in order to be found!"); 504 } 505} 506 507/// emitSPUpdate - Emit a series of instructions to increment / decrement the 508/// stack pointer by a constant value. 509static 510void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 511 unsigned StackPtr, int64_t NumBytes, bool Is64Bit, 512 const TargetInstrInfo &TII) { 513 bool isSub = NumBytes < 0; 514 uint64_t Offset = isSub ? -NumBytes : NumBytes; 515 unsigned Opc = isSub 516 ? ((Offset < 128) ? 517 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : 518 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri)) 519 : ((Offset < 128) ? 520 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : 521 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri)); 522 uint64_t Chunk = (1LL << 31) - 1; 523 524 while (Offset) { 525 uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset; 526 MachineInstr *MI = 527 BuildMI(MBB, MBBI, TII.get(Opc), StackPtr).addReg(StackPtr).addImm(ThisVal); 528 // The EFLAGS implicit def is dead. 529 MI->getOperand(3).setIsDead(); 530 Offset -= ThisVal; 531 } 532} 533 534// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator. 535static 536void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 537 unsigned StackPtr, uint64_t *NumBytes = NULL) { 538 if (MBBI == MBB.begin()) return; 539 540 MachineBasicBlock::iterator PI = prior(MBBI); 541 unsigned Opc = PI->getOpcode(); 542 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 543 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 544 PI->getOperand(0).getReg() == StackPtr) { 545 if (NumBytes) 546 *NumBytes += PI->getOperand(2).getImm(); 547 MBB.erase(PI); 548 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 549 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 550 PI->getOperand(0).getReg() == StackPtr) { 551 if (NumBytes) 552 *NumBytes -= PI->getOperand(2).getImm(); 553 MBB.erase(PI); 554 } 555} 556 557// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator. 558static 559void mergeSPUpdatesDown(MachineBasicBlock &MBB, 560 MachineBasicBlock::iterator &MBBI, 561 unsigned StackPtr, uint64_t *NumBytes = NULL) { 562 return; 563 564 if (MBBI == MBB.end()) return; 565 566 MachineBasicBlock::iterator NI = next(MBBI); 567 if (NI == MBB.end()) return; 568 569 unsigned Opc = NI->getOpcode(); 570 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 571 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 572 NI->getOperand(0).getReg() == StackPtr) { 573 if (NumBytes) 574 *NumBytes -= NI->getOperand(2).getImm(); 575 MBB.erase(NI); 576 MBBI = NI; 577 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 578 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 579 NI->getOperand(0).getReg() == StackPtr) { 580 if (NumBytes) 581 *NumBytes += NI->getOperand(2).getImm(); 582 MBB.erase(NI); 583 MBBI = NI; 584 } 585} 586 587/// mergeSPUpdates - Checks the instruction before/after the passed 588/// instruction. If it is an ADD/SUB instruction it is deleted 589/// argument and the stack adjustment is returned as a positive value for ADD 590/// and a negative for SUB. 591static int mergeSPUpdates(MachineBasicBlock &MBB, 592 MachineBasicBlock::iterator &MBBI, 593 unsigned StackPtr, 594 bool doMergeWithPrevious) { 595 596 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 597 (!doMergeWithPrevious && MBBI == MBB.end())) 598 return 0; 599 600 int Offset = 0; 601 602 MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI; 603 MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : next(MBBI); 604 unsigned Opc = PI->getOpcode(); 605 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 606 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 607 PI->getOperand(0).getReg() == StackPtr){ 608 Offset += PI->getOperand(2).getImm(); 609 MBB.erase(PI); 610 if (!doMergeWithPrevious) MBBI = NI; 611 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 612 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 613 PI->getOperand(0).getReg() == StackPtr) { 614 Offset -= PI->getOperand(2).getImm(); 615 MBB.erase(PI); 616 if (!doMergeWithPrevious) MBBI = NI; 617 } 618 619 return Offset; 620} 621 622void X86RegisterInfo::emitFrameMoves(MachineFunction &MF, 623 unsigned FrameLabelId, 624 unsigned ReadyLabelId) const { 625 MachineFrameInfo *MFI = MF.getFrameInfo(); 626 MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 627 if (!MMI) 628 return; 629 630 uint64_t StackSize = MFI->getStackSize(); 631 std::vector<MachineMove> &Moves = MMI->getFrameMoves(); 632 const TargetData *TD = MF.getTarget().getTargetData(); 633 634 // Calculate amount of bytes used for return address storing 635 int stackGrowth = 636 (MF.getTarget().getFrameInfo()->getStackGrowthDirection() == 637 TargetFrameInfo::StackGrowsUp ? 638 TD->getPointerSize() : -TD->getPointerSize()); 639 640 if (StackSize) { 641 // Show update of SP. 642 if (hasFP(MF)) { 643 // Adjust SP 644 MachineLocation SPDst(MachineLocation::VirtualFP); 645 MachineLocation SPSrc(MachineLocation::VirtualFP, 2*stackGrowth); 646 Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); 647 } else { 648 MachineLocation SPDst(MachineLocation::VirtualFP); 649 MachineLocation SPSrc(MachineLocation::VirtualFP, 650 -StackSize+stackGrowth); 651 Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); 652 } 653 } else { 654 //FIXME: Verify & implement for FP 655 MachineLocation SPDst(StackPtr); 656 MachineLocation SPSrc(StackPtr, stackGrowth); 657 Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); 658 } 659 660 // Add callee saved registers to move list. 661 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); 662 663 // FIXME: This is dirty hack. The code itself is pretty mess right now. 664 // It should be rewritten from scratch and generalized sometimes. 665 666 // Determine maximum offset (minumum due to stack growth) 667 int64_t MaxOffset = 0; 668 for (unsigned I = 0, E = CSI.size(); I!=E; ++I) 669 MaxOffset = std::min(MaxOffset, 670 MFI->getObjectOffset(CSI[I].getFrameIdx())); 671 672 // Calculate offsets 673 int64_t saveAreaOffset = (hasFP(MF) ? 3 : 2)*stackGrowth; 674 for (unsigned I = 0, E = CSI.size(); I!=E; ++I) { 675 int64_t Offset = MFI->getObjectOffset(CSI[I].getFrameIdx()); 676 unsigned Reg = CSI[I].getReg(); 677 Offset = (MaxOffset-Offset+saveAreaOffset); 678 MachineLocation CSDst(MachineLocation::VirtualFP, Offset); 679 MachineLocation CSSrc(Reg); 680 Moves.push_back(MachineMove(FrameLabelId, CSDst, CSSrc)); 681 } 682 683 if (hasFP(MF)) { 684 // Save FP 685 MachineLocation FPDst(MachineLocation::VirtualFP, 2*stackGrowth); 686 MachineLocation FPSrc(FramePtr); 687 Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc)); 688 } 689 690 MachineLocation FPDst(hasFP(MF) ? FramePtr : StackPtr); 691 MachineLocation FPSrc(MachineLocation::VirtualFP); 692 Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc)); 693} 694 695 696void X86RegisterInfo::emitPrologue(MachineFunction &MF) const { 697 MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB 698 MachineFrameInfo *MFI = MF.getFrameInfo(); 699 const Function* Fn = MF.getFunction(); 700 const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>(); 701 MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 702 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 703 MachineBasicBlock::iterator MBBI = MBB.begin(); 704 bool needsFrameMoves = (MMI && MMI->hasDebugInfo()) || 705 !Fn->doesNotThrow() || 706 UnwindTablesMandatory; 707 // Prepare for frame info. 708 unsigned FrameLabelId = 0; 709 710 // Get the number of bytes to allocate from the FrameInfo. 711 uint64_t StackSize = MFI->getStackSize(); 712 // Get desired stack alignment 713 uint64_t MaxAlign = MFI->getMaxAlignment(); 714 715 // Add RETADDR move area to callee saved frame size. 716 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 717 if (TailCallReturnAddrDelta < 0) 718 X86FI->setCalleeSavedFrameSize( 719 X86FI->getCalleeSavedFrameSize() +(-TailCallReturnAddrDelta)); 720 721 // Insert stack pointer adjustment for later moving of return addr. Only 722 // applies to tail call optimized functions where the callee argument stack 723 // size is bigger than the callers. 724 if (TailCallReturnAddrDelta < 0) { 725 MachineInstr *MI = 726 BuildMI(MBB, MBBI, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri), 727 StackPtr).addReg(StackPtr).addImm(-TailCallReturnAddrDelta); 728 // The EFLAGS implicit def is dead. 729 MI->getOperand(3).setIsDead(); 730 } 731 732 uint64_t NumBytes = 0; 733 if (hasFP(MF)) { 734 // Calculate required stack adjustment 735 uint64_t FrameSize = StackSize - SlotSize; 736 if (needsStackRealignment(MF)) 737 FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign; 738 739 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 740 741 // Get the offset of the stack slot for the EBP register... which is 742 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. 743 // Update the frame offset adjustment. 744 MFI->setOffsetAdjustment(-NumBytes); 745 746 // Save EBP into the appropriate stack slot... 747 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 748 .addReg(FramePtr, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true); 749 750 if (needsFrameMoves) { 751 // Mark effective beginning of when frame pointer becomes valid. 752 FrameLabelId = MMI->NextLabelID(); 753 BuildMI(MBB, MBBI, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId); 754 } 755 756 // Update EBP with the new base value... 757 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr) 758 .addReg(StackPtr); 759 760 // Mark the FramePtr as live-in in every block except the entry. 761 for (MachineFunction::iterator I = next(MF.begin()), E = MF.end(); 762 I != E; ++I) 763 I->addLiveIn(FramePtr); 764 765 // Realign stack 766 if (needsStackRealignment(MF)) { 767 MachineInstr *MI = 768 BuildMI(MBB, MBBI, 769 TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), 770 StackPtr).addReg(StackPtr).addImm(-MaxAlign); 771 // The EFLAGS implicit def is dead. 772 MI->getOperand(3).setIsDead(); 773 } 774 } else 775 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 776 777 unsigned ReadyLabelId = 0; 778 if (needsFrameMoves) { 779 // Mark effective beginning of when frame pointer is ready. 780 ReadyLabelId = MMI->NextLabelID(); 781 BuildMI(MBB, MBBI, TII.get(X86::DBG_LABEL)).addImm(ReadyLabelId); 782 } 783 784 // Skip the callee-saved push instructions. 785 while (MBBI != MBB.end() && 786 (MBBI->getOpcode() == X86::PUSH32r || 787 MBBI->getOpcode() == X86::PUSH64r)) 788 ++MBBI; 789 790 if (NumBytes) { // adjust stack pointer: ESP -= numbytes 791 if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) { 792 // Check, whether EAX is livein for this function 793 bool isEAXAlive = false; 794 for (MachineRegisterInfo::livein_iterator 795 II = MF.getRegInfo().livein_begin(), 796 EE = MF.getRegInfo().livein_end(); (II != EE) && !isEAXAlive; ++II) { 797 unsigned Reg = II->first; 798 isEAXAlive = (Reg == X86::EAX || Reg == X86::AX || 799 Reg == X86::AH || Reg == X86::AL); 800 } 801 802 // Function prologue calls _alloca to probe the stack when allocating 803 // more than 4k bytes in one go. Touching the stack at 4K increments is 804 // necessary to ensure that the guard pages used by the OS virtual memory 805 // manager are allocated in correct sequence. 806 if (!isEAXAlive) { 807 BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes); 808 BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32)) 809 .addExternalSymbol("_alloca"); 810 } else { 811 // Save EAX 812 BuildMI(MBB, MBBI, TII.get(X86::PUSH32r)) 813 .addReg(X86::EAX, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true); 814 // Allocate NumBytes-4 bytes on stack. We'll also use 4 already 815 // allocated bytes for EAX. 816 BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes-4); 817 BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32)) 818 .addExternalSymbol("_alloca"); 819 // Restore EAX 820 MachineInstr *MI = addRegOffset(BuildMI(MF, TII.get(X86::MOV32rm),X86::EAX), 821 StackPtr, false, NumBytes-4); 822 MBB.insert(MBBI, MI); 823 } 824 } else { 825 // If there is an SUB32ri of ESP immediately before this instruction, 826 // merge the two. This can be the case when tail call elimination is 827 // enabled and the callee has more arguments then the caller. 828 NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true); 829 // If there is an ADD32ri or SUB32ri of ESP immediately after this 830 // instruction, merge the two instructions. 831 mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes); 832 833 if (NumBytes) 834 emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII); 835 } 836 } 837 838 if (needsFrameMoves) 839 emitFrameMoves(MF, FrameLabelId, ReadyLabelId); 840} 841 842void X86RegisterInfo::emitEpilogue(MachineFunction &MF, 843 MachineBasicBlock &MBB) const { 844 const MachineFrameInfo *MFI = MF.getFrameInfo(); 845 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 846 MachineBasicBlock::iterator MBBI = prior(MBB.end()); 847 unsigned RetOpcode = MBBI->getOpcode(); 848 849 switch (RetOpcode) { 850 case X86::RET: 851 case X86::RETI: 852 case X86::TCRETURNdi: 853 case X86::TCRETURNri: 854 case X86::TCRETURNri64: 855 case X86::TCRETURNdi64: 856 case X86::EH_RETURN: 857 case X86::EH_RETURN64: 858 case X86::TAILJMPd: 859 case X86::TAILJMPr: 860 case X86::TAILJMPm: break; // These are ok 861 default: 862 assert(0 && "Can only insert epilog into returning blocks"); 863 } 864 865 // Get the number of bytes to allocate from the FrameInfo 866 uint64_t StackSize = MFI->getStackSize(); 867 uint64_t MaxAlign = MFI->getMaxAlignment(); 868 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 869 uint64_t NumBytes = 0; 870 871 if (hasFP(MF)) { 872 // Calculate required stack adjustment 873 uint64_t FrameSize = StackSize - SlotSize; 874 if (needsStackRealignment(MF)) 875 FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign; 876 877 NumBytes = FrameSize - CSSize; 878 879 // pop EBP. 880 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr); 881 } else 882 NumBytes = StackSize - CSSize; 883 884 // Skip the callee-saved pop instructions. 885 MachineBasicBlock::iterator LastCSPop = MBBI; 886 while (MBBI != MBB.begin()) { 887 MachineBasicBlock::iterator PI = prior(MBBI); 888 unsigned Opc = PI->getOpcode(); 889 if (Opc != X86::POP32r && Opc != X86::POP64r && 890 !PI->getDesc().isTerminator()) 891 break; 892 --MBBI; 893 } 894 895 // If there is an ADD32ri or SUB32ri of ESP immediately before this 896 // instruction, merge the two instructions. 897 if (NumBytes || MFI->hasVarSizedObjects()) 898 mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes); 899 900 // If dynamic alloca is used, then reset esp to point to the last callee-saved 901 // slot before popping them off! Same applies for the case, when stack was 902 // realigned 903 if (needsStackRealignment(MF)) { 904 // We cannot use LEA here, because stack pointer was realigned. We need to 905 // deallocate local frame back 906 if (CSSize) { 907 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII); 908 MBBI = prior(LastCSPop); 909 } 910 911 BuildMI(MBB, MBBI, 912 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), 913 StackPtr).addReg(FramePtr); 914 } else if (MFI->hasVarSizedObjects()) { 915 if (CSSize) { 916 unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r; 917 MachineInstr *MI = addRegOffset(BuildMI(MF, TII.get(Opc), StackPtr), 918 FramePtr, false, -CSSize); 919 MBB.insert(MBBI, MI); 920 } else 921 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), 922 StackPtr).addReg(FramePtr); 923 924 } else { 925 // adjust stack pointer back: ESP += numbytes 926 if (NumBytes) 927 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII); 928 } 929 930 // We're returning from function via eh_return. 931 if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) { 932 MBBI = prior(MBB.end()); 933 MachineOperand &DestAddr = MBBI->getOperand(0); 934 assert(DestAddr.isReg() && "Offset should be in register!"); 935 BuildMI(MBB, MBBI, 936 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), 937 StackPtr).addReg(DestAddr.getReg()); 938 // Tail call return: adjust the stack pointer and jump to callee 939 } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi || 940 RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) { 941 MBBI = prior(MBB.end()); 942 MachineOperand &JumpTarget = MBBI->getOperand(0); 943 MachineOperand &StackAdjust = MBBI->getOperand(1); 944 assert(StackAdjust.isImm() && "Expecting immediate value."); 945 946 // Adjust stack pointer. 947 int StackAdj = StackAdjust.getImm(); 948 int MaxTCDelta = X86FI->getTCReturnAddrDelta(); 949 int Offset = 0; 950 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive"); 951 // Incoporate the retaddr area. 952 Offset = StackAdj-MaxTCDelta; 953 assert(Offset >= 0 && "Offset should never be negative"); 954 if (Offset) { 955 // Check for possible merge with preceeding ADD instruction. 956 Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true); 957 emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII); 958 } 959 // Jump to label or value in register. 960 if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64) 961 BuildMI(MBB, MBBI, TII.get(X86::TAILJMPd)). 962 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 963 else if (RetOpcode== X86::TCRETURNri64) { 964 BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr64), JumpTarget.getReg()); 965 } else 966 BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr), JumpTarget.getReg()); 967 // Delete the pseudo instruction TCRETURN. 968 MBB.erase(MBBI); 969 } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) && 970 (X86FI->getTCReturnAddrDelta() < 0)) { 971 // Add the return addr area delta back since we are not tail calling. 972 int delta = -1*X86FI->getTCReturnAddrDelta(); 973 MBBI = prior(MBB.end()); 974 // Check for possible merge with preceeding ADD instruction. 975 delta += mergeSPUpdates(MBB, MBBI, StackPtr, true); 976 emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII); 977 } 978} 979 980unsigned X86RegisterInfo::getRARegister() const { 981 if (Is64Bit) 982 return X86::RIP; // Should have dwarf #16 983 else 984 return X86::EIP; // Should have dwarf #8 985} 986 987unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const { 988 return hasFP(MF) ? FramePtr : StackPtr; 989} 990 991void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves) 992 const { 993 // Calculate amount of bytes used for return address storing 994 int stackGrowth = (Is64Bit ? -8 : -4); 995 996 // Initial state of the frame pointer is esp+4. 997 MachineLocation Dst(MachineLocation::VirtualFP); 998 MachineLocation Src(StackPtr, stackGrowth); 999 Moves.push_back(MachineMove(0, Dst, Src)); 1000 1001 // Add return address to move list 1002 MachineLocation CSDst(StackPtr, stackGrowth); 1003 MachineLocation CSSrc(getRARegister()); 1004 Moves.push_back(MachineMove(0, CSDst, CSSrc)); 1005} 1006 1007unsigned X86RegisterInfo::getEHExceptionRegister() const { 1008 assert(0 && "What is the exception register"); 1009 return 0; 1010} 1011 1012unsigned X86RegisterInfo::getEHHandlerRegister() const { 1013 assert(0 && "What is the exception handler register"); 1014 return 0; 1015} 1016 1017namespace llvm { 1018unsigned getX86SubSuperRegister(unsigned Reg, MVT VT, bool High) { 1019 switch (VT.getSimpleVT()) { 1020 default: return Reg; 1021 case MVT::i8: 1022 if (High) { 1023 switch (Reg) { 1024 default: return 0; 1025 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1026 return X86::AH; 1027 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1028 return X86::DH; 1029 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1030 return X86::CH; 1031 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1032 return X86::BH; 1033 } 1034 } else { 1035 switch (Reg) { 1036 default: return 0; 1037 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1038 return X86::AL; 1039 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1040 return X86::DL; 1041 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1042 return X86::CL; 1043 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1044 return X86::BL; 1045 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1046 return X86::SIL; 1047 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1048 return X86::DIL; 1049 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1050 return X86::BPL; 1051 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1052 return X86::SPL; 1053 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1054 return X86::R8B; 1055 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1056 return X86::R9B; 1057 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1058 return X86::R10B; 1059 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1060 return X86::R11B; 1061 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1062 return X86::R12B; 1063 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1064 return X86::R13B; 1065 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1066 return X86::R14B; 1067 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1068 return X86::R15B; 1069 } 1070 } 1071 case MVT::i16: 1072 switch (Reg) { 1073 default: return Reg; 1074 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1075 return X86::AX; 1076 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1077 return X86::DX; 1078 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1079 return X86::CX; 1080 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1081 return X86::BX; 1082 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1083 return X86::SI; 1084 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1085 return X86::DI; 1086 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1087 return X86::BP; 1088 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1089 return X86::SP; 1090 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1091 return X86::R8W; 1092 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1093 return X86::R9W; 1094 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1095 return X86::R10W; 1096 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1097 return X86::R11W; 1098 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1099 return X86::R12W; 1100 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1101 return X86::R13W; 1102 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1103 return X86::R14W; 1104 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1105 return X86::R15W; 1106 } 1107 case MVT::i32: 1108 switch (Reg) { 1109 default: return Reg; 1110 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1111 return X86::EAX; 1112 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1113 return X86::EDX; 1114 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1115 return X86::ECX; 1116 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1117 return X86::EBX; 1118 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1119 return X86::ESI; 1120 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1121 return X86::EDI; 1122 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1123 return X86::EBP; 1124 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1125 return X86::ESP; 1126 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1127 return X86::R8D; 1128 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1129 return X86::R9D; 1130 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1131 return X86::R10D; 1132 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1133 return X86::R11D; 1134 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1135 return X86::R12D; 1136 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1137 return X86::R13D; 1138 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1139 return X86::R14D; 1140 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1141 return X86::R15D; 1142 } 1143 case MVT::i64: 1144 switch (Reg) { 1145 default: return Reg; 1146 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1147 return X86::RAX; 1148 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1149 return X86::RDX; 1150 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1151 return X86::RCX; 1152 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1153 return X86::RBX; 1154 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1155 return X86::RSI; 1156 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1157 return X86::RDI; 1158 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1159 return X86::RBP; 1160 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1161 return X86::RSP; 1162 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1163 return X86::R8; 1164 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1165 return X86::R9; 1166 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1167 return X86::R10; 1168 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1169 return X86::R11; 1170 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1171 return X86::R12; 1172 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1173 return X86::R13; 1174 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1175 return X86::R14; 1176 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1177 return X86::R15; 1178 } 1179 } 1180 1181 return Reg; 1182} 1183} 1184 1185#include "X86GenRegisterInfo.inc" 1186 1187namespace { 1188 struct VISIBILITY_HIDDEN MSAC : public MachineFunctionPass { 1189 static char ID; 1190 MSAC() : MachineFunctionPass(&ID) {} 1191 1192 virtual bool runOnMachineFunction(MachineFunction &MF) { 1193 MachineFrameInfo *FFI = MF.getFrameInfo(); 1194 MachineRegisterInfo &RI = MF.getRegInfo(); 1195 1196 // Calculate max stack alignment of all already allocated stack objects. 1197 unsigned MaxAlign = calculateMaxStackAlignment(FFI); 1198 1199 // Be over-conservative: scan over all vreg defs and find, whether vector 1200 // registers are used. If yes - there is probability, that vector register 1201 // will be spilled and thus stack needs to be aligned properly. 1202 for (unsigned RegNum = TargetRegisterInfo::FirstVirtualRegister; 1203 RegNum < RI.getLastVirtReg(); ++RegNum) 1204 MaxAlign = std::max(MaxAlign, RI.getRegClass(RegNum)->getAlignment()); 1205 1206 FFI->setMaxAlignment(MaxAlign); 1207 1208 return false; 1209 } 1210 1211 virtual const char *getPassName() const { 1212 return "X86 Maximal Stack Alignment Calculator"; 1213 } 1214 }; 1215 1216 char MSAC::ID = 0; 1217} 1218 1219FunctionPass* 1220llvm::createX86MaxStackAlignmentCalculatorPass() { return new MSAC(); } 1221