X86RegisterInfo.cpp revision d2760d1cba46e60011b04be70a4da047a21542ff
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the X86 implementation of the TargetRegisterInfo class. 11// This file is responsible for the frame pointer elimination optimization 12// on X86. 13// 14//===----------------------------------------------------------------------===// 15 16#include "X86.h" 17#include "X86RegisterInfo.h" 18#include "X86InstrBuilder.h" 19#include "X86MachineFunctionInfo.h" 20#include "X86Subtarget.h" 21#include "X86TargetMachine.h" 22#include "llvm/Constants.h" 23#include "llvm/Function.h" 24#include "llvm/Type.h" 25#include "llvm/CodeGen/ValueTypes.h" 26#include "llvm/CodeGen/MachineInstrBuilder.h" 27#include "llvm/CodeGen/MachineFunction.h" 28#include "llvm/CodeGen/MachineFunctionPass.h" 29#include "llvm/CodeGen/MachineFrameInfo.h" 30#include "llvm/CodeGen/MachineLocation.h" 31#include "llvm/CodeGen/MachineModuleInfo.h" 32#include "llvm/CodeGen/MachineRegisterInfo.h" 33#include "llvm/MC/MCAsmInfo.h" 34#include "llvm/Target/TargetFrameInfo.h" 35#include "llvm/Target/TargetInstrInfo.h" 36#include "llvm/Target/TargetMachine.h" 37#include "llvm/Target/TargetOptions.h" 38#include "llvm/ADT/BitVector.h" 39#include "llvm/ADT/STLExtras.h" 40#include "llvm/Support/CommandLine.h" 41#include "llvm/Support/ErrorHandling.h" 42using namespace llvm; 43 44X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm, 45 const TargetInstrInfo &tii) 46 : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() ? 47 X86::ADJCALLSTACKDOWN64 : 48 X86::ADJCALLSTACKDOWN32, 49 tm.getSubtarget<X86Subtarget>().is64Bit() ? 50 X86::ADJCALLSTACKUP64 : 51 X86::ADJCALLSTACKUP32), 52 TM(tm), TII(tii) { 53 // Cache some information. 54 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); 55 Is64Bit = Subtarget->is64Bit(); 56 IsWin64 = Subtarget->isTargetWin64(); 57 StackAlign = TM.getFrameInfo()->getStackAlignment(); 58 59 if (Is64Bit) { 60 SlotSize = 8; 61 StackPtr = X86::RSP; 62 FramePtr = X86::RBP; 63 } else { 64 SlotSize = 4; 65 StackPtr = X86::ESP; 66 FramePtr = X86::EBP; 67 } 68} 69 70/// getDwarfRegNum - This function maps LLVM register identifiers to the DWARF 71/// specific numbering, used in debug info and exception tables. 72int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const { 73 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); 74 unsigned Flavour = DWARFFlavour::X86_64; 75 76 if (!Subtarget->is64Bit()) { 77 if (Subtarget->isTargetDarwin()) { 78 if (isEH) 79 Flavour = DWARFFlavour::X86_32_DarwinEH; 80 else 81 Flavour = DWARFFlavour::X86_32_Generic; 82 } else if (Subtarget->isTargetCygMing()) { 83 // Unsupported by now, just quick fallback 84 Flavour = DWARFFlavour::X86_32_Generic; 85 } else { 86 Flavour = DWARFFlavour::X86_32_Generic; 87 } 88 } 89 90 return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour); 91} 92 93/// getX86RegNum - This function maps LLVM register identifiers to their X86 94/// specific numbering, which is used in various places encoding instructions. 95unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) { 96 switch(RegNo) { 97 case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; 98 case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; 99 case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; 100 case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; 101 case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH: 102 return N86::ESP; 103 case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH: 104 return N86::EBP; 105 case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH: 106 return N86::ESI; 107 case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH: 108 return N86::EDI; 109 110 case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B: 111 return N86::EAX; 112 case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B: 113 return N86::ECX; 114 case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B: 115 return N86::EDX; 116 case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B: 117 return N86::EBX; 118 case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B: 119 return N86::ESP; 120 case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B: 121 return N86::EBP; 122 case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B: 123 return N86::ESI; 124 case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B: 125 return N86::EDI; 126 127 case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3: 128 case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: 129 return RegNo-X86::ST0; 130 131 case X86::XMM0: case X86::XMM8: case X86::MM0: 132 return 0; 133 case X86::XMM1: case X86::XMM9: case X86::MM1: 134 return 1; 135 case X86::XMM2: case X86::XMM10: case X86::MM2: 136 return 2; 137 case X86::XMM3: case X86::XMM11: case X86::MM3: 138 return 3; 139 case X86::XMM4: case X86::XMM12: case X86::MM4: 140 return 4; 141 case X86::XMM5: case X86::XMM13: case X86::MM5: 142 return 5; 143 case X86::XMM6: case X86::XMM14: case X86::MM6: 144 return 6; 145 case X86::XMM7: case X86::XMM15: case X86::MM7: 146 return 7; 147 148 default: 149 assert(isVirtualRegister(RegNo) && "Unknown physical register!"); 150 llvm_unreachable("Register allocator hasn't allocated reg correctly yet!"); 151 return 0; 152 } 153} 154 155const TargetRegisterClass * 156X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A, 157 const TargetRegisterClass *B, 158 unsigned SubIdx) const { 159 switch (SubIdx) { 160 default: return 0; 161 case 1: 162 // 8-bit 163 if (B == &X86::GR8RegClass) { 164 if (A->getSize() == 2 || A->getSize() == 4 || A->getSize() == 8) 165 return A; 166 } else if (B == &X86::GR8_ABCD_LRegClass || B == &X86::GR8_ABCD_HRegClass) { 167 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || 168 A == &X86::GR64_NOREXRegClass || 169 A == &X86::GR64_NOSPRegClass || 170 A == &X86::GR64_NOREX_NOSPRegClass) 171 return &X86::GR64_ABCDRegClass; 172 else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass || 173 A == &X86::GR32_NOREXRegClass || 174 A == &X86::GR32_NOSPRegClass) 175 return &X86::GR32_ABCDRegClass; 176 else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass || 177 A == &X86::GR16_NOREXRegClass) 178 return &X86::GR16_ABCDRegClass; 179 } else if (B == &X86::GR8_NOREXRegClass) { 180 if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass || 181 A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) 182 return &X86::GR64_NOREXRegClass; 183 else if (A == &X86::GR64_ABCDRegClass) 184 return &X86::GR64_ABCDRegClass; 185 else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass || 186 A == &X86::GR32_NOSPRegClass) 187 return &X86::GR32_NOREXRegClass; 188 else if (A == &X86::GR32_ABCDRegClass) 189 return &X86::GR32_ABCDRegClass; 190 else if (A == &X86::GR16RegClass || A == &X86::GR16_NOREXRegClass) 191 return &X86::GR16_NOREXRegClass; 192 else if (A == &X86::GR16_ABCDRegClass) 193 return &X86::GR16_ABCDRegClass; 194 } else if (B == &X86::FR32RegClass) { 195 return A; 196 } 197 break; 198 case 2: 199 // 8-bit hi 200 if (B == &X86::GR8_ABCD_HRegClass) { 201 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || 202 A == &X86::GR64_NOREXRegClass || 203 A == &X86::GR64_NOSPRegClass || 204 A == &X86::GR64_NOREX_NOSPRegClass) 205 return &X86::GR64_ABCDRegClass; 206 else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass || 207 A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass) 208 return &X86::GR32_ABCDRegClass; 209 else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass || 210 A == &X86::GR16_NOREXRegClass) 211 return &X86::GR16_ABCDRegClass; 212 } else if (B == &X86::FR64RegClass) { 213 return A; 214 } 215 break; 216 case 3: 217 // 16-bit 218 if (B == &X86::GR16RegClass) { 219 if (A->getSize() == 4 || A->getSize() == 8) 220 return A; 221 } else if (B == &X86::GR16_ABCDRegClass) { 222 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || 223 A == &X86::GR64_NOREXRegClass || 224 A == &X86::GR64_NOSPRegClass || 225 A == &X86::GR64_NOREX_NOSPRegClass) 226 return &X86::GR64_ABCDRegClass; 227 else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass || 228 A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass) 229 return &X86::GR32_ABCDRegClass; 230 } else if (B == &X86::GR16_NOREXRegClass) { 231 if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass || 232 A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) 233 return &X86::GR64_NOREXRegClass; 234 else if (A == &X86::GR64_ABCDRegClass) 235 return &X86::GR64_ABCDRegClass; 236 else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass || 237 A == &X86::GR32_NOSPRegClass) 238 return &X86::GR32_NOREXRegClass; 239 else if (A == &X86::GR32_ABCDRegClass) 240 return &X86::GR64_ABCDRegClass; 241 } else if (B == &X86::VR128RegClass) { 242 return A; 243 } 244 break; 245 case 4: 246 // 32-bit 247 if (B == &X86::GR32RegClass || B == &X86::GR32_NOSPRegClass) { 248 if (A->getSize() == 8) 249 return A; 250 } else if (B == &X86::GR32_ABCDRegClass) { 251 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || 252 A == &X86::GR64_NOREXRegClass || 253 A == &X86::GR64_NOSPRegClass || 254 A == &X86::GR64_NOREX_NOSPRegClass) 255 return &X86::GR64_ABCDRegClass; 256 } else if (B == &X86::GR32_NOREXRegClass) { 257 if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass || 258 A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) 259 return &X86::GR64_NOREXRegClass; 260 else if (A == &X86::GR64_ABCDRegClass) 261 return &X86::GR64_ABCDRegClass; 262 } 263 break; 264 } 265 return 0; 266} 267 268const TargetRegisterClass * 269X86RegisterInfo::getPointerRegClass(unsigned Kind) const { 270 switch (Kind) { 271 default: llvm_unreachable("Unexpected Kind in getPointerRegClass!"); 272 case 0: // Normal GPRs. 273 if (TM.getSubtarget<X86Subtarget>().is64Bit()) 274 return &X86::GR64RegClass; 275 return &X86::GR32RegClass; 276 case 1: // Normal GRPs except the stack pointer (for encoding reasons). 277 if (TM.getSubtarget<X86Subtarget>().is64Bit()) 278 return &X86::GR64_NOSPRegClass; 279 return &X86::GR32_NOSPRegClass; 280 } 281} 282 283const TargetRegisterClass * 284X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const { 285 if (RC == &X86::CCRRegClass) { 286 if (Is64Bit) 287 return &X86::GR64RegClass; 288 else 289 return &X86::GR32RegClass; 290 } 291 return NULL; 292} 293 294const unsigned * 295X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { 296 bool callsEHReturn = false; 297 bool ghcCall = false; 298 299 if (MF) { 300 callsEHReturn = MF->getMMI().callsEHReturn(); 301 const Function *F = MF->getFunction(); 302 ghcCall = (F ? F->getCallingConv() == CallingConv::GHC : false); 303 } 304 305 static const unsigned GhcCalleeSavedRegs[] = { 306 0 307 }; 308 309 static const unsigned CalleeSavedRegs32Bit[] = { 310 X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 311 }; 312 313 static const unsigned CalleeSavedRegs32EHRet[] = { 314 X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 315 }; 316 317 static const unsigned CalleeSavedRegs64Bit[] = { 318 X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 319 }; 320 321 static const unsigned CalleeSavedRegs64EHRet[] = { 322 X86::RAX, X86::RDX, X86::RBX, X86::R12, 323 X86::R13, X86::R14, X86::R15, X86::RBP, 0 324 }; 325 326 static const unsigned CalleeSavedRegsWin64[] = { 327 X86::RBX, X86::RBP, X86::RDI, X86::RSI, 328 X86::R12, X86::R13, X86::R14, X86::R15, 329 X86::XMM6, X86::XMM7, X86::XMM8, X86::XMM9, 330 X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13, 331 X86::XMM14, X86::XMM15, 0 332 }; 333 334 if (ghcCall) { 335 return GhcCalleeSavedRegs; 336 } else if (Is64Bit) { 337 if (IsWin64) 338 return CalleeSavedRegsWin64; 339 else 340 return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit); 341 } else { 342 return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit); 343 } 344} 345 346const TargetRegisterClass* const* 347X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const { 348 bool callsEHReturn = false; 349 if (MF) 350 callsEHReturn = MF->getMMI().callsEHReturn(); 351 352 static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = { 353 &X86::GR32RegClass, &X86::GR32RegClass, 354 &X86::GR32RegClass, &X86::GR32RegClass, 0 355 }; 356 static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = { 357 &X86::GR32RegClass, &X86::GR32RegClass, 358 &X86::GR32RegClass, &X86::GR32RegClass, 359 &X86::GR32RegClass, &X86::GR32RegClass, 0 360 }; 361 static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = { 362 &X86::GR64RegClass, &X86::GR64RegClass, 363 &X86::GR64RegClass, &X86::GR64RegClass, 364 &X86::GR64RegClass, &X86::GR64RegClass, 0 365 }; 366 static const TargetRegisterClass * const CalleeSavedRegClasses64EHRet[] = { 367 &X86::GR64RegClass, &X86::GR64RegClass, 368 &X86::GR64RegClass, &X86::GR64RegClass, 369 &X86::GR64RegClass, &X86::GR64RegClass, 370 &X86::GR64RegClass, &X86::GR64RegClass, 0 371 }; 372 static const TargetRegisterClass * const CalleeSavedRegClassesWin64[] = { 373 &X86::GR64RegClass, &X86::GR64RegClass, 374 &X86::GR64RegClass, &X86::GR64RegClass, 375 &X86::GR64RegClass, &X86::GR64RegClass, 376 &X86::GR64RegClass, &X86::GR64RegClass, 377 &X86::VR128RegClass, &X86::VR128RegClass, 378 &X86::VR128RegClass, &X86::VR128RegClass, 379 &X86::VR128RegClass, &X86::VR128RegClass, 380 &X86::VR128RegClass, &X86::VR128RegClass, 381 &X86::VR128RegClass, &X86::VR128RegClass, 0 382 }; 383 384 if (Is64Bit) { 385 if (IsWin64) 386 return CalleeSavedRegClassesWin64; 387 else 388 return (callsEHReturn ? 389 CalleeSavedRegClasses64EHRet : CalleeSavedRegClasses64Bit); 390 } else { 391 return (callsEHReturn ? 392 CalleeSavedRegClasses32EHRet : CalleeSavedRegClasses32Bit); 393 } 394} 395 396BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const { 397 BitVector Reserved(getNumRegs()); 398 // Set the stack-pointer register and its aliases as reserved. 399 Reserved.set(X86::RSP); 400 Reserved.set(X86::ESP); 401 Reserved.set(X86::SP); 402 Reserved.set(X86::SPL); 403 404 // Set the instruction pointer register and its aliases as reserved. 405 Reserved.set(X86::RIP); 406 Reserved.set(X86::EIP); 407 Reserved.set(X86::IP); 408 409 // Set the frame-pointer register and its aliases as reserved if needed. 410 if (hasFP(MF)) { 411 Reserved.set(X86::RBP); 412 Reserved.set(X86::EBP); 413 Reserved.set(X86::BP); 414 Reserved.set(X86::BPL); 415 } 416 417 // Mark the x87 stack registers as reserved, since they don't behave normally 418 // with respect to liveness. We don't fully model the effects of x87 stack 419 // pushes and pops after stackification. 420 Reserved.set(X86::ST0); 421 Reserved.set(X86::ST1); 422 Reserved.set(X86::ST2); 423 Reserved.set(X86::ST3); 424 Reserved.set(X86::ST4); 425 Reserved.set(X86::ST5); 426 Reserved.set(X86::ST6); 427 Reserved.set(X86::ST7); 428 return Reserved; 429} 430 431//===----------------------------------------------------------------------===// 432// Stack Frame Processing methods 433//===----------------------------------------------------------------------===// 434 435/// hasFP - Return true if the specified function should have a dedicated frame 436/// pointer register. This is true if the function has variable sized allocas 437/// or if frame pointer elimination is disabled. 438bool X86RegisterInfo::hasFP(const MachineFunction &MF) const { 439 const MachineFrameInfo *MFI = MF.getFrameInfo(); 440 const MachineModuleInfo &MMI = MF.getMMI(); 441 442 return (DisableFramePointerElim(MF) || 443 needsStackRealignment(MF) || 444 MFI->hasVarSizedObjects() || 445 MFI->isFrameAddressTaken() || 446 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 447 MMI.callsUnwindInit()); 448} 449 450bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const { 451 const MachineFrameInfo *MFI = MF.getFrameInfo(); 452 return (RealignStack && 453 !MFI->hasVarSizedObjects()); 454} 455 456bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const { 457 const MachineFrameInfo *MFI = MF.getFrameInfo(); 458 const Function *F = MF.getFunction(); 459 bool requiresRealignment = 460 RealignStack && ((MFI->getMaxAlignment() > StackAlign) || 461 F->hasFnAttr(Attribute::StackAlignment)); 462 463 // FIXME: Currently we don't support stack realignment for functions with 464 // variable-sized allocas. 465 // FIXME: Temporary disable the error - it seems to be too conservative. 466 if (0 && requiresRealignment && MFI->hasVarSizedObjects()) 467 report_fatal_error( 468 "Stack realignment in presense of dynamic allocas is not supported"); 469 470 return (requiresRealignment && !MFI->hasVarSizedObjects()); 471} 472 473bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const { 474 return !MF.getFrameInfo()->hasVarSizedObjects(); 475} 476 477bool X86RegisterInfo::hasReservedSpillSlot(MachineFunction &MF, unsigned Reg, 478 int &FrameIdx) const { 479 if (Reg == FramePtr && hasFP(MF)) { 480 FrameIdx = MF.getFrameInfo()->getObjectIndexBegin(); 481 return true; 482 } 483 return false; 484} 485 486int 487X86RegisterInfo::getFrameIndexOffset(const MachineFunction &MF, int FI) const { 488 const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo(); 489 const MachineFrameInfo *MFI = MF.getFrameInfo(); 490 int Offset = MFI->getObjectOffset(FI) - TFI.getOffsetOfLocalArea(); 491 uint64_t StackSize = MFI->getStackSize(); 492 493 if (needsStackRealignment(MF)) { 494 if (FI < 0) { 495 // Skip the saved EBP. 496 Offset += SlotSize; 497 } else { 498 unsigned Align = MFI->getObjectAlignment(FI); 499 assert((-(Offset + StackSize)) % Align == 0); 500 Align = 0; 501 return Offset + StackSize; 502 } 503 // FIXME: Support tail calls 504 } else { 505 if (!hasFP(MF)) 506 return Offset + StackSize; 507 508 // Skip the saved EBP. 509 Offset += SlotSize; 510 511 // Skip the RETADDR move area 512 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 513 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 514 if (TailCallReturnAddrDelta < 0) 515 Offset -= TailCallReturnAddrDelta; 516 } 517 518 return Offset; 519} 520 521void X86RegisterInfo:: 522eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 523 MachineBasicBlock::iterator I) const { 524 if (!hasReservedCallFrame(MF)) { 525 // If the stack pointer can be changed after prologue, turn the 526 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 527 // adjcallstackdown instruction into 'add ESP, <amt>' 528 // TODO: consider using push / pop instead of sub + store / add 529 MachineInstr *Old = I; 530 uint64_t Amount = Old->getOperand(0).getImm(); 531 if (Amount != 0) { 532 // We need to keep the stack aligned properly. To do this, we round the 533 // amount of space needed for the outgoing arguments up to the next 534 // alignment boundary. 535 Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign; 536 537 MachineInstr *New = 0; 538 if (Old->getOpcode() == getCallFrameSetupOpcode()) { 539 New = BuildMI(MF, Old->getDebugLoc(), 540 TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri), 541 StackPtr) 542 .addReg(StackPtr) 543 .addImm(Amount); 544 } else { 545 assert(Old->getOpcode() == getCallFrameDestroyOpcode()); 546 547 // Factor out the amount the callee already popped. 548 uint64_t CalleeAmt = Old->getOperand(1).getImm(); 549 Amount -= CalleeAmt; 550 551 if (Amount) { 552 unsigned Opc = (Amount < 128) ? 553 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : 554 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri); 555 New = BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), StackPtr) 556 .addReg(StackPtr) 557 .addImm(Amount); 558 } 559 } 560 561 if (New) { 562 // The EFLAGS implicit def is dead. 563 New->getOperand(3).setIsDead(); 564 565 // Replace the pseudo instruction with a new instruction. 566 MBB.insert(I, New); 567 } 568 } 569 } else if (I->getOpcode() == getCallFrameDestroyOpcode()) { 570 // If we are performing frame pointer elimination and if the callee pops 571 // something off the stack pointer, add it back. We do this until we have 572 // more advanced stack pointer tracking ability. 573 if (uint64_t CalleeAmt = I->getOperand(1).getImm()) { 574 unsigned Opc = (CalleeAmt < 128) ? 575 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : 576 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri); 577 MachineInstr *Old = I; 578 MachineInstr *New = 579 BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), 580 StackPtr) 581 .addReg(StackPtr) 582 .addImm(CalleeAmt); 583 584 // The EFLAGS implicit def is dead. 585 New->getOperand(3).setIsDead(); 586 MBB.insert(I, New); 587 } 588 } 589 590 MBB.erase(I); 591} 592 593unsigned 594X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, 595 int SPAdj, FrameIndexValue *Value, 596 RegScavenger *RS) const{ 597 assert(SPAdj == 0 && "Unexpected"); 598 599 unsigned i = 0; 600 MachineInstr &MI = *II; 601 MachineFunction &MF = *MI.getParent()->getParent(); 602 603 while (!MI.getOperand(i).isFI()) { 604 ++i; 605 assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); 606 } 607 608 int FrameIndex = MI.getOperand(i).getIndex(); 609 unsigned BasePtr; 610 611 unsigned Opc = MI.getOpcode(); 612 bool AfterFPPop = Opc == X86::TAILJMPm64 || Opc == X86::TAILJMPm; 613 if (needsStackRealignment(MF)) 614 BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr); 615 else if (AfterFPPop) 616 BasePtr = StackPtr; 617 else 618 BasePtr = (hasFP(MF) ? FramePtr : StackPtr); 619 620 // This must be part of a four operand memory reference. Replace the 621 // FrameIndex with base register with EBP. Add an offset to the offset. 622 MI.getOperand(i).ChangeToRegister(BasePtr, false); 623 624 // Now add the frame object offset to the offset from EBP. 625 int FIOffset; 626 if (AfterFPPop) { 627 // Tail call jmp happens after FP is popped. 628 const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo(); 629 const MachineFrameInfo *MFI = MF.getFrameInfo(); 630 FIOffset = MFI->getObjectOffset(FrameIndex) - TFI.getOffsetOfLocalArea(); 631 } else 632 FIOffset = getFrameIndexOffset(MF, FrameIndex); 633 634 if (MI.getOperand(i+3).isImm()) { 635 // Offset is a 32-bit integer. 636 int Offset = FIOffset + (int)(MI.getOperand(i + 3).getImm()); 637 MI.getOperand(i + 3).ChangeToImmediate(Offset); 638 } else { 639 // Offset is symbolic. This is extremely rare. 640 uint64_t Offset = FIOffset + (uint64_t)MI.getOperand(i+3).getOffset(); 641 MI.getOperand(i+3).setOffset(Offset); 642 } 643 return 0; 644} 645 646void 647X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF, 648 RegScavenger *RS) const { 649 MachineFrameInfo *MFI = MF.getFrameInfo(); 650 651 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 652 int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 653 654 if (TailCallReturnAddrDelta < 0) { 655 // create RETURNADDR area 656 // arg 657 // arg 658 // RETADDR 659 // { ... 660 // RETADDR area 661 // ... 662 // } 663 // [EBP] 664 MFI->CreateFixedObject(-TailCallReturnAddrDelta, 665 (-1U*SlotSize)+TailCallReturnAddrDelta, 666 true, false); 667 } 668 669 if (hasFP(MF)) { 670 assert((TailCallReturnAddrDelta <= 0) && 671 "The Delta should always be zero or negative"); 672 const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo(); 673 674 // Create a frame entry for the EBP register that must be saved. 675 int FrameIdx = MFI->CreateFixedObject(SlotSize, 676 -(int)SlotSize + 677 TFI.getOffsetOfLocalArea() + 678 TailCallReturnAddrDelta, 679 true, false); 680 assert(FrameIdx == MFI->getObjectIndexBegin() && 681 "Slot for EBP register must be last in order to be found!"); 682 FrameIdx = 0; 683 } 684} 685 686/// emitSPUpdate - Emit a series of instructions to increment / decrement the 687/// stack pointer by a constant value. 688static 689void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 690 unsigned StackPtr, int64_t NumBytes, bool Is64Bit, 691 const TargetInstrInfo &TII) { 692 bool isSub = NumBytes < 0; 693 uint64_t Offset = isSub ? -NumBytes : NumBytes; 694 unsigned Opc = isSub 695 ? ((Offset < 128) ? 696 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : 697 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri)) 698 : ((Offset < 128) ? 699 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : 700 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri)); 701 uint64_t Chunk = (1LL << 31) - 1; 702 DebugLoc DL = MBB.findDebugLoc(MBBI); 703 704 while (Offset) { 705 uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset; 706 MachineInstr *MI = 707 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 708 .addReg(StackPtr) 709 .addImm(ThisVal); 710 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 711 Offset -= ThisVal; 712 } 713} 714 715/// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator. 716static 717void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 718 unsigned StackPtr, uint64_t *NumBytes = NULL) { 719 if (MBBI == MBB.begin()) return; 720 721 MachineBasicBlock::iterator PI = prior(MBBI); 722 unsigned Opc = PI->getOpcode(); 723 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 724 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 725 PI->getOperand(0).getReg() == StackPtr) { 726 if (NumBytes) 727 *NumBytes += PI->getOperand(2).getImm(); 728 MBB.erase(PI); 729 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 730 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 731 PI->getOperand(0).getReg() == StackPtr) { 732 if (NumBytes) 733 *NumBytes -= PI->getOperand(2).getImm(); 734 MBB.erase(PI); 735 } 736} 737 738/// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator. 739static 740void mergeSPUpdatesDown(MachineBasicBlock &MBB, 741 MachineBasicBlock::iterator &MBBI, 742 unsigned StackPtr, uint64_t *NumBytes = NULL) { 743 // FIXME: THIS ISN'T RUN!!! 744 return; 745 746 if (MBBI == MBB.end()) return; 747 748 MachineBasicBlock::iterator NI = llvm::next(MBBI); 749 if (NI == MBB.end()) return; 750 751 unsigned Opc = NI->getOpcode(); 752 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 753 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 754 NI->getOperand(0).getReg() == StackPtr) { 755 if (NumBytes) 756 *NumBytes -= NI->getOperand(2).getImm(); 757 MBB.erase(NI); 758 MBBI = NI; 759 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 760 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 761 NI->getOperand(0).getReg() == StackPtr) { 762 if (NumBytes) 763 *NumBytes += NI->getOperand(2).getImm(); 764 MBB.erase(NI); 765 MBBI = NI; 766 } 767} 768 769/// mergeSPUpdates - Checks the instruction before/after the passed 770/// instruction. If it is an ADD/SUB instruction it is deleted argument and the 771/// stack adjustment is returned as a positive value for ADD and a negative for 772/// SUB. 773static int mergeSPUpdates(MachineBasicBlock &MBB, 774 MachineBasicBlock::iterator &MBBI, 775 unsigned StackPtr, 776 bool doMergeWithPrevious) { 777 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 778 (!doMergeWithPrevious && MBBI == MBB.end())) 779 return 0; 780 781 MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI; 782 MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI); 783 unsigned Opc = PI->getOpcode(); 784 int Offset = 0; 785 786 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 787 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 788 PI->getOperand(0).getReg() == StackPtr){ 789 Offset += PI->getOperand(2).getImm(); 790 MBB.erase(PI); 791 if (!doMergeWithPrevious) MBBI = NI; 792 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 793 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 794 PI->getOperand(0).getReg() == StackPtr) { 795 Offset -= PI->getOperand(2).getImm(); 796 MBB.erase(PI); 797 if (!doMergeWithPrevious) MBBI = NI; 798 } 799 800 return Offset; 801} 802 803void X86RegisterInfo::emitCalleeSavedFrameMoves(MachineFunction &MF, 804 MCSymbol *Label, 805 unsigned FramePtr) const { 806 MachineFrameInfo *MFI = MF.getFrameInfo(); 807 MachineModuleInfo &MMI = MF.getMMI(); 808 809 // Add callee saved registers to move list. 810 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); 811 if (CSI.empty()) return; 812 813 std::vector<MachineMove> &Moves = MMI.getFrameMoves(); 814 const TargetData *TD = MF.getTarget().getTargetData(); 815 bool HasFP = hasFP(MF); 816 817 // Calculate amount of bytes used for return address storing. 818 int stackGrowth = 819 (MF.getTarget().getFrameInfo()->getStackGrowthDirection() == 820 TargetFrameInfo::StackGrowsUp ? 821 TD->getPointerSize() : -TD->getPointerSize()); 822 823 // FIXME: This is dirty hack. The code itself is pretty mess right now. 824 // It should be rewritten from scratch and generalized sometimes. 825 826 // Determine maximum offset (minumum due to stack growth). 827 int64_t MaxOffset = 0; 828 for (std::vector<CalleeSavedInfo>::const_iterator 829 I = CSI.begin(), E = CSI.end(); I != E; ++I) 830 MaxOffset = std::min(MaxOffset, 831 MFI->getObjectOffset(I->getFrameIdx())); 832 833 // Calculate offsets. 834 int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth; 835 for (std::vector<CalleeSavedInfo>::const_iterator 836 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 837 int64_t Offset = MFI->getObjectOffset(I->getFrameIdx()); 838 unsigned Reg = I->getReg(); 839 Offset = MaxOffset - Offset + saveAreaOffset; 840 841 // Don't output a new machine move if we're re-saving the frame 842 // pointer. This happens when the PrologEpilogInserter has inserted an extra 843 // "PUSH" of the frame pointer -- the "emitPrologue" method automatically 844 // generates one when frame pointers are used. If we generate a "machine 845 // move" for this extra "PUSH", the linker will lose track of the fact that 846 // the frame pointer should have the value of the first "PUSH" when it's 847 // trying to unwind. 848 // 849 // FIXME: This looks inelegant. It's possibly correct, but it's covering up 850 // another bug. I.e., one where we generate a prolog like this: 851 // 852 // pushl %ebp 853 // movl %esp, %ebp 854 // pushl %ebp 855 // pushl %esi 856 // ... 857 // 858 // The immediate re-push of EBP is unnecessary. At the least, it's an 859 // optimization bug. EBP can be used as a scratch register in certain 860 // cases, but probably not when we have a frame pointer. 861 if (HasFP && FramePtr == Reg) 862 continue; 863 864 MachineLocation CSDst(MachineLocation::VirtualFP, Offset); 865 MachineLocation CSSrc(Reg); 866 Moves.push_back(MachineMove(Label, CSDst, CSSrc)); 867 } 868} 869 870/// emitPrologue - Push callee-saved registers onto the stack, which 871/// automatically adjust the stack pointer. Adjust the stack pointer to allocate 872/// space for local variables. Also emit labels used by the exception handler to 873/// generate the exception handling frames. 874void X86RegisterInfo::emitPrologue(MachineFunction &MF) const { 875 MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB. 876 MachineBasicBlock::iterator MBBI = MBB.begin(); 877 MachineFrameInfo *MFI = MF.getFrameInfo(); 878 const Function *Fn = MF.getFunction(); 879 const X86Subtarget *Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>(); 880 MachineModuleInfo &MMI = MF.getMMI(); 881 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 882 bool needsFrameMoves = MMI.hasDebugInfo() || 883 !Fn->doesNotThrow() || UnwindTablesMandatory; 884 uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment. 885 uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate. 886 bool HasFP = hasFP(MF); 887 DebugLoc DL; 888 889 // Add RETADDR move area to callee saved frame size. 890 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 891 if (TailCallReturnAddrDelta < 0) 892 X86FI->setCalleeSavedFrameSize( 893 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 894 895 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 896 // function, and use up to 128 bytes of stack space, don't have a frame 897 // pointer, calls, or dynamic alloca then we do not need to adjust the 898 // stack pointer (we fit in the Red Zone). 899 if (Is64Bit && !Fn->hasFnAttr(Attribute::NoRedZone) && 900 !needsStackRealignment(MF) && 901 !MFI->hasVarSizedObjects() && // No dynamic alloca. 902 !MFI->hasCalls() && // No calls. 903 !Subtarget->isTargetWin64()) { // Win64 has no Red Zone 904 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 905 if (HasFP) MinSize += SlotSize; 906 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 907 MFI->setStackSize(StackSize); 908 } else if (Subtarget->isTargetWin64()) { 909 // We need to always allocate 32 bytes as register spill area. 910 // FIXME: We might reuse these 32 bytes for leaf functions. 911 StackSize += 32; 912 MFI->setStackSize(StackSize); 913 } 914 915 // Insert stack pointer adjustment for later moving of return addr. Only 916 // applies to tail call optimized functions where the callee argument stack 917 // size is bigger than the callers. 918 if (TailCallReturnAddrDelta < 0) { 919 MachineInstr *MI = 920 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri), 921 StackPtr) 922 .addReg(StackPtr) 923 .addImm(-TailCallReturnAddrDelta); 924 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 925 } 926 927 // Mapping for machine moves: 928 // 929 // DST: VirtualFP AND 930 // SRC: VirtualFP => DW_CFA_def_cfa_offset 931 // ELSE => DW_CFA_def_cfa 932 // 933 // SRC: VirtualFP AND 934 // DST: Register => DW_CFA_def_cfa_register 935 // 936 // ELSE 937 // OFFSET < 0 => DW_CFA_offset_extended_sf 938 // REG < 64 => DW_CFA_offset + Reg 939 // ELSE => DW_CFA_offset_extended 940 941 std::vector<MachineMove> &Moves = MMI.getFrameMoves(); 942 const TargetData *TD = MF.getTarget().getTargetData(); 943 uint64_t NumBytes = 0; 944 int stackGrowth = -TD->getPointerSize(); 945 946 if (HasFP) { 947 // Calculate required stack adjustment. 948 uint64_t FrameSize = StackSize - SlotSize; 949 if (needsStackRealignment(MF)) 950 FrameSize = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign; 951 952 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 953 954 // Get the offset of the stack slot for the EBP register, which is 955 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. 956 // Update the frame offset adjustment. 957 MFI->setOffsetAdjustment(-NumBytes); 958 959 // Save EBP/RBP into the appropriate stack slot. 960 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 961 .addReg(FramePtr, RegState::Kill); 962 963 if (needsFrameMoves) { 964 // Mark the place where EBP/RBP was saved. 965 MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol(); 966 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addSym(FrameLabel); 967 968 // Define the current CFA rule to use the provided offset. 969 if (StackSize) { 970 MachineLocation SPDst(MachineLocation::VirtualFP); 971 MachineLocation SPSrc(MachineLocation::VirtualFP, 2 * stackGrowth); 972 Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc)); 973 } else { 974 // FIXME: Verify & implement for FP 975 MachineLocation SPDst(StackPtr); 976 MachineLocation SPSrc(StackPtr, stackGrowth); 977 Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc)); 978 } 979 980 // Change the rule for the FramePtr to be an "offset" rule. 981 MachineLocation FPDst(MachineLocation::VirtualFP, 2 * stackGrowth); 982 MachineLocation FPSrc(FramePtr); 983 Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc)); 984 } 985 986 // Update EBP with the new base value... 987 BuildMI(MBB, MBBI, DL, 988 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr) 989 .addReg(StackPtr); 990 991 if (needsFrameMoves) { 992 // Mark effective beginning of when frame pointer becomes valid. 993 MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol(); 994 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addSym(FrameLabel); 995 996 // Define the current CFA to use the EBP/RBP register. 997 MachineLocation FPDst(FramePtr); 998 MachineLocation FPSrc(MachineLocation::VirtualFP); 999 Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc)); 1000 } 1001 1002 // Mark the FramePtr as live-in in every block except the entry. 1003 for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end(); 1004 I != E; ++I) 1005 I->addLiveIn(FramePtr); 1006 1007 // Realign stack 1008 if (needsStackRealignment(MF)) { 1009 MachineInstr *MI = 1010 BuildMI(MBB, MBBI, DL, 1011 TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), 1012 StackPtr).addReg(StackPtr).addImm(-MaxAlign); 1013 1014 // The EFLAGS implicit def is dead. 1015 MI->getOperand(3).setIsDead(); 1016 } 1017 } else { 1018 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1019 } 1020 1021 // Skip the callee-saved push instructions. 1022 bool PushedRegs = false; 1023 int StackOffset = 2 * stackGrowth; 1024 1025 while (MBBI != MBB.end() && 1026 (MBBI->getOpcode() == X86::PUSH32r || 1027 MBBI->getOpcode() == X86::PUSH64r)) { 1028 PushedRegs = true; 1029 ++MBBI; 1030 1031 if (!HasFP && needsFrameMoves) { 1032 // Mark callee-saved push instruction. 1033 MCSymbol *Label = MMI.getContext().CreateTempSymbol(); 1034 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addSym(Label); 1035 1036 // Define the current CFA rule to use the provided offset. 1037 unsigned Ptr = StackSize ? 1038 MachineLocation::VirtualFP : StackPtr; 1039 MachineLocation SPDst(Ptr); 1040 MachineLocation SPSrc(Ptr, StackOffset); 1041 Moves.push_back(MachineMove(Label, SPDst, SPSrc)); 1042 StackOffset += stackGrowth; 1043 } 1044 } 1045 1046 DL = MBB.findDebugLoc(MBBI); 1047 1048 // Adjust stack pointer: ESP -= numbytes. 1049 if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) { 1050 // Check, whether EAX is livein for this function. 1051 bool isEAXAlive = false; 1052 for (MachineRegisterInfo::livein_iterator 1053 II = MF.getRegInfo().livein_begin(), 1054 EE = MF.getRegInfo().livein_end(); (II != EE) && !isEAXAlive; ++II) { 1055 unsigned Reg = II->first; 1056 isEAXAlive = (Reg == X86::EAX || Reg == X86::AX || 1057 Reg == X86::AH || Reg == X86::AL); 1058 } 1059 1060 // Function prologue calls _alloca to probe the stack when allocating more 1061 // than 4k bytes in one go. Touching the stack at 4K increments is necessary 1062 // to ensure that the guard pages used by the OS virtual memory manager are 1063 // allocated in correct sequence. 1064 if (!isEAXAlive) { 1065 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1066 .addImm(NumBytes); 1067 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) 1068 .addExternalSymbol("_alloca") 1069 .addReg(StackPtr, RegState::Define | RegState::Implicit); 1070 } else { 1071 // Save EAX 1072 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1073 .addReg(X86::EAX, RegState::Kill); 1074 1075 // Allocate NumBytes-4 bytes on stack. We'll also use 4 already 1076 // allocated bytes for EAX. 1077 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1078 .addImm(NumBytes - 4); 1079 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) 1080 .addExternalSymbol("_alloca") 1081 .addReg(StackPtr, RegState::Define | RegState::Implicit); 1082 1083 // Restore EAX 1084 MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), 1085 X86::EAX), 1086 StackPtr, false, NumBytes - 4); 1087 MBB.insert(MBBI, MI); 1088 } 1089 } else if (NumBytes) { 1090 // If there is an SUB32ri of ESP immediately before this instruction, merge 1091 // the two. This can be the case when tail call elimination is enabled and 1092 // the callee has more arguments then the caller. 1093 NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true); 1094 1095 // If there is an ADD32ri or SUB32ri of ESP immediately after this 1096 // instruction, merge the two instructions. 1097 mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes); 1098 1099 if (NumBytes) 1100 emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII); 1101 } 1102 1103 if ((NumBytes || PushedRegs) && needsFrameMoves) { 1104 // Mark end of stack pointer adjustment. 1105 MCSymbol *Label = MMI.getContext().CreateTempSymbol(); 1106 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addSym(Label); 1107 1108 if (!HasFP && NumBytes) { 1109 // Define the current CFA rule to use the provided offset. 1110 if (StackSize) { 1111 MachineLocation SPDst(MachineLocation::VirtualFP); 1112 MachineLocation SPSrc(MachineLocation::VirtualFP, 1113 -StackSize + stackGrowth); 1114 Moves.push_back(MachineMove(Label, SPDst, SPSrc)); 1115 } else { 1116 // FIXME: Verify & implement for FP 1117 MachineLocation SPDst(StackPtr); 1118 MachineLocation SPSrc(StackPtr, stackGrowth); 1119 Moves.push_back(MachineMove(Label, SPDst, SPSrc)); 1120 } 1121 } 1122 1123 // Emit DWARF info specifying the offsets of the callee-saved registers. 1124 if (PushedRegs) 1125 emitCalleeSavedFrameMoves(MF, Label, HasFP ? FramePtr : StackPtr); 1126 } 1127} 1128 1129void X86RegisterInfo::emitEpilogue(MachineFunction &MF, 1130 MachineBasicBlock &MBB) const { 1131 const MachineFrameInfo *MFI = MF.getFrameInfo(); 1132 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1133 MachineBasicBlock::iterator MBBI = prior(MBB.end()); 1134 unsigned RetOpcode = MBBI->getOpcode(); 1135 DebugLoc DL = MBBI->getDebugLoc(); 1136 1137 switch (RetOpcode) { 1138 default: 1139 llvm_unreachable("Can only insert epilog into returning blocks"); 1140 case X86::RET: 1141 case X86::RETI: 1142 case X86::TCRETURNdi: 1143 case X86::TCRETURNri: 1144 case X86::TCRETURNmi: 1145 case X86::TCRETURNdi64: 1146 case X86::TCRETURNri64: 1147 case X86::TCRETURNmi64: 1148 case X86::EH_RETURN: 1149 case X86::EH_RETURN64: 1150 break; // These are ok 1151 } 1152 1153 // Get the number of bytes to allocate from the FrameInfo. 1154 uint64_t StackSize = MFI->getStackSize(); 1155 uint64_t MaxAlign = MFI->getMaxAlignment(); 1156 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1157 uint64_t NumBytes = 0; 1158 1159 if (hasFP(MF)) { 1160 // Calculate required stack adjustment. 1161 uint64_t FrameSize = StackSize - SlotSize; 1162 if (needsStackRealignment(MF)) 1163 FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign; 1164 1165 NumBytes = FrameSize - CSSize; 1166 1167 // Pop EBP. 1168 BuildMI(MBB, MBBI, DL, 1169 TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr); 1170 } else { 1171 NumBytes = StackSize - CSSize; 1172 } 1173 1174 // Skip the callee-saved pop instructions. 1175 MachineBasicBlock::iterator LastCSPop = MBBI; 1176 while (MBBI != MBB.begin()) { 1177 MachineBasicBlock::iterator PI = prior(MBBI); 1178 unsigned Opc = PI->getOpcode(); 1179 1180 if (Opc != X86::POP32r && Opc != X86::POP64r && 1181 !PI->getDesc().isTerminator()) 1182 break; 1183 1184 --MBBI; 1185 } 1186 1187 DL = MBBI->getDebugLoc(); 1188 1189 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1190 // instruction, merge the two instructions. 1191 if (NumBytes || MFI->hasVarSizedObjects()) 1192 mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes); 1193 1194 // If dynamic alloca is used, then reset esp to point to the last callee-saved 1195 // slot before popping them off! Same applies for the case, when stack was 1196 // realigned. 1197 if (needsStackRealignment(MF)) { 1198 // We cannot use LEA here, because stack pointer was realigned. We need to 1199 // deallocate local frame back. 1200 if (CSSize) { 1201 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII); 1202 MBBI = prior(LastCSPop); 1203 } 1204 1205 BuildMI(MBB, MBBI, DL, 1206 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), 1207 StackPtr).addReg(FramePtr); 1208 } else if (MFI->hasVarSizedObjects()) { 1209 if (CSSize) { 1210 unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r; 1211 MachineInstr *MI = 1212 addLeaRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr), 1213 FramePtr, false, -CSSize); 1214 MBB.insert(MBBI, MI); 1215 } else { 1216 BuildMI(MBB, MBBI, DL, 1217 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr) 1218 .addReg(FramePtr); 1219 } 1220 } else if (NumBytes) { 1221 // Adjust stack pointer back: ESP += numbytes. 1222 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII); 1223 } 1224 1225 // We're returning from function via eh_return. 1226 if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) { 1227 MBBI = prior(MBB.end()); 1228 MachineOperand &DestAddr = MBBI->getOperand(0); 1229 assert(DestAddr.isReg() && "Offset should be in register!"); 1230 BuildMI(MBB, MBBI, DL, 1231 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), 1232 StackPtr).addReg(DestAddr.getReg()); 1233 } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi || 1234 RetOpcode == X86::TCRETURNmi || 1235 RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 || 1236 RetOpcode == X86::TCRETURNmi64) { 1237 bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64; 1238 // Tail call return: adjust the stack pointer and jump to callee. 1239 MBBI = prior(MBB.end()); 1240 MachineOperand &JumpTarget = MBBI->getOperand(0); 1241 MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1); 1242 assert(StackAdjust.isImm() && "Expecting immediate value."); 1243 1244 // Adjust stack pointer. 1245 int StackAdj = StackAdjust.getImm(); 1246 int MaxTCDelta = X86FI->getTCReturnAddrDelta(); 1247 int Offset = 0; 1248 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive"); 1249 1250 // Incoporate the retaddr area. 1251 Offset = StackAdj-MaxTCDelta; 1252 assert(Offset >= 0 && "Offset should never be negative"); 1253 1254 if (Offset) { 1255 // Check for possible merge with preceeding ADD instruction. 1256 Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true); 1257 emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII); 1258 } 1259 1260 // Jump to label or value in register. 1261 if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) { 1262 BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi) 1263 ? X86::TAILJMPd : X86::TAILJMPd64)). 1264 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(), 1265 JumpTarget.getTargetFlags()); 1266 } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) { 1267 MachineInstrBuilder MIB = 1268 BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi) 1269 ? X86::TAILJMPm : X86::TAILJMPm64)); 1270 for (unsigned i = 0; i != 5; ++i) 1271 MIB.addOperand(MBBI->getOperand(i)); 1272 } else if (RetOpcode == X86::TCRETURNri64) { 1273 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64), JumpTarget.getReg()); 1274 } else { 1275 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr), JumpTarget.getReg()); 1276 } 1277 1278 MachineInstr *NewMI = prior(MBBI); 1279 for (unsigned i = 2, e = MBBI->getNumOperands(); i != e; ++i) 1280 NewMI->addOperand(MBBI->getOperand(i)); 1281 1282 // Delete the pseudo instruction TCRETURN. 1283 MBB.erase(MBBI); 1284 } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) && 1285 (X86FI->getTCReturnAddrDelta() < 0)) { 1286 // Add the return addr area delta back since we are not tail calling. 1287 int delta = -1*X86FI->getTCReturnAddrDelta(); 1288 MBBI = prior(MBB.end()); 1289 1290 // Check for possible merge with preceeding ADD instruction. 1291 delta += mergeSPUpdates(MBB, MBBI, StackPtr, true); 1292 emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII); 1293 } 1294} 1295 1296unsigned X86RegisterInfo::getRARegister() const { 1297 return Is64Bit ? X86::RIP // Should have dwarf #16. 1298 : X86::EIP; // Should have dwarf #8. 1299} 1300 1301unsigned X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const { 1302 return hasFP(MF) ? FramePtr : StackPtr; 1303} 1304 1305void 1306X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves) const { 1307 // Calculate amount of bytes used for return address storing 1308 int stackGrowth = (Is64Bit ? -8 : -4); 1309 1310 // Initial state of the frame pointer is esp+stackGrowth. 1311 MachineLocation Dst(MachineLocation::VirtualFP); 1312 MachineLocation Src(StackPtr, stackGrowth); 1313 Moves.push_back(MachineMove(0, Dst, Src)); 1314 1315 // Add return address to move list 1316 MachineLocation CSDst(StackPtr, stackGrowth); 1317 MachineLocation CSSrc(getRARegister()); 1318 Moves.push_back(MachineMove(0, CSDst, CSSrc)); 1319} 1320 1321unsigned X86RegisterInfo::getEHExceptionRegister() const { 1322 llvm_unreachable("What is the exception register"); 1323 return 0; 1324} 1325 1326unsigned X86RegisterInfo::getEHHandlerRegister() const { 1327 llvm_unreachable("What is the exception handler register"); 1328 return 0; 1329} 1330 1331namespace llvm { 1332unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) { 1333 switch (VT.getSimpleVT().SimpleTy) { 1334 default: return Reg; 1335 case MVT::i8: 1336 if (High) { 1337 switch (Reg) { 1338 default: return 0; 1339 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1340 return X86::AH; 1341 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1342 return X86::DH; 1343 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1344 return X86::CH; 1345 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1346 return X86::BH; 1347 } 1348 } else { 1349 switch (Reg) { 1350 default: return 0; 1351 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1352 return X86::AL; 1353 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1354 return X86::DL; 1355 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1356 return X86::CL; 1357 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1358 return X86::BL; 1359 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1360 return X86::SIL; 1361 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1362 return X86::DIL; 1363 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1364 return X86::BPL; 1365 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1366 return X86::SPL; 1367 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1368 return X86::R8B; 1369 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1370 return X86::R9B; 1371 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1372 return X86::R10B; 1373 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1374 return X86::R11B; 1375 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1376 return X86::R12B; 1377 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1378 return X86::R13B; 1379 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1380 return X86::R14B; 1381 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1382 return X86::R15B; 1383 } 1384 } 1385 case MVT::i16: 1386 switch (Reg) { 1387 default: return Reg; 1388 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1389 return X86::AX; 1390 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1391 return X86::DX; 1392 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1393 return X86::CX; 1394 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1395 return X86::BX; 1396 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1397 return X86::SI; 1398 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1399 return X86::DI; 1400 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1401 return X86::BP; 1402 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1403 return X86::SP; 1404 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1405 return X86::R8W; 1406 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1407 return X86::R9W; 1408 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1409 return X86::R10W; 1410 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1411 return X86::R11W; 1412 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1413 return X86::R12W; 1414 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1415 return X86::R13W; 1416 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1417 return X86::R14W; 1418 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1419 return X86::R15W; 1420 } 1421 case MVT::i32: 1422 switch (Reg) { 1423 default: return Reg; 1424 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1425 return X86::EAX; 1426 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1427 return X86::EDX; 1428 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1429 return X86::ECX; 1430 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1431 return X86::EBX; 1432 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1433 return X86::ESI; 1434 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1435 return X86::EDI; 1436 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1437 return X86::EBP; 1438 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1439 return X86::ESP; 1440 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1441 return X86::R8D; 1442 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1443 return X86::R9D; 1444 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1445 return X86::R10D; 1446 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1447 return X86::R11D; 1448 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1449 return X86::R12D; 1450 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1451 return X86::R13D; 1452 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1453 return X86::R14D; 1454 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1455 return X86::R15D; 1456 } 1457 case MVT::i64: 1458 switch (Reg) { 1459 default: return Reg; 1460 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1461 return X86::RAX; 1462 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1463 return X86::RDX; 1464 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1465 return X86::RCX; 1466 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1467 return X86::RBX; 1468 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1469 return X86::RSI; 1470 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1471 return X86::RDI; 1472 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1473 return X86::RBP; 1474 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1475 return X86::RSP; 1476 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1477 return X86::R8; 1478 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1479 return X86::R9; 1480 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1481 return X86::R10; 1482 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1483 return X86::R11; 1484 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1485 return X86::R12; 1486 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1487 return X86::R13; 1488 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1489 return X86::R14; 1490 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1491 return X86::R15; 1492 } 1493 } 1494 1495 return Reg; 1496} 1497} 1498 1499#include "X86GenRegisterInfo.inc" 1500 1501namespace { 1502 struct MSAH : public MachineFunctionPass { 1503 static char ID; 1504 MSAH() : MachineFunctionPass(&ID) {} 1505 1506 virtual bool runOnMachineFunction(MachineFunction &MF) { 1507 const X86TargetMachine *TM = 1508 static_cast<const X86TargetMachine *>(&MF.getTarget()); 1509 const X86RegisterInfo *X86RI = TM->getRegisterInfo(); 1510 MachineRegisterInfo &RI = MF.getRegInfo(); 1511 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1512 unsigned StackAlignment = X86RI->getStackAlignment(); 1513 1514 // Be over-conservative: scan over all vreg defs and find whether vector 1515 // registers are used. If yes, there is a possibility that vector register 1516 // will be spilled and thus require dynamic stack realignment. 1517 for (unsigned RegNum = TargetRegisterInfo::FirstVirtualRegister; 1518 RegNum < RI.getLastVirtReg(); ++RegNum) 1519 if (RI.getRegClass(RegNum)->getAlignment() > StackAlignment) { 1520 FuncInfo->setReserveFP(true); 1521 return true; 1522 } 1523 1524 // Nothing to do 1525 return false; 1526 } 1527 1528 virtual const char *getPassName() const { 1529 return "X86 Maximal Stack Alignment Check"; 1530 } 1531 1532 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1533 AU.setPreservesCFG(); 1534 MachineFunctionPass::getAnalysisUsage(AU); 1535 } 1536 }; 1537 1538 char MSAH::ID = 0; 1539} 1540 1541FunctionPass* 1542llvm::createX86MaxStackAlignmentHeuristicPass() { return new MSAH(); } 1543