X86RegisterInfo.cpp revision e4a2dd2f1ada7acea92df156ebaf8a45a17e139d
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetRegisterInfo class.
11// This file is responsible for the frame pointer elimination optimization
12// on X86.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86RegisterInfo.h"
18#include "X86InstrBuilder.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/Type.h"
25#include "llvm/CodeGen/ValueTypes.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineLocation.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/BitVector.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/CommandLine.h"
42using namespace llvm;
43
44cl::opt<bool>
45ForceStackAlign("force-align-stack",
46                 cl::desc("Force align the stack to the minimum alignment"
47                           " needed for the function."),
48                 cl::init(false), cl::Hidden);
49
50X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
51                                 const TargetInstrInfo &tii)
52  : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() ?
53                         X86::ADJCALLSTACKDOWN64 :
54                         X86::ADJCALLSTACKDOWN32,
55                       tm.getSubtarget<X86Subtarget>().is64Bit() ?
56                         X86::ADJCALLSTACKUP64 :
57                         X86::ADJCALLSTACKUP32),
58    TM(tm), TII(tii) {
59  // Cache some information.
60  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
61  Is64Bit = Subtarget->is64Bit();
62  IsWin64 = Subtarget->isTargetWin64();
63  StackAlign = TM.getFrameInfo()->getStackAlignment();
64
65  if (Is64Bit) {
66    SlotSize = 8;
67    StackPtr = X86::RSP;
68    FramePtr = X86::RBP;
69  } else {
70    SlotSize = 4;
71    StackPtr = X86::ESP;
72    FramePtr = X86::EBP;
73  }
74}
75
76/// getDwarfRegNum - This function maps LLVM register identifiers to the DWARF
77/// specific numbering, used in debug info and exception tables.
78int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const {
79  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
80  unsigned Flavour = DWARFFlavour::X86_64;
81
82  if (!Subtarget->is64Bit()) {
83    if (Subtarget->isTargetDarwin()) {
84      if (isEH)
85        Flavour = DWARFFlavour::X86_32_DarwinEH;
86      else
87        Flavour = DWARFFlavour::X86_32_Generic;
88    } else if (Subtarget->isTargetCygMing()) {
89      // Unsupported by now, just quick fallback
90      Flavour = DWARFFlavour::X86_32_Generic;
91    } else {
92      Flavour = DWARFFlavour::X86_32_Generic;
93    }
94  }
95
96  return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour);
97}
98
99/// getX86RegNum - This function maps LLVM register identifiers to their X86
100/// specific numbering, which is used in various places encoding instructions.
101unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
102  switch(RegNo) {
103  case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
104  case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
105  case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
106  case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
107  case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
108    return N86::ESP;
109  case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
110    return N86::EBP;
111  case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
112    return N86::ESI;
113  case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
114    return N86::EDI;
115
116  case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
117    return N86::EAX;
118  case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
119    return N86::ECX;
120  case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
121    return N86::EDX;
122  case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
123    return N86::EBX;
124  case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
125    return N86::ESP;
126  case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
127    return N86::EBP;
128  case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
129    return N86::ESI;
130  case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
131    return N86::EDI;
132
133  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
134  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
135    return RegNo-X86::ST0;
136
137  case X86::XMM0: case X86::XMM8:
138  case X86::YMM0: case X86::YMM8: case X86::MM0:
139    return 0;
140  case X86::XMM1: case X86::XMM9:
141  case X86::YMM1: case X86::YMM9: case X86::MM1:
142    return 1;
143  case X86::XMM2: case X86::XMM10:
144  case X86::YMM2: case X86::YMM10: case X86::MM2:
145    return 2;
146  case X86::XMM3: case X86::XMM11:
147  case X86::YMM3: case X86::YMM11: case X86::MM3:
148    return 3;
149  case X86::XMM4: case X86::XMM12:
150  case X86::YMM4: case X86::YMM12: case X86::MM4:
151    return 4;
152  case X86::XMM5: case X86::XMM13:
153  case X86::YMM5: case X86::YMM13: case X86::MM5:
154    return 5;
155  case X86::XMM6: case X86::XMM14:
156  case X86::YMM6: case X86::YMM14: case X86::MM6:
157    return 6;
158  case X86::XMM7: case X86::XMM15:
159  case X86::YMM7: case X86::YMM15: case X86::MM7:
160    return 7;
161
162  case X86::ES: return 0;
163  case X86::CS: return 1;
164  case X86::SS: return 2;
165  case X86::DS: return 3;
166  case X86::FS: return 4;
167  case X86::GS: return 5;
168
169  case X86::CR0: case X86::CR8 : case X86::DR0: return 0;
170  case X86::CR1: case X86::CR9 : case X86::DR1: return 1;
171  case X86::CR2: case X86::CR10: case X86::DR2: return 2;
172  case X86::CR3: case X86::CR11: case X86::DR3: return 3;
173  case X86::CR4: case X86::CR12: case X86::DR4: return 4;
174  case X86::CR5: case X86::CR13: case X86::DR5: return 5;
175  case X86::CR6: case X86::CR14: case X86::DR6: return 6;
176  case X86::CR7: case X86::CR15: case X86::DR7: return 7;
177
178  // Pseudo index registers are equivalent to a "none"
179  // scaled index (See Intel Manual 2A, table 2-3)
180  case X86::EIZ:
181  case X86::RIZ:
182    return 4;
183
184  default:
185    assert(isVirtualRegister(RegNo) && "Unknown physical register!");
186    llvm_unreachable("Register allocator hasn't allocated reg correctly yet!");
187    return 0;
188  }
189}
190
191const TargetRegisterClass *
192X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
193                                          const TargetRegisterClass *B,
194                                          unsigned SubIdx) const {
195  switch (SubIdx) {
196  default: return 0;
197  case X86::sub_8bit:
198    if (B == &X86::GR8RegClass) {
199      if (A->getSize() == 2 || A->getSize() == 4 || A->getSize() == 8)
200        return A;
201    } else if (B == &X86::GR8_ABCD_LRegClass || B == &X86::GR8_ABCD_HRegClass) {
202      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
203          A == &X86::GR64_NOREXRegClass ||
204          A == &X86::GR64_NOSPRegClass ||
205          A == &X86::GR64_NOREX_NOSPRegClass)
206        return &X86::GR64_ABCDRegClass;
207      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
208               A == &X86::GR32_NOREXRegClass ||
209               A == &X86::GR32_NOSPRegClass)
210        return &X86::GR32_ABCDRegClass;
211      else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
212               A == &X86::GR16_NOREXRegClass)
213        return &X86::GR16_ABCDRegClass;
214    } else if (B == &X86::GR8_NOREXRegClass) {
215      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
216          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
217        return &X86::GR64_NOREXRegClass;
218      else if (A == &X86::GR64_ABCDRegClass)
219        return &X86::GR64_ABCDRegClass;
220      else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
221               A == &X86::GR32_NOSPRegClass)
222        return &X86::GR32_NOREXRegClass;
223      else if (A == &X86::GR32_ABCDRegClass)
224        return &X86::GR32_ABCDRegClass;
225      else if (A == &X86::GR16RegClass || A == &X86::GR16_NOREXRegClass)
226        return &X86::GR16_NOREXRegClass;
227      else if (A == &X86::GR16_ABCDRegClass)
228        return &X86::GR16_ABCDRegClass;
229    }
230    break;
231  case X86::sub_8bit_hi:
232    if (B == &X86::GR8_ABCD_HRegClass) {
233      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
234          A == &X86::GR64_NOREXRegClass ||
235          A == &X86::GR64_NOSPRegClass ||
236          A == &X86::GR64_NOREX_NOSPRegClass)
237        return &X86::GR64_ABCDRegClass;
238      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
239               A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
240        return &X86::GR32_ABCDRegClass;
241      else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
242               A == &X86::GR16_NOREXRegClass)
243        return &X86::GR16_ABCDRegClass;
244    }
245    break;
246  case X86::sub_16bit:
247    if (B == &X86::GR16RegClass) {
248      if (A->getSize() == 4 || A->getSize() == 8)
249        return A;
250    } else if (B == &X86::GR16_ABCDRegClass) {
251      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
252          A == &X86::GR64_NOREXRegClass ||
253          A == &X86::GR64_NOSPRegClass ||
254          A == &X86::GR64_NOREX_NOSPRegClass)
255        return &X86::GR64_ABCDRegClass;
256      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
257               A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
258        return &X86::GR32_ABCDRegClass;
259    } else if (B == &X86::GR16_NOREXRegClass) {
260      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
261          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
262        return &X86::GR64_NOREXRegClass;
263      else if (A == &X86::GR64_ABCDRegClass)
264        return &X86::GR64_ABCDRegClass;
265      else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
266               A == &X86::GR32_NOSPRegClass)
267        return &X86::GR32_NOREXRegClass;
268      else if (A == &X86::GR32_ABCDRegClass)
269        return &X86::GR64_ABCDRegClass;
270    }
271    break;
272  case X86::sub_32bit:
273    if (B == &X86::GR32RegClass) {
274      if (A->getSize() == 8)
275        return A;
276    } else if (B == &X86::GR32_NOSPRegClass) {
277      if (A == &X86::GR64RegClass || A == &X86::GR64_NOSPRegClass)
278        return &X86::GR64_NOSPRegClass;
279      if (A->getSize() == 8)
280        return getCommonSubClass(A, &X86::GR64_NOSPRegClass);
281    } else if (B == &X86::GR32_ABCDRegClass) {
282      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
283          A == &X86::GR64_NOREXRegClass ||
284          A == &X86::GR64_NOSPRegClass ||
285          A == &X86::GR64_NOREX_NOSPRegClass)
286        return &X86::GR64_ABCDRegClass;
287    } else if (B == &X86::GR32_NOREXRegClass) {
288      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
289          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
290        return &X86::GR64_NOREXRegClass;
291      else if (A == &X86::GR64_ABCDRegClass)
292        return &X86::GR64_ABCDRegClass;
293    }
294    break;
295  case X86::sub_ss:
296    if (B == &X86::FR32RegClass)
297      return A;
298    break;
299  case X86::sub_sd:
300    if (B == &X86::FR64RegClass)
301      return A;
302    break;
303  case X86::sub_xmm:
304    if (B == &X86::VR128RegClass)
305      return A;
306    break;
307  }
308  return 0;
309}
310
311const TargetRegisterClass *
312X86RegisterInfo::getPointerRegClass(unsigned Kind) const {
313  switch (Kind) {
314  default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
315  case 0: // Normal GPRs.
316    if (TM.getSubtarget<X86Subtarget>().is64Bit())
317      return &X86::GR64RegClass;
318    return &X86::GR32RegClass;
319  case 1: // Normal GRPs except the stack pointer (for encoding reasons).
320    if (TM.getSubtarget<X86Subtarget>().is64Bit())
321      return &X86::GR64_NOSPRegClass;
322    return &X86::GR32_NOSPRegClass;
323  }
324}
325
326const TargetRegisterClass *
327X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
328  if (RC == &X86::CCRRegClass) {
329    if (Is64Bit)
330      return &X86::GR64RegClass;
331    else
332      return &X86::GR32RegClass;
333  }
334  return NULL;
335}
336
337const unsigned *
338X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
339  bool callsEHReturn = false;
340  bool ghcCall = false;
341
342  if (MF) {
343    callsEHReturn = MF->getMMI().callsEHReturn();
344    const Function *F = MF->getFunction();
345    ghcCall = (F ? F->getCallingConv() == CallingConv::GHC : false);
346  }
347
348  static const unsigned GhcCalleeSavedRegs[] = {
349    0
350  };
351
352  static const unsigned CalleeSavedRegs32Bit[] = {
353    X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
354  };
355
356  static const unsigned CalleeSavedRegs32EHRet[] = {
357    X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
358  };
359
360  static const unsigned CalleeSavedRegs64Bit[] = {
361    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
362  };
363
364  static const unsigned CalleeSavedRegs64EHRet[] = {
365    X86::RAX, X86::RDX, X86::RBX, X86::R12,
366    X86::R13, X86::R14, X86::R15, X86::RBP, 0
367  };
368
369  static const unsigned CalleeSavedRegsWin64[] = {
370    X86::RBX,   X86::RBP,   X86::RDI,   X86::RSI,
371    X86::R12,   X86::R13,   X86::R14,   X86::R15,
372    X86::XMM6,  X86::XMM7,  X86::XMM8,  X86::XMM9,
373    X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13,
374    X86::XMM14, X86::XMM15, 0
375  };
376
377  if (ghcCall) {
378    return GhcCalleeSavedRegs;
379  } else if (Is64Bit) {
380    if (IsWin64)
381      return CalleeSavedRegsWin64;
382    else
383      return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit);
384  } else {
385    return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit);
386  }
387}
388
389BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
390  BitVector Reserved(getNumRegs());
391  const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
392
393  // Set the stack-pointer register and its aliases as reserved.
394  Reserved.set(X86::RSP);
395  Reserved.set(X86::ESP);
396  Reserved.set(X86::SP);
397  Reserved.set(X86::SPL);
398
399  // Set the instruction pointer register and its aliases as reserved.
400  Reserved.set(X86::RIP);
401  Reserved.set(X86::EIP);
402  Reserved.set(X86::IP);
403
404  // Set the frame-pointer register and its aliases as reserved if needed.
405  if (TFI->hasFP(MF)) {
406    Reserved.set(X86::RBP);
407    Reserved.set(X86::EBP);
408    Reserved.set(X86::BP);
409    Reserved.set(X86::BPL);
410  }
411
412  // Mark the x87 stack registers as reserved, since they don't behave normally
413  // with respect to liveness. We don't fully model the effects of x87 stack
414  // pushes and pops after stackification.
415  Reserved.set(X86::ST0);
416  Reserved.set(X86::ST1);
417  Reserved.set(X86::ST2);
418  Reserved.set(X86::ST3);
419  Reserved.set(X86::ST4);
420  Reserved.set(X86::ST5);
421  Reserved.set(X86::ST6);
422  Reserved.set(X86::ST7);
423  return Reserved;
424}
425
426//===----------------------------------------------------------------------===//
427// Stack Frame Processing methods
428//===----------------------------------------------------------------------===//
429
430bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const {
431  const MachineFrameInfo *MFI = MF.getFrameInfo();
432  return (RealignStack &&
433          !MFI->hasVarSizedObjects());
434}
435
436bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
437  const MachineFrameInfo *MFI = MF.getFrameInfo();
438  const Function *F = MF.getFunction();
439  bool requiresRealignment = ((MFI->getMaxAlignment() > StackAlign) ||
440                               F->hasFnAttr(Attribute::StackAlignment));
441
442  // FIXME: Currently we don't support stack realignment for functions with
443  //        variable-sized allocas.
444  // FIXME: It's more complicated than this...
445  if (0 && requiresRealignment && MFI->hasVarSizedObjects())
446    report_fatal_error(
447      "Stack realignment in presense of dynamic allocas is not supported");
448
449  // If we've requested that we force align the stack do so now.
450  if (ForceStackAlign)
451    return canRealignStack(MF);
452
453  return requiresRealignment && canRealignStack(MF);
454}
455
456bool X86RegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
457                                           unsigned Reg, int &FrameIdx) const {
458  const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
459
460  if (Reg == FramePtr && TFI->hasFP(MF)) {
461    FrameIdx = MF.getFrameInfo()->getObjectIndexBegin();
462    return true;
463  }
464  return false;
465}
466
467static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) {
468  if (is64Bit) {
469    if (isInt<8>(Imm))
470      return X86::SUB64ri8;
471    return X86::SUB64ri32;
472  } else {
473    if (isInt<8>(Imm))
474      return X86::SUB32ri8;
475    return X86::SUB32ri;
476  }
477}
478
479static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) {
480  if (is64Bit) {
481    if (isInt<8>(Imm))
482      return X86::ADD64ri8;
483    return X86::ADD64ri32;
484  } else {
485    if (isInt<8>(Imm))
486      return X86::ADD32ri8;
487    return X86::ADD32ri;
488  }
489}
490
491void X86RegisterInfo::
492eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
493                              MachineBasicBlock::iterator I) const {
494  const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
495  bool reseveCallFrame = TFI->hasReservedCallFrame(MF);
496  int Opcode = I->getOpcode();
497  bool isDestroy = Opcode == getCallFrameDestroyOpcode();
498  DebugLoc DL = I->getDebugLoc();
499  uint64_t Amount = !reseveCallFrame ? I->getOperand(0).getImm() : 0;
500  uint64_t CalleeAmt = isDestroy ? I->getOperand(1).getImm() : 0;
501  I = MBB.erase(I);
502
503  if (!reseveCallFrame) {
504    // If the stack pointer can be changed after prologue, turn the
505    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
506    // adjcallstackdown instruction into 'add ESP, <amt>'
507    // TODO: consider using push / pop instead of sub + store / add
508    if (Amount == 0)
509      return;
510
511    // We need to keep the stack aligned properly.  To do this, we round the
512    // amount of space needed for the outgoing arguments up to the next
513    // alignment boundary.
514    Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
515
516    MachineInstr *New = 0;
517    if (Opcode == getCallFrameSetupOpcode()) {
518      New = BuildMI(MF, DL, TII.get(getSUBriOpcode(Is64Bit, Amount)),
519                    StackPtr)
520        .addReg(StackPtr)
521        .addImm(Amount);
522    } else {
523      assert(Opcode == getCallFrameDestroyOpcode());
524
525      // Factor out the amount the callee already popped.
526      Amount -= CalleeAmt;
527
528      if (Amount) {
529        unsigned Opc = getADDriOpcode(Is64Bit, Amount);
530        New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
531          .addReg(StackPtr).addImm(Amount);
532      }
533    }
534
535    if (New) {
536      // The EFLAGS implicit def is dead.
537      New->getOperand(3).setIsDead();
538
539      // Replace the pseudo instruction with a new instruction.
540      MBB.insert(I, New);
541    }
542
543    return;
544  }
545
546  if (Opcode == getCallFrameDestroyOpcode() && CalleeAmt) {
547    // If we are performing frame pointer elimination and if the callee pops
548    // something off the stack pointer, add it back.  We do this until we have
549    // more advanced stack pointer tracking ability.
550    unsigned Opc = getSUBriOpcode(Is64Bit, CalleeAmt);
551    MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
552      .addReg(StackPtr).addImm(CalleeAmt);
553
554    // The EFLAGS implicit def is dead.
555    New->getOperand(3).setIsDead();
556    MBB.insert(I, New);
557  }
558}
559
560void
561X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
562                                     int SPAdj, RegScavenger *RS) const{
563  assert(SPAdj == 0 && "Unexpected");
564
565  unsigned i = 0;
566  MachineInstr &MI = *II;
567  MachineFunction &MF = *MI.getParent()->getParent();
568  const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
569
570  while (!MI.getOperand(i).isFI()) {
571    ++i;
572    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
573  }
574
575  int FrameIndex = MI.getOperand(i).getIndex();
576  unsigned BasePtr;
577
578  unsigned Opc = MI.getOpcode();
579  bool AfterFPPop = Opc == X86::TAILJMPm64 || Opc == X86::TAILJMPm;
580  if (needsStackRealignment(MF))
581    BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
582  else if (AfterFPPop)
583    BasePtr = StackPtr;
584  else
585    BasePtr = (TFI->hasFP(MF) ? FramePtr : StackPtr);
586
587  // This must be part of a four operand memory reference.  Replace the
588  // FrameIndex with base register with EBP.  Add an offset to the offset.
589  MI.getOperand(i).ChangeToRegister(BasePtr, false);
590
591  // Now add the frame object offset to the offset from EBP.
592  int FIOffset;
593  if (AfterFPPop) {
594    // Tail call jmp happens after FP is popped.
595    const MachineFrameInfo *MFI = MF.getFrameInfo();
596    FIOffset = MFI->getObjectOffset(FrameIndex) - TFI->getOffsetOfLocalArea();
597  } else
598    FIOffset = TFI->getFrameIndexOffset(MF, FrameIndex);
599
600  if (MI.getOperand(i+3).isImm()) {
601    // Offset is a 32-bit integer.
602    int Offset = FIOffset + (int)(MI.getOperand(i + 3).getImm());
603    MI.getOperand(i + 3).ChangeToImmediate(Offset);
604  } else {
605    // Offset is symbolic. This is extremely rare.
606    uint64_t Offset = FIOffset + (uint64_t)MI.getOperand(i+3).getOffset();
607    MI.getOperand(i+3).setOffset(Offset);
608  }
609}
610
611unsigned X86RegisterInfo::getRARegister() const {
612  return Is64Bit ? X86::RIP     // Should have dwarf #16.
613                 : X86::EIP;    // Should have dwarf #8.
614}
615
616unsigned X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
617  const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
618  return TFI->hasFP(MF) ? FramePtr : StackPtr;
619}
620
621unsigned X86RegisterInfo::getEHExceptionRegister() const {
622  llvm_unreachable("What is the exception register");
623  return 0;
624}
625
626unsigned X86RegisterInfo::getEHHandlerRegister() const {
627  llvm_unreachable("What is the exception handler register");
628  return 0;
629}
630
631namespace llvm {
632unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) {
633  switch (VT.getSimpleVT().SimpleTy) {
634  default: return Reg;
635  case MVT::i8:
636    if (High) {
637      switch (Reg) {
638      default: return 0;
639      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
640        return X86::AH;
641      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
642        return X86::DH;
643      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
644        return X86::CH;
645      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
646        return X86::BH;
647      }
648    } else {
649      switch (Reg) {
650      default: return 0;
651      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
652        return X86::AL;
653      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
654        return X86::DL;
655      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
656        return X86::CL;
657      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
658        return X86::BL;
659      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
660        return X86::SIL;
661      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
662        return X86::DIL;
663      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
664        return X86::BPL;
665      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
666        return X86::SPL;
667      case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
668        return X86::R8B;
669      case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
670        return X86::R9B;
671      case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
672        return X86::R10B;
673      case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
674        return X86::R11B;
675      case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
676        return X86::R12B;
677      case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
678        return X86::R13B;
679      case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
680        return X86::R14B;
681      case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
682        return X86::R15B;
683      }
684    }
685  case MVT::i16:
686    switch (Reg) {
687    default: return Reg;
688    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
689      return X86::AX;
690    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
691      return X86::DX;
692    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
693      return X86::CX;
694    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
695      return X86::BX;
696    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
697      return X86::SI;
698    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
699      return X86::DI;
700    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
701      return X86::BP;
702    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
703      return X86::SP;
704    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
705      return X86::R8W;
706    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
707      return X86::R9W;
708    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
709      return X86::R10W;
710    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
711      return X86::R11W;
712    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
713      return X86::R12W;
714    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
715      return X86::R13W;
716    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
717      return X86::R14W;
718    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
719      return X86::R15W;
720    }
721  case MVT::i32:
722    switch (Reg) {
723    default: return Reg;
724    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
725      return X86::EAX;
726    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
727      return X86::EDX;
728    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
729      return X86::ECX;
730    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
731      return X86::EBX;
732    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
733      return X86::ESI;
734    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
735      return X86::EDI;
736    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
737      return X86::EBP;
738    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
739      return X86::ESP;
740    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
741      return X86::R8D;
742    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
743      return X86::R9D;
744    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
745      return X86::R10D;
746    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
747      return X86::R11D;
748    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
749      return X86::R12D;
750    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
751      return X86::R13D;
752    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
753      return X86::R14D;
754    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
755      return X86::R15D;
756    }
757  case MVT::i64:
758    switch (Reg) {
759    default: return Reg;
760    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
761      return X86::RAX;
762    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
763      return X86::RDX;
764    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
765      return X86::RCX;
766    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
767      return X86::RBX;
768    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
769      return X86::RSI;
770    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
771      return X86::RDI;
772    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
773      return X86::RBP;
774    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
775      return X86::RSP;
776    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
777      return X86::R8;
778    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
779      return X86::R9;
780    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
781      return X86::R10;
782    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
783      return X86::R11;
784    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
785      return X86::R12;
786    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
787      return X86::R13;
788    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
789      return X86::R14;
790    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
791      return X86::R15;
792    }
793  }
794
795  return Reg;
796}
797}
798
799#include "X86GenRegisterInfo.inc"
800
801namespace {
802  struct MSAH : public MachineFunctionPass {
803    static char ID;
804    MSAH() : MachineFunctionPass(ID) {}
805
806    virtual bool runOnMachineFunction(MachineFunction &MF) {
807      const X86TargetMachine *TM =
808        static_cast<const X86TargetMachine *>(&MF.getTarget());
809      const X86RegisterInfo *X86RI = TM->getRegisterInfo();
810      MachineRegisterInfo &RI = MF.getRegInfo();
811      X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
812      unsigned StackAlignment = X86RI->getStackAlignment();
813
814      // Be over-conservative: scan over all vreg defs and find whether vector
815      // registers are used. If yes, there is a possibility that vector register
816      // will be spilled and thus require dynamic stack realignment.
817      for (unsigned RegNum = TargetRegisterInfo::FirstVirtualRegister;
818           RegNum < RI.getLastVirtReg(); ++RegNum)
819        if (RI.getRegClass(RegNum)->getAlignment() > StackAlignment) {
820          FuncInfo->setReserveFP(true);
821          return true;
822        }
823
824      // Nothing to do
825      return false;
826    }
827
828    virtual const char *getPassName() const {
829      return "X86 Maximal Stack Alignment Check";
830    }
831
832    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
833      AU.setPreservesCFG();
834      MachineFunctionPass::getAnalysisUsage(AU);
835    }
836  };
837
838  char MSAH::ID = 0;
839}
840
841FunctionPass*
842llvm::createX86MaxStackAlignmentHeuristicPass() { return new MSAH(); }
843