X86RegisterInfo.cpp revision e4c64454051962ab56187c966e981043ff17ae4f
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetRegisterInfo class.
11// This file is responsible for the frame pointer elimination optimization
12// on X86.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86RegisterInfo.h"
18#include "X86InstrBuilder.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/Type.h"
25#include "llvm/CodeGen/ValueTypes.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineLocation.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/Target/TargetFrameLowering.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/BitVector.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/CommandLine.h"
42using namespace llvm;
43
44cl::opt<bool>
45ForceStackAlign("force-align-stack",
46                 cl::desc("Force align the stack to the minimum alignment"
47                           " needed for the function."),
48                 cl::init(false), cl::Hidden);
49
50X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
51                                 const TargetInstrInfo &tii)
52  : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() ?
53                         X86::ADJCALLSTACKDOWN64 :
54                         X86::ADJCALLSTACKDOWN32,
55                       tm.getSubtarget<X86Subtarget>().is64Bit() ?
56                         X86::ADJCALLSTACKUP64 :
57                         X86::ADJCALLSTACKUP32),
58    TM(tm), TII(tii) {
59  // Cache some information.
60  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
61  Is64Bit = Subtarget->is64Bit();
62  IsWin64 = Subtarget->isTargetWin64();
63  StackAlign = TM.getFrameLowering()->getStackAlignment();
64
65  if (Is64Bit) {
66    SlotSize = 8;
67    StackPtr = X86::RSP;
68    FramePtr = X86::RBP;
69  } else {
70    SlotSize = 4;
71    StackPtr = X86::ESP;
72    FramePtr = X86::EBP;
73  }
74}
75
76/// getDwarfRegNum - This function maps LLVM register identifiers to the DWARF
77/// specific numbering, used in debug info and exception tables.
78int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const {
79  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
80  unsigned Flavour = DWARFFlavour::X86_64;
81
82  if (!Subtarget->is64Bit()) {
83    if (Subtarget->isTargetDarwin()) {
84      if (isEH)
85        Flavour = DWARFFlavour::X86_32_DarwinEH;
86      else
87        Flavour = DWARFFlavour::X86_32_Generic;
88    } else if (Subtarget->isTargetCygMing()) {
89      // Unsupported by now, just quick fallback
90      Flavour = DWARFFlavour::X86_32_Generic;
91    } else {
92      Flavour = DWARFFlavour::X86_32_Generic;
93    }
94  }
95
96  return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour);
97}
98
99/// getX86RegNum - This function maps LLVM register identifiers to their X86
100/// specific numbering, which is used in various places encoding instructions.
101unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
102  switch(RegNo) {
103  case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
104  case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
105  case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
106  case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
107  case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
108    return N86::ESP;
109  case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
110    return N86::EBP;
111  case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
112    return N86::ESI;
113  case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
114    return N86::EDI;
115
116  case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
117    return N86::EAX;
118  case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
119    return N86::ECX;
120  case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
121    return N86::EDX;
122  case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
123    return N86::EBX;
124  case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
125    return N86::ESP;
126  case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
127    return N86::EBP;
128  case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
129    return N86::ESI;
130  case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
131    return N86::EDI;
132
133  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
134  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
135    return RegNo-X86::ST0;
136
137  case X86::XMM0: case X86::XMM8:
138  case X86::YMM0: case X86::YMM8: case X86::MM0:
139    return 0;
140  case X86::XMM1: case X86::XMM9:
141  case X86::YMM1: case X86::YMM9: case X86::MM1:
142    return 1;
143  case X86::XMM2: case X86::XMM10:
144  case X86::YMM2: case X86::YMM10: case X86::MM2:
145    return 2;
146  case X86::XMM3: case X86::XMM11:
147  case X86::YMM3: case X86::YMM11: case X86::MM3:
148    return 3;
149  case X86::XMM4: case X86::XMM12:
150  case X86::YMM4: case X86::YMM12: case X86::MM4:
151    return 4;
152  case X86::XMM5: case X86::XMM13:
153  case X86::YMM5: case X86::YMM13: case X86::MM5:
154    return 5;
155  case X86::XMM6: case X86::XMM14:
156  case X86::YMM6: case X86::YMM14: case X86::MM6:
157    return 6;
158  case X86::XMM7: case X86::XMM15:
159  case X86::YMM7: case X86::YMM15: case X86::MM7:
160    return 7;
161
162  case X86::ES: return 0;
163  case X86::CS: return 1;
164  case X86::SS: return 2;
165  case X86::DS: return 3;
166  case X86::FS: return 4;
167  case X86::GS: return 5;
168
169  case X86::CR0: case X86::CR8 : case X86::DR0: return 0;
170  case X86::CR1: case X86::CR9 : case X86::DR1: return 1;
171  case X86::CR2: case X86::CR10: case X86::DR2: return 2;
172  case X86::CR3: case X86::CR11: case X86::DR3: return 3;
173  case X86::CR4: case X86::CR12: case X86::DR4: return 4;
174  case X86::CR5: case X86::CR13: case X86::DR5: return 5;
175  case X86::CR6: case X86::CR14: case X86::DR6: return 6;
176  case X86::CR7: case X86::CR15: case X86::DR7: return 7;
177
178  // Pseudo index registers are equivalent to a "none"
179  // scaled index (See Intel Manual 2A, table 2-3)
180  case X86::EIZ:
181  case X86::RIZ:
182    return 4;
183
184  default:
185    assert(isVirtualRegister(RegNo) && "Unknown physical register!");
186    llvm_unreachable("Register allocator hasn't allocated reg correctly yet!");
187    return 0;
188  }
189}
190
191const TargetRegisterClass *
192X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
193                                          const TargetRegisterClass *B,
194                                          unsigned SubIdx) const {
195  switch (SubIdx) {
196  default: return 0;
197  case X86::sub_8bit:
198    if (B == &X86::GR8RegClass) {
199      if (A->getSize() == 2 || A->getSize() == 4 || A->getSize() == 8)
200        return A;
201    } else if (B == &X86::GR8_ABCD_LRegClass || B == &X86::GR8_ABCD_HRegClass) {
202      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
203          A == &X86::GR64_NOREXRegClass ||
204          A == &X86::GR64_NOSPRegClass ||
205          A == &X86::GR64_NOREX_NOSPRegClass)
206        return &X86::GR64_ABCDRegClass;
207      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
208               A == &X86::GR32_NOREXRegClass ||
209               A == &X86::GR32_NOSPRegClass)
210        return &X86::GR32_ABCDRegClass;
211      else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
212               A == &X86::GR16_NOREXRegClass)
213        return &X86::GR16_ABCDRegClass;
214    } else if (B == &X86::GR8_NOREXRegClass) {
215      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
216          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
217        return &X86::GR64_NOREXRegClass;
218      else if (A == &X86::GR64_ABCDRegClass)
219        return &X86::GR64_ABCDRegClass;
220      else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
221               A == &X86::GR32_NOSPRegClass)
222        return &X86::GR32_NOREXRegClass;
223      else if (A == &X86::GR32_ABCDRegClass)
224        return &X86::GR32_ABCDRegClass;
225      else if (A == &X86::GR16RegClass || A == &X86::GR16_NOREXRegClass)
226        return &X86::GR16_NOREXRegClass;
227      else if (A == &X86::GR16_ABCDRegClass)
228        return &X86::GR16_ABCDRegClass;
229    }
230    break;
231  case X86::sub_8bit_hi:
232    if (B == &X86::GR8_ABCD_HRegClass ||
233        B->hasSubClass(&X86::GR8_ABCD_HRegClass))
234      switch (A->getSize()) {
235        case 2: return getCommonSubClass(A, &X86::GR16_ABCDRegClass);
236        case 4: return getCommonSubClass(A, &X86::GR32_ABCDRegClass);
237        case 8: return getCommonSubClass(A, &X86::GR64_ABCDRegClass);
238        default: return 0;
239      }
240    break;
241  case X86::sub_16bit:
242    if (B == &X86::GR16RegClass) {
243      if (A->getSize() == 4 || A->getSize() == 8)
244        return A;
245    } else if (B == &X86::GR16_ABCDRegClass) {
246      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
247          A == &X86::GR64_NOREXRegClass ||
248          A == &X86::GR64_NOSPRegClass ||
249          A == &X86::GR64_NOREX_NOSPRegClass)
250        return &X86::GR64_ABCDRegClass;
251      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
252               A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
253        return &X86::GR32_ABCDRegClass;
254    } else if (B == &X86::GR16_NOREXRegClass) {
255      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
256          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
257        return &X86::GR64_NOREXRegClass;
258      else if (A == &X86::GR64_ABCDRegClass)
259        return &X86::GR64_ABCDRegClass;
260      else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
261               A == &X86::GR32_NOSPRegClass)
262        return &X86::GR32_NOREXRegClass;
263      else if (A == &X86::GR32_ABCDRegClass)
264        return &X86::GR64_ABCDRegClass;
265    }
266    break;
267  case X86::sub_32bit:
268    if (B == &X86::GR32RegClass) {
269      if (A->getSize() == 8)
270        return A;
271    } else if (B == &X86::GR32_NOSPRegClass) {
272      if (A == &X86::GR64RegClass || A == &X86::GR64_NOSPRegClass)
273        return &X86::GR64_NOSPRegClass;
274      if (A->getSize() == 8)
275        return getCommonSubClass(A, &X86::GR64_NOSPRegClass);
276    } else if (B == &X86::GR32_ABCDRegClass) {
277      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
278          A == &X86::GR64_NOREXRegClass ||
279          A == &X86::GR64_NOSPRegClass ||
280          A == &X86::GR64_NOREX_NOSPRegClass)
281        return &X86::GR64_ABCDRegClass;
282    } else if (B == &X86::GR32_NOREXRegClass) {
283      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
284          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
285        return &X86::GR64_NOREXRegClass;
286      else if (A == &X86::GR64_ABCDRegClass)
287        return &X86::GR64_ABCDRegClass;
288    }
289    break;
290  case X86::sub_ss:
291    if (B == &X86::FR32RegClass)
292      return A;
293    break;
294  case X86::sub_sd:
295    if (B == &X86::FR64RegClass)
296      return A;
297    break;
298  case X86::sub_xmm:
299    if (B == &X86::VR128RegClass)
300      return A;
301    break;
302  }
303  return 0;
304}
305
306const TargetRegisterClass*
307X86RegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC) const{
308  const TargetRegisterClass *Super = RC;
309  TargetRegisterClass::sc_iterator I = RC->superclasses_begin();
310  do {
311    switch (Super->getID()) {
312    case X86::GR8RegClassID:
313    case X86::GR16RegClassID:
314    case X86::GR32RegClassID:
315    case X86::GR64RegClassID:
316    case X86::FR32RegClassID:
317    case X86::FR64RegClassID:
318    case X86::RFP32RegClassID:
319    case X86::RFP64RegClassID:
320    case X86::RFP80RegClassID:
321    case X86::VR128RegClassID:
322    case X86::VR256RegClassID:
323      // Don't return a super-class that would shrink the spill size.
324      // That can happen with the vector and float classes.
325      if (Super->getSize() == RC->getSize())
326        return Super;
327    }
328    Super = *I++;
329  } while (Super);
330  return RC;
331}
332
333const TargetRegisterClass *
334X86RegisterInfo::getPointerRegClass(unsigned Kind) const {
335  switch (Kind) {
336  default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
337  case 0: // Normal GPRs.
338    if (TM.getSubtarget<X86Subtarget>().is64Bit())
339      return &X86::GR64RegClass;
340    return &X86::GR32RegClass;
341  case 1: // Normal GPRs except the stack pointer (for encoding reasons).
342    if (TM.getSubtarget<X86Subtarget>().is64Bit())
343      return &X86::GR64_NOSPRegClass;
344    return &X86::GR32_NOSPRegClass;
345  case 2: // Available for tailcall (not callee-saved GPRs).
346    if (TM.getSubtarget<X86Subtarget>().isTargetWin64())
347      return &X86::GR64_TCW64RegClass;
348    if (TM.getSubtarget<X86Subtarget>().is64Bit())
349      return &X86::GR64_TCRegClass;
350    return &X86::GR32_TCRegClass;
351  }
352}
353
354const TargetRegisterClass *
355X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
356  if (RC == &X86::CCRRegClass) {
357    if (Is64Bit)
358      return &X86::GR64RegClass;
359    else
360      return &X86::GR32RegClass;
361  }
362  return RC;
363}
364
365unsigned
366X86RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
367                                     MachineFunction &MF) const {
368  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
369
370  unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
371  switch (RC->getID()) {
372  default:
373    return 0;
374  case X86::GR32RegClassID:
375    return 4 - FPDiff;
376  case X86::GR64RegClassID:
377    return 12 - FPDiff;
378  case X86::VR128RegClassID:
379    return TM.getSubtarget<X86Subtarget>().is64Bit() ? 10 : 4;
380  case X86::VR64RegClassID:
381    return 4;
382  }
383}
384
385const unsigned *
386X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
387  bool callsEHReturn = false;
388  bool ghcCall = false;
389
390  if (MF) {
391    callsEHReturn = MF->getMMI().callsEHReturn();
392    const Function *F = MF->getFunction();
393    ghcCall = (F ? F->getCallingConv() == CallingConv::GHC : false);
394  }
395
396  static const unsigned GhcCalleeSavedRegs[] = {
397    0
398  };
399
400  static const unsigned CalleeSavedRegs32Bit[] = {
401    X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
402  };
403
404  static const unsigned CalleeSavedRegs32EHRet[] = {
405    X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
406  };
407
408  static const unsigned CalleeSavedRegs64Bit[] = {
409    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
410  };
411
412  static const unsigned CalleeSavedRegs64EHRet[] = {
413    X86::RAX, X86::RDX, X86::RBX, X86::R12,
414    X86::R13, X86::R14, X86::R15, X86::RBP, 0
415  };
416
417  static const unsigned CalleeSavedRegsWin64[] = {
418    X86::RBX,   X86::RBP,   X86::RDI,   X86::RSI,
419    X86::R12,   X86::R13,   X86::R14,   X86::R15,
420    X86::XMM6,  X86::XMM7,  X86::XMM8,  X86::XMM9,
421    X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13,
422    X86::XMM14, X86::XMM15, 0
423  };
424
425  if (ghcCall) {
426    return GhcCalleeSavedRegs;
427  } else if (Is64Bit) {
428    if (IsWin64)
429      return CalleeSavedRegsWin64;
430    else
431      return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit);
432  } else {
433    return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit);
434  }
435}
436
437BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
438  BitVector Reserved(getNumRegs());
439  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
440
441  // Set the stack-pointer register and its aliases as reserved.
442  Reserved.set(X86::RSP);
443  Reserved.set(X86::ESP);
444  Reserved.set(X86::SP);
445  Reserved.set(X86::SPL);
446
447  // Set the instruction pointer register and its aliases as reserved.
448  Reserved.set(X86::RIP);
449  Reserved.set(X86::EIP);
450  Reserved.set(X86::IP);
451
452  // Set the frame-pointer register and its aliases as reserved if needed.
453  if (TFI->hasFP(MF)) {
454    Reserved.set(X86::RBP);
455    Reserved.set(X86::EBP);
456    Reserved.set(X86::BP);
457    Reserved.set(X86::BPL);
458  }
459
460  // Mark the x87 stack registers as reserved, since they don't behave normally
461  // with respect to liveness. We don't fully model the effects of x87 stack
462  // pushes and pops after stackification.
463  Reserved.set(X86::ST0);
464  Reserved.set(X86::ST1);
465  Reserved.set(X86::ST2);
466  Reserved.set(X86::ST3);
467  Reserved.set(X86::ST4);
468  Reserved.set(X86::ST5);
469  Reserved.set(X86::ST6);
470  Reserved.set(X86::ST7);
471
472  // Mark the segment registers as reserved.
473  Reserved.set(X86::CS);
474  Reserved.set(X86::SS);
475  Reserved.set(X86::DS);
476  Reserved.set(X86::ES);
477  Reserved.set(X86::FS);
478  Reserved.set(X86::GS);
479
480  return Reserved;
481}
482
483//===----------------------------------------------------------------------===//
484// Stack Frame Processing methods
485//===----------------------------------------------------------------------===//
486
487bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const {
488  const MachineFrameInfo *MFI = MF.getFrameInfo();
489  return (RealignStack &&
490          !MFI->hasVarSizedObjects());
491}
492
493bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
494  const MachineFrameInfo *MFI = MF.getFrameInfo();
495  const Function *F = MF.getFunction();
496  bool requiresRealignment = ((MFI->getMaxAlignment() > StackAlign) ||
497                               F->hasFnAttr(Attribute::StackAlignment));
498
499  // FIXME: Currently we don't support stack realignment for functions with
500  //        variable-sized allocas.
501  // FIXME: It's more complicated than this...
502  if (0 && requiresRealignment && MFI->hasVarSizedObjects())
503    report_fatal_error(
504      "Stack realignment in presence of dynamic allocas is not supported");
505
506  // If we've requested that we force align the stack do so now.
507  if (ForceStackAlign)
508    return canRealignStack(MF);
509
510  return requiresRealignment && canRealignStack(MF);
511}
512
513bool X86RegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
514                                           unsigned Reg, int &FrameIdx) const {
515  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
516
517  if (Reg == FramePtr && TFI->hasFP(MF)) {
518    FrameIdx = MF.getFrameInfo()->getObjectIndexBegin();
519    return true;
520  }
521  return false;
522}
523
524static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) {
525  if (is64Bit) {
526    if (isInt<8>(Imm))
527      return X86::SUB64ri8;
528    return X86::SUB64ri32;
529  } else {
530    if (isInt<8>(Imm))
531      return X86::SUB32ri8;
532    return X86::SUB32ri;
533  }
534}
535
536static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) {
537  if (is64Bit) {
538    if (isInt<8>(Imm))
539      return X86::ADD64ri8;
540    return X86::ADD64ri32;
541  } else {
542    if (isInt<8>(Imm))
543      return X86::ADD32ri8;
544    return X86::ADD32ri;
545  }
546}
547
548void X86RegisterInfo::
549eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
550                              MachineBasicBlock::iterator I) const {
551  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
552  bool reseveCallFrame = TFI->hasReservedCallFrame(MF);
553  int Opcode = I->getOpcode();
554  bool isDestroy = Opcode == getCallFrameDestroyOpcode();
555  DebugLoc DL = I->getDebugLoc();
556  uint64_t Amount = !reseveCallFrame ? I->getOperand(0).getImm() : 0;
557  uint64_t CalleeAmt = isDestroy ? I->getOperand(1).getImm() : 0;
558  I = MBB.erase(I);
559
560  if (!reseveCallFrame) {
561    // If the stack pointer can be changed after prologue, turn the
562    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
563    // adjcallstackdown instruction into 'add ESP, <amt>'
564    // TODO: consider using push / pop instead of sub + store / add
565    if (Amount == 0)
566      return;
567
568    // We need to keep the stack aligned properly.  To do this, we round the
569    // amount of space needed for the outgoing arguments up to the next
570    // alignment boundary.
571    Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
572
573    MachineInstr *New = 0;
574    if (Opcode == getCallFrameSetupOpcode()) {
575      New = BuildMI(MF, DL, TII.get(getSUBriOpcode(Is64Bit, Amount)),
576                    StackPtr)
577        .addReg(StackPtr)
578        .addImm(Amount);
579    } else {
580      assert(Opcode == getCallFrameDestroyOpcode());
581
582      // Factor out the amount the callee already popped.
583      Amount -= CalleeAmt;
584
585      if (Amount) {
586        unsigned Opc = getADDriOpcode(Is64Bit, Amount);
587        New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
588          .addReg(StackPtr).addImm(Amount);
589      }
590    }
591
592    if (New) {
593      // The EFLAGS implicit def is dead.
594      New->getOperand(3).setIsDead();
595
596      // Replace the pseudo instruction with a new instruction.
597      MBB.insert(I, New);
598    }
599
600    return;
601  }
602
603  if (Opcode == getCallFrameDestroyOpcode() && CalleeAmt) {
604    // If we are performing frame pointer elimination and if the callee pops
605    // something off the stack pointer, add it back.  We do this until we have
606    // more advanced stack pointer tracking ability.
607    unsigned Opc = getSUBriOpcode(Is64Bit, CalleeAmt);
608    MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
609      .addReg(StackPtr).addImm(CalleeAmt);
610
611    // The EFLAGS implicit def is dead.
612    New->getOperand(3).setIsDead();
613    MBB.insert(I, New);
614  }
615}
616
617void
618X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
619                                     int SPAdj, RegScavenger *RS) const{
620  assert(SPAdj == 0 && "Unexpected");
621
622  unsigned i = 0;
623  MachineInstr &MI = *II;
624  MachineFunction &MF = *MI.getParent()->getParent();
625  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
626
627  while (!MI.getOperand(i).isFI()) {
628    ++i;
629    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
630  }
631
632  int FrameIndex = MI.getOperand(i).getIndex();
633  unsigned BasePtr;
634
635  unsigned Opc = MI.getOpcode();
636  bool AfterFPPop = Opc == X86::TAILJMPm64 || Opc == X86::TAILJMPm;
637  if (needsStackRealignment(MF))
638    BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
639  else if (AfterFPPop)
640    BasePtr = StackPtr;
641  else
642    BasePtr = (TFI->hasFP(MF) ? FramePtr : StackPtr);
643
644  // This must be part of a four operand memory reference.  Replace the
645  // FrameIndex with base register with EBP.  Add an offset to the offset.
646  MI.getOperand(i).ChangeToRegister(BasePtr, false);
647
648  // Now add the frame object offset to the offset from EBP.
649  int FIOffset;
650  if (AfterFPPop) {
651    // Tail call jmp happens after FP is popped.
652    const MachineFrameInfo *MFI = MF.getFrameInfo();
653    FIOffset = MFI->getObjectOffset(FrameIndex) - TFI->getOffsetOfLocalArea();
654  } else
655    FIOffset = TFI->getFrameIndexOffset(MF, FrameIndex);
656
657  if (MI.getOperand(i+3).isImm()) {
658    // Offset is a 32-bit integer.
659    int Offset = FIOffset + (int)(MI.getOperand(i + 3).getImm());
660    MI.getOperand(i + 3).ChangeToImmediate(Offset);
661  } else {
662    // Offset is symbolic. This is extremely rare.
663    uint64_t Offset = FIOffset + (uint64_t)MI.getOperand(i+3).getOffset();
664    MI.getOperand(i+3).setOffset(Offset);
665  }
666}
667
668unsigned X86RegisterInfo::getRARegister() const {
669  return Is64Bit ? X86::RIP     // Should have dwarf #16.
670                 : X86::EIP;    // Should have dwarf #8.
671}
672
673unsigned X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
674  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
675  return TFI->hasFP(MF) ? FramePtr : StackPtr;
676}
677
678unsigned X86RegisterInfo::getEHExceptionRegister() const {
679  llvm_unreachable("What is the exception register");
680  return 0;
681}
682
683unsigned X86RegisterInfo::getEHHandlerRegister() const {
684  llvm_unreachable("What is the exception handler register");
685  return 0;
686}
687
688namespace llvm {
689unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) {
690  switch (VT.getSimpleVT().SimpleTy) {
691  default: return Reg;
692  case MVT::i8:
693    if (High) {
694      switch (Reg) {
695      default: return 0;
696      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
697        return X86::AH;
698      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
699        return X86::DH;
700      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
701        return X86::CH;
702      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
703        return X86::BH;
704      }
705    } else {
706      switch (Reg) {
707      default: return 0;
708      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
709        return X86::AL;
710      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
711        return X86::DL;
712      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
713        return X86::CL;
714      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
715        return X86::BL;
716      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
717        return X86::SIL;
718      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
719        return X86::DIL;
720      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
721        return X86::BPL;
722      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
723        return X86::SPL;
724      case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
725        return X86::R8B;
726      case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
727        return X86::R9B;
728      case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
729        return X86::R10B;
730      case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
731        return X86::R11B;
732      case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
733        return X86::R12B;
734      case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
735        return X86::R13B;
736      case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
737        return X86::R14B;
738      case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
739        return X86::R15B;
740      }
741    }
742  case MVT::i16:
743    switch (Reg) {
744    default: return Reg;
745    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
746      return X86::AX;
747    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
748      return X86::DX;
749    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
750      return X86::CX;
751    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
752      return X86::BX;
753    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
754      return X86::SI;
755    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
756      return X86::DI;
757    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
758      return X86::BP;
759    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
760      return X86::SP;
761    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
762      return X86::R8W;
763    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
764      return X86::R9W;
765    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
766      return X86::R10W;
767    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
768      return X86::R11W;
769    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
770      return X86::R12W;
771    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
772      return X86::R13W;
773    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
774      return X86::R14W;
775    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
776      return X86::R15W;
777    }
778  case MVT::i32:
779    switch (Reg) {
780    default: return Reg;
781    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
782      return X86::EAX;
783    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
784      return X86::EDX;
785    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
786      return X86::ECX;
787    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
788      return X86::EBX;
789    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
790      return X86::ESI;
791    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
792      return X86::EDI;
793    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
794      return X86::EBP;
795    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
796      return X86::ESP;
797    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
798      return X86::R8D;
799    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
800      return X86::R9D;
801    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
802      return X86::R10D;
803    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
804      return X86::R11D;
805    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
806      return X86::R12D;
807    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
808      return X86::R13D;
809    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
810      return X86::R14D;
811    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
812      return X86::R15D;
813    }
814  case MVT::i64:
815    switch (Reg) {
816    default: return Reg;
817    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
818      return X86::RAX;
819    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
820      return X86::RDX;
821    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
822      return X86::RCX;
823    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
824      return X86::RBX;
825    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
826      return X86::RSI;
827    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
828      return X86::RDI;
829    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
830      return X86::RBP;
831    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
832      return X86::RSP;
833    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
834      return X86::R8;
835    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
836      return X86::R9;
837    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
838      return X86::R10;
839    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
840      return X86::R11;
841    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
842      return X86::R12;
843    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
844      return X86::R13;
845    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
846      return X86::R14;
847    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
848      return X86::R15;
849    }
850  }
851
852  return Reg;
853}
854}
855
856#include "X86GenRegisterInfo.inc"
857
858namespace {
859  struct MSAH : public MachineFunctionPass {
860    static char ID;
861    MSAH() : MachineFunctionPass(ID) {}
862
863    virtual bool runOnMachineFunction(MachineFunction &MF) {
864      const X86TargetMachine *TM =
865        static_cast<const X86TargetMachine *>(&MF.getTarget());
866      const X86RegisterInfo *X86RI = TM->getRegisterInfo();
867      MachineRegisterInfo &RI = MF.getRegInfo();
868      X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
869      unsigned StackAlignment = X86RI->getStackAlignment();
870
871      // Be over-conservative: scan over all vreg defs and find whether vector
872      // registers are used. If yes, there is a possibility that vector register
873      // will be spilled and thus require dynamic stack realignment.
874      for (unsigned i = 0, e = RI.getNumVirtRegs(); i != e; ++i) {
875        unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
876        if (RI.getRegClass(Reg)->getAlignment() > StackAlignment) {
877          FuncInfo->setReserveFP(true);
878          return true;
879        }
880      }
881      // Nothing to do
882      return false;
883    }
884
885    virtual const char *getPassName() const {
886      return "X86 Maximal Stack Alignment Check";
887    }
888
889    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
890      AU.setPreservesCFG();
891      MachineFunctionPass::getAnalysisUsage(AU);
892    }
893  };
894
895  char MSAH::ID = 0;
896}
897
898FunctionPass*
899llvm::createX86MaxStackAlignmentHeuristicPass() { return new MSAH(); }
900