X86RegisterInfo.cpp revision f0a0cddbcda344a90b7217b744c78dccec71851c
1324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===// 2324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// 3324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// The LLVM Compiler Infrastructure 4324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// 5324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// This file was developed by the LLVM research group and is distributed under 6324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// the University of Illinois Open Source License. See LICENSE.TXT for details. 7324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// 8324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//===----------------------------------------------------------------------===// 9324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// 10324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// This file contains the X86 implementation of the MRegisterInfo class. This 11324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// file is responsible for the frame pointer elimination optimization on X86. 12324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// 13324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//===----------------------------------------------------------------------===// 14324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver 15324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "X86.h" 16324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "X86RegisterInfo.h" 17324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "X86InstrBuilder.h" 18324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "X86MachineFunctionInfo.h" 19324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "X86Subtarget.h" 20324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "X86TargetMachine.h" 21324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/Constants.h" 22324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/Function.h" 23324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/Type.h" 24324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/CodeGen/ValueTypes.h" 25324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/CodeGen/MachineInstrBuilder.h" 26324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/CodeGen/MachineFunction.h" 27324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/CodeGen/MachineFrameInfo.h" 28324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/CodeGen/MachineLocation.h" 29324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/CodeGen/SSARegMap.h" 30324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/Target/TargetAsmInfo.h" 31324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/Target/TargetFrameInfo.h" 32324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/Target/TargetInstrInfo.h" 33324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/Target/TargetMachine.h" 34324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/Target/TargetOptions.h" 35324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/Support/CommandLine.h" 36324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/ADT/BitVector.h" 37324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/ADT/STLExtras.h" 38324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverusing namespace llvm; 39324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver 40324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruvernamespace { 41324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver cl::opt<bool> 42324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver NoFusing("disable-spill-fusing", 43324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver cl::desc("Disable fusing of spill code into instructions")); 44324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver cl::opt<bool> 45324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver PrintFailedFusing("print-failed-fuse-candidates", 46324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver cl::desc("Print instructions that the allocator wants to" 47324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver " fuse, but the X86 backend currently can't"), 48324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver cl::Hidden); 49324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver} 50324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver 51324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverX86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm, 52324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver const TargetInstrInfo &tii) 53324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver : X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP), 54324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver TM(tm), TII(tii) { 55324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver // Cache some information. 56324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); 57324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver Is64Bit = Subtarget->is64Bit(); 58324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver if (Is64Bit) { 59324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver SlotSize = 8; 60324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver StackPtr = X86::RSP; 61324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver FramePtr = X86::RBP; 62324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver } else { 63324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver SlotSize = 4; 64324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver StackPtr = X86::ESP; 65324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver FramePtr = X86::EBP; 66324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver } 67324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver 68324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver SmallVector<unsigned,16> AmbEntries; 69324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver static const unsigned OpTbl2Addr[][2] = { 70324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ADC32ri, X86::ADC32mi }, 71324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ADC32ri8, X86::ADC32mi8 }, 72324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ADC32rr, X86::ADC32mr }, 73324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ADC64ri32, X86::ADC64mi32 }, 74324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ADC64ri8, X86::ADC64mi8 }, 75324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ADC64rr, X86::ADC64mr }, 76324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ADD16ri, X86::ADD16mi }, 77324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ADD16ri8, X86::ADD16mi8 }, 78324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ADD16rr, X86::ADD16mr }, 79324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ADD32ri, X86::ADD32mi }, 80324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ADD32ri8, X86::ADD32mi8 }, 81324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ADD32rr, X86::ADD32mr }, 82324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ADD64ri32, X86::ADD64mi32 }, 83324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ADD64ri8, X86::ADD64mi8 }, 84324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ADD64rr, X86::ADD64mr }, 85324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ADD8ri, X86::ADD8mi }, 86324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ADD8rr, X86::ADD8mr }, 87324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::AND16ri, X86::AND16mi }, 88324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::AND16ri8, X86::AND16mi8 }, 89324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::AND16rr, X86::AND16mr }, 90324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::AND32ri, X86::AND32mi }, 91324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::AND32ri8, X86::AND32mi8 }, 92324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::AND32rr, X86::AND32mr }, 93324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::AND64ri32, X86::AND64mi32 }, 94324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::AND64ri8, X86::AND64mi8 }, 95324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::AND64rr, X86::AND64mr }, 96324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::AND8ri, X86::AND8mi }, 97324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::AND8rr, X86::AND8mr }, 98324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::DEC16r, X86::DEC16m }, 99324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::DEC32r, X86::DEC32m }, 100324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::DEC64_16r, X86::DEC16m }, 101324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::DEC64_32r, X86::DEC32m }, 102324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::DEC64r, X86::DEC64m }, 103324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::DEC8r, X86::DEC8m }, 104324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::INC16r, X86::INC16m }, 105324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::INC32r, X86::INC32m }, 106324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::INC64_16r, X86::INC16m }, 107324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::INC64_32r, X86::INC32m }, 108324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::INC64r, X86::INC64m }, 109324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::INC8r, X86::INC8m }, 110324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::NEG16r, X86::NEG16m }, 111324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::NEG32r, X86::NEG32m }, 112324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::NEG64r, X86::NEG64m }, 113324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::NEG8r, X86::NEG8m }, 114324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::NOT16r, X86::NOT16m }, 115324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::NOT32r, X86::NOT32m }, 116324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::NOT64r, X86::NOT64m }, 117324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::NOT8r, X86::NOT8m }, 118324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::OR16ri, X86::OR16mi }, 119324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::OR16ri8, X86::OR16mi8 }, 120324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::OR16rr, X86::OR16mr }, 121324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::OR32ri, X86::OR32mi }, 122324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::OR32ri8, X86::OR32mi8 }, 123324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::OR32rr, X86::OR32mr }, 124324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::OR64ri32, X86::OR64mi32 }, 125324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::OR64ri8, X86::OR64mi8 }, 126324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::OR64rr, X86::OR64mr }, 127324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::OR8ri, X86::OR8mi }, 128324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::OR8rr, X86::OR8mr }, 129324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROL16r1, X86::ROL16m1 }, 130324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROL16rCL, X86::ROL16mCL }, 131324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROL16ri, X86::ROL16mi }, 132324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROL32r1, X86::ROL32m1 }, 133324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROL32rCL, X86::ROL32mCL }, 134324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROL32ri, X86::ROL32mi }, 135324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROL64r1, X86::ROL64m1 }, 136324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROL64rCL, X86::ROL64mCL }, 137324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROL64ri, X86::ROL64mi }, 138324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROL8r1, X86::ROL8m1 }, 139324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROL8rCL, X86::ROL8mCL }, 140324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROL8ri, X86::ROL8mi }, 141324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROR16r1, X86::ROR16m1 }, 142324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROR16rCL, X86::ROR16mCL }, 143324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROR16ri, X86::ROR16mi }, 144324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROR32r1, X86::ROR32m1 }, 145324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROR32rCL, X86::ROR32mCL }, 146324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROR32ri, X86::ROR32mi }, 147324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROR64r1, X86::ROR64m1 }, 148324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROR64rCL, X86::ROR64mCL }, 149324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROR64ri, X86::ROR64mi }, 150324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROR8r1, X86::ROR8m1 }, 151324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROR8rCL, X86::ROR8mCL }, 152324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::ROR8ri, X86::ROR8mi }, 153324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SAR16r1, X86::SAR16m1 }, 154324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SAR16rCL, X86::SAR16mCL }, 155324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SAR16ri, X86::SAR16mi }, 156324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SAR32r1, X86::SAR32m1 }, 157324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SAR32rCL, X86::SAR32mCL }, 158324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SAR32ri, X86::SAR32mi }, 159324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SAR64r1, X86::SAR64m1 }, 160324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SAR64rCL, X86::SAR64mCL }, 161324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SAR64ri, X86::SAR64mi }, 162324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SAR8r1, X86::SAR8m1 }, 163324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SAR8rCL, X86::SAR8mCL }, 164324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SAR8ri, X86::SAR8mi }, 165324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SBB32ri, X86::SBB32mi }, 166324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SBB32ri8, X86::SBB32mi8 }, 167324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SBB32rr, X86::SBB32mr }, 168324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SBB64ri32, X86::SBB64mi32 }, 169324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SBB64ri8, X86::SBB64mi8 }, 170324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SBB64rr, X86::SBB64mr }, 171324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SHL16r1, X86::SHL16m1 }, 172324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver { X86::SHL16rCL, X86::SHL16mCL }, 173 { X86::SHL16ri, X86::SHL16mi }, 174 { X86::SHL32r1, X86::SHL32m1 }, 175 { X86::SHL32rCL, X86::SHL32mCL }, 176 { X86::SHL32ri, X86::SHL32mi }, 177 { X86::SHL64r1, X86::SHL64m1 }, 178 { X86::SHL64rCL, X86::SHL64mCL }, 179 { X86::SHL64ri, X86::SHL64mi }, 180 { X86::SHL8r1, X86::SHL8m1 }, 181 { X86::SHL8rCL, X86::SHL8mCL }, 182 { X86::SHL8ri, X86::SHL8mi }, 183 { X86::SHLD16rrCL, X86::SHLD16mrCL }, 184 { X86::SHLD16rri8, X86::SHLD16mri8 }, 185 { X86::SHLD32rrCL, X86::SHLD32mrCL }, 186 { X86::SHLD32rri8, X86::SHLD32mri8 }, 187 { X86::SHLD64rrCL, X86::SHLD64mrCL }, 188 { X86::SHLD64rri8, X86::SHLD64mri8 }, 189 { X86::SHR16r1, X86::SHR16m1 }, 190 { X86::SHR16rCL, X86::SHR16mCL }, 191 { X86::SHR16ri, X86::SHR16mi }, 192 { X86::SHR32r1, X86::SHR32m1 }, 193 { X86::SHR32rCL, X86::SHR32mCL }, 194 { X86::SHR32ri, X86::SHR32mi }, 195 { X86::SHR64r1, X86::SHR64m1 }, 196 { X86::SHR64rCL, X86::SHR64mCL }, 197 { X86::SHR64ri, X86::SHR64mi }, 198 { X86::SHR8r1, X86::SHR8m1 }, 199 { X86::SHR8rCL, X86::SHR8mCL }, 200 { X86::SHR8ri, X86::SHR8mi }, 201 { X86::SHRD16rrCL, X86::SHRD16mrCL }, 202 { X86::SHRD16rri8, X86::SHRD16mri8 }, 203 { X86::SHRD32rrCL, X86::SHRD32mrCL }, 204 { X86::SHRD32rri8, X86::SHRD32mri8 }, 205 { X86::SHRD64rrCL, X86::SHRD64mrCL }, 206 { X86::SHRD64rri8, X86::SHRD64mri8 }, 207 { X86::SUB16ri, X86::SUB16mi }, 208 { X86::SUB16ri8, X86::SUB16mi8 }, 209 { X86::SUB16rr, X86::SUB16mr }, 210 { X86::SUB32ri, X86::SUB32mi }, 211 { X86::SUB32ri8, X86::SUB32mi8 }, 212 { X86::SUB32rr, X86::SUB32mr }, 213 { X86::SUB64ri32, X86::SUB64mi32 }, 214 { X86::SUB64ri8, X86::SUB64mi8 }, 215 { X86::SUB64rr, X86::SUB64mr }, 216 { X86::SUB8ri, X86::SUB8mi }, 217 { X86::SUB8rr, X86::SUB8mr }, 218 { X86::XOR16ri, X86::XOR16mi }, 219 { X86::XOR16ri8, X86::XOR16mi8 }, 220 { X86::XOR16rr, X86::XOR16mr }, 221 { X86::XOR32ri, X86::XOR32mi }, 222 { X86::XOR32ri8, X86::XOR32mi8 }, 223 { X86::XOR32rr, X86::XOR32mr }, 224 { X86::XOR64ri32, X86::XOR64mi32 }, 225 { X86::XOR64ri8, X86::XOR64mi8 }, 226 { X86::XOR64rr, X86::XOR64mr }, 227 { X86::XOR8ri, X86::XOR8mi }, 228 { X86::XOR8rr, X86::XOR8mr } 229 }; 230 231 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) { 232 unsigned RegOp = OpTbl2Addr[i][0]; 233 unsigned MemOp = OpTbl2Addr[i][1]; 234 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp))) 235 assert(false && "Duplicated entries?"); 236 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store 237 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp, 238 std::make_pair(RegOp, AuxInfo)))) 239 AmbEntries.push_back(MemOp); 240 } 241 242 // If the third value is 1, then it's folding either a load or a store. 243 static const unsigned OpTbl0[][3] = { 244 { X86::CALL32r, X86::CALL32m, 1 }, 245 { X86::CALL64r, X86::CALL64m, 1 }, 246 { X86::CMP16ri, X86::CMP16mi, 1 }, 247 { X86::CMP16ri8, X86::CMP16mi8, 1 }, 248 { X86::CMP32ri, X86::CMP32mi, 1 }, 249 { X86::CMP32ri8, X86::CMP32mi8, 1 }, 250 { X86::CMP64ri32, X86::CMP64mi32, 1 }, 251 { X86::CMP64ri8, X86::CMP64mi8, 1 }, 252 { X86::CMP8ri, X86::CMP8mi, 1 }, 253 { X86::DIV16r, X86::DIV16m, 1 }, 254 { X86::DIV32r, X86::DIV32m, 1 }, 255 { X86::DIV64r, X86::DIV64m, 1 }, 256 { X86::DIV8r, X86::DIV8m, 1 }, 257 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 }, 258 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 }, 259 { X86::IDIV16r, X86::IDIV16m, 1 }, 260 { X86::IDIV32r, X86::IDIV32m, 1 }, 261 { X86::IDIV64r, X86::IDIV64m, 1 }, 262 { X86::IDIV8r, X86::IDIV8m, 1 }, 263 { X86::IMUL16r, X86::IMUL16m, 1 }, 264 { X86::IMUL32r, X86::IMUL32m, 1 }, 265 { X86::IMUL64r, X86::IMUL64m, 1 }, 266 { X86::IMUL8r, X86::IMUL8m, 1 }, 267 { X86::JMP32r, X86::JMP32m, 1 }, 268 { X86::JMP64r, X86::JMP64m, 1 }, 269 { X86::MOV16ri, X86::MOV16mi, 0 }, 270 { X86::MOV16rr, X86::MOV16mr, 0 }, 271 { X86::MOV16to16_, X86::MOV16_mr, 0 }, 272 { X86::MOV32ri, X86::MOV32mi, 0 }, 273 { X86::MOV32rr, X86::MOV32mr, 0 }, 274 { X86::MOV32to32_, X86::MOV32_mr, 0 }, 275 { X86::MOV64ri32, X86::MOV64mi32, 0 }, 276 { X86::MOV64rr, X86::MOV64mr, 0 }, 277 { X86::MOV8ri, X86::MOV8mi, 0 }, 278 { X86::MOV8rr, X86::MOV8mr, 0 }, 279 { X86::MOVAPDrr, X86::MOVAPDmr, 0 }, 280 { X86::MOVAPSrr, X86::MOVAPSmr, 0 }, 281 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 }, 282 { X86::MOVPQIto64rr,X86::MOVPQIto64mr, 0 }, 283 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 }, 284 { X86::MOVSDrr, X86::MOVSDmr, 0 }, 285 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 }, 286 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 }, 287 { X86::MOVSSrr, X86::MOVSSmr, 0 }, 288 { X86::MOVUPDrr, X86::MOVUPDmr, 0 }, 289 { X86::MOVUPSrr, X86::MOVUPSmr, 0 }, 290 { X86::MUL16r, X86::MUL16m, 1 }, 291 { X86::MUL32r, X86::MUL32m, 1 }, 292 { X86::MUL64r, X86::MUL64m, 1 }, 293 { X86::MUL8r, X86::MUL8m, 1 }, 294 { X86::SETAEr, X86::SETAEm, 0 }, 295 { X86::SETAr, X86::SETAm, 0 }, 296 { X86::SETBEr, X86::SETBEm, 0 }, 297 { X86::SETBr, X86::SETBm, 0 }, 298 { X86::SETEr, X86::SETEm, 0 }, 299 { X86::SETGEr, X86::SETGEm, 0 }, 300 { X86::SETGr, X86::SETGm, 0 }, 301 { X86::SETLEr, X86::SETLEm, 0 }, 302 { X86::SETLr, X86::SETLm, 0 }, 303 { X86::SETNEr, X86::SETNEm, 0 }, 304 { X86::SETNPr, X86::SETNPm, 0 }, 305 { X86::SETNSr, X86::SETNSm, 0 }, 306 { X86::SETPr, X86::SETPm, 0 }, 307 { X86::SETSr, X86::SETSm, 0 }, 308 { X86::TAILJMPr, X86::TAILJMPm, 1 }, 309 { X86::TEST16ri, X86::TEST16mi, 1 }, 310 { X86::TEST32ri, X86::TEST32mi, 1 }, 311 { X86::TEST64ri32, X86::TEST64mi32, 1 }, 312 { X86::TEST8ri, X86::TEST8mi, 1 }, 313 { X86::XCHG16rr, X86::XCHG16mr, 0 }, 314 { X86::XCHG32rr, X86::XCHG32mr, 0 }, 315 { X86::XCHG64rr, X86::XCHG64mr, 0 }, 316 { X86::XCHG8rr, X86::XCHG8mr, 0 } 317 }; 318 319 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) { 320 unsigned RegOp = OpTbl0[i][0]; 321 unsigned MemOp = OpTbl0[i][1]; 322 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp))) 323 assert(false && "Duplicated entries?"); 324 unsigned FoldedLoad = OpTbl0[i][2]; 325 // Index 0, folded load or store. 326 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5); 327 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp, 328 std::make_pair(RegOp, AuxInfo)))) 329 AmbEntries.push_back(MemOp); 330 } 331 332 static const unsigned OpTbl1[][2] = { 333 { X86::CMP16rr, X86::CMP16rm }, 334 { X86::CMP32rr, X86::CMP32rm }, 335 { X86::CMP64rr, X86::CMP64rm }, 336 { X86::CMP8rr, X86::CMP8rm }, 337 { X86::CVTSD2SSrr, X86::CVTSD2SSrm }, 338 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm }, 339 { X86::CVTSI2SDrr, X86::CVTSI2SDrm }, 340 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm }, 341 { X86::CVTSI2SSrr, X86::CVTSI2SSrm }, 342 { X86::CVTSS2SDrr, X86::CVTSS2SDrm }, 343 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm }, 344 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm }, 345 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm }, 346 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm }, 347 { X86::FsMOVAPDrr, X86::MOVSDrm }, 348 { X86::FsMOVAPSrr, X86::MOVSSrm }, 349 { X86::IMUL16rri, X86::IMUL16rmi }, 350 { X86::IMUL16rri8, X86::IMUL16rmi8 }, 351 { X86::IMUL32rri, X86::IMUL32rmi }, 352 { X86::IMUL32rri8, X86::IMUL32rmi8 }, 353 { X86::IMUL64rri32, X86::IMUL64rmi32 }, 354 { X86::IMUL64rri8, X86::IMUL64rmi8 }, 355 { X86::Int_CMPSDrr, X86::Int_CMPSDrm }, 356 { X86::Int_CMPSSrr, X86::Int_CMPSSrm }, 357 { X86::Int_COMISDrr, X86::Int_COMISDrm }, 358 { X86::Int_COMISSrr, X86::Int_COMISSrm }, 359 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm }, 360 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm }, 361 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm }, 362 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm }, 363 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm }, 364 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm }, 365 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm }, 366 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm }, 367 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm }, 368 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm }, 369 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm }, 370 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm }, 371 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm }, 372 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm }, 373 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm }, 374 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm }, 375 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm }, 376 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm }, 377 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm }, 378 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm }, 379 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm }, 380 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm }, 381 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm }, 382 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm }, 383 { X86::MOV16rr, X86::MOV16rm }, 384 { X86::MOV16to16_, X86::MOV16_rm }, 385 { X86::MOV32rr, X86::MOV32rm }, 386 { X86::MOV32to32_, X86::MOV32_rm }, 387 { X86::MOV64rr, X86::MOV64rm }, 388 { X86::MOV64toPQIrr, X86::MOV64toPQIrm }, 389 { X86::MOV64toSDrr, X86::MOV64toSDrm }, 390 { X86::MOV8rr, X86::MOV8rm }, 391 { X86::MOVAPDrr, X86::MOVAPDrm }, 392 { X86::MOVAPSrr, X86::MOVAPSrm }, 393 { X86::MOVDDUPrr, X86::MOVDDUPrm }, 394 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm }, 395 { X86::MOVDI2SSrr, X86::MOVDI2SSrm }, 396 { X86::MOVSD2PDrr, X86::MOVSD2PDrm }, 397 { X86::MOVSDrr, X86::MOVSDrm }, 398 { X86::MOVSHDUPrr, X86::MOVSHDUPrm }, 399 { X86::MOVSLDUPrr, X86::MOVSLDUPrm }, 400 { X86::MOVSS2PSrr, X86::MOVSS2PSrm }, 401 { X86::MOVSSrr, X86::MOVSSrm }, 402 { X86::MOVSX16rr8, X86::MOVSX16rm8 }, 403 { X86::MOVSX32rr16, X86::MOVSX32rm16 }, 404 { X86::MOVSX32rr8, X86::MOVSX32rm8 }, 405 { X86::MOVSX64rr16, X86::MOVSX64rm16 }, 406 { X86::MOVSX64rr32, X86::MOVSX64rm32 }, 407 { X86::MOVSX64rr8, X86::MOVSX64rm8 }, 408 { X86::MOVUPDrr, X86::MOVUPDrm }, 409 { X86::MOVUPSrr, X86::MOVUPSrm }, 410 { X86::MOVZX16rr8, X86::MOVZX16rm8 }, 411 { X86::MOVZX32rr16, X86::MOVZX32rm16 }, 412 { X86::MOVZX32rr8, X86::MOVZX32rm8 }, 413 { X86::MOVZX64rr16, X86::MOVZX64rm16 }, 414 { X86::MOVZX64rr8, X86::MOVZX64rm8 }, 415 { X86::PSHUFDri, X86::PSHUFDmi }, 416 { X86::PSHUFHWri, X86::PSHUFHWmi }, 417 { X86::PSHUFLWri, X86::PSHUFLWmi }, 418 { X86::PsMOVZX64rr32, X86::PsMOVZX64rm32 }, 419 { X86::RCPPSr, X86::RCPPSm }, 420 { X86::RCPPSr_Int, X86::RCPPSm_Int }, 421 { X86::RSQRTPSr, X86::RSQRTPSm }, 422 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int }, 423 { X86::RSQRTSSr, X86::RSQRTSSm }, 424 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int }, 425 { X86::SQRTPDr, X86::SQRTPDm }, 426 { X86::SQRTPDr_Int, X86::SQRTPDm_Int }, 427 { X86::SQRTPSr, X86::SQRTPSm }, 428 { X86::SQRTPSr_Int, X86::SQRTPSm_Int }, 429 { X86::SQRTSDr, X86::SQRTSDm }, 430 { X86::SQRTSDr_Int, X86::SQRTSDm_Int }, 431 { X86::SQRTSSr, X86::SQRTSSm }, 432 { X86::SQRTSSr_Int, X86::SQRTSSm_Int }, 433 { X86::TEST16rr, X86::TEST16rm }, 434 { X86::TEST32rr, X86::TEST32rm }, 435 { X86::TEST64rr, X86::TEST64rm }, 436 { X86::TEST8rr, X86::TEST8rm }, 437 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 438 { X86::UCOMISDrr, X86::UCOMISDrm }, 439 { X86::UCOMISSrr, X86::UCOMISSrm }, 440 { X86::XCHG16rr, X86::XCHG16rm }, 441 { X86::XCHG32rr, X86::XCHG32rm }, 442 { X86::XCHG64rr, X86::XCHG64rm }, 443 { X86::XCHG8rr, X86::XCHG8rm } 444 }; 445 446 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) { 447 unsigned RegOp = OpTbl1[i][0]; 448 unsigned MemOp = OpTbl1[i][1]; 449 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp))) 450 assert(false && "Duplicated entries?"); 451 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load 452 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp, 453 std::make_pair(RegOp, AuxInfo)))) 454 AmbEntries.push_back(MemOp); 455 } 456 457 static const unsigned OpTbl2[][2] = { 458 { X86::ADC32rr, X86::ADC32rm }, 459 { X86::ADC64rr, X86::ADC64rm }, 460 { X86::ADD16rr, X86::ADD16rm }, 461 { X86::ADD32rr, X86::ADD32rm }, 462 { X86::ADD64rr, X86::ADD64rm }, 463 { X86::ADD8rr, X86::ADD8rm }, 464 { X86::ADDPDrr, X86::ADDPDrm }, 465 { X86::ADDPSrr, X86::ADDPSrm }, 466 { X86::ADDSDrr, X86::ADDSDrm }, 467 { X86::ADDSSrr, X86::ADDSSrm }, 468 { X86::ADDSUBPDrr, X86::ADDSUBPDrm }, 469 { X86::ADDSUBPSrr, X86::ADDSUBPSrm }, 470 { X86::AND16rr, X86::AND16rm }, 471 { X86::AND32rr, X86::AND32rm }, 472 { X86::AND64rr, X86::AND64rm }, 473 { X86::AND8rr, X86::AND8rm }, 474 { X86::ANDNPDrr, X86::ANDNPDrm }, 475 { X86::ANDNPSrr, X86::ANDNPSrm }, 476 { X86::ANDPDrr, X86::ANDPDrm }, 477 { X86::ANDPSrr, X86::ANDPSrm }, 478 { X86::CMOVA16rr, X86::CMOVA16rm }, 479 { X86::CMOVA32rr, X86::CMOVA32rm }, 480 { X86::CMOVA64rr, X86::CMOVA64rm }, 481 { X86::CMOVAE16rr, X86::CMOVAE16rm }, 482 { X86::CMOVAE32rr, X86::CMOVAE32rm }, 483 { X86::CMOVAE64rr, X86::CMOVAE64rm }, 484 { X86::CMOVB16rr, X86::CMOVB16rm }, 485 { X86::CMOVB32rr, X86::CMOVB32rm }, 486 { X86::CMOVB64rr, X86::CMOVB64rm }, 487 { X86::CMOVBE16rr, X86::CMOVBE16rm }, 488 { X86::CMOVBE32rr, X86::CMOVBE32rm }, 489 { X86::CMOVBE64rr, X86::CMOVBE64rm }, 490 { X86::CMOVE16rr, X86::CMOVE16rm }, 491 { X86::CMOVE32rr, X86::CMOVE32rm }, 492 { X86::CMOVE64rr, X86::CMOVE64rm }, 493 { X86::CMOVG16rr, X86::CMOVG16rm }, 494 { X86::CMOVG32rr, X86::CMOVG32rm }, 495 { X86::CMOVG64rr, X86::CMOVG64rm }, 496 { X86::CMOVGE16rr, X86::CMOVGE16rm }, 497 { X86::CMOVGE32rr, X86::CMOVGE32rm }, 498 { X86::CMOVGE64rr, X86::CMOVGE64rm }, 499 { X86::CMOVL16rr, X86::CMOVL16rm }, 500 { X86::CMOVL32rr, X86::CMOVL32rm }, 501 { X86::CMOVL64rr, X86::CMOVL64rm }, 502 { X86::CMOVLE16rr, X86::CMOVLE16rm }, 503 { X86::CMOVLE32rr, X86::CMOVLE32rm }, 504 { X86::CMOVLE64rr, X86::CMOVLE64rm }, 505 { X86::CMOVNE16rr, X86::CMOVNE16rm }, 506 { X86::CMOVNE32rr, X86::CMOVNE32rm }, 507 { X86::CMOVNE64rr, X86::CMOVNE64rm }, 508 { X86::CMOVNP16rr, X86::CMOVNP16rm }, 509 { X86::CMOVNP32rr, X86::CMOVNP32rm }, 510 { X86::CMOVNP64rr, X86::CMOVNP64rm }, 511 { X86::CMOVNS16rr, X86::CMOVNS16rm }, 512 { X86::CMOVNS32rr, X86::CMOVNS32rm }, 513 { X86::CMOVNS64rr, X86::CMOVNS64rm }, 514 { X86::CMOVP16rr, X86::CMOVP16rm }, 515 { X86::CMOVP32rr, X86::CMOVP32rm }, 516 { X86::CMOVP64rr, X86::CMOVP64rm }, 517 { X86::CMOVS16rr, X86::CMOVS16rm }, 518 { X86::CMOVS32rr, X86::CMOVS32rm }, 519 { X86::CMOVS64rr, X86::CMOVS64rm }, 520 { X86::CMPPDrri, X86::CMPPDrmi }, 521 { X86::CMPPSrri, X86::CMPPSrmi }, 522 { X86::CMPSDrr, X86::CMPSDrm }, 523 { X86::CMPSSrr, X86::CMPSSrm }, 524 { X86::DIVPDrr, X86::DIVPDrm }, 525 { X86::DIVPSrr, X86::DIVPSrm }, 526 { X86::DIVSDrr, X86::DIVSDrm }, 527 { X86::DIVSSrr, X86::DIVSSrm }, 528 { X86::HADDPDrr, X86::HADDPDrm }, 529 { X86::HADDPSrr, X86::HADDPSrm }, 530 { X86::HSUBPDrr, X86::HSUBPDrm }, 531 { X86::HSUBPSrr, X86::HSUBPSrm }, 532 { X86::IMUL16rr, X86::IMUL16rm }, 533 { X86::IMUL32rr, X86::IMUL32rm }, 534 { X86::IMUL64rr, X86::IMUL64rm }, 535 { X86::MAXPDrr, X86::MAXPDrm }, 536 { X86::MAXPDrr_Int, X86::MAXPDrm_Int }, 537 { X86::MAXPSrr, X86::MAXPSrm }, 538 { X86::MAXPSrr_Int, X86::MAXPSrm_Int }, 539 { X86::MAXSDrr, X86::MAXSDrm }, 540 { X86::MAXSDrr_Int, X86::MAXSDrm_Int }, 541 { X86::MAXSSrr, X86::MAXSSrm }, 542 { X86::MAXSSrr_Int, X86::MAXSSrm_Int }, 543 { X86::MINPDrr, X86::MINPDrm }, 544 { X86::MINPDrr_Int, X86::MINPDrm_Int }, 545 { X86::MINPSrr, X86::MINPSrm }, 546 { X86::MINPSrr_Int, X86::MINPSrm_Int }, 547 { X86::MINSDrr, X86::MINSDrm }, 548 { X86::MINSDrr_Int, X86::MINSDrm_Int }, 549 { X86::MINSSrr, X86::MINSSrm }, 550 { X86::MINSSrr_Int, X86::MINSSrm_Int }, 551 { X86::MULPDrr, X86::MULPDrm }, 552 { X86::MULPSrr, X86::MULPSrm }, 553 { X86::MULSDrr, X86::MULSDrm }, 554 { X86::MULSSrr, X86::MULSSrm }, 555 { X86::OR16rr, X86::OR16rm }, 556 { X86::OR32rr, X86::OR32rm }, 557 { X86::OR64rr, X86::OR64rm }, 558 { X86::OR8rr, X86::OR8rm }, 559 { X86::ORPDrr, X86::ORPDrm }, 560 { X86::ORPSrr, X86::ORPSrm }, 561 { X86::PACKSSDWrr, X86::PACKSSDWrm }, 562 { X86::PACKSSWBrr, X86::PACKSSWBrm }, 563 { X86::PACKUSWBrr, X86::PACKUSWBrm }, 564 { X86::PADDBrr, X86::PADDBrm }, 565 { X86::PADDDrr, X86::PADDDrm }, 566 { X86::PADDQrr, X86::PADDQrm }, 567 { X86::PADDSBrr, X86::PADDSBrm }, 568 { X86::PADDSWrr, X86::PADDSWrm }, 569 { X86::PADDWrr, X86::PADDWrm }, 570 { X86::PANDNrr, X86::PANDNrm }, 571 { X86::PANDrr, X86::PANDrm }, 572 { X86::PAVGBrr, X86::PAVGBrm }, 573 { X86::PAVGWrr, X86::PAVGWrm }, 574 { X86::PCMPEQBrr, X86::PCMPEQBrm }, 575 { X86::PCMPEQDrr, X86::PCMPEQDrm }, 576 { X86::PCMPEQWrr, X86::PCMPEQWrm }, 577 { X86::PCMPGTBrr, X86::PCMPGTBrm }, 578 { X86::PCMPGTDrr, X86::PCMPGTDrm }, 579 { X86::PCMPGTWrr, X86::PCMPGTWrm }, 580 { X86::PINSRWrri, X86::PINSRWrmi }, 581 { X86::PMADDWDrr, X86::PMADDWDrm }, 582 { X86::PMAXSWrr, X86::PMAXSWrm }, 583 { X86::PMAXUBrr, X86::PMAXUBrm }, 584 { X86::PMINSWrr, X86::PMINSWrm }, 585 { X86::PMINUBrr, X86::PMINUBrm }, 586 { X86::PMULHUWrr, X86::PMULHUWrm }, 587 { X86::PMULHWrr, X86::PMULHWrm }, 588 { X86::PMULLWrr, X86::PMULLWrm }, 589 { X86::PMULUDQrr, X86::PMULUDQrm }, 590 { X86::PORrr, X86::PORrm }, 591 { X86::PSADBWrr, X86::PSADBWrm }, 592 { X86::PSLLDrr, X86::PSLLDrm }, 593 { X86::PSLLQrr, X86::PSLLQrm }, 594 { X86::PSLLWrr, X86::PSLLWrm }, 595 { X86::PSRADrr, X86::PSRADrm }, 596 { X86::PSRAWrr, X86::PSRAWrm }, 597 { X86::PSRLDrr, X86::PSRLDrm }, 598 { X86::PSRLQrr, X86::PSRLQrm }, 599 { X86::PSRLWrr, X86::PSRLWrm }, 600 { X86::PSUBBrr, X86::PSUBBrm }, 601 { X86::PSUBDrr, X86::PSUBDrm }, 602 { X86::PSUBSBrr, X86::PSUBSBrm }, 603 { X86::PSUBSWrr, X86::PSUBSWrm }, 604 { X86::PSUBWrr, X86::PSUBWrm }, 605 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm }, 606 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm }, 607 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm }, 608 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm }, 609 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm }, 610 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm }, 611 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm }, 612 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm }, 613 { X86::PXORrr, X86::PXORrm }, 614 { X86::SBB32rr, X86::SBB32rm }, 615 { X86::SBB64rr, X86::SBB64rm }, 616 { X86::SHUFPDrri, X86::SHUFPDrmi }, 617 { X86::SHUFPSrri, X86::SHUFPSrmi }, 618 { X86::SUB16rr, X86::SUB16rm }, 619 { X86::SUB32rr, X86::SUB32rm }, 620 { X86::SUB64rr, X86::SUB64rm }, 621 { X86::SUB8rr, X86::SUB8rm }, 622 { X86::SUBPDrr, X86::SUBPDrm }, 623 { X86::SUBPSrr, X86::SUBPSrm }, 624 { X86::SUBSDrr, X86::SUBSDrm }, 625 { X86::SUBSSrr, X86::SUBSSrm }, 626 // FIXME: TEST*rr -> swapped operand of TEST*mr. 627 { X86::UNPCKHPDrr, X86::UNPCKHPDrm }, 628 { X86::UNPCKHPSrr, X86::UNPCKHPSrm }, 629 { X86::UNPCKLPDrr, X86::UNPCKLPDrm }, 630 { X86::UNPCKLPSrr, X86::UNPCKLPSrm }, 631 { X86::XOR16rr, X86::XOR16rm }, 632 { X86::XOR32rr, X86::XOR32rm }, 633 { X86::XOR64rr, X86::XOR64rm }, 634 { X86::XOR8rr, X86::XOR8rm }, 635 { X86::XORPDrr, X86::XORPDrm }, 636 { X86::XORPSrr, X86::XORPSrm } 637 }; 638 639 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) { 640 unsigned RegOp = OpTbl2[i][0]; 641 unsigned MemOp = OpTbl2[i][1]; 642 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp))) 643 assert(false && "Duplicated entries?"); 644 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load 645 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp, 646 std::make_pair(RegOp, AuxInfo)))) 647 AmbEntries.push_back(MemOp); 648 } 649 650 // Remove ambiguous entries. 651 for (unsigned i = 0, e = AmbEntries.size(); i != e; ++i) 652 MemOp2RegOpTable.erase((unsigned*)AmbEntries[i]); 653} 654 655// getX86RegNum - This function maps LLVM register identifiers to their X86 656// specific numbering, which is used in various places encoding instructions. 657// 658unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) { 659 switch(RegNo) { 660 case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; 661 case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; 662 case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; 663 case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; 664 case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH: 665 return N86::ESP; 666 case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH: 667 return N86::EBP; 668 case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH: 669 return N86::ESI; 670 case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH: 671 return N86::EDI; 672 673 case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B: 674 return N86::EAX; 675 case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B: 676 return N86::ECX; 677 case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B: 678 return N86::EDX; 679 case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B: 680 return N86::EBX; 681 case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B: 682 return N86::ESP; 683 case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B: 684 return N86::EBP; 685 case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B: 686 return N86::ESI; 687 case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B: 688 return N86::EDI; 689 690 case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3: 691 case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: 692 return RegNo-X86::ST0; 693 694 case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3: 695 case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: 696 return getDwarfRegNum(RegNo) - getDwarfRegNum(X86::XMM0); 697 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11: 698 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15: 699 return getDwarfRegNum(RegNo) - getDwarfRegNum(X86::XMM8); 700 701 default: 702 assert(isVirtualRegister(RegNo) && "Unknown physical register!"); 703 assert(0 && "Register allocator hasn't allocated reg correctly yet!"); 704 return 0; 705 } 706} 707 708bool X86RegisterInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB, 709 MachineBasicBlock::iterator MI, 710 const std::vector<CalleeSavedInfo> &CSI) const { 711 if (CSI.empty()) 712 return false; 713 714 MachineFunction &MF = *MBB.getParent(); 715 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 716 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize); 717 unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r; 718 for (unsigned i = CSI.size(); i != 0; --i) { 719 unsigned Reg = CSI[i-1].getReg(); 720 // Add the callee-saved register as live-in. It's killed at the spill. 721 MBB.addLiveIn(Reg); 722 BuildMI(MBB, MI, TII.get(Opc)).addReg(Reg); 723 } 724 return true; 725} 726 727bool X86RegisterInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 728 MachineBasicBlock::iterator MI, 729 const std::vector<CalleeSavedInfo> &CSI) const { 730 if (CSI.empty()) 731 return false; 732 733 unsigned Opc = Is64Bit ? X86::POP64r : X86::POP32r; 734 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 735 unsigned Reg = CSI[i].getReg(); 736 BuildMI(MBB, MI, TII.get(Opc), Reg); 737 } 738 return true; 739} 740 741static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB, 742 MachineOperand &MO) { 743 if (MO.isRegister()) 744 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit()); 745 else if (MO.isImmediate()) 746 MIB = MIB.addImm(MO.getImm()); 747 else if (MO.isFrameIndex()) 748 MIB = MIB.addFrameIndex(MO.getFrameIndex()); 749 else if (MO.isGlobalAddress()) 750 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset()); 751 else if (MO.isConstantPoolIndex()) 752 MIB = MIB.addConstantPoolIndex(MO.getConstantPoolIndex(), MO.getOffset()); 753 else if (MO.isJumpTableIndex()) 754 MIB = MIB.addJumpTableIndex(MO.getJumpTableIndex()); 755 else if (MO.isExternalSymbol()) 756 MIB = MIB.addExternalSymbol(MO.getSymbolName()); 757 else 758 assert(0 && "Unknown operand for X86InstrAddOperand!"); 759 760 return MIB; 761} 762 763static unsigned getStoreRegOpcode(const TargetRegisterClass *RC) { 764 unsigned Opc = 0; 765 if (RC == &X86::GR64RegClass) { 766 Opc = X86::MOV64mr; 767 } else if (RC == &X86::GR32RegClass) { 768 Opc = X86::MOV32mr; 769 } else if (RC == &X86::GR16RegClass) { 770 Opc = X86::MOV16mr; 771 } else if (RC == &X86::GR8RegClass) { 772 Opc = X86::MOV8mr; 773 } else if (RC == &X86::GR32_RegClass) { 774 Opc = X86::MOV32_mr; 775 } else if (RC == &X86::GR16_RegClass) { 776 Opc = X86::MOV16_mr; 777 } else if (RC == &X86::RFP80RegClass) { 778 Opc = X86::ST_FpP80m; // pops 779 } else if (RC == &X86::RFP64RegClass) { 780 Opc = X86::ST_Fp64m; 781 } else if (RC == &X86::RFP32RegClass) { 782 Opc = X86::ST_Fp32m; 783 } else if (RC == &X86::FR32RegClass) { 784 Opc = X86::MOVSSmr; 785 } else if (RC == &X86::FR64RegClass) { 786 Opc = X86::MOVSDmr; 787 } else if (RC == &X86::VR128RegClass) { 788 Opc = X86::MOVAPSmr; 789 } else if (RC == &X86::VR64RegClass) { 790 Opc = X86::MMX_MOVQ64mr; 791 } else { 792 assert(0 && "Unknown regclass"); 793 abort(); 794 } 795 796 return Opc; 797} 798 799void X86RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 800 MachineBasicBlock::iterator MI, 801 unsigned SrcReg, int FrameIdx, 802 const TargetRegisterClass *RC) const { 803 unsigned Opc = getStoreRegOpcode(RC); 804 addFrameReference(BuildMI(MBB, MI, TII.get(Opc)), FrameIdx) 805 .addReg(SrcReg, false, false, true); 806} 807 808void X86RegisterInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, 809 SmallVectorImpl<MachineOperand> &Addr, 810 const TargetRegisterClass *RC, 811 SmallVectorImpl<MachineInstr*> &NewMIs) const { 812 unsigned Opc = getStoreRegOpcode(RC); 813 MachineInstrBuilder MIB = BuildMI(TII.get(Opc)); 814 for (unsigned i = 0, e = Addr.size(); i != e; ++i) 815 MIB = X86InstrAddOperand(MIB, Addr[i]); 816 MIB.addReg(SrcReg, false, false, true); 817 NewMIs.push_back(MIB); 818} 819 820static unsigned getLoadRegOpcode(const TargetRegisterClass *RC) { 821 unsigned Opc = 0; 822 if (RC == &X86::GR64RegClass) { 823 Opc = X86::MOV64rm; 824 } else if (RC == &X86::GR32RegClass) { 825 Opc = X86::MOV32rm; 826 } else if (RC == &X86::GR16RegClass) { 827 Opc = X86::MOV16rm; 828 } else if (RC == &X86::GR8RegClass) { 829 Opc = X86::MOV8rm; 830 } else if (RC == &X86::GR32_RegClass) { 831 Opc = X86::MOV32_rm; 832 } else if (RC == &X86::GR16_RegClass) { 833 Opc = X86::MOV16_rm; 834 } else if (RC == &X86::RFP80RegClass) { 835 Opc = X86::LD_Fp80m; 836 } else if (RC == &X86::RFP64RegClass) { 837 Opc = X86::LD_Fp64m; 838 } else if (RC == &X86::RFP32RegClass) { 839 Opc = X86::LD_Fp32m; 840 } else if (RC == &X86::FR32RegClass) { 841 Opc = X86::MOVSSrm; 842 } else if (RC == &X86::FR64RegClass) { 843 Opc = X86::MOVSDrm; 844 } else if (RC == &X86::VR128RegClass) { 845 Opc = X86::MOVAPSrm; 846 } else if (RC == &X86::VR64RegClass) { 847 Opc = X86::MMX_MOVQ64rm; 848 } else { 849 assert(0 && "Unknown regclass"); 850 abort(); 851 } 852 853 return Opc; 854} 855 856void X86RegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 857 MachineBasicBlock::iterator MI, 858 unsigned DestReg, int FrameIdx, 859 const TargetRegisterClass *RC) const{ 860 unsigned Opc = getLoadRegOpcode(RC); 861 addFrameReference(BuildMI(MBB, MI, TII.get(Opc), DestReg), FrameIdx); 862} 863 864void X86RegisterInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, 865 SmallVectorImpl<MachineOperand> &Addr, 866 const TargetRegisterClass *RC, 867 SmallVectorImpl<MachineInstr*> &NewMIs) const { 868 unsigned Opc = getLoadRegOpcode(RC); 869 MachineInstrBuilder MIB = BuildMI(TII.get(Opc), DestReg); 870 for (unsigned i = 0, e = Addr.size(); i != e; ++i) 871 MIB = X86InstrAddOperand(MIB, Addr[i]); 872 NewMIs.push_back(MIB); 873} 874 875void X86RegisterInfo::copyRegToReg(MachineBasicBlock &MBB, 876 MachineBasicBlock::iterator MI, 877 unsigned DestReg, unsigned SrcReg, 878 const TargetRegisterClass *DestRC, 879 const TargetRegisterClass *SrcRC) const { 880 if (DestRC != SrcRC) { 881 // Moving EFLAGS to / from another register requires a push and a pop. 882 if (SrcRC == &X86::CCRRegClass) { 883 assert(SrcReg == X86::EFLAGS); 884 if (DestRC == &X86::GR64RegClass) { 885 BuildMI(MBB, MI, TII.get(X86::PUSHFQ)); 886 BuildMI(MBB, MI, TII.get(X86::POP64r), DestReg); 887 return; 888 } else if (DestRC == &X86::GR32RegClass) { 889 BuildMI(MBB, MI, TII.get(X86::PUSHFD)); 890 BuildMI(MBB, MI, TII.get(X86::POP32r), DestReg); 891 return; 892 } 893 } else if (DestRC == &X86::CCRRegClass) { 894 assert(DestReg == X86::EFLAGS); 895 if (SrcRC == &X86::GR64RegClass) { 896 BuildMI(MBB, MI, TII.get(X86::PUSH64r)).addReg(SrcReg); 897 BuildMI(MBB, MI, TII.get(X86::POPFQ)); 898 return; 899 } else if (SrcRC == &X86::GR32RegClass) { 900 BuildMI(MBB, MI, TII.get(X86::PUSH32r)).addReg(SrcReg); 901 BuildMI(MBB, MI, TII.get(X86::POPFD)); 902 return; 903 } 904 } 905 cerr << "Not yet supported!"; 906 abort(); 907 } 908 909 unsigned Opc; 910 if (DestRC == &X86::GR64RegClass) { 911 Opc = X86::MOV64rr; 912 } else if (DestRC == &X86::GR32RegClass) { 913 Opc = X86::MOV32rr; 914 } else if (DestRC == &X86::GR16RegClass) { 915 Opc = X86::MOV16rr; 916 } else if (DestRC == &X86::GR8RegClass) { 917 Opc = X86::MOV8rr; 918 } else if (DestRC == &X86::GR32_RegClass) { 919 Opc = X86::MOV32_rr; 920 } else if (DestRC == &X86::GR16_RegClass) { 921 Opc = X86::MOV16_rr; 922 } else if (DestRC == &X86::RFP32RegClass) { 923 Opc = X86::MOV_Fp3232; 924 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) { 925 Opc = X86::MOV_Fp6464; 926 } else if (DestRC == &X86::RFP80RegClass) { 927 Opc = X86::MOV_Fp8080; 928 } else if (DestRC == &X86::FR32RegClass) { 929 Opc = X86::FsMOVAPSrr; 930 } else if (DestRC == &X86::FR64RegClass) { 931 Opc = X86::FsMOVAPDrr; 932 } else if (DestRC == &X86::VR128RegClass) { 933 Opc = X86::MOVAPSrr; 934 } else if (DestRC == &X86::VR64RegClass) { 935 Opc = X86::MMX_MOVQ64rr; 936 } else { 937 assert(0 && "Unknown regclass"); 938 abort(); 939 } 940 BuildMI(MBB, MI, TII.get(Opc), DestReg).addReg(SrcReg); 941} 942 943const TargetRegisterClass * 944X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const { 945 if (RC == &X86::CCRRegClass) 946 if (Is64Bit) 947 return &X86::GR64RegClass; 948 else 949 return &X86::GR32RegClass; 950 return NULL; 951} 952 953void X86RegisterInfo::reMaterialize(MachineBasicBlock &MBB, 954 MachineBasicBlock::iterator I, 955 unsigned DestReg, 956 const MachineInstr *Orig) const { 957 // MOV32r0 etc. are implemented with xor which clobbers condition code. 958 // Re-materialize them as movri instructions to avoid side effects. 959 switch (Orig->getOpcode()) { 960 case X86::MOV8r0: 961 BuildMI(MBB, I, TII.get(X86::MOV8ri), DestReg).addImm(0); 962 break; 963 case X86::MOV16r0: 964 BuildMI(MBB, I, TII.get(X86::MOV16ri), DestReg).addImm(0); 965 break; 966 case X86::MOV32r0: 967 BuildMI(MBB, I, TII.get(X86::MOV32ri), DestReg).addImm(0); 968 break; 969 case X86::MOV64r0: 970 BuildMI(MBB, I, TII.get(X86::MOV64ri32), DestReg).addImm(0); 971 break; 972 default: { 973 MachineInstr *MI = Orig->clone(); 974 MI->getOperand(0).setReg(DestReg); 975 MBB.insert(I, MI); 976 break; 977 } 978 } 979} 980 981static MachineInstr *FuseTwoAddrInst(unsigned Opcode, 982 SmallVector<MachineOperand,4> &MOs, 983 MachineInstr *MI, const TargetInstrInfo &TII) { 984 unsigned NumOps = TII.getNumOperands(MI->getOpcode())-2; 985 986 // Create the base instruction with the memory operand as the first part. 987 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode)); 988 unsigned NumAddrOps = MOs.size(); 989 for (unsigned i = 0; i != NumAddrOps; ++i) 990 MIB = X86InstrAddOperand(MIB, MOs[i]); 991 if (NumAddrOps < 4) // FrameIndex only 992 MIB.addImm(1).addReg(0).addImm(0); 993 994 // Loop over the rest of the ri operands, converting them over. 995 for (unsigned i = 0; i != NumOps; ++i) { 996 MachineOperand &MO = MI->getOperand(i+2); 997 MIB = X86InstrAddOperand(MIB, MO); 998 } 999 return MIB; 1000} 1001 1002static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo, 1003 SmallVector<MachineOperand,4> &MOs, 1004 MachineInstr *MI, const TargetInstrInfo &TII) { 1005 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode)); 1006 1007 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1008 MachineOperand &MO = MI->getOperand(i); 1009 if (i == OpNo) { 1010 assert(MO.isRegister() && "Expected to fold into reg operand!"); 1011 unsigned NumAddrOps = MOs.size(); 1012 for (unsigned i = 0; i != NumAddrOps; ++i) 1013 MIB = X86InstrAddOperand(MIB, MOs[i]); 1014 if (NumAddrOps < 4) // FrameIndex only 1015 MIB.addImm(1).addReg(0).addImm(0); 1016 } else { 1017 MIB = X86InstrAddOperand(MIB, MO); 1018 } 1019 } 1020 return MIB; 1021} 1022 1023static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, 1024 SmallVector<MachineOperand,4> &MOs, 1025 MachineInstr *MI) { 1026 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode)); 1027 1028 unsigned NumAddrOps = MOs.size(); 1029 for (unsigned i = 0; i != NumAddrOps; ++i) 1030 MIB = X86InstrAddOperand(MIB, MOs[i]); 1031 if (NumAddrOps < 4) // FrameIndex only 1032 MIB.addImm(1).addReg(0).addImm(0); 1033 return MIB.addImm(0); 1034} 1035 1036MachineInstr* 1037X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, unsigned i, 1038 SmallVector<MachineOperand,4> &MOs) const { 1039 // Table (and size) to search 1040 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL; 1041 bool isTwoAddrFold = false; 1042 unsigned NumOps = TII.getNumOperands(MI->getOpcode()); 1043 bool isTwoAddr = NumOps > 1 && 1044 MI->getInstrDescriptor()->getOperandConstraint(1, TOI::TIED_TO) != -1; 1045 1046 MachineInstr *NewMI = NULL; 1047 // Folding a memory location into the two-address part of a two-address 1048 // instruction is different than folding it other places. It requires 1049 // replacing the *two* registers with the memory location. 1050 if (isTwoAddr && NumOps >= 2 && i < 2 && 1051 MI->getOperand(0).isRegister() && 1052 MI->getOperand(1).isRegister() && 1053 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { 1054 OpcodeTablePtr = &RegOp2MemOpTable2Addr; 1055 isTwoAddrFold = true; 1056 } else if (i == 0) { // If operand 0 1057 if (MI->getOpcode() == X86::MOV16r0) 1058 NewMI = MakeM0Inst(TII, X86::MOV16mi, MOs, MI); 1059 else if (MI->getOpcode() == X86::MOV32r0) 1060 NewMI = MakeM0Inst(TII, X86::MOV32mi, MOs, MI); 1061 else if (MI->getOpcode() == X86::MOV64r0) 1062 NewMI = MakeM0Inst(TII, X86::MOV64mi32, MOs, MI); 1063 else if (MI->getOpcode() == X86::MOV8r0) 1064 NewMI = MakeM0Inst(TII, X86::MOV8mi, MOs, MI); 1065 if (NewMI) { 1066 NewMI->copyKillDeadInfo(MI); 1067 return NewMI; 1068 } 1069 1070 OpcodeTablePtr = &RegOp2MemOpTable0; 1071 } else if (i == 1) { 1072 OpcodeTablePtr = &RegOp2MemOpTable1; 1073 } else if (i == 2) { 1074 OpcodeTablePtr = &RegOp2MemOpTable2; 1075 } 1076 1077 // If table selected... 1078 if (OpcodeTablePtr) { 1079 // Find the Opcode to fuse 1080 DenseMap<unsigned*, unsigned>::iterator I = 1081 OpcodeTablePtr->find((unsigned*)MI->getOpcode()); 1082 if (I != OpcodeTablePtr->end()) { 1083 if (isTwoAddrFold) 1084 NewMI = FuseTwoAddrInst(I->second, MOs, MI, TII); 1085 else 1086 NewMI = FuseInst(I->second, i, MOs, MI, TII); 1087 NewMI->copyKillDeadInfo(MI); 1088 return NewMI; 1089 } 1090 } 1091 1092 // No fusion 1093 if (PrintFailedFusing) 1094 cerr << "We failed to fuse (" 1095 << ((i == 1) ? "r" : "s") << "): " << *MI; 1096 return NULL; 1097} 1098 1099 1100MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, unsigned OpNum, 1101 int FrameIndex) const { 1102 // Check switch flag 1103 if (NoFusing) return NULL; 1104 SmallVector<MachineOperand,4> MOs; 1105 MOs.push_back(MachineOperand::CreateFrameIndex(FrameIndex)); 1106 return foldMemoryOperand(MI, OpNum, MOs); 1107} 1108 1109MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, unsigned OpNum, 1110 MachineInstr *LoadMI) const { 1111 // Check switch flag 1112 if (NoFusing) return NULL; 1113 SmallVector<MachineOperand,4> MOs; 1114 unsigned NumOps = TII.getNumOperands(LoadMI->getOpcode()); 1115 for (unsigned i = NumOps - 4; i != NumOps; ++i) 1116 MOs.push_back(LoadMI->getOperand(i)); 1117 return foldMemoryOperand(MI, OpNum, MOs); 1118} 1119 1120bool X86RegisterInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, 1121 unsigned Reg, bool UnfoldLoad, bool UnfoldStore, 1122 SmallVectorImpl<MachineInstr*> &NewMIs) const { 1123 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I = 1124 MemOp2RegOpTable.find((unsigned*)MI->getOpcode()); 1125 if (I == MemOp2RegOpTable.end()) 1126 return false; 1127 unsigned Opc = I->second.first; 1128 unsigned Index = I->second.second & 0xf; 1129 bool HasLoad = I->second.second & (1 << 4); 1130 bool HasStore = I->second.second & (1 << 5); 1131 if (UnfoldLoad && !HasLoad) 1132 return false; 1133 HasLoad &= UnfoldLoad; 1134 if (UnfoldStore && !HasStore) 1135 return false; 1136 HasStore &= UnfoldStore; 1137 1138 const TargetInstrDescriptor &TID = TII.get(Opc); 1139 const TargetOperandInfo &TOI = TID.OpInfo[Index]; 1140 const TargetRegisterClass *RC = (TOI.Flags & M_LOOK_UP_PTR_REG_CLASS) 1141 ? TII.getPointerRegClass() : getRegClass(TOI.RegClass); 1142 SmallVector<MachineOperand,4> AddrOps; 1143 SmallVector<MachineOperand,2> BeforeOps; 1144 SmallVector<MachineOperand,2> AfterOps; 1145 SmallVector<MachineOperand,4> ImpOps; 1146 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1147 MachineOperand &Op = MI->getOperand(i); 1148 if (i >= Index && i < Index+4) 1149 AddrOps.push_back(Op); 1150 else if (Op.isRegister() && Op.isImplicit()) 1151 ImpOps.push_back(Op); 1152 else if (i < Index) 1153 BeforeOps.push_back(Op); 1154 else if (i > Index) 1155 AfterOps.push_back(Op); 1156 } 1157 1158 // Emit the load instruction. 1159 if (HasLoad) { 1160 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs); 1161 if (HasStore) { 1162 // Address operands cannot be marked isKill. 1163 for (unsigned i = 1; i != 5; ++i) { 1164 MachineOperand &MO = NewMIs[0]->getOperand(i); 1165 if (MO.isRegister()) 1166 MO.unsetIsKill(); 1167 } 1168 } 1169 } 1170 1171 // Emit the data processing instruction. 1172 MachineInstr *DataMI = new MachineInstr (TID, true); 1173 MachineInstrBuilder MIB(DataMI); 1174 const TargetRegisterClass *DstRC = 0; 1175 if (HasStore) { 1176 const TargetOperandInfo &DstTOI = TID.OpInfo[0]; 1177 DstRC = (DstTOI.Flags & M_LOOK_UP_PTR_REG_CLASS) 1178 ? TII.getPointerRegClass() : getRegClass(DstTOI.RegClass); 1179 MIB.addReg(Reg, true); 1180 } 1181 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i) 1182 MIB = X86InstrAddOperand(MIB, BeforeOps[i]); 1183 MIB.addReg(Reg); 1184 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i) 1185 MIB = X86InstrAddOperand(MIB, AfterOps[i]); 1186 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) { 1187 MachineOperand &MO = ImpOps[i]; 1188 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead()); 1189 } 1190 NewMIs.push_back(MIB); 1191 1192 // Emit the store instruction. 1193 if (HasStore) 1194 storeRegToAddr(MF, Reg, AddrOps, DstRC, NewMIs); 1195 1196 return true; 1197} 1198 1199 1200bool 1201X86RegisterInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 1202 SmallVectorImpl<SDNode*> &NewNodes) const { 1203 if (!N->isTargetOpcode()) 1204 return false; 1205 1206 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I = 1207 MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode()); 1208 if (I == MemOp2RegOpTable.end()) 1209 return false; 1210 unsigned Opc = I->second.first; 1211 unsigned Index = I->second.second & 0xf; 1212 bool HasLoad = I->second.second & (1 << 4); 1213 bool HasStore = I->second.second & (1 << 5); 1214 const TargetInstrDescriptor &TID = TII.get(Opc); 1215 const TargetOperandInfo &TOI = TID.OpInfo[Index]; 1216 const TargetRegisterClass *RC = (TOI.Flags & M_LOOK_UP_PTR_REG_CLASS) 1217 ? TII.getPointerRegClass() : getRegClass(TOI.RegClass); 1218 std::vector<SDOperand> AddrOps; 1219 std::vector<SDOperand> BeforeOps; 1220 std::vector<SDOperand> AfterOps; 1221 unsigned NumOps = N->getNumOperands(); 1222 for (unsigned i = 0; i != NumOps-1; ++i) { 1223 SDOperand Op = N->getOperand(i); 1224 if (i >= Index && i < Index+4) 1225 AddrOps.push_back(Op); 1226 else if (i < Index) 1227 BeforeOps.push_back(Op); 1228 else if (i > Index) 1229 AfterOps.push_back(Op); 1230 } 1231 SDOperand Chain = N->getOperand(NumOps-1); 1232 AddrOps.push_back(Chain); 1233 1234 // Emit the load instruction. 1235 SDNode *Load = 0; 1236 if (HasLoad) { 1237 MVT::ValueType VT = *RC->vt_begin(); 1238 Load = DAG.getTargetNode(getLoadRegOpcode(RC), VT, MVT::Other, 1239 &AddrOps[0], AddrOps.size()); 1240 NewNodes.push_back(Load); 1241 } 1242 1243 // Emit the data processing instruction. 1244 std::vector<MVT::ValueType> VTs; 1245 const TargetRegisterClass *DstRC = 0; 1246 if (TID.numDefs > 0) { 1247 const TargetOperandInfo &DstTOI = TID.OpInfo[0]; 1248 DstRC = (DstTOI.Flags & M_LOOK_UP_PTR_REG_CLASS) 1249 ? TII.getPointerRegClass() : getRegClass(DstTOI.RegClass); 1250 VTs.push_back(*DstRC->vt_begin()); 1251 } 1252 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 1253 MVT::ValueType VT = N->getValueType(i); 1254 if (VT != MVT::Other && i >= TID.numDefs) 1255 VTs.push_back(VT); 1256 } 1257 if (Load) 1258 BeforeOps.push_back(SDOperand(Load, 0)); 1259 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps)); 1260 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size()); 1261 NewNodes.push_back(NewNode); 1262 1263 // Emit the store instruction. 1264 if (HasStore) { 1265 AddrOps.pop_back(); 1266 AddrOps.push_back(SDOperand(NewNode, 0)); 1267 AddrOps.push_back(Chain); 1268 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC), 1269 MVT::Other, &AddrOps[0], AddrOps.size()); 1270 NewNodes.push_back(Store); 1271 } 1272 1273 return true; 1274} 1275 1276unsigned X86RegisterInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, 1277 bool UnfoldLoad, bool UnfoldStore) const { 1278 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I = 1279 MemOp2RegOpTable.find((unsigned*)Opc); 1280 if (I == MemOp2RegOpTable.end()) 1281 return 0; 1282 bool HasLoad = I->second.second & (1 << 4); 1283 bool HasStore = I->second.second & (1 << 5); 1284 if (UnfoldLoad && !HasLoad) 1285 return 0; 1286 if (UnfoldStore && !HasStore) 1287 return 0; 1288 return I->second.first; 1289} 1290 1291const unsigned * 1292X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { 1293 static const unsigned CalleeSavedRegs32Bit[] = { 1294 X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 1295 }; 1296 1297 static const unsigned CalleeSavedRegs32EHRet[] = { 1298 X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 1299 }; 1300 1301 static const unsigned CalleeSavedRegs64Bit[] = { 1302 X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 1303 }; 1304 1305 if (Is64Bit) 1306 return CalleeSavedRegs64Bit; 1307 else { 1308 if (MF) { 1309 MachineFrameInfo *MFI = MF->getFrameInfo(); 1310 MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 1311 if (MMI && MMI->callsEHReturn()) 1312 return CalleeSavedRegs32EHRet; 1313 } 1314 return CalleeSavedRegs32Bit; 1315 } 1316} 1317 1318const TargetRegisterClass* const* 1319X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const { 1320 static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = { 1321 &X86::GR32RegClass, &X86::GR32RegClass, 1322 &X86::GR32RegClass, &X86::GR32RegClass, 0 1323 }; 1324 static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = { 1325 &X86::GR32RegClass, &X86::GR32RegClass, 1326 &X86::GR32RegClass, &X86::GR32RegClass, 1327 &X86::GR32RegClass, &X86::GR32RegClass, 0 1328 }; 1329 static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = { 1330 &X86::GR64RegClass, &X86::GR64RegClass, 1331 &X86::GR64RegClass, &X86::GR64RegClass, 1332 &X86::GR64RegClass, &X86::GR64RegClass, 0 1333 }; 1334 1335 if (Is64Bit) 1336 return CalleeSavedRegClasses64Bit; 1337 else { 1338 if (MF) { 1339 MachineFrameInfo *MFI = MF->getFrameInfo(); 1340 MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 1341 if (MMI && MMI->callsEHReturn()) 1342 return CalleeSavedRegClasses32EHRet; 1343 } 1344 return CalleeSavedRegClasses32Bit; 1345 } 1346 1347} 1348 1349BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const { 1350 BitVector Reserved(getNumRegs()); 1351 Reserved.set(X86::RSP); 1352 Reserved.set(X86::ESP); 1353 Reserved.set(X86::SP); 1354 Reserved.set(X86::SPL); 1355 if (hasFP(MF)) { 1356 Reserved.set(X86::RBP); 1357 Reserved.set(X86::EBP); 1358 Reserved.set(X86::BP); 1359 Reserved.set(X86::BPL); 1360 } 1361 return Reserved; 1362} 1363 1364//===----------------------------------------------------------------------===// 1365// Stack Frame Processing methods 1366//===----------------------------------------------------------------------===// 1367 1368// hasFP - Return true if the specified function should have a dedicated frame 1369// pointer register. This is true if the function has variable sized allocas or 1370// if frame pointer elimination is disabled. 1371// 1372bool X86RegisterInfo::hasFP(const MachineFunction &MF) const { 1373 MachineFrameInfo *MFI = MF.getFrameInfo(); 1374 MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 1375 1376 return (NoFramePointerElim || 1377 MFI->hasVarSizedObjects() || 1378 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 1379 (MMI && MMI->callsUnwindInit())); 1380} 1381 1382bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const { 1383 return !MF.getFrameInfo()->hasVarSizedObjects(); 1384} 1385 1386void X86RegisterInfo:: 1387eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 1388 MachineBasicBlock::iterator I) const { 1389 if (!hasReservedCallFrame(MF)) { 1390 // If the stack pointer can be changed after prologue, turn the 1391 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 1392 // adjcallstackdown instruction into 'add ESP, <amt>' 1393 // TODO: consider using push / pop instead of sub + store / add 1394 MachineInstr *Old = I; 1395 uint64_t Amount = Old->getOperand(0).getImm(); 1396 if (Amount != 0) { 1397 // We need to keep the stack aligned properly. To do this, we round the 1398 // amount of space needed for the outgoing arguments up to the next 1399 // alignment boundary. 1400 unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); 1401 Amount = (Amount+Align-1)/Align*Align; 1402 1403 MachineInstr *New = 0; 1404 if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) { 1405 New=BuildMI(TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri), StackPtr) 1406 .addReg(StackPtr).addImm(Amount); 1407 } else { 1408 assert(Old->getOpcode() == X86::ADJCALLSTACKUP); 1409 // factor out the amount the callee already popped. 1410 uint64_t CalleeAmt = Old->getOperand(1).getImm(); 1411 Amount -= CalleeAmt; 1412 if (Amount) { 1413 unsigned Opc = (Amount < 128) ? 1414 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : 1415 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri); 1416 New = BuildMI(TII.get(Opc), StackPtr) 1417 .addReg(StackPtr).addImm(Amount); 1418 } 1419 } 1420 1421 // Replace the pseudo instruction with a new instruction... 1422 if (New) MBB.insert(I, New); 1423 } 1424 } else if (I->getOpcode() == X86::ADJCALLSTACKUP) { 1425 // If we are performing frame pointer elimination and if the callee pops 1426 // something off the stack pointer, add it back. We do this until we have 1427 // more advanced stack pointer tracking ability. 1428 if (uint64_t CalleeAmt = I->getOperand(1).getImm()) { 1429 unsigned Opc = (CalleeAmt < 128) ? 1430 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : 1431 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri); 1432 MachineInstr *New = 1433 BuildMI(TII.get(Opc), StackPtr).addReg(StackPtr).addImm(CalleeAmt); 1434 MBB.insert(I, New); 1435 } 1436 } 1437 1438 MBB.erase(I); 1439} 1440 1441void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, 1442 int SPAdj, RegScavenger *RS) const{ 1443 assert(SPAdj == 0 && "Unexpected"); 1444 1445 unsigned i = 0; 1446 MachineInstr &MI = *II; 1447 MachineFunction &MF = *MI.getParent()->getParent(); 1448 while (!MI.getOperand(i).isFrameIndex()) { 1449 ++i; 1450 assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); 1451 } 1452 1453 int FrameIndex = MI.getOperand(i).getFrameIndex(); 1454 // This must be part of a four operand memory reference. Replace the 1455 // FrameIndex with base register with EBP. Add an offset to the offset. 1456 MI.getOperand(i).ChangeToRegister(hasFP(MF) ? FramePtr : StackPtr, false); 1457 1458 // Now add the frame object offset to the offset from EBP. 1459 int64_t Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) + 1460 MI.getOperand(i+3).getImm()+SlotSize; 1461 1462 if (!hasFP(MF)) 1463 Offset += MF.getFrameInfo()->getStackSize(); 1464 else { 1465 Offset += SlotSize; // Skip the saved EBP 1466 // Skip the RETADDR move area 1467 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1468 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1469 if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta; 1470 } 1471 1472 MI.getOperand(i+3).ChangeToImmediate(Offset); 1473} 1474 1475void 1476X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{ 1477 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1478 int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1479 if (TailCallReturnAddrDelta < 0) { 1480 // create RETURNADDR area 1481 // arg 1482 // arg 1483 // RETADDR 1484 // { ... 1485 // RETADDR area 1486 // ... 1487 // } 1488 // [EBP] 1489 MF.getFrameInfo()-> 1490 CreateFixedObject(-TailCallReturnAddrDelta, 1491 (-1*SlotSize)+TailCallReturnAddrDelta); 1492 } 1493 if (hasFP(MF)) { 1494 assert((TailCallReturnAddrDelta <= 0) && 1495 "The Delta should always be zero or negative"); 1496 // Create a frame entry for the EBP register that must be saved. 1497 int FrameIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, 1498 (int)SlotSize * -2+ 1499 TailCallReturnAddrDelta); 1500 assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() && 1501 "Slot for EBP register must be last in order to be found!"); 1502 } 1503} 1504 1505/// emitSPUpdate - Emit a series of instructions to increment / decrement the 1506/// stack pointer by a constant value. 1507static 1508void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 1509 unsigned StackPtr, int64_t NumBytes, bool Is64Bit, 1510 const TargetInstrInfo &TII) { 1511 bool isSub = NumBytes < 0; 1512 uint64_t Offset = isSub ? -NumBytes : NumBytes; 1513 unsigned Opc = isSub 1514 ? ((Offset < 128) ? 1515 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : 1516 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri)) 1517 : ((Offset < 128) ? 1518 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : 1519 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri)); 1520 uint64_t Chunk = (1LL << 31) - 1; 1521 1522 while (Offset) { 1523 uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset; 1524 BuildMI(MBB, MBBI, TII.get(Opc), StackPtr).addReg(StackPtr).addImm(ThisVal); 1525 Offset -= ThisVal; 1526 } 1527} 1528 1529// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator. 1530static 1531void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 1532 unsigned StackPtr, uint64_t *NumBytes = NULL) { 1533 if (MBBI == MBB.begin()) return; 1534 1535 MachineBasicBlock::iterator PI = prior(MBBI); 1536 unsigned Opc = PI->getOpcode(); 1537 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 1538 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 1539 PI->getOperand(0).getReg() == StackPtr) { 1540 if (NumBytes) 1541 *NumBytes += PI->getOperand(2).getImm(); 1542 MBB.erase(PI); 1543 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 1544 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 1545 PI->getOperand(0).getReg() == StackPtr) { 1546 if (NumBytes) 1547 *NumBytes -= PI->getOperand(2).getImm(); 1548 MBB.erase(PI); 1549 } 1550} 1551 1552// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator. 1553static 1554void mergeSPUpdatesDown(MachineBasicBlock &MBB, 1555 MachineBasicBlock::iterator &MBBI, 1556 unsigned StackPtr, uint64_t *NumBytes = NULL) { 1557 return; 1558 1559 if (MBBI == MBB.end()) return; 1560 1561 MachineBasicBlock::iterator NI = next(MBBI); 1562 if (NI == MBB.end()) return; 1563 1564 unsigned Opc = NI->getOpcode(); 1565 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 1566 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 1567 NI->getOperand(0).getReg() == StackPtr) { 1568 if (NumBytes) 1569 *NumBytes -= NI->getOperand(2).getImm(); 1570 MBB.erase(NI); 1571 MBBI = NI; 1572 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 1573 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 1574 NI->getOperand(0).getReg() == StackPtr) { 1575 if (NumBytes) 1576 *NumBytes += NI->getOperand(2).getImm(); 1577 MBB.erase(NI); 1578 MBBI = NI; 1579 } 1580} 1581 1582/// mergeSPUpdates - Checks the instruction before/after the passed 1583/// instruction. If it is an ADD/SUB instruction it is deleted 1584/// argument and the stack adjustment is returned as a positive value for ADD 1585/// and a negative for SUB. 1586static int mergeSPUpdates(MachineBasicBlock &MBB, 1587 MachineBasicBlock::iterator &MBBI, 1588 unsigned StackPtr, 1589 bool doMergeWithPrevious) { 1590 1591 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 1592 (!doMergeWithPrevious && MBBI == MBB.end())) 1593 return 0; 1594 1595 int Offset = 0; 1596 1597 MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI; 1598 MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : next(MBBI); 1599 unsigned Opc = PI->getOpcode(); 1600 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 1601 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 1602 PI->getOperand(0).getReg() == StackPtr){ 1603 Offset += PI->getOperand(2).getImm(); 1604 MBB.erase(PI); 1605 if (!doMergeWithPrevious) MBBI = NI; 1606 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 1607 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 1608 PI->getOperand(0).getReg() == StackPtr) { 1609 Offset -= PI->getOperand(2).getImm(); 1610 MBB.erase(PI); 1611 if (!doMergeWithPrevious) MBBI = NI; 1612 } 1613 1614 return Offset; 1615} 1616 1617void X86RegisterInfo::emitPrologue(MachineFunction &MF) const { 1618 MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB 1619 MachineFrameInfo *MFI = MF.getFrameInfo(); 1620 unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); 1621 const Function* Fn = MF.getFunction(); 1622 const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>(); 1623 MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 1624 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1625 MachineBasicBlock::iterator MBBI = MBB.begin(); 1626 1627 // Prepare for frame info. 1628 unsigned FrameLabelId = 0; 1629 1630 // Get the number of bytes to allocate from the FrameInfo. 1631 uint64_t StackSize = MFI->getStackSize(); 1632 // Add RETADDR move area to callee saved frame size. 1633 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1634 if (TailCallReturnAddrDelta < 0) 1635 X86FI->setCalleeSavedFrameSize( 1636 X86FI->getCalleeSavedFrameSize() +(-TailCallReturnAddrDelta)); 1637 uint64_t NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1638 1639 // Insert stack pointer adjustment for later moving of return addr. Only 1640 // applies to tail call optimized functions where the callee argument stack 1641 // size is bigger than the callers. 1642 if (TailCallReturnAddrDelta < 0) { 1643 BuildMI(MBB, MBBI, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri), 1644 StackPtr).addReg(StackPtr).addImm(-TailCallReturnAddrDelta); 1645 } 1646 1647 if (hasFP(MF)) { 1648 // Get the offset of the stack slot for the EBP register... which is 1649 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. 1650 // Update the frame offset adjustment. 1651 MFI->setOffsetAdjustment(SlotSize-NumBytes); 1652 1653 // Save EBP into the appropriate stack slot... 1654 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1655 .addReg(FramePtr); 1656 NumBytes -= SlotSize; 1657 1658 if (MMI && MMI->needsFrameInfo()) { 1659 // Mark effective beginning of when frame pointer becomes valid. 1660 FrameLabelId = MMI->NextLabelID(); 1661 BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(FrameLabelId); 1662 } 1663 1664 // Update EBP with the new base value... 1665 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr) 1666 .addReg(StackPtr); 1667 } 1668 1669 unsigned ReadyLabelId = 0; 1670 if (MMI && MMI->needsFrameInfo()) { 1671 // Mark effective beginning of when frame pointer is ready. 1672 ReadyLabelId = MMI->NextLabelID(); 1673 BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(ReadyLabelId); 1674 } 1675 1676 // Skip the callee-saved push instructions. 1677 while (MBBI != MBB.end() && 1678 (MBBI->getOpcode() == X86::PUSH32r || 1679 MBBI->getOpcode() == X86::PUSH64r)) 1680 ++MBBI; 1681 1682 if (NumBytes) { // adjust stack pointer: ESP -= numbytes 1683 if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) { 1684 // Check, whether EAX is livein for this function 1685 bool isEAXAlive = false; 1686 for (MachineFunction::livein_iterator II = MF.livein_begin(), 1687 EE = MF.livein_end(); (II != EE) && !isEAXAlive; ++II) { 1688 unsigned Reg = II->first; 1689 isEAXAlive = (Reg == X86::EAX || Reg == X86::AX || 1690 Reg == X86::AH || Reg == X86::AL); 1691 } 1692 1693 // Function prologue calls _alloca to probe the stack when allocating 1694 // more than 4k bytes in one go. Touching the stack at 4K increments is 1695 // necessary to ensure that the guard pages used by the OS virtual memory 1696 // manager are allocated in correct sequence. 1697 if (!isEAXAlive) { 1698 BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes); 1699 BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32)) 1700 .addExternalSymbol("_alloca"); 1701 } else { 1702 // Save EAX 1703 BuildMI(MBB, MBBI, TII.get(X86::PUSH32r), X86::EAX); 1704 // Allocate NumBytes-4 bytes on stack. We'll also use 4 already 1705 // allocated bytes for EAX. 1706 BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes-4); 1707 BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32)) 1708 .addExternalSymbol("_alloca"); 1709 // Restore EAX 1710 MachineInstr *MI = addRegOffset(BuildMI(TII.get(X86::MOV32rm),X86::EAX), 1711 StackPtr, NumBytes-4); 1712 MBB.insert(MBBI, MI); 1713 } 1714 } else { 1715 // If there is an SUB32ri of ESP immediately before this instruction, 1716 // merge the two. This can be the case when tail call elimination is 1717 // enabled and the callee has more arguments then the caller. 1718 NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true); 1719 // If there is an ADD32ri or SUB32ri of ESP immediately after this 1720 // instruction, merge the two instructions. 1721 mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes); 1722 1723 if (NumBytes) 1724 emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII); 1725 } 1726 } 1727 1728 if (MMI && MMI->needsFrameInfo()) { 1729 std::vector<MachineMove> &Moves = MMI->getFrameMoves(); 1730 const TargetData *TD = MF.getTarget().getTargetData(); 1731 1732 // Calculate amount of bytes used for return address storing 1733 int stackGrowth = 1734 (MF.getTarget().getFrameInfo()->getStackGrowthDirection() == 1735 TargetFrameInfo::StackGrowsUp ? 1736 TD->getPointerSize() : -TD->getPointerSize()); 1737 1738 if (StackSize) { 1739 // Show update of SP. 1740 if (hasFP(MF)) { 1741 // Adjust SP 1742 MachineLocation SPDst(MachineLocation::VirtualFP); 1743 MachineLocation SPSrc(MachineLocation::VirtualFP, 2*stackGrowth); 1744 Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); 1745 } else { 1746 MachineLocation SPDst(MachineLocation::VirtualFP); 1747 MachineLocation SPSrc(MachineLocation::VirtualFP, -StackSize+stackGrowth); 1748 Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); 1749 } 1750 } else { 1751 //FIXME: Verify & implement for FP 1752 MachineLocation SPDst(StackPtr); 1753 MachineLocation SPSrc(StackPtr, stackGrowth); 1754 Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); 1755 } 1756 1757 // Add callee saved registers to move list. 1758 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); 1759 1760 // FIXME: This is dirty hack. The code itself is pretty mess right now. 1761 // It should be rewritten from scratch and generalized sometimes. 1762 1763 // Determine maximum offset (minumum due to stack growth) 1764 int64_t MaxOffset = 0; 1765 for (unsigned I = 0, E = CSI.size(); I!=E; ++I) 1766 MaxOffset = std::min(MaxOffset, 1767 MFI->getObjectOffset(CSI[I].getFrameIdx())); 1768 1769 // Calculate offsets 1770 for (unsigned I = 0, E = CSI.size(); I!=E; ++I) { 1771 int64_t Offset = MFI->getObjectOffset(CSI[I].getFrameIdx()); 1772 unsigned Reg = CSI[I].getReg(); 1773 Offset = (MaxOffset-Offset+3*stackGrowth); 1774 MachineLocation CSDst(MachineLocation::VirtualFP, Offset); 1775 MachineLocation CSSrc(Reg); 1776 Moves.push_back(MachineMove(FrameLabelId, CSDst, CSSrc)); 1777 } 1778 1779 if (hasFP(MF)) { 1780 // Save FP 1781 MachineLocation FPDst(MachineLocation::VirtualFP, 2*stackGrowth); 1782 MachineLocation FPSrc(FramePtr); 1783 Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc)); 1784 } 1785 1786 MachineLocation FPDst(hasFP(MF) ? FramePtr : StackPtr); 1787 MachineLocation FPSrc(MachineLocation::VirtualFP); 1788 Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc)); 1789 } 1790 1791 // If it's main() on Cygwin\Mingw32 we should align stack as well 1792 if (Fn->hasExternalLinkage() && Fn->getName() == "main" && 1793 Subtarget->isTargetCygMing()) { 1794 BuildMI(MBB, MBBI, TII.get(X86::AND32ri), X86::ESP) 1795 .addReg(X86::ESP).addImm(-Align); 1796 1797 // Probe the stack 1798 BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(Align); 1799 BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32)).addExternalSymbol("_alloca"); 1800 } 1801} 1802 1803void X86RegisterInfo::emitEpilogue(MachineFunction &MF, 1804 MachineBasicBlock &MBB) const { 1805 const MachineFrameInfo *MFI = MF.getFrameInfo(); 1806 const Function* Fn = MF.getFunction(); 1807 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1808 const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>(); 1809 MachineBasicBlock::iterator MBBI = prior(MBB.end()); 1810 unsigned RetOpcode = MBBI->getOpcode(); 1811 1812 switch (RetOpcode) { 1813 case X86::RET: 1814 case X86::RETI: 1815 case X86::TCRETURNdi: 1816 case X86::TCRETURNri: 1817 case X86::TCRETURNri64: 1818 case X86::TCRETURNdi64: 1819 case X86::EH_RETURN: 1820 case X86::TAILJMPd: 1821 case X86::TAILJMPr: 1822 case X86::TAILJMPm: break; // These are ok 1823 default: 1824 assert(0 && "Can only insert epilog into returning blocks"); 1825 } 1826 1827 // Get the number of bytes to allocate from the FrameInfo 1828 uint64_t StackSize = MFI->getStackSize(); 1829 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1830 uint64_t NumBytes = StackSize - CSSize; 1831 1832 if (hasFP(MF)) { 1833 // pop EBP. 1834 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr); 1835 NumBytes -= SlotSize; 1836 } 1837 1838 // Skip the callee-saved pop instructions. 1839 while (MBBI != MBB.begin()) { 1840 MachineBasicBlock::iterator PI = prior(MBBI); 1841 unsigned Opc = PI->getOpcode(); 1842 if (Opc != X86::POP32r && Opc != X86::POP64r && !TII.isTerminatorInstr(Opc)) 1843 break; 1844 --MBBI; 1845 } 1846 1847 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1848 // instruction, merge the two instructions. 1849 if (NumBytes || MFI->hasVarSizedObjects()) 1850 mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes); 1851 1852 // If dynamic alloca is used, then reset esp to point to the last callee-saved 1853 // slot before popping them off! Also, if it's main() on Cygwin/Mingw32 we 1854 // aligned stack in the prologue, - revert stack changes back. Note: we're 1855 // assuming, that frame pointer was forced for main() 1856 if (MFI->hasVarSizedObjects() || 1857 (Fn->hasExternalLinkage() && Fn->getName() == "main" && 1858 Subtarget->isTargetCygMing())) { 1859 unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r; 1860 if (CSSize) { 1861 MachineInstr *MI = addRegOffset(BuildMI(TII.get(Opc), StackPtr), 1862 FramePtr, -CSSize); 1863 MBB.insert(MBBI, MI); 1864 } else 1865 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr). 1866 addReg(FramePtr); 1867 1868 NumBytes = 0; 1869 } 1870 1871 // adjust stack pointer back: ESP += numbytes 1872 if (NumBytes) 1873 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII); 1874 1875 // We're returning from function via eh_return. 1876 if (RetOpcode == X86::EH_RETURN) { 1877 MBBI = prior(MBB.end()); 1878 MachineOperand &DestAddr = MBBI->getOperand(0); 1879 assert(DestAddr.isRegister() && "Offset should be in register!"); 1880 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr). 1881 addReg(DestAddr.getReg()); 1882 // Tail call return: adjust the stack pointer and jump to callee 1883 } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi || 1884 RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) { 1885 MBBI = prior(MBB.end()); 1886 MachineOperand &JumpTarget = MBBI->getOperand(0); 1887 MachineOperand &StackAdjust = MBBI->getOperand(1); 1888 assert( StackAdjust.isImmediate() && "Expecting immediate value."); 1889 1890 // Adjust stack pointer. 1891 int StackAdj = StackAdjust.getImm(); 1892 int MaxTCDelta = X86FI->getTCReturnAddrDelta(); 1893 int Offset = 0; 1894 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive"); 1895 // Incoporate the retaddr area. 1896 Offset = StackAdj-MaxTCDelta; 1897 assert(Offset >= 0 && "Offset should never be negative"); 1898 if (Offset) { 1899 // Check for possible merge with preceeding ADD instruction. 1900 Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true); 1901 emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII); 1902 } 1903 // Jump to label or value in register. 1904 if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64) 1905 BuildMI(MBB, MBBI, TII.get(X86::TAILJMPd)). 1906 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1907 else if (RetOpcode== X86::TCRETURNri64) { 1908 BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr64), JumpTarget.getReg()); 1909 } else 1910 BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr), JumpTarget.getReg()); 1911 // Delete the pseudo instruction TCRETURN. 1912 MBB.erase(MBBI); 1913 } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) && 1914 (X86FI->getTCReturnAddrDelta() < 0)) { 1915 // Add the return addr area delta back since we are not tail calling. 1916 int delta = -1*X86FI->getTCReturnAddrDelta(); 1917 MBBI = prior(MBB.end()); 1918 // Check for possible merge with preceeding ADD instruction. 1919 delta += mergeSPUpdates(MBB, MBBI, StackPtr, true); 1920 emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII); 1921 } 1922} 1923 1924unsigned X86RegisterInfo::getRARegister() const { 1925 if (Is64Bit) 1926 return X86::RIP; // Should have dwarf #16 1927 else 1928 return X86::EIP; // Should have dwarf #8 1929} 1930 1931unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const { 1932 return hasFP(MF) ? FramePtr : StackPtr; 1933} 1934 1935void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves) 1936 const { 1937 // Calculate amount of bytes used for return address storing 1938 int stackGrowth = (Is64Bit ? -8 : -4); 1939 1940 // Initial state of the frame pointer is esp+4. 1941 MachineLocation Dst(MachineLocation::VirtualFP); 1942 MachineLocation Src(StackPtr, stackGrowth); 1943 Moves.push_back(MachineMove(0, Dst, Src)); 1944 1945 // Add return address to move list 1946 MachineLocation CSDst(StackPtr, stackGrowth); 1947 MachineLocation CSSrc(getRARegister()); 1948 Moves.push_back(MachineMove(0, CSDst, CSSrc)); 1949} 1950 1951unsigned X86RegisterInfo::getEHExceptionRegister() const { 1952 assert(0 && "What is the exception register"); 1953 return 0; 1954} 1955 1956unsigned X86RegisterInfo::getEHHandlerRegister() const { 1957 assert(0 && "What is the exception handler register"); 1958 return 0; 1959} 1960 1961namespace llvm { 1962unsigned getX86SubSuperRegister(unsigned Reg, MVT::ValueType VT, bool High) { 1963 switch (VT) { 1964 default: return Reg; 1965 case MVT::i8: 1966 if (High) { 1967 switch (Reg) { 1968 default: return 0; 1969 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1970 return X86::AH; 1971 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1972 return X86::DH; 1973 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1974 return X86::CH; 1975 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1976 return X86::BH; 1977 } 1978 } else { 1979 switch (Reg) { 1980 default: return 0; 1981 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1982 return X86::AL; 1983 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1984 return X86::DL; 1985 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1986 return X86::CL; 1987 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1988 return X86::BL; 1989 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1990 return X86::SIL; 1991 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1992 return X86::DIL; 1993 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1994 return X86::BPL; 1995 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1996 return X86::SPL; 1997 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1998 return X86::R8B; 1999 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 2000 return X86::R9B; 2001 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 2002 return X86::R10B; 2003 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 2004 return X86::R11B; 2005 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 2006 return X86::R12B; 2007 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 2008 return X86::R13B; 2009 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 2010 return X86::R14B; 2011 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 2012 return X86::R15B; 2013 } 2014 } 2015 case MVT::i16: 2016 switch (Reg) { 2017 default: return Reg; 2018 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 2019 return X86::AX; 2020 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 2021 return X86::DX; 2022 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 2023 return X86::CX; 2024 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 2025 return X86::BX; 2026 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 2027 return X86::SI; 2028 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 2029 return X86::DI; 2030 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 2031 return X86::BP; 2032 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 2033 return X86::SP; 2034 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 2035 return X86::R8W; 2036 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 2037 return X86::R9W; 2038 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 2039 return X86::R10W; 2040 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 2041 return X86::R11W; 2042 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 2043 return X86::R12W; 2044 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 2045 return X86::R13W; 2046 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 2047 return X86::R14W; 2048 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 2049 return X86::R15W; 2050 } 2051 case MVT::i32: 2052 switch (Reg) { 2053 default: return Reg; 2054 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 2055 return X86::EAX; 2056 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 2057 return X86::EDX; 2058 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 2059 return X86::ECX; 2060 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 2061 return X86::EBX; 2062 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 2063 return X86::ESI; 2064 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 2065 return X86::EDI; 2066 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 2067 return X86::EBP; 2068 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 2069 return X86::ESP; 2070 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 2071 return X86::R8D; 2072 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 2073 return X86::R9D; 2074 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 2075 return X86::R10D; 2076 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 2077 return X86::R11D; 2078 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 2079 return X86::R12D; 2080 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 2081 return X86::R13D; 2082 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 2083 return X86::R14D; 2084 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 2085 return X86::R15D; 2086 } 2087 case MVT::i64: 2088 switch (Reg) { 2089 default: return Reg; 2090 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 2091 return X86::RAX; 2092 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 2093 return X86::RDX; 2094 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 2095 return X86::RCX; 2096 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 2097 return X86::RBX; 2098 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 2099 return X86::RSI; 2100 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 2101 return X86::RDI; 2102 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 2103 return X86::RBP; 2104 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 2105 return X86::RSP; 2106 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 2107 return X86::R8; 2108 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 2109 return X86::R9; 2110 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 2111 return X86::R10; 2112 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 2113 return X86::R11; 2114 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 2115 return X86::R12; 2116 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 2117 return X86::R13; 2118 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 2119 return X86::R14; 2120 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 2121 return X86::R15; 2122 } 2123 } 2124 2125 return Reg; 2126} 2127} 2128 2129#include "X86GenRegisterInfo.inc" 2130 2131