X86RegisterInfo.cpp revision f5da13367f88f06e3b585dc2263ab6e9ca6c4bf8
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the X86 implementation of the MRegisterInfo class. This 11// file is responsible for the frame pointer elimination optimization on X86. 12// 13//===----------------------------------------------------------------------===// 14 15#include "X86.h" 16#include "X86RegisterInfo.h" 17#include "X86InstrBuilder.h" 18#include "X86MachineFunctionInfo.h" 19#include "X86Subtarget.h" 20#include "X86TargetMachine.h" 21#include "llvm/Constants.h" 22#include "llvm/Function.h" 23#include "llvm/Type.h" 24#include "llvm/CodeGen/ValueTypes.h" 25#include "llvm/CodeGen/MachineInstrBuilder.h" 26#include "llvm/CodeGen/MachineFunction.h" 27#include "llvm/CodeGen/MachineFrameInfo.h" 28#include "llvm/CodeGen/MachineLocation.h" 29#include "llvm/Target/TargetFrameInfo.h" 30#include "llvm/Target/TargetInstrInfo.h" 31#include "llvm/Target/TargetMachine.h" 32#include "llvm/Target/TargetOptions.h" 33#include "llvm/Support/CommandLine.h" 34#include "llvm/ADT/STLExtras.h" 35using namespace llvm; 36 37namespace { 38 cl::opt<bool> 39 NoFusing("disable-spill-fusing", 40 cl::desc("Disable fusing of spill code into instructions")); 41 cl::opt<bool> 42 PrintFailedFusing("print-failed-fuse-candidates", 43 cl::desc("Print instructions that the allocator wants to" 44 " fuse, but the X86 backend currently can't"), 45 cl::Hidden); 46} 47 48X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm, 49 const TargetInstrInfo &tii) 50 : X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP), 51 TM(tm), TII(tii) { 52 // Cache some information. 53 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); 54 Is64Bit = Subtarget->is64Bit(); 55 if (Is64Bit) { 56 SlotSize = 8; 57 StackPtr = X86::RSP; 58 FramePtr = X86::RBP; 59 } else { 60 SlotSize = 4; 61 StackPtr = X86::ESP; 62 FramePtr = X86::EBP; 63 } 64} 65 66void X86RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 67 MachineBasicBlock::iterator MI, 68 unsigned SrcReg, int FrameIdx, 69 const TargetRegisterClass *RC) const { 70 unsigned Opc; 71 if (RC == &X86::GR64RegClass) { 72 Opc = X86::MOV64mr; 73 } else if (RC == &X86::GR32RegClass) { 74 Opc = X86::MOV32mr; 75 } else if (RC == &X86::GR16RegClass) { 76 Opc = X86::MOV16mr; 77 } else if (RC == &X86::GR8RegClass) { 78 Opc = X86::MOV8mr; 79 } else if (RC == &X86::GR32_RegClass) { 80 Opc = X86::MOV32_mr; 81 } else if (RC == &X86::GR16_RegClass) { 82 Opc = X86::MOV16_mr; 83 } else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) { 84 Opc = X86::FpST64m; 85 } else if (RC == &X86::FR32RegClass) { 86 Opc = X86::MOVSSmr; 87 } else if (RC == &X86::FR64RegClass) { 88 Opc = X86::MOVSDmr; 89 } else if (RC == &X86::VR128RegClass) { 90 Opc = X86::MOVAPSmr; 91 } else { 92 assert(0 && "Unknown regclass"); 93 abort(); 94 } 95 addFrameReference(BuildMI(MBB, MI, TII.get(Opc)), FrameIdx).addReg(SrcReg); 96} 97 98void X86RegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 99 MachineBasicBlock::iterator MI, 100 unsigned DestReg, int FrameIdx, 101 const TargetRegisterClass *RC) const{ 102 unsigned Opc; 103 if (RC == &X86::GR64RegClass) { 104 Opc = X86::MOV64rm; 105 } else if (RC == &X86::GR32RegClass) { 106 Opc = X86::MOV32rm; 107 } else if (RC == &X86::GR16RegClass) { 108 Opc = X86::MOV16rm; 109 } else if (RC == &X86::GR8RegClass) { 110 Opc = X86::MOV8rm; 111 } else if (RC == &X86::GR32_RegClass) { 112 Opc = X86::MOV32_rm; 113 } else if (RC == &X86::GR16_RegClass) { 114 Opc = X86::MOV16_rm; 115 } else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) { 116 Opc = X86::FpLD64m; 117 } else if (RC == &X86::FR32RegClass) { 118 Opc = X86::MOVSSrm; 119 } else if (RC == &X86::FR64RegClass) { 120 Opc = X86::MOVSDrm; 121 } else if (RC == &X86::VR128RegClass) { 122 Opc = X86::MOVAPSrm; 123 } else { 124 assert(0 && "Unknown regclass"); 125 abort(); 126 } 127 addFrameReference(BuildMI(MBB, MI, TII.get(Opc), DestReg), FrameIdx); 128} 129 130void X86RegisterInfo::copyRegToReg(MachineBasicBlock &MBB, 131 MachineBasicBlock::iterator MI, 132 unsigned DestReg, unsigned SrcReg, 133 const TargetRegisterClass *RC) const { 134 unsigned Opc; 135 if (RC == &X86::GR64RegClass) { 136 Opc = X86::MOV64rr; 137 } else if (RC == &X86::GR32RegClass) { 138 Opc = X86::MOV32rr; 139 } else if (RC == &X86::GR16RegClass) { 140 Opc = X86::MOV16rr; 141 } else if (RC == &X86::GR8RegClass) { 142 Opc = X86::MOV8rr; 143 } else if (RC == &X86::GR32_RegClass) { 144 Opc = X86::MOV32_rr; 145 } else if (RC == &X86::GR16_RegClass) { 146 Opc = X86::MOV16_rr; 147 } else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) { 148 Opc = X86::FpMOV; 149 } else if (RC == &X86::FR32RegClass) { 150 Opc = X86::FsMOVAPSrr; 151 } else if (RC == &X86::FR64RegClass) { 152 Opc = X86::FsMOVAPDrr; 153 } else if (RC == &X86::VR128RegClass) { 154 Opc = X86::MOVAPSrr; 155 } else { 156 assert(0 && "Unknown regclass"); 157 abort(); 158 } 159 BuildMI(MBB, MI, TII.get(Opc), DestReg).addReg(SrcReg); 160} 161 162static MachineInstr *FuseTwoAddrInst(unsigned Opcode, unsigned FrameIndex, 163 MachineInstr *MI, 164 const TargetInstrInfo &TII) { 165 unsigned NumOps = TII.getNumOperands(MI->getOpcode())-2; 166 // Create the base instruction with the memory operand as the first part. 167 MachineInstrBuilder MIB = addFrameReference(BuildMI(TII.get(Opcode)), 168 FrameIndex); 169 170 // Loop over the rest of the ri operands, converting them over. 171 for (unsigned i = 0; i != NumOps; ++i) { 172 MachineOperand &MO = MI->getOperand(i+2); 173 if (MO.isReg()) 174 MIB = MIB.addReg(MO.getReg(), false, MO.isImplicit()); 175 else if (MO.isImm()) 176 MIB = MIB.addImm(MO.getImm()); 177 else if (MO.isGlobalAddress()) 178 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset()); 179 else if (MO.isJumpTableIndex()) 180 MIB = MIB.addJumpTableIndex(MO.getJumpTableIndex()); 181 else 182 assert(0 && "Unknown operand type!"); 183 } 184 return MIB; 185} 186 187static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo, 188 unsigned FrameIndex, MachineInstr *MI, 189 const TargetInstrInfo &TII) { 190 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode)); 191 192 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 193 MachineOperand &MO = MI->getOperand(i); 194 if (i == OpNo) { 195 assert(MO.isReg() && "Expected to fold into reg operand!"); 196 MIB = addFrameReference(MIB, FrameIndex); 197 } else if (MO.isReg()) 198 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit()); 199 else if (MO.isImm()) 200 MIB = MIB.addImm(MO.getImm()); 201 else if (MO.isGlobalAddress()) 202 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset()); 203 else if (MO.isJumpTableIndex()) 204 MIB = MIB.addJumpTableIndex(MO.getJumpTableIndex()); 205 else 206 assert(0 && "Unknown operand for FuseInst!"); 207 } 208 return MIB; 209} 210 211static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, 212 unsigned Opcode, unsigned FrameIndex, 213 MachineInstr *MI) { 214 return addFrameReference(BuildMI(TII.get(Opcode)), FrameIndex).addImm(0); 215} 216 217 218//===----------------------------------------------------------------------===// 219// Efficient Lookup Table Support 220//===----------------------------------------------------------------------===// 221 222namespace { 223 /// TableEntry - Maps the 'from' opcode to a fused form of the 'to' opcode. 224 /// 225 struct TableEntry { 226 unsigned from; // Original opcode. 227 unsigned to; // New opcode. 228 229 // less operators used by STL search. 230 bool operator<(const TableEntry &TE) const { return from < TE.from; } 231 friend bool operator<(const TableEntry &TE, unsigned V) { 232 return TE.from < V; 233 } 234 friend bool operator<(unsigned V, const TableEntry &TE) { 235 return V < TE.from; 236 } 237 }; 238} 239 240/// TableIsSorted - Return true if the table is in 'from' opcode order. 241/// 242static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) { 243 for (unsigned i = 1; i != NumEntries; ++i) 244 if (!(Table[i-1] < Table[i])) { 245 cerr << "Entries out of order " << Table[i-1].from 246 << " " << Table[i].from << "\n"; 247 return false; 248 } 249 return true; 250} 251 252/// TableLookup - Return the table entry matching the specified opcode. 253/// Otherwise return NULL. 254static const TableEntry *TableLookup(const TableEntry *Table, unsigned N, 255 unsigned Opcode) { 256 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode); 257 if (I != Table+N && I->from == Opcode) 258 return I; 259 return NULL; 260} 261 262#define ARRAY_SIZE(TABLE) \ 263 (sizeof(TABLE)/sizeof(TABLE[0])) 264 265#ifdef NDEBUG 266#define ASSERT_SORTED(TABLE) 267#else 268#define ASSERT_SORTED(TABLE) \ 269 { static bool TABLE##Checked = false; \ 270 if (!TABLE##Checked) { \ 271 assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \ 272 "All lookup tables must be sorted for efficient access!"); \ 273 TABLE##Checked = true; \ 274 } \ 275 } 276#endif 277 278 279MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, 280 unsigned i, 281 int FrameIndex) const { 282 // Check switch flag 283 if (NoFusing) return NULL; 284 285 // Table (and size) to search 286 const TableEntry *OpcodeTablePtr = NULL; 287 unsigned OpcodeTableSize = 0; 288 bool isTwoAddrFold = false; 289 unsigned NumOps = TII.getNumOperands(MI->getOpcode()); 290 bool isTwoAddr = NumOps > 1 && 291 MI->getInstrDescriptor()->getOperandConstraint(1, TOI::TIED_TO) != -1; 292 293 MachineInstr *NewMI = NULL; 294 // Folding a memory location into the two-address part of a two-address 295 // instruction is different than folding it other places. It requires 296 // replacing the *two* registers with the memory location. 297 if (isTwoAddr && NumOps >= 2 && i < 2 && 298 MI->getOperand(0).isReg() && 299 MI->getOperand(1).isReg() && 300 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { 301 static const TableEntry OpcodeTable[] = { 302 { X86::ADC32ri, X86::ADC32mi }, 303 { X86::ADC32ri8, X86::ADC32mi8 }, 304 { X86::ADC32rr, X86::ADC32mr }, 305 { X86::ADC64ri32, X86::ADC64mi32 }, 306 { X86::ADC64ri8, X86::ADC64mi8 }, 307 { X86::ADC64rr, X86::ADC64mr }, 308 { X86::ADD16ri, X86::ADD16mi }, 309 { X86::ADD16ri8, X86::ADD16mi8 }, 310 { X86::ADD16rr, X86::ADD16mr }, 311 { X86::ADD32ri, X86::ADD32mi }, 312 { X86::ADD32ri8, X86::ADD32mi8 }, 313 { X86::ADD32rr, X86::ADD32mr }, 314 { X86::ADD64ri32, X86::ADD64mi32 }, 315 { X86::ADD64ri8, X86::ADD64mi8 }, 316 { X86::ADD64rr, X86::ADD64mr }, 317 { X86::ADD8ri, X86::ADD8mi }, 318 { X86::ADD8rr, X86::ADD8mr }, 319 { X86::AND16ri, X86::AND16mi }, 320 { X86::AND16ri8, X86::AND16mi8 }, 321 { X86::AND16rr, X86::AND16mr }, 322 { X86::AND32ri, X86::AND32mi }, 323 { X86::AND32ri8, X86::AND32mi8 }, 324 { X86::AND32rr, X86::AND32mr }, 325 { X86::AND64ri32, X86::AND64mi32 }, 326 { X86::AND64ri8, X86::AND64mi8 }, 327 { X86::AND64rr, X86::AND64mr }, 328 { X86::AND8ri, X86::AND8mi }, 329 { X86::AND8rr, X86::AND8mr }, 330 { X86::DEC16r, X86::DEC16m }, 331 { X86::DEC32r, X86::DEC32m }, 332 { X86::DEC64_16r, X86::DEC16m }, 333 { X86::DEC64_32r, X86::DEC32m }, 334 { X86::DEC64r, X86::DEC64m }, 335 { X86::DEC8r, X86::DEC8m }, 336 { X86::INC16r, X86::INC16m }, 337 { X86::INC32r, X86::INC32m }, 338 { X86::INC64_16r, X86::INC16m }, 339 { X86::INC64_32r, X86::INC32m }, 340 { X86::INC64r, X86::INC64m }, 341 { X86::INC8r, X86::INC8m }, 342 { X86::NEG16r, X86::NEG16m }, 343 { X86::NEG32r, X86::NEG32m }, 344 { X86::NEG64r, X86::NEG64m }, 345 { X86::NEG8r, X86::NEG8m }, 346 { X86::NOT16r, X86::NOT16m }, 347 { X86::NOT32r, X86::NOT32m }, 348 { X86::NOT64r, X86::NOT64m }, 349 { X86::NOT8r, X86::NOT8m }, 350 { X86::OR16ri, X86::OR16mi }, 351 { X86::OR16ri8, X86::OR16mi8 }, 352 { X86::OR16rr, X86::OR16mr }, 353 { X86::OR32ri, X86::OR32mi }, 354 { X86::OR32ri8, X86::OR32mi8 }, 355 { X86::OR32rr, X86::OR32mr }, 356 { X86::OR64ri32, X86::OR64mi32 }, 357 { X86::OR64ri8, X86::OR64mi8 }, 358 { X86::OR64rr, X86::OR64mr }, 359 { X86::OR8ri, X86::OR8mi }, 360 { X86::OR8rr, X86::OR8mr }, 361 { X86::ROL16r1, X86::ROL16m1 }, 362 { X86::ROL16rCL, X86::ROL16mCL }, 363 { X86::ROL16ri, X86::ROL16mi }, 364 { X86::ROL32r1, X86::ROL32m1 }, 365 { X86::ROL32rCL, X86::ROL32mCL }, 366 { X86::ROL32ri, X86::ROL32mi }, 367 { X86::ROL64r1, X86::ROL64m1 }, 368 { X86::ROL64rCL, X86::ROL64mCL }, 369 { X86::ROL64ri, X86::ROL64mi }, 370 { X86::ROL8r1, X86::ROL8m1 }, 371 { X86::ROL8rCL, X86::ROL8mCL }, 372 { X86::ROL8ri, X86::ROL8mi }, 373 { X86::ROR16r1, X86::ROR16m1 }, 374 { X86::ROR16rCL, X86::ROR16mCL }, 375 { X86::ROR16ri, X86::ROR16mi }, 376 { X86::ROR32r1, X86::ROR32m1 }, 377 { X86::ROR32rCL, X86::ROR32mCL }, 378 { X86::ROR32ri, X86::ROR32mi }, 379 { X86::ROR64r1, X86::ROR64m1 }, 380 { X86::ROR64rCL, X86::ROR64mCL }, 381 { X86::ROR64ri, X86::ROR64mi }, 382 { X86::ROR8r1, X86::ROR8m1 }, 383 { X86::ROR8rCL, X86::ROR8mCL }, 384 { X86::ROR8ri, X86::ROR8mi }, 385 { X86::SAR16r1, X86::SAR16m1 }, 386 { X86::SAR16rCL, X86::SAR16mCL }, 387 { X86::SAR16ri, X86::SAR16mi }, 388 { X86::SAR32r1, X86::SAR32m1 }, 389 { X86::SAR32rCL, X86::SAR32mCL }, 390 { X86::SAR32ri, X86::SAR32mi }, 391 { X86::SAR64r1, X86::SAR64m1 }, 392 { X86::SAR64rCL, X86::SAR64mCL }, 393 { X86::SAR64ri, X86::SAR64mi }, 394 { X86::SAR8r1, X86::SAR8m1 }, 395 { X86::SAR8rCL, X86::SAR8mCL }, 396 { X86::SAR8ri, X86::SAR8mi }, 397 { X86::SBB32ri, X86::SBB32mi }, 398 { X86::SBB32ri8, X86::SBB32mi8 }, 399 { X86::SBB32rr, X86::SBB32mr }, 400 { X86::SBB64ri32, X86::SBB64mi32 }, 401 { X86::SBB64ri8, X86::SBB64mi8 }, 402 { X86::SBB64rr, X86::SBB64mr }, 403 { X86::SHL16r1, X86::SHL16m1 }, 404 { X86::SHL16rCL, X86::SHL16mCL }, 405 { X86::SHL16ri, X86::SHL16mi }, 406 { X86::SHL32r1, X86::SHL32m1 }, 407 { X86::SHL32rCL, X86::SHL32mCL }, 408 { X86::SHL32ri, X86::SHL32mi }, 409 { X86::SHL64r1, X86::SHL64m1 }, 410 { X86::SHL64rCL, X86::SHL64mCL }, 411 { X86::SHL64ri, X86::SHL64mi }, 412 { X86::SHL8r1, X86::SHL8m1 }, 413 { X86::SHL8rCL, X86::SHL8mCL }, 414 { X86::SHL8ri, X86::SHL8mi }, 415 { X86::SHLD16rrCL, X86::SHLD16mrCL }, 416 { X86::SHLD16rri8, X86::SHLD16mri8 }, 417 { X86::SHLD32rrCL, X86::SHLD32mrCL }, 418 { X86::SHLD32rri8, X86::SHLD32mri8 }, 419 { X86::SHLD64rrCL, X86::SHLD64mrCL }, 420 { X86::SHLD64rri8, X86::SHLD64mri8 }, 421 { X86::SHR16r1, X86::SHR16m1 }, 422 { X86::SHR16rCL, X86::SHR16mCL }, 423 { X86::SHR16ri, X86::SHR16mi }, 424 { X86::SHR32r1, X86::SHR32m1 }, 425 { X86::SHR32rCL, X86::SHR32mCL }, 426 { X86::SHR32ri, X86::SHR32mi }, 427 { X86::SHR64r1, X86::SHR64m1 }, 428 { X86::SHR64rCL, X86::SHR64mCL }, 429 { X86::SHR64ri, X86::SHR64mi }, 430 { X86::SHR8r1, X86::SHR8m1 }, 431 { X86::SHR8rCL, X86::SHR8mCL }, 432 { X86::SHR8ri, X86::SHR8mi }, 433 { X86::SHRD16rrCL, X86::SHRD16mrCL }, 434 { X86::SHRD16rri8, X86::SHRD16mri8 }, 435 { X86::SHRD32rrCL, X86::SHRD32mrCL }, 436 { X86::SHRD32rri8, X86::SHRD32mri8 }, 437 { X86::SHRD64rrCL, X86::SHRD64mrCL }, 438 { X86::SHRD64rri8, X86::SHRD64mri8 }, 439 { X86::SUB16ri, X86::SUB16mi }, 440 { X86::SUB16ri8, X86::SUB16mi8 }, 441 { X86::SUB16rr, X86::SUB16mr }, 442 { X86::SUB32ri, X86::SUB32mi }, 443 { X86::SUB32ri8, X86::SUB32mi8 }, 444 { X86::SUB32rr, X86::SUB32mr }, 445 { X86::SUB64ri32, X86::SUB64mi32 }, 446 { X86::SUB64ri8, X86::SUB64mi8 }, 447 { X86::SUB64rr, X86::SUB64mr }, 448 { X86::SUB8ri, X86::SUB8mi }, 449 { X86::SUB8rr, X86::SUB8mr }, 450 { X86::XOR16ri, X86::XOR16mi }, 451 { X86::XOR16ri8, X86::XOR16mi8 }, 452 { X86::XOR16rr, X86::XOR16mr }, 453 { X86::XOR32ri, X86::XOR32mi }, 454 { X86::XOR32ri8, X86::XOR32mi8 }, 455 { X86::XOR32rr, X86::XOR32mr }, 456 { X86::XOR64ri32, X86::XOR64mi32 }, 457 { X86::XOR64ri8, X86::XOR64mi8 }, 458 { X86::XOR64rr, X86::XOR64mr }, 459 { X86::XOR8ri, X86::XOR8mi }, 460 { X86::XOR8rr, X86::XOR8mr } 461 }; 462 ASSERT_SORTED(OpcodeTable); 463 OpcodeTablePtr = OpcodeTable; 464 OpcodeTableSize = ARRAY_SIZE(OpcodeTable); 465 isTwoAddrFold = true; 466 } else if (i == 0) { // If operand 0 467 if (MI->getOpcode() == X86::MOV16r0) 468 NewMI = MakeM0Inst(TII, X86::MOV16mi, FrameIndex, MI); 469 else if (MI->getOpcode() == X86::MOV32r0) 470 NewMI = MakeM0Inst(TII, X86::MOV32mi, FrameIndex, MI); 471 else if (MI->getOpcode() == X86::MOV64r0) 472 NewMI = MakeM0Inst(TII, X86::MOV64mi32, FrameIndex, MI); 473 else if (MI->getOpcode() == X86::MOV8r0) 474 NewMI = MakeM0Inst(TII, X86::MOV8mi, FrameIndex, MI); 475 if (NewMI) { 476 NewMI->copyKillDeadInfo(MI); 477 return NewMI; 478 } 479 480 static const TableEntry OpcodeTable[] = { 481 { X86::CMP16ri, X86::CMP16mi }, 482 { X86::CMP16ri8, X86::CMP16mi8 }, 483 { X86::CMP32ri, X86::CMP32mi }, 484 { X86::CMP32ri8, X86::CMP32mi8 }, 485 { X86::CMP8ri, X86::CMP8mi }, 486 { X86::DIV16r, X86::DIV16m }, 487 { X86::DIV32r, X86::DIV32m }, 488 { X86::DIV64r, X86::DIV64m }, 489 { X86::DIV8r, X86::DIV8m }, 490 { X86::FsMOVAPDrr, X86::MOVSDmr }, 491 { X86::FsMOVAPSrr, X86::MOVSSmr }, 492 { X86::IDIV16r, X86::IDIV16m }, 493 { X86::IDIV32r, X86::IDIV32m }, 494 { X86::IDIV64r, X86::IDIV64m }, 495 { X86::IDIV8r, X86::IDIV8m }, 496 { X86::IMUL16r, X86::IMUL16m }, 497 { X86::IMUL32r, X86::IMUL32m }, 498 { X86::IMUL64r, X86::IMUL64m }, 499 { X86::IMUL8r, X86::IMUL8m }, 500 { X86::MOV16ri, X86::MOV16mi }, 501 { X86::MOV16rr, X86::MOV16mr }, 502 { X86::MOV32ri, X86::MOV32mi }, 503 { X86::MOV32rr, X86::MOV32mr }, 504 { X86::MOV64ri32, X86::MOV64mi32 }, 505 { X86::MOV64rr, X86::MOV64mr }, 506 { X86::MOV8ri, X86::MOV8mi }, 507 { X86::MOV8rr, X86::MOV8mr }, 508 { X86::MOVAPDrr, X86::MOVAPDmr }, 509 { X86::MOVAPSrr, X86::MOVAPSmr }, 510 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr }, 511 { X86::MOVPQIto64rr,X86::MOVPQIto64mr }, 512 { X86::MOVPS2SSrr, X86::MOVPS2SSmr }, 513 { X86::MOVSDrr, X86::MOVSDmr }, 514 { X86::MOVSSrr, X86::MOVSSmr }, 515 { X86::MOVUPDrr, X86::MOVUPDmr }, 516 { X86::MOVUPSrr, X86::MOVUPSmr }, 517 { X86::MUL16r, X86::MUL16m }, 518 { X86::MUL32r, X86::MUL32m }, 519 { X86::MUL64r, X86::MUL64m }, 520 { X86::MUL8r, X86::MUL8m }, 521 { X86::SETAEr, X86::SETAEm }, 522 { X86::SETAr, X86::SETAm }, 523 { X86::SETBEr, X86::SETBEm }, 524 { X86::SETBr, X86::SETBm }, 525 { X86::SETEr, X86::SETEm }, 526 { X86::SETGEr, X86::SETGEm }, 527 { X86::SETGr, X86::SETGm }, 528 { X86::SETLEr, X86::SETLEm }, 529 { X86::SETLr, X86::SETLm }, 530 { X86::SETNEr, X86::SETNEm }, 531 { X86::SETNPr, X86::SETNPm }, 532 { X86::SETNSr, X86::SETNSm }, 533 { X86::SETPr, X86::SETPm }, 534 { X86::SETSr, X86::SETSm }, 535 { X86::TEST16ri, X86::TEST16mi }, 536 { X86::TEST32ri, X86::TEST32mi }, 537 { X86::TEST64ri32, X86::TEST64mi32 }, 538 { X86::TEST8ri, X86::TEST8mi }, 539 { X86::XCHG16rr, X86::XCHG16mr }, 540 { X86::XCHG32rr, X86::XCHG32mr }, 541 { X86::XCHG64rr, X86::XCHG64mr }, 542 { X86::XCHG8rr, X86::XCHG8mr } 543 }; 544 ASSERT_SORTED(OpcodeTable); 545 OpcodeTablePtr = OpcodeTable; 546 OpcodeTableSize = ARRAY_SIZE(OpcodeTable); 547 } else if (i == 1) { 548 static const TableEntry OpcodeTable[] = { 549 { X86::CMP16rr, X86::CMP16rm }, 550 { X86::CMP32rr, X86::CMP32rm }, 551 { X86::CMP64ri32, X86::CMP64mi32 }, 552 { X86::CMP64ri8, X86::CMP64mi8 }, 553 { X86::CMP64rr, X86::CMP64rm }, 554 { X86::CMP8rr, X86::CMP8rm }, 555 { X86::CMPPDrri, X86::CMPPDrmi }, 556 { X86::CMPPSrri, X86::CMPPSrmi }, 557 { X86::CMPSDrr, X86::CMPSDrm }, 558 { X86::CMPSSrr, X86::CMPSSrm }, 559 { X86::CVTSD2SSrr, X86::CVTSD2SSrm }, 560 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm }, 561 { X86::CVTSI2SDrr, X86::CVTSI2SDrm }, 562 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm }, 563 { X86::CVTSI2SSrr, X86::CVTSI2SSrm }, 564 { X86::CVTSS2SDrr, X86::CVTSS2SDrm }, 565 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm }, 566 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm }, 567 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm }, 568 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm }, 569 { X86::FsMOVAPDrr, X86::MOVSDrm }, 570 { X86::FsMOVAPSrr, X86::MOVSSrm }, 571 { X86::IMUL16rri, X86::IMUL16rmi }, 572 { X86::IMUL16rri8, X86::IMUL16rmi8 }, 573 { X86::IMUL32rri, X86::IMUL32rmi }, 574 { X86::IMUL32rri8, X86::IMUL32rmi8 }, 575 { X86::IMUL64rr, X86::IMUL64rm }, 576 { X86::IMUL64rri32, X86::IMUL64rmi32 }, 577 { X86::IMUL64rri8, X86::IMUL64rmi8 }, 578 { X86::Int_CMPSDrr, X86::Int_CMPSDrm }, 579 { X86::Int_CMPSSrr, X86::Int_CMPSSrm }, 580 { X86::Int_COMISDrr, X86::Int_COMISDrm }, 581 { X86::Int_COMISSrr, X86::Int_COMISSrm }, 582 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm }, 583 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm }, 584 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm }, 585 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm }, 586 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm }, 587 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm }, 588 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm }, 589 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm }, 590 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm }, 591 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm }, 592 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm }, 593 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm }, 594 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm }, 595 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm }, 596 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm }, 597 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm }, 598 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm }, 599 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm }, 600 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm }, 601 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm }, 602 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm }, 603 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm }, 604 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm }, 605 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm }, 606 { X86::MOV16rr, X86::MOV16rm }, 607 { X86::MOV32rr, X86::MOV32rm }, 608 { X86::MOV64rr, X86::MOV64rm }, 609 { X86::MOV64toPQIrr, X86::MOV64toPQIrm }, 610 { X86::MOV8rr, X86::MOV8rm }, 611 { X86::MOVAPDrr, X86::MOVAPDrm }, 612 { X86::MOVAPSrr, X86::MOVAPSrm }, 613 { X86::MOVDDUPrr, X86::MOVDDUPrm }, 614 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm }, 615 { X86::MOVSD2PDrr, X86::MOVSD2PDrm }, 616 { X86::MOVSDrr, X86::MOVSDrm }, 617 { X86::MOVSHDUPrr, X86::MOVSHDUPrm }, 618 { X86::MOVSLDUPrr, X86::MOVSLDUPrm }, 619 { X86::MOVSS2PSrr, X86::MOVSS2PSrm }, 620 { X86::MOVSSrr, X86::MOVSSrm }, 621 { X86::MOVSX16rr8, X86::MOVSX16rm8 }, 622 { X86::MOVSX32rr16, X86::MOVSX32rm16 }, 623 { X86::MOVSX32rr8, X86::MOVSX32rm8 }, 624 { X86::MOVSX64rr16, X86::MOVSX64rm16 }, 625 { X86::MOVSX64rr32, X86::MOVSX64rm32 }, 626 { X86::MOVSX64rr8, X86::MOVSX64rm8 }, 627 { X86::MOVUPDrr, X86::MOVUPDrm }, 628 { X86::MOVUPSrr, X86::MOVUPSrm }, 629 { X86::MOVZX16rr8, X86::MOVZX16rm8 }, 630 { X86::MOVZX32rr16, X86::MOVZX32rm16 }, 631 { X86::MOVZX32rr8, X86::MOVZX32rm8 }, 632 { X86::MOVZX64rr16, X86::MOVZX64rm16 }, 633 { X86::MOVZX64rr8, X86::MOVZX64rm8 }, 634 { X86::PSHUFDri, X86::PSHUFDmi }, 635 { X86::PSHUFHWri, X86::PSHUFHWmi }, 636 { X86::PSHUFLWri, X86::PSHUFLWmi }, 637 { X86::PsMOVZX64rr32, X86::PsMOVZX64rm32 }, 638 { X86::TEST16rr, X86::TEST16rm }, 639 { X86::TEST32rr, X86::TEST32rm }, 640 { X86::TEST64rr, X86::TEST64rm }, 641 { X86::TEST8rr, X86::TEST8rm }, 642 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 643 { X86::UCOMISDrr, X86::UCOMISDrm }, 644 { X86::UCOMISSrr, X86::UCOMISSrm }, 645 { X86::XCHG16rr, X86::XCHG16rm }, 646 { X86::XCHG32rr, X86::XCHG32rm }, 647 { X86::XCHG64rr, X86::XCHG64rm }, 648 { X86::XCHG8rr, X86::XCHG8rm } 649 }; 650 ASSERT_SORTED(OpcodeTable); 651 OpcodeTablePtr = OpcodeTable; 652 OpcodeTableSize = ARRAY_SIZE(OpcodeTable); 653 } else if (i == 2) { 654 static const TableEntry OpcodeTable[] = { 655 { X86::ADC32rr, X86::ADC32rm }, 656 { X86::ADC64rr, X86::ADC64rm }, 657 { X86::ADD16rr, X86::ADD16rm }, 658 { X86::ADD32rr, X86::ADD32rm }, 659 { X86::ADD64rr, X86::ADD64rm }, 660 { X86::ADD8rr, X86::ADD8rm }, 661 { X86::ADDPDrr, X86::ADDPDrm }, 662 { X86::ADDPSrr, X86::ADDPSrm }, 663 { X86::ADDSDrr, X86::ADDSDrm }, 664 { X86::ADDSSrr, X86::ADDSSrm }, 665 { X86::ADDSUBPDrr, X86::ADDSUBPDrm }, 666 { X86::ADDSUBPSrr, X86::ADDSUBPSrm }, 667 { X86::AND16rr, X86::AND16rm }, 668 { X86::AND32rr, X86::AND32rm }, 669 { X86::AND64rr, X86::AND64rm }, 670 { X86::AND8rr, X86::AND8rm }, 671 { X86::ANDNPDrr, X86::ANDNPDrm }, 672 { X86::ANDNPSrr, X86::ANDNPSrm }, 673 { X86::ANDPDrr, X86::ANDPDrm }, 674 { X86::ANDPSrr, X86::ANDPSrm }, 675 { X86::CMOVA16rr, X86::CMOVA16rm }, 676 { X86::CMOVA32rr, X86::CMOVA32rm }, 677 { X86::CMOVA64rr, X86::CMOVA64rm }, 678 { X86::CMOVAE16rr, X86::CMOVAE16rm }, 679 { X86::CMOVAE32rr, X86::CMOVAE32rm }, 680 { X86::CMOVAE64rr, X86::CMOVAE64rm }, 681 { X86::CMOVB16rr, X86::CMOVB16rm }, 682 { X86::CMOVB32rr, X86::CMOVB32rm }, 683 { X86::CMOVB64rr, X86::CMOVB64rm }, 684 { X86::CMOVBE16rr, X86::CMOVBE16rm }, 685 { X86::CMOVBE32rr, X86::CMOVBE32rm }, 686 { X86::CMOVBE64rr, X86::CMOVBE64rm }, 687 { X86::CMOVE16rr, X86::CMOVE16rm }, 688 { X86::CMOVE32rr, X86::CMOVE32rm }, 689 { X86::CMOVE64rr, X86::CMOVE64rm }, 690 { X86::CMOVG16rr, X86::CMOVG16rm }, 691 { X86::CMOVG32rr, X86::CMOVG32rm }, 692 { X86::CMOVG64rr, X86::CMOVG64rm }, 693 { X86::CMOVGE16rr, X86::CMOVGE16rm }, 694 { X86::CMOVGE32rr, X86::CMOVGE32rm }, 695 { X86::CMOVGE64rr, X86::CMOVGE64rm }, 696 { X86::CMOVL16rr, X86::CMOVL16rm }, 697 { X86::CMOVL32rr, X86::CMOVL32rm }, 698 { X86::CMOVL64rr, X86::CMOVL64rm }, 699 { X86::CMOVLE16rr, X86::CMOVLE16rm }, 700 { X86::CMOVLE32rr, X86::CMOVLE32rm }, 701 { X86::CMOVLE64rr, X86::CMOVLE64rm }, 702 { X86::CMOVNE16rr, X86::CMOVNE16rm }, 703 { X86::CMOVNE32rr, X86::CMOVNE32rm }, 704 { X86::CMOVNE64rr, X86::CMOVNE64rm }, 705 { X86::CMOVNP16rr, X86::CMOVNP16rm }, 706 { X86::CMOVNP32rr, X86::CMOVNP32rm }, 707 { X86::CMOVNP64rr, X86::CMOVNP64rm }, 708 { X86::CMOVNS16rr, X86::CMOVNS16rm }, 709 { X86::CMOVNS32rr, X86::CMOVNS32rm }, 710 { X86::CMOVNS64rr, X86::CMOVNS64rm }, 711 { X86::CMOVP16rr, X86::CMOVP16rm }, 712 { X86::CMOVP32rr, X86::CMOVP32rm }, 713 { X86::CMOVP64rr, X86::CMOVP64rm }, 714 { X86::CMOVS16rr, X86::CMOVS16rm }, 715 { X86::CMOVS32rr, X86::CMOVS32rm }, 716 { X86::CMOVS64rr, X86::CMOVS64rm }, 717 { X86::DIVPDrr, X86::DIVPDrm }, 718 { X86::DIVPSrr, X86::DIVPSrm }, 719 { X86::DIVSDrr, X86::DIVSDrm }, 720 { X86::DIVSSrr, X86::DIVSSrm }, 721 { X86::HADDPDrr, X86::HADDPDrm }, 722 { X86::HADDPSrr, X86::HADDPSrm }, 723 { X86::HSUBPDrr, X86::HSUBPDrm }, 724 { X86::HSUBPSrr, X86::HSUBPSrm }, 725 { X86::IMUL16rr, X86::IMUL16rm }, 726 { X86::IMUL32rr, X86::IMUL32rm }, 727 { X86::MAXPDrr, X86::MAXPDrm }, 728 { X86::MAXPSrr, X86::MAXPSrm }, 729 { X86::MINPDrr, X86::MINPDrm }, 730 { X86::MINPSrr, X86::MINPSrm }, 731 { X86::MULPDrr, X86::MULPDrm }, 732 { X86::MULPSrr, X86::MULPSrm }, 733 { X86::MULSDrr, X86::MULSDrm }, 734 { X86::MULSSrr, X86::MULSSrm }, 735 { X86::OR16rr, X86::OR16rm }, 736 { X86::OR32rr, X86::OR32rm }, 737 { X86::OR64rr, X86::OR64rm }, 738 { X86::OR8rr, X86::OR8rm }, 739 { X86::ORPDrr, X86::ORPDrm }, 740 { X86::ORPSrr, X86::ORPSrm }, 741 { X86::PACKSSDWrr, X86::PACKSSDWrm }, 742 { X86::PACKSSWBrr, X86::PACKSSWBrm }, 743 { X86::PACKUSWBrr, X86::PACKUSWBrm }, 744 { X86::PADDBrr, X86::PADDBrm }, 745 { X86::PADDDrr, X86::PADDDrm }, 746 { X86::PADDSBrr, X86::PADDSBrm }, 747 { X86::PADDSWrr, X86::PADDSWrm }, 748 { X86::PADDWrr, X86::PADDWrm }, 749 { X86::PANDNrr, X86::PANDNrm }, 750 { X86::PANDrr, X86::PANDrm }, 751 { X86::PAVGBrr, X86::PAVGBrm }, 752 { X86::PAVGWrr, X86::PAVGWrm }, 753 { X86::PCMPEQBrr, X86::PCMPEQBrm }, 754 { X86::PCMPEQDrr, X86::PCMPEQDrm }, 755 { X86::PCMPEQWrr, X86::PCMPEQWrm }, 756 { X86::PCMPGTBrr, X86::PCMPGTBrm }, 757 { X86::PCMPGTDrr, X86::PCMPGTDrm }, 758 { X86::PCMPGTWrr, X86::PCMPGTWrm }, 759 { X86::PINSRWrri, X86::PINSRWrmi }, 760 { X86::PMADDWDrr, X86::PMADDWDrm }, 761 { X86::PMAXSWrr, X86::PMAXSWrm }, 762 { X86::PMAXUBrr, X86::PMAXUBrm }, 763 { X86::PMINSWrr, X86::PMINSWrm }, 764 { X86::PMINUBrr, X86::PMINUBrm }, 765 { X86::PMULHUWrr, X86::PMULHUWrm }, 766 { X86::PMULHWrr, X86::PMULHWrm }, 767 { X86::PMULLWrr, X86::PMULLWrm }, 768 { X86::PMULUDQrr, X86::PMULUDQrm }, 769 { X86::PORrr, X86::PORrm }, 770 { X86::PSADBWrr, X86::PSADBWrm }, 771 { X86::PSLLDrr, X86::PSLLDrm }, 772 { X86::PSLLQrr, X86::PSLLQrm }, 773 { X86::PSLLWrr, X86::PSLLWrm }, 774 { X86::PSRADrr, X86::PSRADrm }, 775 { X86::PSRAWrr, X86::PSRAWrm }, 776 { X86::PSRLDrr, X86::PSRLDrm }, 777 { X86::PSRLQrr, X86::PSRLQrm }, 778 { X86::PSRLWrr, X86::PSRLWrm }, 779 { X86::PSUBBrr, X86::PSUBBrm }, 780 { X86::PSUBDrr, X86::PSUBDrm }, 781 { X86::PSUBSBrr, X86::PSUBSBrm }, 782 { X86::PSUBSWrr, X86::PSUBSWrm }, 783 { X86::PSUBWrr, X86::PSUBWrm }, 784 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm }, 785 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm }, 786 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm }, 787 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm }, 788 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm }, 789 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm }, 790 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm }, 791 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm }, 792 { X86::PXORrr, X86::PXORrm }, 793 { X86::RCPPSr, X86::RCPPSm }, 794 { X86::RSQRTPSr, X86::RSQRTPSm }, 795 { X86::SBB32rr, X86::SBB32rm }, 796 { X86::SBB64rr, X86::SBB64rm }, 797 { X86::SHUFPDrri, X86::SHUFPDrmi }, 798 { X86::SHUFPSrri, X86::SHUFPSrmi }, 799 { X86::SQRTPDr, X86::SQRTPDm }, 800 { X86::SQRTPSr, X86::SQRTPSm }, 801 { X86::SQRTSDr, X86::SQRTSDm }, 802 { X86::SQRTSSr, X86::SQRTSSm }, 803 { X86::SUB16rr, X86::SUB16rm }, 804 { X86::SUB32rr, X86::SUB32rm }, 805 { X86::SUB64rr, X86::SUB64rm }, 806 { X86::SUB8rr, X86::SUB8rm }, 807 { X86::SUBPDrr, X86::SUBPDrm }, 808 { X86::SUBPSrr, X86::SUBPSrm }, 809 { X86::SUBSDrr, X86::SUBSDrm }, 810 { X86::SUBSSrr, X86::SUBSSrm }, 811 // FIXME: TEST*rr -> swapped operand of TEST*mr. 812 { X86::UNPCKHPDrr, X86::UNPCKHPDrm }, 813 { X86::UNPCKHPSrr, X86::UNPCKHPSrm }, 814 { X86::UNPCKLPDrr, X86::UNPCKLPDrm }, 815 { X86::UNPCKLPSrr, X86::UNPCKLPSrm }, 816 { X86::XOR16rr, X86::XOR16rm }, 817 { X86::XOR32rr, X86::XOR32rm }, 818 { X86::XOR64rr, X86::XOR64rm }, 819 { X86::XOR8rr, X86::XOR8rm }, 820 { X86::XORPDrr, X86::XORPDrm }, 821 { X86::XORPSrr, X86::XORPSrm } 822 }; 823 ASSERT_SORTED(OpcodeTable); 824 OpcodeTablePtr = OpcodeTable; 825 OpcodeTableSize = ARRAY_SIZE(OpcodeTable); 826 } 827 828 // If table selected... 829 if (OpcodeTablePtr) { 830 // Find the Opcode to fuse 831 unsigned fromOpcode = MI->getOpcode(); 832 // Lookup fromOpcode in table 833 if (const TableEntry *Entry = TableLookup(OpcodeTablePtr, OpcodeTableSize, 834 fromOpcode)) { 835 if (isTwoAddrFold) 836 NewMI = FuseTwoAddrInst(Entry->to, FrameIndex, MI, TII); 837 else 838 NewMI = FuseInst(Entry->to, i, FrameIndex, MI, TII); 839 NewMI->copyKillDeadInfo(MI); 840 return NewMI; 841 } 842 } 843 844 // No fusion 845 if (PrintFailedFusing) 846 cerr << "We failed to fuse (" 847 << ((i == 1) ? "r" : "s") << "): " << *MI; 848 return NULL; 849} 850 851 852const unsigned *X86RegisterInfo::getCalleeSaveRegs() const { 853 static const unsigned CalleeSaveRegs32Bit[] = { 854 X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 855 }; 856 static const unsigned CalleeSaveRegs64Bit[] = { 857 X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 858 }; 859 860 return Is64Bit ? CalleeSaveRegs64Bit : CalleeSaveRegs32Bit; 861} 862 863const TargetRegisterClass* const* 864X86RegisterInfo::getCalleeSaveRegClasses() const { 865 static const TargetRegisterClass * const CalleeSaveRegClasses32Bit[] = { 866 &X86::GR32RegClass, &X86::GR32RegClass, 867 &X86::GR32RegClass, &X86::GR32RegClass, 0 868 }; 869 static const TargetRegisterClass * const CalleeSaveRegClasses64Bit[] = { 870 &X86::GR64RegClass, &X86::GR64RegClass, 871 &X86::GR64RegClass, &X86::GR64RegClass, 872 &X86::GR64RegClass, &X86::GR64RegClass, 0 873 }; 874 875 return Is64Bit ? CalleeSaveRegClasses64Bit : CalleeSaveRegClasses32Bit; 876} 877 878//===----------------------------------------------------------------------===// 879// Stack Frame Processing methods 880//===----------------------------------------------------------------------===// 881 882// hasFP - Return true if the specified function should have a dedicated frame 883// pointer register. This is true if the function has variable sized allocas or 884// if frame pointer elimination is disabled. 885// 886static bool hasFP(const MachineFunction &MF) { 887 return (NoFramePointerElim || 888 MF.getFrameInfo()->hasVarSizedObjects() || 889 MF.getInfo<X86FunctionInfo>()->getForceFramePointer()); 890} 891 892void X86RegisterInfo:: 893eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 894 MachineBasicBlock::iterator I) const { 895 if (hasFP(MF)) { 896 // If we have a frame pointer, turn the adjcallstackup instruction into a 897 // 'sub ESP, <amt>' and the adjcallstackdown instruction into 'add ESP, 898 // <amt>' 899 MachineInstr *Old = I; 900 unsigned Amount = Old->getOperand(0).getImmedValue(); 901 if (Amount != 0) { 902 // We need to keep the stack aligned properly. To do this, we round the 903 // amount of space needed for the outgoing arguments up to the next 904 // alignment boundary. 905 unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); 906 Amount = (Amount+Align-1)/Align*Align; 907 908 MachineInstr *New = 0; 909 if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) { 910 New=BuildMI(TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri), StackPtr) 911 .addReg(StackPtr).addImm(Amount); 912 } else { 913 assert(Old->getOpcode() == X86::ADJCALLSTACKUP); 914 // factor out the amount the callee already popped. 915 unsigned CalleeAmt = Old->getOperand(1).getImmedValue(); 916 Amount -= CalleeAmt; 917 if (Amount) { 918 unsigned Opc = (Amount < 128) ? 919 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : 920 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri); 921 New = BuildMI(TII.get(Opc), StackPtr).addReg(StackPtr).addImm(Amount); 922 } 923 } 924 925 // Replace the pseudo instruction with a new instruction... 926 if (New) MBB.insert(I, New); 927 } 928 } else if (I->getOpcode() == X86::ADJCALLSTACKUP) { 929 // If we are performing frame pointer elimination and if the callee pops 930 // something off the stack pointer, add it back. We do this until we have 931 // more advanced stack pointer tracking ability. 932 if (unsigned CalleeAmt = I->getOperand(1).getImmedValue()) { 933 unsigned Opc = (CalleeAmt < 128) ? 934 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : 935 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri); 936 MachineInstr *New = 937 BuildMI(TII.get(Opc), StackPtr).addReg(StackPtr).addImm(CalleeAmt); 938 MBB.insert(I, New); 939 } 940 } 941 942 MBB.erase(I); 943} 944 945void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II) const{ 946 unsigned i = 0; 947 MachineInstr &MI = *II; 948 MachineFunction &MF = *MI.getParent()->getParent(); 949 while (!MI.getOperand(i).isFrameIndex()) { 950 ++i; 951 assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); 952 } 953 954 int FrameIndex = MI.getOperand(i).getFrameIndex(); 955 // This must be part of a four operand memory reference. Replace the 956 // FrameIndex with base register with EBP. Add an offset to the offset. 957 MI.getOperand(i).ChangeToRegister(hasFP(MF) ? FramePtr : StackPtr, false); 958 959 // Now add the frame object offset to the offset from EBP. 960 int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) + 961 MI.getOperand(i+3).getImmedValue()+SlotSize; 962 963 if (!hasFP(MF)) 964 Offset += MF.getFrameInfo()->getStackSize(); 965 else 966 Offset += SlotSize; // Skip the saved EBP 967 968 MI.getOperand(i+3).ChangeToImmediate(Offset); 969} 970 971void 972X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{ 973 if (hasFP(MF)) { 974 // Create a frame entry for the EBP register that must be saved. 975 int FrameIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize,SlotSize * -2); 976 assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() && 977 "Slot for EBP register must be last in order to be found!"); 978 } 979} 980 981void X86RegisterInfo::emitPrologue(MachineFunction &MF) const { 982 MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB 983 MachineBasicBlock::iterator MBBI = MBB.begin(); 984 MachineFrameInfo *MFI = MF.getFrameInfo(); 985 unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); 986 const Function* Fn = MF.getFunction(); 987 const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>(); 988 MachineInstr *MI; 989 990 // Get the number of bytes to allocate from the FrameInfo 991 unsigned NumBytes = MFI->getStackSize(); 992 if (MFI->hasCalls() || MF.getFrameInfo()->hasVarSizedObjects()) { 993 // When we have no frame pointer, we reserve argument space for call sites 994 // in the function immediately on entry to the current function. This 995 // eliminates the need for add/sub ESP brackets around call sites. 996 // 997 if (!hasFP(MF)) 998 NumBytes += MFI->getMaxCallFrameSize(); 999 1000 // Round the size to a multiple of the alignment (don't forget the 4/8 byte 1001 // offset though). 1002 NumBytes = ((NumBytes+SlotSize)+Align-1)/Align*Align - SlotSize; 1003 } 1004 1005 // Update frame info to pretend that this is part of the stack... 1006 MFI->setStackSize(NumBytes); 1007 1008 if (NumBytes) { // adjust stack pointer: ESP -= numbytes 1009 if (NumBytes >= 4096 && Subtarget->isTargetCygwin()) { 1010 // Function prologue calls _alloca to probe the stack when allocating 1011 // more than 4k bytes in one go. Touching the stack at 4K increments is 1012 // necessary to ensure that the guard pages used by the OS virtual memory 1013 // manager are allocated in correct sequence. 1014 MI = BuildMI(TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes); 1015 MBB.insert(MBBI, MI); 1016 MI = BuildMI(TII.get(X86::CALLpcrel32)).addExternalSymbol("_alloca"); 1017 MBB.insert(MBBI, MI); 1018 } else { 1019 unsigned Opc = (NumBytes < 128) ? 1020 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : 1021 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri); 1022 MI= BuildMI(TII.get(Opc), StackPtr).addReg(StackPtr).addImm(NumBytes); 1023 MBB.insert(MBBI, MI); 1024 } 1025 } 1026 1027 if (hasFP(MF)) { 1028 // Get the offset of the stack slot for the EBP register... which is 1029 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. 1030 int EBPOffset = MFI->getObjectOffset(MFI->getObjectIndexBegin())+SlotSize; 1031 // Update the frame offset adjustment. 1032 MFI->setOffsetAdjustment(SlotSize-NumBytes); 1033 1034 // Save EBP into the appropriate stack slot... 1035 // mov [ESP-<offset>], EBP 1036 MI = addRegOffset(BuildMI(TII.get(Is64Bit ? X86::MOV64mr : X86::MOV32mr)), 1037 StackPtr, EBPOffset+NumBytes).addReg(FramePtr); 1038 MBB.insert(MBBI, MI); 1039 1040 // Update EBP with the new base value... 1041 if (NumBytes == SlotSize) // mov EBP, ESP 1042 MI = BuildMI(TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr). 1043 addReg(StackPtr); 1044 else // lea EBP, [ESP+StackSize] 1045 MI = addRegOffset(BuildMI(TII.get(Is64Bit ? X86::LEA64r : X86::LEA32r), 1046 FramePtr), StackPtr, NumBytes-SlotSize); 1047 1048 MBB.insert(MBBI, MI); 1049 } 1050 1051 // If it's main() on Cygwin\Mingw32 we should align stack as well 1052 if (Fn->hasExternalLinkage() && Fn->getName() == "main" && 1053 Subtarget->isTargetCygwin()) { 1054 MI= BuildMI(TII.get(X86::AND32ri), X86::ESP).addReg(X86::ESP).addImm(-Align); 1055 MBB.insert(MBBI, MI); 1056 1057 // Probe the stack 1058 MI = BuildMI(TII.get(X86::MOV32ri), X86::EAX).addImm(Align); 1059 MBB.insert(MBBI, MI); 1060 MI = BuildMI(TII.get(X86::CALLpcrel32)).addExternalSymbol("_alloca"); 1061 MBB.insert(MBBI, MI); 1062 } 1063} 1064 1065void X86RegisterInfo::emitEpilogue(MachineFunction &MF, 1066 MachineBasicBlock &MBB) const { 1067 const MachineFrameInfo *MFI = MF.getFrameInfo(); 1068 MachineBasicBlock::iterator MBBI = prior(MBB.end()); 1069 1070 switch (MBBI->getOpcode()) { 1071 case X86::RET: 1072 case X86::RETI: 1073 case X86::TAILJMPd: 1074 case X86::TAILJMPr: 1075 case X86::TAILJMPm: break; // These are ok 1076 default: 1077 assert(0 && "Can only insert epilog into returning blocks"); 1078 } 1079 1080 if (hasFP(MF)) { 1081 // mov ESP, EBP 1082 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr). 1083 addReg(FramePtr); 1084 1085 // pop EBP 1086 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr); 1087 } else { 1088 // Get the number of bytes allocated from the FrameInfo... 1089 unsigned NumBytes = MFI->getStackSize(); 1090 1091 if (NumBytes) { // adjust stack pointer back: ESP += numbytes 1092 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1093 // instruction, merge the two instructions. 1094 if (MBBI != MBB.begin()) { 1095 MachineBasicBlock::iterator PI = prior(MBBI); 1096 unsigned Opc = PI->getOpcode(); 1097 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 1098 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 1099 PI->getOperand(0).getReg() == StackPtr) { 1100 NumBytes += PI->getOperand(2).getImmedValue(); 1101 MBB.erase(PI); 1102 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 1103 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 1104 PI->getOperand(0).getReg() == StackPtr) { 1105 NumBytes -= PI->getOperand(2).getImmedValue(); 1106 MBB.erase(PI); 1107 } 1108 } 1109 1110 if (NumBytes > 0) { 1111 unsigned Opc = (NumBytes < 128) ? 1112 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : 1113 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri); 1114 BuildMI(MBB, MBBI, TII.get(Opc), StackPtr).addReg(StackPtr).addImm(NumBytes); 1115 } else if ((int)NumBytes < 0) { 1116 unsigned Opc = (-NumBytes < 128) ? 1117 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : 1118 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri); 1119 BuildMI(MBB, MBBI, TII.get(Opc), StackPtr).addReg(StackPtr).addImm(-NumBytes); 1120 } 1121 } 1122 } 1123} 1124 1125unsigned X86RegisterInfo::getRARegister() const { 1126 return X86::ST0; // use a non-register register 1127} 1128 1129unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const { 1130 return hasFP(MF) ? FramePtr : StackPtr; 1131} 1132 1133namespace llvm { 1134unsigned getX86SubSuperRegister(unsigned Reg, MVT::ValueType VT, bool High) { 1135 switch (VT) { 1136 default: return Reg; 1137 case MVT::i8: 1138 if (High) { 1139 switch (Reg) { 1140 default: return 0; 1141 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1142 return X86::AH; 1143 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1144 return X86::DH; 1145 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1146 return X86::CH; 1147 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1148 return X86::BH; 1149 } 1150 } else { 1151 switch (Reg) { 1152 default: return 0; 1153 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1154 return X86::AL; 1155 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1156 return X86::DL; 1157 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1158 return X86::CL; 1159 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1160 return X86::BL; 1161 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1162 return X86::SIL; 1163 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1164 return X86::DIL; 1165 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1166 return X86::BPL; 1167 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1168 return X86::SPL; 1169 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1170 return X86::R8B; 1171 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1172 return X86::R9B; 1173 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1174 return X86::R10B; 1175 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1176 return X86::R11B; 1177 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1178 return X86::R12B; 1179 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1180 return X86::R13B; 1181 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1182 return X86::R14B; 1183 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1184 return X86::R15B; 1185 } 1186 } 1187 case MVT::i16: 1188 switch (Reg) { 1189 default: return Reg; 1190 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1191 return X86::AX; 1192 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1193 return X86::DX; 1194 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1195 return X86::CX; 1196 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1197 return X86::BX; 1198 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1199 return X86::SI; 1200 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1201 return X86::DI; 1202 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1203 return X86::BP; 1204 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1205 return X86::SP; 1206 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1207 return X86::R8W; 1208 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1209 return X86::R9W; 1210 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1211 return X86::R10W; 1212 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1213 return X86::R11W; 1214 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1215 return X86::R12W; 1216 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1217 return X86::R13W; 1218 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1219 return X86::R14W; 1220 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1221 return X86::R15W; 1222 } 1223 case MVT::i32: 1224 switch (Reg) { 1225 default: return Reg; 1226 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1227 return X86::EAX; 1228 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1229 return X86::EDX; 1230 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1231 return X86::ECX; 1232 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1233 return X86::EBX; 1234 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1235 return X86::ESI; 1236 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1237 return X86::EDI; 1238 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1239 return X86::EBP; 1240 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1241 return X86::ESP; 1242 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1243 return X86::R8D; 1244 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1245 return X86::R9D; 1246 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1247 return X86::R10D; 1248 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1249 return X86::R11D; 1250 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1251 return X86::R12D; 1252 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1253 return X86::R13D; 1254 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1255 return X86::R14D; 1256 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1257 return X86::R15D; 1258 } 1259 case MVT::i64: 1260 switch (Reg) { 1261 default: return Reg; 1262 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1263 return X86::RAX; 1264 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1265 return X86::RDX; 1266 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1267 return X86::RCX; 1268 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1269 return X86::RBX; 1270 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1271 return X86::RSI; 1272 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1273 return X86::RDI; 1274 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1275 return X86::RBP; 1276 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1277 return X86::RSP; 1278 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1279 return X86::R8; 1280 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1281 return X86::R9; 1282 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1283 return X86::R10; 1284 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1285 return X86::R11; 1286 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1287 return X86::R12; 1288 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1289 return X86::R13; 1290 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1291 return X86::R14; 1292 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1293 return X86::R15; 1294 } 1295 } 1296 1297 return Reg; 1298} 1299} 1300 1301#include "X86GenRegisterInfo.inc" 1302 1303