1//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file transforms calls of the current function (self recursion) followed 11// by a return instruction with a branch to the entry of the function, creating 12// a loop. This pass also implements the following extensions to the basic 13// algorithm: 14// 15// 1. Trivial instructions between the call and return do not prevent the 16// transformation from taking place, though currently the analysis cannot 17// support moving any really useful instructions (only dead ones). 18// 2. This pass transforms functions that are prevented from being tail 19// recursive by an associative and commutative expression to use an 20// accumulator variable, thus compiling the typical naive factorial or 21// 'fib' implementation into efficient code. 22// 3. TRE is performed if the function returns void, if the return 23// returns the result returned by the call, or if the function returns a 24// run-time constant on all exits from the function. It is possible, though 25// unlikely, that the return returns something else (like constant 0), and 26// can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 27// the function return the exact same value. 28// 4. If it can prove that callees do not access their caller stack frame, 29// they are marked as eligible for tail call elimination (by the code 30// generator). 31// 32// There are several improvements that could be made: 33// 34// 1. If the function has any alloca instructions, these instructions will be 35// moved out of the entry block of the function, causing them to be 36// evaluated each time through the tail recursion. Safely keeping allocas 37// in the entry block requires analysis to proves that the tail-called 38// function does not read or write the stack object. 39// 2. Tail recursion is only performed if the call immediately precedes the 40// return instruction. It's possible that there could be a jump between 41// the call and the return. 42// 3. There can be intervening operations between the call and the return that 43// prevent the TRE from occurring. For example, there could be GEP's and 44// stores to memory that will not be read or written by the call. This 45// requires some substantial analysis (such as with DSA) to prove safe to 46// move ahead of the call, but doing so could allow many more TREs to be 47// performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 48// 4. The algorithm we use to detect if callees access their caller stack 49// frames is very primitive. 50// 51//===----------------------------------------------------------------------===// 52 53#include "llvm/Transforms/Scalar.h" 54#include "llvm/ADT/STLExtras.h" 55#include "llvm/ADT/SmallPtrSet.h" 56#include "llvm/ADT/Statistic.h" 57#include "llvm/Analysis/GlobalsModRef.h" 58#include "llvm/Analysis/CFG.h" 59#include "llvm/Analysis/CaptureTracking.h" 60#include "llvm/Analysis/InlineCost.h" 61#include "llvm/Analysis/InstructionSimplify.h" 62#include "llvm/Analysis/Loads.h" 63#include "llvm/Analysis/TargetTransformInfo.h" 64#include "llvm/IR/CFG.h" 65#include "llvm/IR/CallSite.h" 66#include "llvm/IR/Constants.h" 67#include "llvm/IR/DataLayout.h" 68#include "llvm/IR/DerivedTypes.h" 69#include "llvm/IR/DiagnosticInfo.h" 70#include "llvm/IR/Function.h" 71#include "llvm/IR/Instructions.h" 72#include "llvm/IR/IntrinsicInst.h" 73#include "llvm/IR/Module.h" 74#include "llvm/IR/ValueHandle.h" 75#include "llvm/Pass.h" 76#include "llvm/Support/Debug.h" 77#include "llvm/Support/raw_ostream.h" 78#include "llvm/Transforms/Utils/BasicBlockUtils.h" 79#include "llvm/Transforms/Utils/Local.h" 80using namespace llvm; 81 82#define DEBUG_TYPE "tailcallelim" 83 84STATISTIC(NumEliminated, "Number of tail calls removed"); 85STATISTIC(NumRetDuped, "Number of return duplicated"); 86STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 87 88namespace { 89 struct TailCallElim : public FunctionPass { 90 const TargetTransformInfo *TTI; 91 92 static char ID; // Pass identification, replacement for typeid 93 TailCallElim() : FunctionPass(ID) { 94 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 95 } 96 97 void getAnalysisUsage(AnalysisUsage &AU) const override; 98 99 bool runOnFunction(Function &F) override; 100 101 private: 102 bool runTRE(Function &F); 103 bool markTails(Function &F, bool &AllCallsAreTailCalls); 104 105 CallInst *FindTRECandidate(Instruction *I, 106 bool CannotTailCallElimCallsMarkedTail); 107 bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, 108 BasicBlock *&OldEntry, 109 bool &TailCallsAreMarkedTail, 110 SmallVectorImpl<PHINode *> &ArgumentPHIs, 111 bool CannotTailCallElimCallsMarkedTail); 112 bool FoldReturnAndProcessPred(BasicBlock *BB, 113 ReturnInst *Ret, BasicBlock *&OldEntry, 114 bool &TailCallsAreMarkedTail, 115 SmallVectorImpl<PHINode *> &ArgumentPHIs, 116 bool CannotTailCallElimCallsMarkedTail); 117 bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry, 118 bool &TailCallsAreMarkedTail, 119 SmallVectorImpl<PHINode *> &ArgumentPHIs, 120 bool CannotTailCallElimCallsMarkedTail); 121 bool CanMoveAboveCall(Instruction *I, CallInst *CI); 122 Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI); 123 }; 124} 125 126char TailCallElim::ID = 0; 127INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", 128 "Tail Call Elimination", false, false) 129INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 130INITIALIZE_PASS_END(TailCallElim, "tailcallelim", 131 "Tail Call Elimination", false, false) 132 133// Public interface to the TailCallElimination pass 134FunctionPass *llvm::createTailCallEliminationPass() { 135 return new TailCallElim(); 136} 137 138void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const { 139 AU.addRequired<TargetTransformInfoWrapperPass>(); 140 AU.addPreserved<GlobalsAAWrapperPass>(); 141} 142 143/// \brief Scan the specified function for alloca instructions. 144/// If it contains any dynamic allocas, returns false. 145static bool CanTRE(Function &F) { 146 // Because of PR962, we don't TRE dynamic allocas. 147 for (auto &BB : F) { 148 for (auto &I : BB) { 149 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 150 if (!AI->isStaticAlloca()) 151 return false; 152 } 153 } 154 } 155 156 return true; 157} 158 159bool TailCallElim::runOnFunction(Function &F) { 160 if (skipOptnoneFunction(F)) 161 return false; 162 163 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 164 return false; 165 166 bool AllCallsAreTailCalls = false; 167 bool Modified = markTails(F, AllCallsAreTailCalls); 168 if (AllCallsAreTailCalls) 169 Modified |= runTRE(F); 170 return Modified; 171} 172 173namespace { 174struct AllocaDerivedValueTracker { 175 // Start at a root value and walk its use-def chain to mark calls that use the 176 // value or a derived value in AllocaUsers, and places where it may escape in 177 // EscapePoints. 178 void walk(Value *Root) { 179 SmallVector<Use *, 32> Worklist; 180 SmallPtrSet<Use *, 32> Visited; 181 182 auto AddUsesToWorklist = [&](Value *V) { 183 for (auto &U : V->uses()) { 184 if (!Visited.insert(&U).second) 185 continue; 186 Worklist.push_back(&U); 187 } 188 }; 189 190 AddUsesToWorklist(Root); 191 192 while (!Worklist.empty()) { 193 Use *U = Worklist.pop_back_val(); 194 Instruction *I = cast<Instruction>(U->getUser()); 195 196 switch (I->getOpcode()) { 197 case Instruction::Call: 198 case Instruction::Invoke: { 199 CallSite CS(I); 200 bool IsNocapture = !CS.isCallee(U) && 201 CS.doesNotCapture(CS.getArgumentNo(U)); 202 callUsesLocalStack(CS, IsNocapture); 203 if (IsNocapture) { 204 // If the alloca-derived argument is passed in as nocapture, then it 205 // can't propagate to the call's return. That would be capturing. 206 continue; 207 } 208 break; 209 } 210 case Instruction::Load: { 211 // The result of a load is not alloca-derived (unless an alloca has 212 // otherwise escaped, but this is a local analysis). 213 continue; 214 } 215 case Instruction::Store: { 216 if (U->getOperandNo() == 0) 217 EscapePoints.insert(I); 218 continue; // Stores have no users to analyze. 219 } 220 case Instruction::BitCast: 221 case Instruction::GetElementPtr: 222 case Instruction::PHI: 223 case Instruction::Select: 224 case Instruction::AddrSpaceCast: 225 break; 226 default: 227 EscapePoints.insert(I); 228 break; 229 } 230 231 AddUsesToWorklist(I); 232 } 233 } 234 235 void callUsesLocalStack(CallSite CS, bool IsNocapture) { 236 // Add it to the list of alloca users. 237 AllocaUsers.insert(CS.getInstruction()); 238 239 // If it's nocapture then it can't capture this alloca. 240 if (IsNocapture) 241 return; 242 243 // If it can write to memory, it can leak the alloca value. 244 if (!CS.onlyReadsMemory()) 245 EscapePoints.insert(CS.getInstruction()); 246 } 247 248 SmallPtrSet<Instruction *, 32> AllocaUsers; 249 SmallPtrSet<Instruction *, 32> EscapePoints; 250}; 251} 252 253bool TailCallElim::markTails(Function &F, bool &AllCallsAreTailCalls) { 254 if (F.callsFunctionThatReturnsTwice()) 255 return false; 256 AllCallsAreTailCalls = true; 257 258 // The local stack holds all alloca instructions and all byval arguments. 259 AllocaDerivedValueTracker Tracker; 260 for (Argument &Arg : F.args()) { 261 if (Arg.hasByValAttr()) 262 Tracker.walk(&Arg); 263 } 264 for (auto &BB : F) { 265 for (auto &I : BB) 266 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 267 Tracker.walk(AI); 268 } 269 270 bool Modified = false; 271 272 // Track whether a block is reachable after an alloca has escaped. Blocks that 273 // contain the escaping instruction will be marked as being visited without an 274 // escaped alloca, since that is how the block began. 275 enum VisitType { 276 UNVISITED, 277 UNESCAPED, 278 ESCAPED 279 }; 280 DenseMap<BasicBlock *, VisitType> Visited; 281 282 // We propagate the fact that an alloca has escaped from block to successor. 283 // Visit the blocks that are propagating the escapedness first. To do this, we 284 // maintain two worklists. 285 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped; 286 287 // We may enter a block and visit it thinking that no alloca has escaped yet, 288 // then see an escape point and go back around a loop edge and come back to 289 // the same block twice. Because of this, we defer setting tail on calls when 290 // we first encounter them in a block. Every entry in this list does not 291 // statically use an alloca via use-def chain analysis, but may find an alloca 292 // through other means if the block turns out to be reachable after an escape 293 // point. 294 SmallVector<CallInst *, 32> DeferredTails; 295 296 BasicBlock *BB = &F.getEntryBlock(); 297 VisitType Escaped = UNESCAPED; 298 do { 299 for (auto &I : *BB) { 300 if (Tracker.EscapePoints.count(&I)) 301 Escaped = ESCAPED; 302 303 CallInst *CI = dyn_cast<CallInst>(&I); 304 if (!CI || CI->isTailCall()) 305 continue; 306 307 bool IsNoTail = CI->isNoTailCall(); 308 309 if (!IsNoTail && CI->doesNotAccessMemory()) { 310 // A call to a readnone function whose arguments are all things computed 311 // outside this function can be marked tail. Even if you stored the 312 // alloca address into a global, a readnone function can't load the 313 // global anyhow. 314 // 315 // Note that this runs whether we know an alloca has escaped or not. If 316 // it has, then we can't trust Tracker.AllocaUsers to be accurate. 317 bool SafeToTail = true; 318 for (auto &Arg : CI->arg_operands()) { 319 if (isa<Constant>(Arg.getUser())) 320 continue; 321 if (Argument *A = dyn_cast<Argument>(Arg.getUser())) 322 if (!A->hasByValAttr()) 323 continue; 324 SafeToTail = false; 325 break; 326 } 327 if (SafeToTail) { 328 emitOptimizationRemark( 329 F.getContext(), "tailcallelim", F, CI->getDebugLoc(), 330 "marked this readnone call a tail call candidate"); 331 CI->setTailCall(); 332 Modified = true; 333 continue; 334 } 335 } 336 337 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) { 338 DeferredTails.push_back(CI); 339 } else { 340 AllCallsAreTailCalls = false; 341 } 342 } 343 344 for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) { 345 auto &State = Visited[SuccBB]; 346 if (State < Escaped) { 347 State = Escaped; 348 if (State == ESCAPED) 349 WorklistEscaped.push_back(SuccBB); 350 else 351 WorklistUnescaped.push_back(SuccBB); 352 } 353 } 354 355 if (!WorklistEscaped.empty()) { 356 BB = WorklistEscaped.pop_back_val(); 357 Escaped = ESCAPED; 358 } else { 359 BB = nullptr; 360 while (!WorklistUnescaped.empty()) { 361 auto *NextBB = WorklistUnescaped.pop_back_val(); 362 if (Visited[NextBB] == UNESCAPED) { 363 BB = NextBB; 364 Escaped = UNESCAPED; 365 break; 366 } 367 } 368 } 369 } while (BB); 370 371 for (CallInst *CI : DeferredTails) { 372 if (Visited[CI->getParent()] != ESCAPED) { 373 // If the escape point was part way through the block, calls after the 374 // escape point wouldn't have been put into DeferredTails. 375 emitOptimizationRemark(F.getContext(), "tailcallelim", F, 376 CI->getDebugLoc(), 377 "marked this call a tail call candidate"); 378 CI->setTailCall(); 379 Modified = true; 380 } else { 381 AllCallsAreTailCalls = false; 382 } 383 } 384 385 return Modified; 386} 387 388bool TailCallElim::runTRE(Function &F) { 389 // If this function is a varargs function, we won't be able to PHI the args 390 // right, so don't even try to convert it... 391 if (F.getFunctionType()->isVarArg()) return false; 392 393 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 394 BasicBlock *OldEntry = nullptr; 395 bool TailCallsAreMarkedTail = false; 396 SmallVector<PHINode*, 8> ArgumentPHIs; 397 bool MadeChange = false; 398 399 // If false, we cannot perform TRE on tail calls marked with the 'tail' 400 // attribute, because doing so would cause the stack size to increase (real 401 // TRE would deallocate variable sized allocas, TRE doesn't). 402 bool CanTRETailMarkedCall = CanTRE(F); 403 404 // Change any tail recursive calls to loops. 405 // 406 // FIXME: The code generator produces really bad code when an 'escaping 407 // alloca' is changed from being a static alloca to being a dynamic alloca. 408 // Until this is resolved, disable this transformation if that would ever 409 // happen. This bug is PR962. 410 for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) { 411 BasicBlock *BB = &*BBI++; // FoldReturnAndProcessPred may delete BB. 412 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) { 413 bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail, 414 ArgumentPHIs, !CanTRETailMarkedCall); 415 if (!Change && BB->getFirstNonPHIOrDbg() == Ret) 416 Change = FoldReturnAndProcessPred(BB, Ret, OldEntry, 417 TailCallsAreMarkedTail, ArgumentPHIs, 418 !CanTRETailMarkedCall); 419 MadeChange |= Change; 420 } 421 } 422 423 // If we eliminated any tail recursions, it's possible that we inserted some 424 // silly PHI nodes which just merge an initial value (the incoming operand) 425 // with themselves. Check to see if we did and clean up our mess if so. This 426 // occurs when a function passes an argument straight through to its tail 427 // call. 428 for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) { 429 PHINode *PN = ArgumentPHIs[i]; 430 431 // If the PHI Node is a dynamic constant, replace it with the value it is. 432 if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) { 433 PN->replaceAllUsesWith(PNV); 434 PN->eraseFromParent(); 435 } 436 } 437 438 return MadeChange; 439} 440 441 442/// Return true if it is safe to move the specified 443/// instruction from after the call to before the call, assuming that all 444/// instructions between the call and this instruction are movable. 445/// 446bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) { 447 // FIXME: We can move load/store/call/free instructions above the call if the 448 // call does not mod/ref the memory location being processed. 449 if (I->mayHaveSideEffects()) // This also handles volatile loads. 450 return false; 451 452 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 453 // Loads may always be moved above calls without side effects. 454 if (CI->mayHaveSideEffects()) { 455 // Non-volatile loads may be moved above a call with side effects if it 456 // does not write to memory and the load provably won't trap. 457 // FIXME: Writes to memory only matter if they may alias the pointer 458 // being loaded from. 459 if (CI->mayWriteToMemory() || 460 !isSafeToLoadUnconditionally(L->getPointerOperand(), L, 461 L->getAlignment())) 462 return false; 463 } 464 } 465 466 // Otherwise, if this is a side-effect free instruction, check to make sure 467 // that it does not use the return value of the call. If it doesn't use the 468 // return value of the call, it must only use things that are defined before 469 // the call, or movable instructions between the call and the instruction 470 // itself. 471 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 472 if (I->getOperand(i) == CI) 473 return false; 474 return true; 475} 476 477/// Return true if the specified value is the same when the return would exit 478/// as it was when the initial iteration of the recursive function was executed. 479/// 480/// We currently handle static constants and arguments that are not modified as 481/// part of the recursion. 482static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) { 483 if (isa<Constant>(V)) return true; // Static constants are always dyn consts 484 485 // Check to see if this is an immutable argument, if so, the value 486 // will be available to initialize the accumulator. 487 if (Argument *Arg = dyn_cast<Argument>(V)) { 488 // Figure out which argument number this is... 489 unsigned ArgNo = 0; 490 Function *F = CI->getParent()->getParent(); 491 for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI) 492 ++ArgNo; 493 494 // If we are passing this argument into call as the corresponding 495 // argument operand, then the argument is dynamically constant. 496 // Otherwise, we cannot transform this function safely. 497 if (CI->getArgOperand(ArgNo) == Arg) 498 return true; 499 } 500 501 // Switch cases are always constant integers. If the value is being switched 502 // on and the return is only reachable from one of its cases, it's 503 // effectively constant. 504 if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor()) 505 if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator())) 506 if (SI->getCondition() == V) 507 return SI->getDefaultDest() != RI->getParent(); 508 509 // Not a constant or immutable argument, we can't safely transform. 510 return false; 511} 512 513/// Check to see if the function containing the specified tail call consistently 514/// returns the same runtime-constant value at all exit points except for 515/// IgnoreRI. If so, return the returned value. 516static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) { 517 Function *F = CI->getParent()->getParent(); 518 Value *ReturnedValue = nullptr; 519 520 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) { 521 ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()); 522 if (RI == nullptr || RI == IgnoreRI) continue; 523 524 // We can only perform this transformation if the value returned is 525 // evaluatable at the start of the initial invocation of the function, 526 // instead of at the end of the evaluation. 527 // 528 Value *RetOp = RI->getOperand(0); 529 if (!isDynamicConstant(RetOp, CI, RI)) 530 return nullptr; 531 532 if (ReturnedValue && RetOp != ReturnedValue) 533 return nullptr; // Cannot transform if differing values are returned. 534 ReturnedValue = RetOp; 535 } 536 return ReturnedValue; 537} 538 539/// If the specified instruction can be transformed using accumulator recursion 540/// elimination, return the constant which is the start of the accumulator 541/// value. Otherwise return null. 542Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I, 543 CallInst *CI) { 544 if (!I->isAssociative() || !I->isCommutative()) return nullptr; 545 assert(I->getNumOperands() == 2 && 546 "Associative/commutative operations should have 2 args!"); 547 548 // Exactly one operand should be the result of the call instruction. 549 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 550 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 551 return nullptr; 552 553 // The only user of this instruction we allow is a single return instruction. 554 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back())) 555 return nullptr; 556 557 // Ok, now we have to check all of the other return instructions in this 558 // function. If they return non-constants or differing values, then we cannot 559 // transform the function safely. 560 return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI); 561} 562 563static Instruction *FirstNonDbg(BasicBlock::iterator I) { 564 while (isa<DbgInfoIntrinsic>(I)) 565 ++I; 566 return &*I; 567} 568 569CallInst* 570TailCallElim::FindTRECandidate(Instruction *TI, 571 bool CannotTailCallElimCallsMarkedTail) { 572 BasicBlock *BB = TI->getParent(); 573 Function *F = BB->getParent(); 574 575 if (&BB->front() == TI) // Make sure there is something before the terminator. 576 return nullptr; 577 578 // Scan backwards from the return, checking to see if there is a tail call in 579 // this block. If so, set CI to it. 580 CallInst *CI = nullptr; 581 BasicBlock::iterator BBI(TI); 582 while (true) { 583 CI = dyn_cast<CallInst>(BBI); 584 if (CI && CI->getCalledFunction() == F) 585 break; 586 587 if (BBI == BB->begin()) 588 return nullptr; // Didn't find a potential tail call. 589 --BBI; 590 } 591 592 // If this call is marked as a tail call, and if there are dynamic allocas in 593 // the function, we cannot perform this optimization. 594 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) 595 return nullptr; 596 597 // As a special case, detect code like this: 598 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 599 // and disable this xform in this case, because the code generator will 600 // lower the call to fabs into inline code. 601 if (BB == &F->getEntryBlock() && 602 FirstNonDbg(BB->front().getIterator()) == CI && 603 FirstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() && 604 !TTI->isLoweredToCall(CI->getCalledFunction())) { 605 // A single-block function with just a call and a return. Check that 606 // the arguments match. 607 CallSite::arg_iterator I = CallSite(CI).arg_begin(), 608 E = CallSite(CI).arg_end(); 609 Function::arg_iterator FI = F->arg_begin(), 610 FE = F->arg_end(); 611 for (; I != E && FI != FE; ++I, ++FI) 612 if (*I != &*FI) break; 613 if (I == E && FI == FE) 614 return nullptr; 615 } 616 617 return CI; 618} 619 620bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, 621 BasicBlock *&OldEntry, 622 bool &TailCallsAreMarkedTail, 623 SmallVectorImpl<PHINode *> &ArgumentPHIs, 624 bool CannotTailCallElimCallsMarkedTail) { 625 // If we are introducing accumulator recursion to eliminate operations after 626 // the call instruction that are both associative and commutative, the initial 627 // value for the accumulator is placed in this variable. If this value is set 628 // then we actually perform accumulator recursion elimination instead of 629 // simple tail recursion elimination. If the operation is an LLVM instruction 630 // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then 631 // we are handling the case when the return instruction returns a constant C 632 // which is different to the constant returned by other return instructions 633 // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a 634 // special case of accumulator recursion, the operation being "return C". 635 Value *AccumulatorRecursionEliminationInitVal = nullptr; 636 Instruction *AccumulatorRecursionInstr = nullptr; 637 638 // Ok, we found a potential tail call. We can currently only transform the 639 // tail call if all of the instructions between the call and the return are 640 // movable to above the call itself, leaving the call next to the return. 641 // Check that this is the case now. 642 BasicBlock::iterator BBI(CI); 643 for (++BBI; &*BBI != Ret; ++BBI) { 644 if (CanMoveAboveCall(&*BBI, CI)) continue; 645 646 // If we can't move the instruction above the call, it might be because it 647 // is an associative and commutative operation that could be transformed 648 // using accumulator recursion elimination. Check to see if this is the 649 // case, and if so, remember the initial accumulator value for later. 650 if ((AccumulatorRecursionEliminationInitVal = 651 CanTransformAccumulatorRecursion(&*BBI, CI))) { 652 // Yes, this is accumulator recursion. Remember which instruction 653 // accumulates. 654 AccumulatorRecursionInstr = &*BBI; 655 } else { 656 return false; // Otherwise, we cannot eliminate the tail recursion! 657 } 658 } 659 660 // We can only transform call/return pairs that either ignore the return value 661 // of the call and return void, ignore the value of the call and return a 662 // constant, return the value returned by the tail call, or that are being 663 // accumulator recursion variable eliminated. 664 if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI && 665 !isa<UndefValue>(Ret->getReturnValue()) && 666 AccumulatorRecursionEliminationInitVal == nullptr && 667 !getCommonReturnValue(nullptr, CI)) { 668 // One case remains that we are able to handle: the current return 669 // instruction returns a constant, and all other return instructions 670 // return a different constant. 671 if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret)) 672 return false; // Current return instruction does not return a constant. 673 // Check that all other return instructions return a common constant. If 674 // so, record it in AccumulatorRecursionEliminationInitVal. 675 AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI); 676 if (!AccumulatorRecursionEliminationInitVal) 677 return false; 678 } 679 680 BasicBlock *BB = Ret->getParent(); 681 Function *F = BB->getParent(); 682 683 emitOptimizationRemark(F->getContext(), "tailcallelim", *F, CI->getDebugLoc(), 684 "transforming tail recursion to loop"); 685 686 // OK! We can transform this tail call. If this is the first one found, 687 // create the new entry block, allowing us to branch back to the old entry. 688 if (!OldEntry) { 689 OldEntry = &F->getEntryBlock(); 690 BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry); 691 NewEntry->takeName(OldEntry); 692 OldEntry->setName("tailrecurse"); 693 BranchInst::Create(OldEntry, NewEntry); 694 695 // If this tail call is marked 'tail' and if there are any allocas in the 696 // entry block, move them up to the new entry block. 697 TailCallsAreMarkedTail = CI->isTailCall(); 698 if (TailCallsAreMarkedTail) 699 // Move all fixed sized allocas from OldEntry to NewEntry. 700 for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(), 701 NEBI = NewEntry->begin(); OEBI != E; ) 702 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 703 if (isa<ConstantInt>(AI->getArraySize())) 704 AI->moveBefore(&*NEBI); 705 706 // Now that we have created a new block, which jumps to the entry 707 // block, insert a PHI node for each argument of the function. 708 // For now, we initialize each PHI to only have the real arguments 709 // which are passed in. 710 Instruction *InsertPos = &OldEntry->front(); 711 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 712 I != E; ++I) { 713 PHINode *PN = PHINode::Create(I->getType(), 2, 714 I->getName() + ".tr", InsertPos); 715 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 716 PN->addIncoming(&*I, NewEntry); 717 ArgumentPHIs.push_back(PN); 718 } 719 } 720 721 // If this function has self recursive calls in the tail position where some 722 // are marked tail and some are not, only transform one flavor or another. We 723 // have to choose whether we move allocas in the entry block to the new entry 724 // block or not, so we can't make a good choice for both. NOTE: We could do 725 // slightly better here in the case that the function has no entry block 726 // allocas. 727 if (TailCallsAreMarkedTail && !CI->isTailCall()) 728 return false; 729 730 // Ok, now that we know we have a pseudo-entry block WITH all of the 731 // required PHI nodes, add entries into the PHI node for the actual 732 // parameters passed into the tail-recursive call. 733 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 734 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); 735 736 // If we are introducing an accumulator variable to eliminate the recursion, 737 // do so now. Note that we _know_ that no subsequent tail recursion 738 // eliminations will happen on this function because of the way the 739 // accumulator recursion predicate is set up. 740 // 741 if (AccumulatorRecursionEliminationInitVal) { 742 Instruction *AccRecInstr = AccumulatorRecursionInstr; 743 // Start by inserting a new PHI node for the accumulator. 744 pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry); 745 PHINode *AccPN = PHINode::Create( 746 AccumulatorRecursionEliminationInitVal->getType(), 747 std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front()); 748 749 // Loop over all of the predecessors of the tail recursion block. For the 750 // real entry into the function we seed the PHI with the initial value, 751 // computed earlier. For any other existing branches to this block (due to 752 // other tail recursions eliminated) the accumulator is not modified. 753 // Because we haven't added the branch in the current block to OldEntry yet, 754 // it will not show up as a predecessor. 755 for (pred_iterator PI = PB; PI != PE; ++PI) { 756 BasicBlock *P = *PI; 757 if (P == &F->getEntryBlock()) 758 AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P); 759 else 760 AccPN->addIncoming(AccPN, P); 761 } 762 763 if (AccRecInstr) { 764 // Add an incoming argument for the current block, which is computed by 765 // our associative and commutative accumulator instruction. 766 AccPN->addIncoming(AccRecInstr, BB); 767 768 // Next, rewrite the accumulator recursion instruction so that it does not 769 // use the result of the call anymore, instead, use the PHI node we just 770 // inserted. 771 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 772 } else { 773 // Add an incoming argument for the current block, which is just the 774 // constant returned by the current return instruction. 775 AccPN->addIncoming(Ret->getReturnValue(), BB); 776 } 777 778 // Finally, rewrite any return instructions in the program to return the PHI 779 // node instead of the "initval" that they do currently. This loop will 780 // actually rewrite the return value we are destroying, but that's ok. 781 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) 782 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator())) 783 RI->setOperand(0, AccPN); 784 ++NumAccumAdded; 785 } 786 787 // Now that all of the PHI nodes are in place, remove the call and 788 // ret instructions, replacing them with an unconditional branch. 789 BranchInst *NewBI = BranchInst::Create(OldEntry, Ret); 790 NewBI->setDebugLoc(CI->getDebugLoc()); 791 792 BB->getInstList().erase(Ret); // Remove return. 793 BB->getInstList().erase(CI); // Remove call. 794 ++NumEliminated; 795 return true; 796} 797 798bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB, 799 ReturnInst *Ret, BasicBlock *&OldEntry, 800 bool &TailCallsAreMarkedTail, 801 SmallVectorImpl<PHINode *> &ArgumentPHIs, 802 bool CannotTailCallElimCallsMarkedTail) { 803 bool Change = false; 804 805 // If the return block contains nothing but the return and PHI's, 806 // there might be an opportunity to duplicate the return in its 807 // predecessors and perform TRC there. Look for predecessors that end 808 // in unconditional branch and recursive call(s). 809 SmallVector<BranchInst*, 8> UncondBranchPreds; 810 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 811 BasicBlock *Pred = *PI; 812 TerminatorInst *PTI = Pred->getTerminator(); 813 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) 814 if (BI->isUnconditional()) 815 UncondBranchPreds.push_back(BI); 816 } 817 818 while (!UncondBranchPreds.empty()) { 819 BranchInst *BI = UncondBranchPreds.pop_back_val(); 820 BasicBlock *Pred = BI->getParent(); 821 if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){ 822 DEBUG(dbgs() << "FOLDING: " << *BB 823 << "INTO UNCOND BRANCH PRED: " << *Pred); 824 ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred); 825 826 // Cleanup: if all predecessors of BB have been eliminated by 827 // FoldReturnIntoUncondBranch, delete it. It is important to empty it, 828 // because the ret instruction in there is still using a value which 829 // EliminateRecursiveTailCall will attempt to remove. 830 if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 831 BB->eraseFromParent(); 832 833 EliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail, 834 ArgumentPHIs, 835 CannotTailCallElimCallsMarkedTail); 836 ++NumRetDuped; 837 Change = true; 838 } 839 } 840 841 return Change; 842} 843 844bool 845TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry, 846 bool &TailCallsAreMarkedTail, 847 SmallVectorImpl<PHINode *> &ArgumentPHIs, 848 bool CannotTailCallElimCallsMarkedTail) { 849 CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail); 850 if (!CI) 851 return false; 852 853 return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail, 854 ArgumentPHIs, 855 CannotTailCallElimCallsMarkedTail); 856} 857