1//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file transforms calls of the current function (self recursion) followed
11// by a return instruction with a branch to the entry of the function, creating
12// a loop.  This pass also implements the following extensions to the basic
13// algorithm:
14//
15//  1. Trivial instructions between the call and return do not prevent the
16//     transformation from taking place, though currently the analysis cannot
17//     support moving any really useful instructions (only dead ones).
18//  2. This pass transforms functions that are prevented from being tail
19//     recursive by an associative and commutative expression to use an
20//     accumulator variable, thus compiling the typical naive factorial or
21//     'fib' implementation into efficient code.
22//  3. TRE is performed if the function returns void, if the return
23//     returns the result returned by the call, or if the function returns a
24//     run-time constant on all exits from the function.  It is possible, though
25//     unlikely, that the return returns something else (like constant 0), and
26//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27//     the function return the exact same value.
28//  4. If it can prove that callees do not access their caller stack frame,
29//     they are marked as eligible for tail call elimination (by the code
30//     generator).
31//
32// There are several improvements that could be made:
33//
34//  1. If the function has any alloca instructions, these instructions will be
35//     moved out of the entry block of the function, causing them to be
36//     evaluated each time through the tail recursion.  Safely keeping allocas
37//     in the entry block requires analysis to proves that the tail-called
38//     function does not read or write the stack object.
39//  2. Tail recursion is only performed if the call immediately precedes the
40//     return instruction.  It's possible that there could be a jump between
41//     the call and the return.
42//  3. There can be intervening operations between the call and the return that
43//     prevent the TRE from occurring.  For example, there could be GEP's and
44//     stores to memory that will not be read or written by the call.  This
45//     requires some substantial analysis (such as with DSA) to prove safe to
46//     move ahead of the call, but doing so could allow many more TREs to be
47//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48//  4. The algorithm we use to detect if callees access their caller stack
49//     frames is very primitive.
50//
51//===----------------------------------------------------------------------===//
52
53#include "llvm/Transforms/Scalar.h"
54#include "llvm/ADT/STLExtras.h"
55#include "llvm/ADT/SmallPtrSet.h"
56#include "llvm/ADT/Statistic.h"
57#include "llvm/Analysis/GlobalsModRef.h"
58#include "llvm/Analysis/CFG.h"
59#include "llvm/Analysis/CaptureTracking.h"
60#include "llvm/Analysis/InlineCost.h"
61#include "llvm/Analysis/InstructionSimplify.h"
62#include "llvm/Analysis/Loads.h"
63#include "llvm/Analysis/TargetTransformInfo.h"
64#include "llvm/IR/CFG.h"
65#include "llvm/IR/CallSite.h"
66#include "llvm/IR/Constants.h"
67#include "llvm/IR/DataLayout.h"
68#include "llvm/IR/DerivedTypes.h"
69#include "llvm/IR/DiagnosticInfo.h"
70#include "llvm/IR/Function.h"
71#include "llvm/IR/Instructions.h"
72#include "llvm/IR/IntrinsicInst.h"
73#include "llvm/IR/Module.h"
74#include "llvm/IR/ValueHandle.h"
75#include "llvm/Pass.h"
76#include "llvm/Support/Debug.h"
77#include "llvm/Support/raw_ostream.h"
78#include "llvm/Transforms/Utils/BasicBlockUtils.h"
79#include "llvm/Transforms/Utils/Local.h"
80using namespace llvm;
81
82#define DEBUG_TYPE "tailcallelim"
83
84STATISTIC(NumEliminated, "Number of tail calls removed");
85STATISTIC(NumRetDuped,   "Number of return duplicated");
86STATISTIC(NumAccumAdded, "Number of accumulators introduced");
87
88namespace {
89  struct TailCallElim : public FunctionPass {
90    const TargetTransformInfo *TTI;
91
92    static char ID; // Pass identification, replacement for typeid
93    TailCallElim() : FunctionPass(ID) {
94      initializeTailCallElimPass(*PassRegistry::getPassRegistry());
95    }
96
97    void getAnalysisUsage(AnalysisUsage &AU) const override;
98
99    bool runOnFunction(Function &F) override;
100
101  private:
102    bool runTRE(Function &F);
103    bool markTails(Function &F, bool &AllCallsAreTailCalls);
104
105    CallInst *FindTRECandidate(Instruction *I,
106                               bool CannotTailCallElimCallsMarkedTail);
107    bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
108                                    BasicBlock *&OldEntry,
109                                    bool &TailCallsAreMarkedTail,
110                                    SmallVectorImpl<PHINode *> &ArgumentPHIs,
111                                    bool CannotTailCallElimCallsMarkedTail);
112    bool FoldReturnAndProcessPred(BasicBlock *BB,
113                                  ReturnInst *Ret, BasicBlock *&OldEntry,
114                                  bool &TailCallsAreMarkedTail,
115                                  SmallVectorImpl<PHINode *> &ArgumentPHIs,
116                                  bool CannotTailCallElimCallsMarkedTail);
117    bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
118                               bool &TailCallsAreMarkedTail,
119                               SmallVectorImpl<PHINode *> &ArgumentPHIs,
120                               bool CannotTailCallElimCallsMarkedTail);
121    bool CanMoveAboveCall(Instruction *I, CallInst *CI);
122    Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
123  };
124}
125
126char TailCallElim::ID = 0;
127INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim",
128                      "Tail Call Elimination", false, false)
129INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
130INITIALIZE_PASS_END(TailCallElim, "tailcallelim",
131                    "Tail Call Elimination", false, false)
132
133// Public interface to the TailCallElimination pass
134FunctionPass *llvm::createTailCallEliminationPass() {
135  return new TailCallElim();
136}
137
138void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const {
139  AU.addRequired<TargetTransformInfoWrapperPass>();
140  AU.addPreserved<GlobalsAAWrapperPass>();
141}
142
143/// \brief Scan the specified function for alloca instructions.
144/// If it contains any dynamic allocas, returns false.
145static bool CanTRE(Function &F) {
146  // Because of PR962, we don't TRE dynamic allocas.
147  for (auto &BB : F) {
148    for (auto &I : BB) {
149      if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
150        if (!AI->isStaticAlloca())
151          return false;
152      }
153    }
154  }
155
156  return true;
157}
158
159bool TailCallElim::runOnFunction(Function &F) {
160  if (skipOptnoneFunction(F))
161    return false;
162
163  if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
164    return false;
165
166  bool AllCallsAreTailCalls = false;
167  bool Modified = markTails(F, AllCallsAreTailCalls);
168  if (AllCallsAreTailCalls)
169    Modified |= runTRE(F);
170  return Modified;
171}
172
173namespace {
174struct AllocaDerivedValueTracker {
175  // Start at a root value and walk its use-def chain to mark calls that use the
176  // value or a derived value in AllocaUsers, and places where it may escape in
177  // EscapePoints.
178  void walk(Value *Root) {
179    SmallVector<Use *, 32> Worklist;
180    SmallPtrSet<Use *, 32> Visited;
181
182    auto AddUsesToWorklist = [&](Value *V) {
183      for (auto &U : V->uses()) {
184        if (!Visited.insert(&U).second)
185          continue;
186        Worklist.push_back(&U);
187      }
188    };
189
190    AddUsesToWorklist(Root);
191
192    while (!Worklist.empty()) {
193      Use *U = Worklist.pop_back_val();
194      Instruction *I = cast<Instruction>(U->getUser());
195
196      switch (I->getOpcode()) {
197      case Instruction::Call:
198      case Instruction::Invoke: {
199        CallSite CS(I);
200        bool IsNocapture = !CS.isCallee(U) &&
201                           CS.doesNotCapture(CS.getArgumentNo(U));
202        callUsesLocalStack(CS, IsNocapture);
203        if (IsNocapture) {
204          // If the alloca-derived argument is passed in as nocapture, then it
205          // can't propagate to the call's return. That would be capturing.
206          continue;
207        }
208        break;
209      }
210      case Instruction::Load: {
211        // The result of a load is not alloca-derived (unless an alloca has
212        // otherwise escaped, but this is a local analysis).
213        continue;
214      }
215      case Instruction::Store: {
216        if (U->getOperandNo() == 0)
217          EscapePoints.insert(I);
218        continue;  // Stores have no users to analyze.
219      }
220      case Instruction::BitCast:
221      case Instruction::GetElementPtr:
222      case Instruction::PHI:
223      case Instruction::Select:
224      case Instruction::AddrSpaceCast:
225        break;
226      default:
227        EscapePoints.insert(I);
228        break;
229      }
230
231      AddUsesToWorklist(I);
232    }
233  }
234
235  void callUsesLocalStack(CallSite CS, bool IsNocapture) {
236    // Add it to the list of alloca users.
237    AllocaUsers.insert(CS.getInstruction());
238
239    // If it's nocapture then it can't capture this alloca.
240    if (IsNocapture)
241      return;
242
243    // If it can write to memory, it can leak the alloca value.
244    if (!CS.onlyReadsMemory())
245      EscapePoints.insert(CS.getInstruction());
246  }
247
248  SmallPtrSet<Instruction *, 32> AllocaUsers;
249  SmallPtrSet<Instruction *, 32> EscapePoints;
250};
251}
252
253bool TailCallElim::markTails(Function &F, bool &AllCallsAreTailCalls) {
254  if (F.callsFunctionThatReturnsTwice())
255    return false;
256  AllCallsAreTailCalls = true;
257
258  // The local stack holds all alloca instructions and all byval arguments.
259  AllocaDerivedValueTracker Tracker;
260  for (Argument &Arg : F.args()) {
261    if (Arg.hasByValAttr())
262      Tracker.walk(&Arg);
263  }
264  for (auto &BB : F) {
265    for (auto &I : BB)
266      if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
267        Tracker.walk(AI);
268  }
269
270  bool Modified = false;
271
272  // Track whether a block is reachable after an alloca has escaped. Blocks that
273  // contain the escaping instruction will be marked as being visited without an
274  // escaped alloca, since that is how the block began.
275  enum VisitType {
276    UNVISITED,
277    UNESCAPED,
278    ESCAPED
279  };
280  DenseMap<BasicBlock *, VisitType> Visited;
281
282  // We propagate the fact that an alloca has escaped from block to successor.
283  // Visit the blocks that are propagating the escapedness first. To do this, we
284  // maintain two worklists.
285  SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
286
287  // We may enter a block and visit it thinking that no alloca has escaped yet,
288  // then see an escape point and go back around a loop edge and come back to
289  // the same block twice. Because of this, we defer setting tail on calls when
290  // we first encounter them in a block. Every entry in this list does not
291  // statically use an alloca via use-def chain analysis, but may find an alloca
292  // through other means if the block turns out to be reachable after an escape
293  // point.
294  SmallVector<CallInst *, 32> DeferredTails;
295
296  BasicBlock *BB = &F.getEntryBlock();
297  VisitType Escaped = UNESCAPED;
298  do {
299    for (auto &I : *BB) {
300      if (Tracker.EscapePoints.count(&I))
301        Escaped = ESCAPED;
302
303      CallInst *CI = dyn_cast<CallInst>(&I);
304      if (!CI || CI->isTailCall())
305        continue;
306
307      bool IsNoTail = CI->isNoTailCall();
308
309      if (!IsNoTail && CI->doesNotAccessMemory()) {
310        // A call to a readnone function whose arguments are all things computed
311        // outside this function can be marked tail. Even if you stored the
312        // alloca address into a global, a readnone function can't load the
313        // global anyhow.
314        //
315        // Note that this runs whether we know an alloca has escaped or not. If
316        // it has, then we can't trust Tracker.AllocaUsers to be accurate.
317        bool SafeToTail = true;
318        for (auto &Arg : CI->arg_operands()) {
319          if (isa<Constant>(Arg.getUser()))
320            continue;
321          if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
322            if (!A->hasByValAttr())
323              continue;
324          SafeToTail = false;
325          break;
326        }
327        if (SafeToTail) {
328          emitOptimizationRemark(
329              F.getContext(), "tailcallelim", F, CI->getDebugLoc(),
330              "marked this readnone call a tail call candidate");
331          CI->setTailCall();
332          Modified = true;
333          continue;
334        }
335      }
336
337      if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
338        DeferredTails.push_back(CI);
339      } else {
340        AllCallsAreTailCalls = false;
341      }
342    }
343
344    for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
345      auto &State = Visited[SuccBB];
346      if (State < Escaped) {
347        State = Escaped;
348        if (State == ESCAPED)
349          WorklistEscaped.push_back(SuccBB);
350        else
351          WorklistUnescaped.push_back(SuccBB);
352      }
353    }
354
355    if (!WorklistEscaped.empty()) {
356      BB = WorklistEscaped.pop_back_val();
357      Escaped = ESCAPED;
358    } else {
359      BB = nullptr;
360      while (!WorklistUnescaped.empty()) {
361        auto *NextBB = WorklistUnescaped.pop_back_val();
362        if (Visited[NextBB] == UNESCAPED) {
363          BB = NextBB;
364          Escaped = UNESCAPED;
365          break;
366        }
367      }
368    }
369  } while (BB);
370
371  for (CallInst *CI : DeferredTails) {
372    if (Visited[CI->getParent()] != ESCAPED) {
373      // If the escape point was part way through the block, calls after the
374      // escape point wouldn't have been put into DeferredTails.
375      emitOptimizationRemark(F.getContext(), "tailcallelim", F,
376                             CI->getDebugLoc(),
377                             "marked this call a tail call candidate");
378      CI->setTailCall();
379      Modified = true;
380    } else {
381      AllCallsAreTailCalls = false;
382    }
383  }
384
385  return Modified;
386}
387
388bool TailCallElim::runTRE(Function &F) {
389  // If this function is a varargs function, we won't be able to PHI the args
390  // right, so don't even try to convert it...
391  if (F.getFunctionType()->isVarArg()) return false;
392
393  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
394  BasicBlock *OldEntry = nullptr;
395  bool TailCallsAreMarkedTail = false;
396  SmallVector<PHINode*, 8> ArgumentPHIs;
397  bool MadeChange = false;
398
399  // If false, we cannot perform TRE on tail calls marked with the 'tail'
400  // attribute, because doing so would cause the stack size to increase (real
401  // TRE would deallocate variable sized allocas, TRE doesn't).
402  bool CanTRETailMarkedCall = CanTRE(F);
403
404  // Change any tail recursive calls to loops.
405  //
406  // FIXME: The code generator produces really bad code when an 'escaping
407  // alloca' is changed from being a static alloca to being a dynamic alloca.
408  // Until this is resolved, disable this transformation if that would ever
409  // happen.  This bug is PR962.
410  for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
411    BasicBlock *BB = &*BBI++; // FoldReturnAndProcessPred may delete BB.
412    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
413      bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
414                                          ArgumentPHIs, !CanTRETailMarkedCall);
415      if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
416        Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
417                                          TailCallsAreMarkedTail, ArgumentPHIs,
418                                          !CanTRETailMarkedCall);
419      MadeChange |= Change;
420    }
421  }
422
423  // If we eliminated any tail recursions, it's possible that we inserted some
424  // silly PHI nodes which just merge an initial value (the incoming operand)
425  // with themselves.  Check to see if we did and clean up our mess if so.  This
426  // occurs when a function passes an argument straight through to its tail
427  // call.
428  for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
429    PHINode *PN = ArgumentPHIs[i];
430
431    // If the PHI Node is a dynamic constant, replace it with the value it is.
432    if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
433      PN->replaceAllUsesWith(PNV);
434      PN->eraseFromParent();
435    }
436  }
437
438  return MadeChange;
439}
440
441
442/// Return true if it is safe to move the specified
443/// instruction from after the call to before the call, assuming that all
444/// instructions between the call and this instruction are movable.
445///
446bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
447  // FIXME: We can move load/store/call/free instructions above the call if the
448  // call does not mod/ref the memory location being processed.
449  if (I->mayHaveSideEffects())  // This also handles volatile loads.
450    return false;
451
452  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
453    // Loads may always be moved above calls without side effects.
454    if (CI->mayHaveSideEffects()) {
455      // Non-volatile loads may be moved above a call with side effects if it
456      // does not write to memory and the load provably won't trap.
457      // FIXME: Writes to memory only matter if they may alias the pointer
458      // being loaded from.
459      if (CI->mayWriteToMemory() ||
460          !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
461                                       L->getAlignment()))
462        return false;
463    }
464  }
465
466  // Otherwise, if this is a side-effect free instruction, check to make sure
467  // that it does not use the return value of the call.  If it doesn't use the
468  // return value of the call, it must only use things that are defined before
469  // the call, or movable instructions between the call and the instruction
470  // itself.
471  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
472    if (I->getOperand(i) == CI)
473      return false;
474  return true;
475}
476
477/// Return true if the specified value is the same when the return would exit
478/// as it was when the initial iteration of the recursive function was executed.
479///
480/// We currently handle static constants and arguments that are not modified as
481/// part of the recursion.
482static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
483  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
484
485  // Check to see if this is an immutable argument, if so, the value
486  // will be available to initialize the accumulator.
487  if (Argument *Arg = dyn_cast<Argument>(V)) {
488    // Figure out which argument number this is...
489    unsigned ArgNo = 0;
490    Function *F = CI->getParent()->getParent();
491    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
492      ++ArgNo;
493
494    // If we are passing this argument into call as the corresponding
495    // argument operand, then the argument is dynamically constant.
496    // Otherwise, we cannot transform this function safely.
497    if (CI->getArgOperand(ArgNo) == Arg)
498      return true;
499  }
500
501  // Switch cases are always constant integers. If the value is being switched
502  // on and the return is only reachable from one of its cases, it's
503  // effectively constant.
504  if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
505    if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
506      if (SI->getCondition() == V)
507        return SI->getDefaultDest() != RI->getParent();
508
509  // Not a constant or immutable argument, we can't safely transform.
510  return false;
511}
512
513/// Check to see if the function containing the specified tail call consistently
514/// returns the same runtime-constant value at all exit points except for
515/// IgnoreRI. If so, return the returned value.
516static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
517  Function *F = CI->getParent()->getParent();
518  Value *ReturnedValue = nullptr;
519
520  for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
521    ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
522    if (RI == nullptr || RI == IgnoreRI) continue;
523
524    // We can only perform this transformation if the value returned is
525    // evaluatable at the start of the initial invocation of the function,
526    // instead of at the end of the evaluation.
527    //
528    Value *RetOp = RI->getOperand(0);
529    if (!isDynamicConstant(RetOp, CI, RI))
530      return nullptr;
531
532    if (ReturnedValue && RetOp != ReturnedValue)
533      return nullptr;     // Cannot transform if differing values are returned.
534    ReturnedValue = RetOp;
535  }
536  return ReturnedValue;
537}
538
539/// If the specified instruction can be transformed using accumulator recursion
540/// elimination, return the constant which is the start of the accumulator
541/// value.  Otherwise return null.
542Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
543                                                      CallInst *CI) {
544  if (!I->isAssociative() || !I->isCommutative()) return nullptr;
545  assert(I->getNumOperands() == 2 &&
546         "Associative/commutative operations should have 2 args!");
547
548  // Exactly one operand should be the result of the call instruction.
549  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
550      (I->getOperand(0) != CI && I->getOperand(1) != CI))
551    return nullptr;
552
553  // The only user of this instruction we allow is a single return instruction.
554  if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
555    return nullptr;
556
557  // Ok, now we have to check all of the other return instructions in this
558  // function.  If they return non-constants or differing values, then we cannot
559  // transform the function safely.
560  return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
561}
562
563static Instruction *FirstNonDbg(BasicBlock::iterator I) {
564  while (isa<DbgInfoIntrinsic>(I))
565    ++I;
566  return &*I;
567}
568
569CallInst*
570TailCallElim::FindTRECandidate(Instruction *TI,
571                               bool CannotTailCallElimCallsMarkedTail) {
572  BasicBlock *BB = TI->getParent();
573  Function *F = BB->getParent();
574
575  if (&BB->front() == TI) // Make sure there is something before the terminator.
576    return nullptr;
577
578  // Scan backwards from the return, checking to see if there is a tail call in
579  // this block.  If so, set CI to it.
580  CallInst *CI = nullptr;
581  BasicBlock::iterator BBI(TI);
582  while (true) {
583    CI = dyn_cast<CallInst>(BBI);
584    if (CI && CI->getCalledFunction() == F)
585      break;
586
587    if (BBI == BB->begin())
588      return nullptr;          // Didn't find a potential tail call.
589    --BBI;
590  }
591
592  // If this call is marked as a tail call, and if there are dynamic allocas in
593  // the function, we cannot perform this optimization.
594  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
595    return nullptr;
596
597  // As a special case, detect code like this:
598  //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
599  // and disable this xform in this case, because the code generator will
600  // lower the call to fabs into inline code.
601  if (BB == &F->getEntryBlock() &&
602      FirstNonDbg(BB->front().getIterator()) == CI &&
603      FirstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
604      !TTI->isLoweredToCall(CI->getCalledFunction())) {
605    // A single-block function with just a call and a return. Check that
606    // the arguments match.
607    CallSite::arg_iterator I = CallSite(CI).arg_begin(),
608                           E = CallSite(CI).arg_end();
609    Function::arg_iterator FI = F->arg_begin(),
610                           FE = F->arg_end();
611    for (; I != E && FI != FE; ++I, ++FI)
612      if (*I != &*FI) break;
613    if (I == E && FI == FE)
614      return nullptr;
615  }
616
617  return CI;
618}
619
620bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
621                                       BasicBlock *&OldEntry,
622                                       bool &TailCallsAreMarkedTail,
623                                       SmallVectorImpl<PHINode *> &ArgumentPHIs,
624                                       bool CannotTailCallElimCallsMarkedTail) {
625  // If we are introducing accumulator recursion to eliminate operations after
626  // the call instruction that are both associative and commutative, the initial
627  // value for the accumulator is placed in this variable.  If this value is set
628  // then we actually perform accumulator recursion elimination instead of
629  // simple tail recursion elimination.  If the operation is an LLVM instruction
630  // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
631  // we are handling the case when the return instruction returns a constant C
632  // which is different to the constant returned by other return instructions
633  // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
634  // special case of accumulator recursion, the operation being "return C".
635  Value *AccumulatorRecursionEliminationInitVal = nullptr;
636  Instruction *AccumulatorRecursionInstr = nullptr;
637
638  // Ok, we found a potential tail call.  We can currently only transform the
639  // tail call if all of the instructions between the call and the return are
640  // movable to above the call itself, leaving the call next to the return.
641  // Check that this is the case now.
642  BasicBlock::iterator BBI(CI);
643  for (++BBI; &*BBI != Ret; ++BBI) {
644    if (CanMoveAboveCall(&*BBI, CI)) continue;
645
646    // If we can't move the instruction above the call, it might be because it
647    // is an associative and commutative operation that could be transformed
648    // using accumulator recursion elimination.  Check to see if this is the
649    // case, and if so, remember the initial accumulator value for later.
650    if ((AccumulatorRecursionEliminationInitVal =
651             CanTransformAccumulatorRecursion(&*BBI, CI))) {
652      // Yes, this is accumulator recursion.  Remember which instruction
653      // accumulates.
654      AccumulatorRecursionInstr = &*BBI;
655    } else {
656      return false;   // Otherwise, we cannot eliminate the tail recursion!
657    }
658  }
659
660  // We can only transform call/return pairs that either ignore the return value
661  // of the call and return void, ignore the value of the call and return a
662  // constant, return the value returned by the tail call, or that are being
663  // accumulator recursion variable eliminated.
664  if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
665      !isa<UndefValue>(Ret->getReturnValue()) &&
666      AccumulatorRecursionEliminationInitVal == nullptr &&
667      !getCommonReturnValue(nullptr, CI)) {
668    // One case remains that we are able to handle: the current return
669    // instruction returns a constant, and all other return instructions
670    // return a different constant.
671    if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
672      return false; // Current return instruction does not return a constant.
673    // Check that all other return instructions return a common constant.  If
674    // so, record it in AccumulatorRecursionEliminationInitVal.
675    AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
676    if (!AccumulatorRecursionEliminationInitVal)
677      return false;
678  }
679
680  BasicBlock *BB = Ret->getParent();
681  Function *F = BB->getParent();
682
683  emitOptimizationRemark(F->getContext(), "tailcallelim", *F, CI->getDebugLoc(),
684                         "transforming tail recursion to loop");
685
686  // OK! We can transform this tail call.  If this is the first one found,
687  // create the new entry block, allowing us to branch back to the old entry.
688  if (!OldEntry) {
689    OldEntry = &F->getEntryBlock();
690    BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
691    NewEntry->takeName(OldEntry);
692    OldEntry->setName("tailrecurse");
693    BranchInst::Create(OldEntry, NewEntry);
694
695    // If this tail call is marked 'tail' and if there are any allocas in the
696    // entry block, move them up to the new entry block.
697    TailCallsAreMarkedTail = CI->isTailCall();
698    if (TailCallsAreMarkedTail)
699      // Move all fixed sized allocas from OldEntry to NewEntry.
700      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
701             NEBI = NewEntry->begin(); OEBI != E; )
702        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
703          if (isa<ConstantInt>(AI->getArraySize()))
704            AI->moveBefore(&*NEBI);
705
706    // Now that we have created a new block, which jumps to the entry
707    // block, insert a PHI node for each argument of the function.
708    // For now, we initialize each PHI to only have the real arguments
709    // which are passed in.
710    Instruction *InsertPos = &OldEntry->front();
711    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
712         I != E; ++I) {
713      PHINode *PN = PHINode::Create(I->getType(), 2,
714                                    I->getName() + ".tr", InsertPos);
715      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
716      PN->addIncoming(&*I, NewEntry);
717      ArgumentPHIs.push_back(PN);
718    }
719  }
720
721  // If this function has self recursive calls in the tail position where some
722  // are marked tail and some are not, only transform one flavor or another.  We
723  // have to choose whether we move allocas in the entry block to the new entry
724  // block or not, so we can't make a good choice for both.  NOTE: We could do
725  // slightly better here in the case that the function has no entry block
726  // allocas.
727  if (TailCallsAreMarkedTail && !CI->isTailCall())
728    return false;
729
730  // Ok, now that we know we have a pseudo-entry block WITH all of the
731  // required PHI nodes, add entries into the PHI node for the actual
732  // parameters passed into the tail-recursive call.
733  for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
734    ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
735
736  // If we are introducing an accumulator variable to eliminate the recursion,
737  // do so now.  Note that we _know_ that no subsequent tail recursion
738  // eliminations will happen on this function because of the way the
739  // accumulator recursion predicate is set up.
740  //
741  if (AccumulatorRecursionEliminationInitVal) {
742    Instruction *AccRecInstr = AccumulatorRecursionInstr;
743    // Start by inserting a new PHI node for the accumulator.
744    pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
745    PHINode *AccPN = PHINode::Create(
746        AccumulatorRecursionEliminationInitVal->getType(),
747        std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front());
748
749    // Loop over all of the predecessors of the tail recursion block.  For the
750    // real entry into the function we seed the PHI with the initial value,
751    // computed earlier.  For any other existing branches to this block (due to
752    // other tail recursions eliminated) the accumulator is not modified.
753    // Because we haven't added the branch in the current block to OldEntry yet,
754    // it will not show up as a predecessor.
755    for (pred_iterator PI = PB; PI != PE; ++PI) {
756      BasicBlock *P = *PI;
757      if (P == &F->getEntryBlock())
758        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
759      else
760        AccPN->addIncoming(AccPN, P);
761    }
762
763    if (AccRecInstr) {
764      // Add an incoming argument for the current block, which is computed by
765      // our associative and commutative accumulator instruction.
766      AccPN->addIncoming(AccRecInstr, BB);
767
768      // Next, rewrite the accumulator recursion instruction so that it does not
769      // use the result of the call anymore, instead, use the PHI node we just
770      // inserted.
771      AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
772    } else {
773      // Add an incoming argument for the current block, which is just the
774      // constant returned by the current return instruction.
775      AccPN->addIncoming(Ret->getReturnValue(), BB);
776    }
777
778    // Finally, rewrite any return instructions in the program to return the PHI
779    // node instead of the "initval" that they do currently.  This loop will
780    // actually rewrite the return value we are destroying, but that's ok.
781    for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
782      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
783        RI->setOperand(0, AccPN);
784    ++NumAccumAdded;
785  }
786
787  // Now that all of the PHI nodes are in place, remove the call and
788  // ret instructions, replacing them with an unconditional branch.
789  BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
790  NewBI->setDebugLoc(CI->getDebugLoc());
791
792  BB->getInstList().erase(Ret);  // Remove return.
793  BB->getInstList().erase(CI);   // Remove call.
794  ++NumEliminated;
795  return true;
796}
797
798bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
799                                       ReturnInst *Ret, BasicBlock *&OldEntry,
800                                       bool &TailCallsAreMarkedTail,
801                                       SmallVectorImpl<PHINode *> &ArgumentPHIs,
802                                       bool CannotTailCallElimCallsMarkedTail) {
803  bool Change = false;
804
805  // If the return block contains nothing but the return and PHI's,
806  // there might be an opportunity to duplicate the return in its
807  // predecessors and perform TRC there. Look for predecessors that end
808  // in unconditional branch and recursive call(s).
809  SmallVector<BranchInst*, 8> UncondBranchPreds;
810  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
811    BasicBlock *Pred = *PI;
812    TerminatorInst *PTI = Pred->getTerminator();
813    if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
814      if (BI->isUnconditional())
815        UncondBranchPreds.push_back(BI);
816  }
817
818  while (!UncondBranchPreds.empty()) {
819    BranchInst *BI = UncondBranchPreds.pop_back_val();
820    BasicBlock *Pred = BI->getParent();
821    if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
822      DEBUG(dbgs() << "FOLDING: " << *BB
823            << "INTO UNCOND BRANCH PRED: " << *Pred);
824      ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred);
825
826      // Cleanup: if all predecessors of BB have been eliminated by
827      // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
828      // because the ret instruction in there is still using a value which
829      // EliminateRecursiveTailCall will attempt to remove.
830      if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
831        BB->eraseFromParent();
832
833      EliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
834                                 ArgumentPHIs,
835                                 CannotTailCallElimCallsMarkedTail);
836      ++NumRetDuped;
837      Change = true;
838    }
839  }
840
841  return Change;
842}
843
844bool
845TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
846                                    bool &TailCallsAreMarkedTail,
847                                    SmallVectorImpl<PHINode *> &ArgumentPHIs,
848                                    bool CannotTailCallElimCallsMarkedTail) {
849  CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
850  if (!CI)
851    return false;
852
853  return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
854                                    ArgumentPHIs,
855                                    CannotTailCallElimCallsMarkedTail);
856}
857