1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15//  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18#include "llvm/Transforms/Vectorize.h"
19#include "llvm/ADT/MapVector.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/PostOrderIterator.h"
22#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Analysis/GlobalsModRef.h"
26#include "llvm/Analysis/AssumptionCache.h"
27#include "llvm/Analysis/CodeMetrics.h"
28#include "llvm/Analysis/LoopInfo.h"
29#include "llvm/Analysis/ScalarEvolution.h"
30#include "llvm/Analysis/ScalarEvolutionExpressions.h"
31#include "llvm/Analysis/TargetTransformInfo.h"
32#include "llvm/Analysis/ValueTracking.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/Dominators.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
38#include "llvm/IR/Module.h"
39#include "llvm/IR/NoFolder.h"
40#include "llvm/IR/Type.h"
41#include "llvm/IR/Value.h"
42#include "llvm/IR/Verifier.h"
43#include "llvm/Pass.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Analysis/VectorUtils.h"
48#include <algorithm>
49#include <map>
50#include <memory>
51
52using namespace llvm;
53
54#define SV_NAME "slp-vectorizer"
55#define DEBUG_TYPE "SLP"
56
57STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
58
59static cl::opt<int>
60    SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
61                     cl::desc("Only vectorize if you gain more than this "
62                              "number "));
63
64static cl::opt<bool>
65ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
66                   cl::desc("Attempt to vectorize horizontal reductions"));
67
68static cl::opt<bool> ShouldStartVectorizeHorAtStore(
69    "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
70    cl::desc(
71        "Attempt to vectorize horizontal reductions feeding into a store"));
72
73static cl::opt<int>
74MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
75    cl::desc("Attempt to vectorize for this register size in bits"));
76
77/// Limits the size of scheduling regions in a block.
78/// It avoid long compile times for _very_ large blocks where vector
79/// instructions are spread over a wide range.
80/// This limit is way higher than needed by real-world functions.
81static cl::opt<int>
82ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
83    cl::desc("Limit the size of the SLP scheduling region per block"));
84
85namespace {
86
87// FIXME: Set this via cl::opt to allow overriding.
88static const unsigned MinVecRegSize = 128;
89
90static const unsigned RecursionMaxDepth = 12;
91
92// Limit the number of alias checks. The limit is chosen so that
93// it has no negative effect on the llvm benchmarks.
94static const unsigned AliasedCheckLimit = 10;
95
96// Another limit for the alias checks: The maximum distance between load/store
97// instructions where alias checks are done.
98// This limit is useful for very large basic blocks.
99static const unsigned MaxMemDepDistance = 160;
100
101/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
102/// regions to be handled.
103static const int MinScheduleRegionSize = 16;
104
105/// \brief Predicate for the element types that the SLP vectorizer supports.
106///
107/// The most important thing to filter here are types which are invalid in LLVM
108/// vectors. We also filter target specific types which have absolutely no
109/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
110/// avoids spending time checking the cost model and realizing that they will
111/// be inevitably scalarized.
112static bool isValidElementType(Type *Ty) {
113  return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
114         !Ty->isPPC_FP128Ty();
115}
116
117/// \returns the parent basic block if all of the instructions in \p VL
118/// are in the same block or null otherwise.
119static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
120  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
121  if (!I0)
122    return nullptr;
123  BasicBlock *BB = I0->getParent();
124  for (int i = 1, e = VL.size(); i < e; i++) {
125    Instruction *I = dyn_cast<Instruction>(VL[i]);
126    if (!I)
127      return nullptr;
128
129    if (BB != I->getParent())
130      return nullptr;
131  }
132  return BB;
133}
134
135/// \returns True if all of the values in \p VL are constants.
136static bool allConstant(ArrayRef<Value *> VL) {
137  for (unsigned i = 0, e = VL.size(); i < e; ++i)
138    if (!isa<Constant>(VL[i]))
139      return false;
140  return true;
141}
142
143/// \returns True if all of the values in \p VL are identical.
144static bool isSplat(ArrayRef<Value *> VL) {
145  for (unsigned i = 1, e = VL.size(); i < e; ++i)
146    if (VL[i] != VL[0])
147      return false;
148  return true;
149}
150
151///\returns Opcode that can be clubbed with \p Op to create an alternate
152/// sequence which can later be merged as a ShuffleVector instruction.
153static unsigned getAltOpcode(unsigned Op) {
154  switch (Op) {
155  case Instruction::FAdd:
156    return Instruction::FSub;
157  case Instruction::FSub:
158    return Instruction::FAdd;
159  case Instruction::Add:
160    return Instruction::Sub;
161  case Instruction::Sub:
162    return Instruction::Add;
163  default:
164    return 0;
165  }
166}
167
168///\returns bool representing if Opcode \p Op can be part
169/// of an alternate sequence which can later be merged as
170/// a ShuffleVector instruction.
171static bool canCombineAsAltInst(unsigned Op) {
172  return Op == Instruction::FAdd || Op == Instruction::FSub ||
173         Op == Instruction::Sub || Op == Instruction::Add;
174}
175
176/// \returns ShuffleVector instruction if instructions in \p VL have
177///  alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
178/// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
179static unsigned isAltInst(ArrayRef<Value *> VL) {
180  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
181  unsigned Opcode = I0->getOpcode();
182  unsigned AltOpcode = getAltOpcode(Opcode);
183  for (int i = 1, e = VL.size(); i < e; i++) {
184    Instruction *I = dyn_cast<Instruction>(VL[i]);
185    if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode))
186      return 0;
187  }
188  return Instruction::ShuffleVector;
189}
190
191/// \returns The opcode if all of the Instructions in \p VL have the same
192/// opcode, or zero.
193static unsigned getSameOpcode(ArrayRef<Value *> VL) {
194  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
195  if (!I0)
196    return 0;
197  unsigned Opcode = I0->getOpcode();
198  for (int i = 1, e = VL.size(); i < e; i++) {
199    Instruction *I = dyn_cast<Instruction>(VL[i]);
200    if (!I || Opcode != I->getOpcode()) {
201      if (canCombineAsAltInst(Opcode) && i == 1)
202        return isAltInst(VL);
203      return 0;
204    }
205  }
206  return Opcode;
207}
208
209/// Get the intersection (logical and) of all of the potential IR flags
210/// of each scalar operation (VL) that will be converted into a vector (I).
211/// Flag set: NSW, NUW, exact, and all of fast-math.
212static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
213  if (auto *VecOp = dyn_cast<BinaryOperator>(I)) {
214    if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) {
215      // Intersection is initialized to the 0th scalar,
216      // so start counting from index '1'.
217      for (int i = 1, e = VL.size(); i < e; ++i) {
218        if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i]))
219          Intersection->andIRFlags(Scalar);
220      }
221      VecOp->copyIRFlags(Intersection);
222    }
223  }
224}
225
226/// \returns \p I after propagating metadata from \p VL.
227static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
228  Instruction *I0 = cast<Instruction>(VL[0]);
229  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
230  I0->getAllMetadataOtherThanDebugLoc(Metadata);
231
232  for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
233    unsigned Kind = Metadata[i].first;
234    MDNode *MD = Metadata[i].second;
235
236    for (int i = 1, e = VL.size(); MD && i != e; i++) {
237      Instruction *I = cast<Instruction>(VL[i]);
238      MDNode *IMD = I->getMetadata(Kind);
239
240      switch (Kind) {
241      default:
242        MD = nullptr; // Remove unknown metadata
243        break;
244      case LLVMContext::MD_tbaa:
245        MD = MDNode::getMostGenericTBAA(MD, IMD);
246        break;
247      case LLVMContext::MD_alias_scope:
248        MD = MDNode::getMostGenericAliasScope(MD, IMD);
249        break;
250      case LLVMContext::MD_noalias:
251        MD = MDNode::intersect(MD, IMD);
252        break;
253      case LLVMContext::MD_fpmath:
254        MD = MDNode::getMostGenericFPMath(MD, IMD);
255        break;
256      case LLVMContext::MD_nontemporal:
257        MD = MDNode::intersect(MD, IMD);
258        break;
259      }
260    }
261    I->setMetadata(Kind, MD);
262  }
263  return I;
264}
265
266/// \returns The type that all of the values in \p VL have or null if there
267/// are different types.
268static Type* getSameType(ArrayRef<Value *> VL) {
269  Type *Ty = VL[0]->getType();
270  for (int i = 1, e = VL.size(); i < e; i++)
271    if (VL[i]->getType() != Ty)
272      return nullptr;
273
274  return Ty;
275}
276
277/// \returns True if the ExtractElement instructions in VL can be vectorized
278/// to use the original vector.
279static bool CanReuseExtract(ArrayRef<Value *> VL) {
280  assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
281  // Check if all of the extracts come from the same vector and from the
282  // correct offset.
283  Value *VL0 = VL[0];
284  ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
285  Value *Vec = E0->getOperand(0);
286
287  // We have to extract from the same vector type.
288  unsigned NElts = Vec->getType()->getVectorNumElements();
289
290  if (NElts != VL.size())
291    return false;
292
293  // Check that all of the indices extract from the correct offset.
294  ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
295  if (!CI || CI->getZExtValue())
296    return false;
297
298  for (unsigned i = 1, e = VL.size(); i < e; ++i) {
299    ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
300    ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
301
302    if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
303      return false;
304  }
305
306  return true;
307}
308
309/// \returns True if in-tree use also needs extract. This refers to
310/// possible scalar operand in vectorized instruction.
311static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
312                                    TargetLibraryInfo *TLI) {
313
314  unsigned Opcode = UserInst->getOpcode();
315  switch (Opcode) {
316  case Instruction::Load: {
317    LoadInst *LI = cast<LoadInst>(UserInst);
318    return (LI->getPointerOperand() == Scalar);
319  }
320  case Instruction::Store: {
321    StoreInst *SI = cast<StoreInst>(UserInst);
322    return (SI->getPointerOperand() == Scalar);
323  }
324  case Instruction::Call: {
325    CallInst *CI = cast<CallInst>(UserInst);
326    Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
327    if (hasVectorInstrinsicScalarOpd(ID, 1)) {
328      return (CI->getArgOperand(1) == Scalar);
329    }
330  }
331  default:
332    return false;
333  }
334}
335
336/// \returns the AA location that is being access by the instruction.
337static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
338  if (StoreInst *SI = dyn_cast<StoreInst>(I))
339    return MemoryLocation::get(SI);
340  if (LoadInst *LI = dyn_cast<LoadInst>(I))
341    return MemoryLocation::get(LI);
342  return MemoryLocation();
343}
344
345/// \returns True if the instruction is not a volatile or atomic load/store.
346static bool isSimple(Instruction *I) {
347  if (LoadInst *LI = dyn_cast<LoadInst>(I))
348    return LI->isSimple();
349  if (StoreInst *SI = dyn_cast<StoreInst>(I))
350    return SI->isSimple();
351  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
352    return !MI->isVolatile();
353  return true;
354}
355
356/// Bottom Up SLP Vectorizer.
357class BoUpSLP {
358public:
359  typedef SmallVector<Value *, 8> ValueList;
360  typedef SmallVector<Instruction *, 16> InstrList;
361  typedef SmallPtrSet<Value *, 16> ValueSet;
362  typedef SmallVector<StoreInst *, 8> StoreList;
363
364  BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
365          TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
366          DominatorTree *Dt, AssumptionCache *AC)
367      : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func),
368        SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt),
369        Builder(Se->getContext()) {
370    CodeMetrics::collectEphemeralValues(F, AC, EphValues);
371  }
372
373  /// \brief Vectorize the tree that starts with the elements in \p VL.
374  /// Returns the vectorized root.
375  Value *vectorizeTree();
376
377  /// \returns the cost incurred by unwanted spills and fills, caused by
378  /// holding live values over call sites.
379  int getSpillCost();
380
381  /// \returns the vectorization cost of the subtree that starts at \p VL.
382  /// A negative number means that this is profitable.
383  int getTreeCost();
384
385  /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
386  /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
387  void buildTree(ArrayRef<Value *> Roots,
388                 ArrayRef<Value *> UserIgnoreLst = None);
389
390  /// Clear the internal data structures that are created by 'buildTree'.
391  void deleteTree() {
392    VectorizableTree.clear();
393    ScalarToTreeEntry.clear();
394    MustGather.clear();
395    ExternalUses.clear();
396    NumLoadsWantToKeepOrder = 0;
397    NumLoadsWantToChangeOrder = 0;
398    for (auto &Iter : BlocksSchedules) {
399      BlockScheduling *BS = Iter.second.get();
400      BS->clear();
401    }
402  }
403
404  /// \returns true if the memory operations A and B are consecutive.
405  bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL);
406
407  /// \brief Perform LICM and CSE on the newly generated gather sequences.
408  void optimizeGatherSequence();
409
410  /// \returns true if it is beneficial to reverse the vector order.
411  bool shouldReorder() const {
412    return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
413  }
414
415private:
416  struct TreeEntry;
417
418  /// \returns the cost of the vectorizable entry.
419  int getEntryCost(TreeEntry *E);
420
421  /// This is the recursive part of buildTree.
422  void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
423
424  /// Vectorize a single entry in the tree.
425  Value *vectorizeTree(TreeEntry *E);
426
427  /// Vectorize a single entry in the tree, starting in \p VL.
428  Value *vectorizeTree(ArrayRef<Value *> VL);
429
430  /// \returns the pointer to the vectorized value if \p VL is already
431  /// vectorized, or NULL. They may happen in cycles.
432  Value *alreadyVectorized(ArrayRef<Value *> VL) const;
433
434  /// \brief Take the pointer operand from the Load/Store instruction.
435  /// \returns NULL if this is not a valid Load/Store instruction.
436  static Value *getPointerOperand(Value *I);
437
438  /// \brief Take the address space operand from the Load/Store instruction.
439  /// \returns -1 if this is not a valid Load/Store instruction.
440  static unsigned getAddressSpaceOperand(Value *I);
441
442  /// \returns the scalarization cost for this type. Scalarization in this
443  /// context means the creation of vectors from a group of scalars.
444  int getGatherCost(Type *Ty);
445
446  /// \returns the scalarization cost for this list of values. Assuming that
447  /// this subtree gets vectorized, we may need to extract the values from the
448  /// roots. This method calculates the cost of extracting the values.
449  int getGatherCost(ArrayRef<Value *> VL);
450
451  /// \brief Set the Builder insert point to one after the last instruction in
452  /// the bundle
453  void setInsertPointAfterBundle(ArrayRef<Value *> VL);
454
455  /// \returns a vector from a collection of scalars in \p VL.
456  Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
457
458  /// \returns whether the VectorizableTree is fully vectorizable and will
459  /// be beneficial even the tree height is tiny.
460  bool isFullyVectorizableTinyTree();
461
462  /// \reorder commutative operands in alt shuffle if they result in
463  ///  vectorized code.
464  void reorderAltShuffleOperands(ArrayRef<Value *> VL,
465                                 SmallVectorImpl<Value *> &Left,
466                                 SmallVectorImpl<Value *> &Right);
467  /// \reorder commutative operands to get better probability of
468  /// generating vectorized code.
469  void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
470                                      SmallVectorImpl<Value *> &Left,
471                                      SmallVectorImpl<Value *> &Right);
472  struct TreeEntry {
473    TreeEntry() : Scalars(), VectorizedValue(nullptr),
474    NeedToGather(0) {}
475
476    /// \returns true if the scalars in VL are equal to this entry.
477    bool isSame(ArrayRef<Value *> VL) const {
478      assert(VL.size() == Scalars.size() && "Invalid size");
479      return std::equal(VL.begin(), VL.end(), Scalars.begin());
480    }
481
482    /// A vector of scalars.
483    ValueList Scalars;
484
485    /// The Scalars are vectorized into this value. It is initialized to Null.
486    Value *VectorizedValue;
487
488    /// Do we need to gather this sequence ?
489    bool NeedToGather;
490  };
491
492  /// Create a new VectorizableTree entry.
493  TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
494    VectorizableTree.emplace_back();
495    int idx = VectorizableTree.size() - 1;
496    TreeEntry *Last = &VectorizableTree[idx];
497    Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
498    Last->NeedToGather = !Vectorized;
499    if (Vectorized) {
500      for (int i = 0, e = VL.size(); i != e; ++i) {
501        assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
502        ScalarToTreeEntry[VL[i]] = idx;
503      }
504    } else {
505      MustGather.insert(VL.begin(), VL.end());
506    }
507    return Last;
508  }
509
510  /// -- Vectorization State --
511  /// Holds all of the tree entries.
512  std::vector<TreeEntry> VectorizableTree;
513
514  /// Maps a specific scalar to its tree entry.
515  SmallDenseMap<Value*, int> ScalarToTreeEntry;
516
517  /// A list of scalars that we found that we need to keep as scalars.
518  ValueSet MustGather;
519
520  /// This POD struct describes one external user in the vectorized tree.
521  struct ExternalUser {
522    ExternalUser (Value *S, llvm::User *U, int L) :
523      Scalar(S), User(U), Lane(L){}
524    // Which scalar in our function.
525    Value *Scalar;
526    // Which user that uses the scalar.
527    llvm::User *User;
528    // Which lane does the scalar belong to.
529    int Lane;
530  };
531  typedef SmallVector<ExternalUser, 16> UserList;
532
533  /// Checks if two instructions may access the same memory.
534  ///
535  /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
536  /// is invariant in the calling loop.
537  bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
538                 Instruction *Inst2) {
539
540    // First check if the result is already in the cache.
541    AliasCacheKey key = std::make_pair(Inst1, Inst2);
542    Optional<bool> &result = AliasCache[key];
543    if (result.hasValue()) {
544      return result.getValue();
545    }
546    MemoryLocation Loc2 = getLocation(Inst2, AA);
547    bool aliased = true;
548    if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
549      // Do the alias check.
550      aliased = AA->alias(Loc1, Loc2);
551    }
552    // Store the result in the cache.
553    result = aliased;
554    return aliased;
555  }
556
557  typedef std::pair<Instruction *, Instruction *> AliasCacheKey;
558
559  /// Cache for alias results.
560  /// TODO: consider moving this to the AliasAnalysis itself.
561  DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
562
563  /// Removes an instruction from its block and eventually deletes it.
564  /// It's like Instruction::eraseFromParent() except that the actual deletion
565  /// is delayed until BoUpSLP is destructed.
566  /// This is required to ensure that there are no incorrect collisions in the
567  /// AliasCache, which can happen if a new instruction is allocated at the
568  /// same address as a previously deleted instruction.
569  void eraseInstruction(Instruction *I) {
570    I->removeFromParent();
571    I->dropAllReferences();
572    DeletedInstructions.push_back(std::unique_ptr<Instruction>(I));
573  }
574
575  /// Temporary store for deleted instructions. Instructions will be deleted
576  /// eventually when the BoUpSLP is destructed.
577  SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions;
578
579  /// A list of values that need to extracted out of the tree.
580  /// This list holds pairs of (Internal Scalar : External User).
581  UserList ExternalUses;
582
583  /// Values used only by @llvm.assume calls.
584  SmallPtrSet<const Value *, 32> EphValues;
585
586  /// Holds all of the instructions that we gathered.
587  SetVector<Instruction *> GatherSeq;
588  /// A list of blocks that we are going to CSE.
589  SetVector<BasicBlock *> CSEBlocks;
590
591  /// Contains all scheduling relevant data for an instruction.
592  /// A ScheduleData either represents a single instruction or a member of an
593  /// instruction bundle (= a group of instructions which is combined into a
594  /// vector instruction).
595  struct ScheduleData {
596
597    // The initial value for the dependency counters. It means that the
598    // dependencies are not calculated yet.
599    enum { InvalidDeps = -1 };
600
601    ScheduleData()
602        : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
603          NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
604          Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
605          UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
606
607    void init(int BlockSchedulingRegionID) {
608      FirstInBundle = this;
609      NextInBundle = nullptr;
610      NextLoadStore = nullptr;
611      IsScheduled = false;
612      SchedulingRegionID = BlockSchedulingRegionID;
613      UnscheduledDepsInBundle = UnscheduledDeps;
614      clearDependencies();
615    }
616
617    /// Returns true if the dependency information has been calculated.
618    bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
619
620    /// Returns true for single instructions and for bundle representatives
621    /// (= the head of a bundle).
622    bool isSchedulingEntity() const { return FirstInBundle == this; }
623
624    /// Returns true if it represents an instruction bundle and not only a
625    /// single instruction.
626    bool isPartOfBundle() const {
627      return NextInBundle != nullptr || FirstInBundle != this;
628    }
629
630    /// Returns true if it is ready for scheduling, i.e. it has no more
631    /// unscheduled depending instructions/bundles.
632    bool isReady() const {
633      assert(isSchedulingEntity() &&
634             "can't consider non-scheduling entity for ready list");
635      return UnscheduledDepsInBundle == 0 && !IsScheduled;
636    }
637
638    /// Modifies the number of unscheduled dependencies, also updating it for
639    /// the whole bundle.
640    int incrementUnscheduledDeps(int Incr) {
641      UnscheduledDeps += Incr;
642      return FirstInBundle->UnscheduledDepsInBundle += Incr;
643    }
644
645    /// Sets the number of unscheduled dependencies to the number of
646    /// dependencies.
647    void resetUnscheduledDeps() {
648      incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
649    }
650
651    /// Clears all dependency information.
652    void clearDependencies() {
653      Dependencies = InvalidDeps;
654      resetUnscheduledDeps();
655      MemoryDependencies.clear();
656    }
657
658    void dump(raw_ostream &os) const {
659      if (!isSchedulingEntity()) {
660        os << "/ " << *Inst;
661      } else if (NextInBundle) {
662        os << '[' << *Inst;
663        ScheduleData *SD = NextInBundle;
664        while (SD) {
665          os << ';' << *SD->Inst;
666          SD = SD->NextInBundle;
667        }
668        os << ']';
669      } else {
670        os << *Inst;
671      }
672    }
673
674    Instruction *Inst;
675
676    /// Points to the head in an instruction bundle (and always to this for
677    /// single instructions).
678    ScheduleData *FirstInBundle;
679
680    /// Single linked list of all instructions in a bundle. Null if it is a
681    /// single instruction.
682    ScheduleData *NextInBundle;
683
684    /// Single linked list of all memory instructions (e.g. load, store, call)
685    /// in the block - until the end of the scheduling region.
686    ScheduleData *NextLoadStore;
687
688    /// The dependent memory instructions.
689    /// This list is derived on demand in calculateDependencies().
690    SmallVector<ScheduleData *, 4> MemoryDependencies;
691
692    /// This ScheduleData is in the current scheduling region if this matches
693    /// the current SchedulingRegionID of BlockScheduling.
694    int SchedulingRegionID;
695
696    /// Used for getting a "good" final ordering of instructions.
697    int SchedulingPriority;
698
699    /// The number of dependencies. Constitutes of the number of users of the
700    /// instruction plus the number of dependent memory instructions (if any).
701    /// This value is calculated on demand.
702    /// If InvalidDeps, the number of dependencies is not calculated yet.
703    ///
704    int Dependencies;
705
706    /// The number of dependencies minus the number of dependencies of scheduled
707    /// instructions. As soon as this is zero, the instruction/bundle gets ready
708    /// for scheduling.
709    /// Note that this is negative as long as Dependencies is not calculated.
710    int UnscheduledDeps;
711
712    /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
713    /// single instructions.
714    int UnscheduledDepsInBundle;
715
716    /// True if this instruction is scheduled (or considered as scheduled in the
717    /// dry-run).
718    bool IsScheduled;
719  };
720
721#ifndef NDEBUG
722  friend raw_ostream &operator<<(raw_ostream &os,
723                                 const BoUpSLP::ScheduleData &SD);
724#endif
725
726  /// Contains all scheduling data for a basic block.
727  ///
728  struct BlockScheduling {
729
730    BlockScheduling(BasicBlock *BB)
731        : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
732          ScheduleStart(nullptr), ScheduleEnd(nullptr),
733          FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
734          ScheduleRegionSize(0),
735          ScheduleRegionSizeLimit(ScheduleRegionSizeBudget),
736          // Make sure that the initial SchedulingRegionID is greater than the
737          // initial SchedulingRegionID in ScheduleData (which is 0).
738          SchedulingRegionID(1) {}
739
740    void clear() {
741      ReadyInsts.clear();
742      ScheduleStart = nullptr;
743      ScheduleEnd = nullptr;
744      FirstLoadStoreInRegion = nullptr;
745      LastLoadStoreInRegion = nullptr;
746
747      // Reduce the maximum schedule region size by the size of the
748      // previous scheduling run.
749      ScheduleRegionSizeLimit -= ScheduleRegionSize;
750      if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
751        ScheduleRegionSizeLimit = MinScheduleRegionSize;
752      ScheduleRegionSize = 0;
753
754      // Make a new scheduling region, i.e. all existing ScheduleData is not
755      // in the new region yet.
756      ++SchedulingRegionID;
757    }
758
759    ScheduleData *getScheduleData(Value *V) {
760      ScheduleData *SD = ScheduleDataMap[V];
761      if (SD && SD->SchedulingRegionID == SchedulingRegionID)
762        return SD;
763      return nullptr;
764    }
765
766    bool isInSchedulingRegion(ScheduleData *SD) {
767      return SD->SchedulingRegionID == SchedulingRegionID;
768    }
769
770    /// Marks an instruction as scheduled and puts all dependent ready
771    /// instructions into the ready-list.
772    template <typename ReadyListType>
773    void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
774      SD->IsScheduled = true;
775      DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
776
777      ScheduleData *BundleMember = SD;
778      while (BundleMember) {
779        // Handle the def-use chain dependencies.
780        for (Use &U : BundleMember->Inst->operands()) {
781          ScheduleData *OpDef = getScheduleData(U.get());
782          if (OpDef && OpDef->hasValidDependencies() &&
783              OpDef->incrementUnscheduledDeps(-1) == 0) {
784            // There are no more unscheduled dependencies after decrementing,
785            // so we can put the dependent instruction into the ready list.
786            ScheduleData *DepBundle = OpDef->FirstInBundle;
787            assert(!DepBundle->IsScheduled &&
788                   "already scheduled bundle gets ready");
789            ReadyList.insert(DepBundle);
790            DEBUG(dbgs() << "SLP:    gets ready (def): " << *DepBundle << "\n");
791          }
792        }
793        // Handle the memory dependencies.
794        for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
795          if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
796            // There are no more unscheduled dependencies after decrementing,
797            // so we can put the dependent instruction into the ready list.
798            ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
799            assert(!DepBundle->IsScheduled &&
800                   "already scheduled bundle gets ready");
801            ReadyList.insert(DepBundle);
802            DEBUG(dbgs() << "SLP:    gets ready (mem): " << *DepBundle << "\n");
803          }
804        }
805        BundleMember = BundleMember->NextInBundle;
806      }
807    }
808
809    /// Put all instructions into the ReadyList which are ready for scheduling.
810    template <typename ReadyListType>
811    void initialFillReadyList(ReadyListType &ReadyList) {
812      for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
813        ScheduleData *SD = getScheduleData(I);
814        if (SD->isSchedulingEntity() && SD->isReady()) {
815          ReadyList.insert(SD);
816          DEBUG(dbgs() << "SLP:    initially in ready list: " << *I << "\n");
817        }
818      }
819    }
820
821    /// Checks if a bundle of instructions can be scheduled, i.e. has no
822    /// cyclic dependencies. This is only a dry-run, no instructions are
823    /// actually moved at this stage.
824    bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP);
825
826    /// Un-bundles a group of instructions.
827    void cancelScheduling(ArrayRef<Value *> VL);
828
829    /// Extends the scheduling region so that V is inside the region.
830    /// \returns true if the region size is within the limit.
831    bool extendSchedulingRegion(Value *V);
832
833    /// Initialize the ScheduleData structures for new instructions in the
834    /// scheduling region.
835    void initScheduleData(Instruction *FromI, Instruction *ToI,
836                          ScheduleData *PrevLoadStore,
837                          ScheduleData *NextLoadStore);
838
839    /// Updates the dependency information of a bundle and of all instructions/
840    /// bundles which depend on the original bundle.
841    void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
842                               BoUpSLP *SLP);
843
844    /// Sets all instruction in the scheduling region to un-scheduled.
845    void resetSchedule();
846
847    BasicBlock *BB;
848
849    /// Simple memory allocation for ScheduleData.
850    std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
851
852    /// The size of a ScheduleData array in ScheduleDataChunks.
853    int ChunkSize;
854
855    /// The allocator position in the current chunk, which is the last entry
856    /// of ScheduleDataChunks.
857    int ChunkPos;
858
859    /// Attaches ScheduleData to Instruction.
860    /// Note that the mapping survives during all vectorization iterations, i.e.
861    /// ScheduleData structures are recycled.
862    DenseMap<Value *, ScheduleData *> ScheduleDataMap;
863
864    struct ReadyList : SmallVector<ScheduleData *, 8> {
865      void insert(ScheduleData *SD) { push_back(SD); }
866    };
867
868    /// The ready-list for scheduling (only used for the dry-run).
869    ReadyList ReadyInsts;
870
871    /// The first instruction of the scheduling region.
872    Instruction *ScheduleStart;
873
874    /// The first instruction _after_ the scheduling region.
875    Instruction *ScheduleEnd;
876
877    /// The first memory accessing instruction in the scheduling region
878    /// (can be null).
879    ScheduleData *FirstLoadStoreInRegion;
880
881    /// The last memory accessing instruction in the scheduling region
882    /// (can be null).
883    ScheduleData *LastLoadStoreInRegion;
884
885    /// The current size of the scheduling region.
886    int ScheduleRegionSize;
887
888    /// The maximum size allowed for the scheduling region.
889    int ScheduleRegionSizeLimit;
890
891    /// The ID of the scheduling region. For a new vectorization iteration this
892    /// is incremented which "removes" all ScheduleData from the region.
893    int SchedulingRegionID;
894  };
895
896  /// Attaches the BlockScheduling structures to basic blocks.
897  MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
898
899  /// Performs the "real" scheduling. Done before vectorization is actually
900  /// performed in a basic block.
901  void scheduleBlock(BlockScheduling *BS);
902
903  /// List of users to ignore during scheduling and that don't need extracting.
904  ArrayRef<Value *> UserIgnoreList;
905
906  // Number of load-bundles, which contain consecutive loads.
907  int NumLoadsWantToKeepOrder;
908
909  // Number of load-bundles of size 2, which are consecutive loads if reversed.
910  int NumLoadsWantToChangeOrder;
911
912  // Analysis and block reference.
913  Function *F;
914  ScalarEvolution *SE;
915  TargetTransformInfo *TTI;
916  TargetLibraryInfo *TLI;
917  AliasAnalysis *AA;
918  LoopInfo *LI;
919  DominatorTree *DT;
920  /// Instruction builder to construct the vectorized tree.
921  IRBuilder<> Builder;
922};
923
924#ifndef NDEBUG
925raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) {
926  SD.dump(os);
927  return os;
928}
929#endif
930
931void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
932                        ArrayRef<Value *> UserIgnoreLst) {
933  deleteTree();
934  UserIgnoreList = UserIgnoreLst;
935  if (!getSameType(Roots))
936    return;
937  buildTree_rec(Roots, 0);
938
939  // Collect the values that we need to extract from the tree.
940  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
941    TreeEntry *Entry = &VectorizableTree[EIdx];
942
943    // For each lane:
944    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
945      Value *Scalar = Entry->Scalars[Lane];
946
947      // No need to handle users of gathered values.
948      if (Entry->NeedToGather)
949        continue;
950
951      for (User *U : Scalar->users()) {
952        DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
953
954        Instruction *UserInst = dyn_cast<Instruction>(U);
955        if (!UserInst)
956          continue;
957
958        // Skip in-tree scalars that become vectors
959        if (ScalarToTreeEntry.count(U)) {
960          int Idx = ScalarToTreeEntry[U];
961          TreeEntry *UseEntry = &VectorizableTree[Idx];
962          Value *UseScalar = UseEntry->Scalars[0];
963          // Some in-tree scalars will remain as scalar in vectorized
964          // instructions. If that is the case, the one in Lane 0 will
965          // be used.
966          if (UseScalar != U ||
967              !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
968            DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
969                         << ".\n");
970            assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
971            continue;
972          }
973        }
974
975        // Ignore users in the user ignore list.
976        if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
977            UserIgnoreList.end())
978          continue;
979
980        DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
981              Lane << " from " << *Scalar << ".\n");
982        ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
983      }
984    }
985  }
986}
987
988
989void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
990  bool SameTy = getSameType(VL); (void)SameTy;
991  bool isAltShuffle = false;
992  assert(SameTy && "Invalid types!");
993
994  if (Depth == RecursionMaxDepth) {
995    DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
996    newTreeEntry(VL, false);
997    return;
998  }
999
1000  // Don't handle vectors.
1001  if (VL[0]->getType()->isVectorTy()) {
1002    DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
1003    newTreeEntry(VL, false);
1004    return;
1005  }
1006
1007  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1008    if (SI->getValueOperand()->getType()->isVectorTy()) {
1009      DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
1010      newTreeEntry(VL, false);
1011      return;
1012    }
1013  unsigned Opcode = getSameOpcode(VL);
1014
1015  // Check that this shuffle vector refers to the alternate
1016  // sequence of opcodes.
1017  if (Opcode == Instruction::ShuffleVector) {
1018    Instruction *I0 = dyn_cast<Instruction>(VL[0]);
1019    unsigned Op = I0->getOpcode();
1020    if (Op != Instruction::ShuffleVector)
1021      isAltShuffle = true;
1022  }
1023
1024  // If all of the operands are identical or constant we have a simple solution.
1025  if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) {
1026    DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
1027    newTreeEntry(VL, false);
1028    return;
1029  }
1030
1031  // We now know that this is a vector of instructions of the same type from
1032  // the same block.
1033
1034  // Don't vectorize ephemeral values.
1035  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1036    if (EphValues.count(VL[i])) {
1037      DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1038            ") is ephemeral.\n");
1039      newTreeEntry(VL, false);
1040      return;
1041    }
1042  }
1043
1044  // Check if this is a duplicate of another entry.
1045  if (ScalarToTreeEntry.count(VL[0])) {
1046    int Idx = ScalarToTreeEntry[VL[0]];
1047    TreeEntry *E = &VectorizableTree[Idx];
1048    for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1049      DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
1050      if (E->Scalars[i] != VL[i]) {
1051        DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
1052        newTreeEntry(VL, false);
1053        return;
1054      }
1055    }
1056    DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
1057    return;
1058  }
1059
1060  // Check that none of the instructions in the bundle are already in the tree.
1061  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1062    if (ScalarToTreeEntry.count(VL[i])) {
1063      DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1064            ") is already in tree.\n");
1065      newTreeEntry(VL, false);
1066      return;
1067    }
1068  }
1069
1070  // If any of the scalars is marked as a value that needs to stay scalar then
1071  // we need to gather the scalars.
1072  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1073    if (MustGather.count(VL[i])) {
1074      DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
1075      newTreeEntry(VL, false);
1076      return;
1077    }
1078  }
1079
1080  // Check that all of the users of the scalars that we want to vectorize are
1081  // schedulable.
1082  Instruction *VL0 = cast<Instruction>(VL[0]);
1083  BasicBlock *BB = cast<Instruction>(VL0)->getParent();
1084
1085  if (!DT->isReachableFromEntry(BB)) {
1086    // Don't go into unreachable blocks. They may contain instructions with
1087    // dependency cycles which confuse the final scheduling.
1088    DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
1089    newTreeEntry(VL, false);
1090    return;
1091  }
1092
1093  // Check that every instructions appears once in this bundle.
1094  for (unsigned i = 0, e = VL.size(); i < e; ++i)
1095    for (unsigned j = i+1; j < e; ++j)
1096      if (VL[i] == VL[j]) {
1097        DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
1098        newTreeEntry(VL, false);
1099        return;
1100      }
1101
1102  auto &BSRef = BlocksSchedules[BB];
1103  if (!BSRef) {
1104    BSRef = llvm::make_unique<BlockScheduling>(BB);
1105  }
1106  BlockScheduling &BS = *BSRef.get();
1107
1108  if (!BS.tryScheduleBundle(VL, this)) {
1109    DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
1110    assert((!BS.getScheduleData(VL[0]) ||
1111            !BS.getScheduleData(VL[0])->isPartOfBundle()) &&
1112           "tryScheduleBundle should cancelScheduling on failure");
1113    newTreeEntry(VL, false);
1114    return;
1115  }
1116  DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
1117
1118  switch (Opcode) {
1119    case Instruction::PHI: {
1120      PHINode *PH = dyn_cast<PHINode>(VL0);
1121
1122      // Check for terminator values (e.g. invoke).
1123      for (unsigned j = 0; j < VL.size(); ++j)
1124        for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1125          TerminatorInst *Term = dyn_cast<TerminatorInst>(
1126              cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
1127          if (Term) {
1128            DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
1129            BS.cancelScheduling(VL);
1130            newTreeEntry(VL, false);
1131            return;
1132          }
1133        }
1134
1135      newTreeEntry(VL, true);
1136      DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
1137
1138      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1139        ValueList Operands;
1140        // Prepare the operand vector.
1141        for (unsigned j = 0; j < VL.size(); ++j)
1142          Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock(
1143              PH->getIncomingBlock(i)));
1144
1145        buildTree_rec(Operands, Depth + 1);
1146      }
1147      return;
1148    }
1149    case Instruction::ExtractElement: {
1150      bool Reuse = CanReuseExtract(VL);
1151      if (Reuse) {
1152        DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
1153      } else {
1154        BS.cancelScheduling(VL);
1155      }
1156      newTreeEntry(VL, Reuse);
1157      return;
1158    }
1159    case Instruction::Load: {
1160      // Check that a vectorized load would load the same memory as a scalar
1161      // load.
1162      // For example we don't want vectorize loads that are smaller than 8 bit.
1163      // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats
1164      // loading/storing it as an i8 struct. If we vectorize loads/stores from
1165      // such a struct we read/write packed bits disagreeing with the
1166      // unvectorized version.
1167      const DataLayout &DL = F->getParent()->getDataLayout();
1168      Type *ScalarTy = VL[0]->getType();
1169
1170      if (DL.getTypeSizeInBits(ScalarTy) !=
1171          DL.getTypeAllocSizeInBits(ScalarTy)) {
1172        BS.cancelScheduling(VL);
1173        newTreeEntry(VL, false);
1174        DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
1175        return;
1176      }
1177      // Check if the loads are consecutive or of we need to swizzle them.
1178      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
1179        LoadInst *L = cast<LoadInst>(VL[i]);
1180        if (!L->isSimple()) {
1181          BS.cancelScheduling(VL);
1182          newTreeEntry(VL, false);
1183          DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
1184          return;
1185        }
1186
1187        if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
1188          if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], DL)) {
1189            ++NumLoadsWantToChangeOrder;
1190          }
1191          BS.cancelScheduling(VL);
1192          newTreeEntry(VL, false);
1193          DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
1194          return;
1195        }
1196      }
1197      ++NumLoadsWantToKeepOrder;
1198      newTreeEntry(VL, true);
1199      DEBUG(dbgs() << "SLP: added a vector of loads.\n");
1200      return;
1201    }
1202    case Instruction::ZExt:
1203    case Instruction::SExt:
1204    case Instruction::FPToUI:
1205    case Instruction::FPToSI:
1206    case Instruction::FPExt:
1207    case Instruction::PtrToInt:
1208    case Instruction::IntToPtr:
1209    case Instruction::SIToFP:
1210    case Instruction::UIToFP:
1211    case Instruction::Trunc:
1212    case Instruction::FPTrunc:
1213    case Instruction::BitCast: {
1214      Type *SrcTy = VL0->getOperand(0)->getType();
1215      for (unsigned i = 0; i < VL.size(); ++i) {
1216        Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
1217        if (Ty != SrcTy || !isValidElementType(Ty)) {
1218          BS.cancelScheduling(VL);
1219          newTreeEntry(VL, false);
1220          DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
1221          return;
1222        }
1223      }
1224      newTreeEntry(VL, true);
1225      DEBUG(dbgs() << "SLP: added a vector of casts.\n");
1226
1227      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1228        ValueList Operands;
1229        // Prepare the operand vector.
1230        for (unsigned j = 0; j < VL.size(); ++j)
1231          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1232
1233        buildTree_rec(Operands, Depth+1);
1234      }
1235      return;
1236    }
1237    case Instruction::ICmp:
1238    case Instruction::FCmp: {
1239      // Check that all of the compares have the same predicate.
1240      CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
1241      Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
1242      for (unsigned i = 1, e = VL.size(); i < e; ++i) {
1243        CmpInst *Cmp = cast<CmpInst>(VL[i]);
1244        if (Cmp->getPredicate() != P0 ||
1245            Cmp->getOperand(0)->getType() != ComparedTy) {
1246          BS.cancelScheduling(VL);
1247          newTreeEntry(VL, false);
1248          DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
1249          return;
1250        }
1251      }
1252
1253      newTreeEntry(VL, true);
1254      DEBUG(dbgs() << "SLP: added a vector of compares.\n");
1255
1256      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1257        ValueList Operands;
1258        // Prepare the operand vector.
1259        for (unsigned j = 0; j < VL.size(); ++j)
1260          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1261
1262        buildTree_rec(Operands, Depth+1);
1263      }
1264      return;
1265    }
1266    case Instruction::Select:
1267    case Instruction::Add:
1268    case Instruction::FAdd:
1269    case Instruction::Sub:
1270    case Instruction::FSub:
1271    case Instruction::Mul:
1272    case Instruction::FMul:
1273    case Instruction::UDiv:
1274    case Instruction::SDiv:
1275    case Instruction::FDiv:
1276    case Instruction::URem:
1277    case Instruction::SRem:
1278    case Instruction::FRem:
1279    case Instruction::Shl:
1280    case Instruction::LShr:
1281    case Instruction::AShr:
1282    case Instruction::And:
1283    case Instruction::Or:
1284    case Instruction::Xor: {
1285      newTreeEntry(VL, true);
1286      DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
1287
1288      // Sort operands of the instructions so that each side is more likely to
1289      // have the same opcode.
1290      if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
1291        ValueList Left, Right;
1292        reorderInputsAccordingToOpcode(VL, Left, Right);
1293        buildTree_rec(Left, Depth + 1);
1294        buildTree_rec(Right, Depth + 1);
1295        return;
1296      }
1297
1298      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1299        ValueList Operands;
1300        // Prepare the operand vector.
1301        for (unsigned j = 0; j < VL.size(); ++j)
1302          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1303
1304        buildTree_rec(Operands, Depth+1);
1305      }
1306      return;
1307    }
1308    case Instruction::GetElementPtr: {
1309      // We don't combine GEPs with complicated (nested) indexing.
1310      for (unsigned j = 0; j < VL.size(); ++j) {
1311        if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
1312          DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
1313          BS.cancelScheduling(VL);
1314          newTreeEntry(VL, false);
1315          return;
1316        }
1317      }
1318
1319      // We can't combine several GEPs into one vector if they operate on
1320      // different types.
1321      Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType();
1322      for (unsigned j = 0; j < VL.size(); ++j) {
1323        Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
1324        if (Ty0 != CurTy) {
1325          DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
1326          BS.cancelScheduling(VL);
1327          newTreeEntry(VL, false);
1328          return;
1329        }
1330      }
1331
1332      // We don't combine GEPs with non-constant indexes.
1333      for (unsigned j = 0; j < VL.size(); ++j) {
1334        auto Op = cast<Instruction>(VL[j])->getOperand(1);
1335        if (!isa<ConstantInt>(Op)) {
1336          DEBUG(
1337              dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
1338          BS.cancelScheduling(VL);
1339          newTreeEntry(VL, false);
1340          return;
1341        }
1342      }
1343
1344      newTreeEntry(VL, true);
1345      DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
1346      for (unsigned i = 0, e = 2; i < e; ++i) {
1347        ValueList Operands;
1348        // Prepare the operand vector.
1349        for (unsigned j = 0; j < VL.size(); ++j)
1350          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1351
1352        buildTree_rec(Operands, Depth + 1);
1353      }
1354      return;
1355    }
1356    case Instruction::Store: {
1357      const DataLayout &DL = F->getParent()->getDataLayout();
1358      // Check if the stores are consecutive or of we need to swizzle them.
1359      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
1360        if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
1361          BS.cancelScheduling(VL);
1362          newTreeEntry(VL, false);
1363          DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
1364          return;
1365        }
1366
1367      newTreeEntry(VL, true);
1368      DEBUG(dbgs() << "SLP: added a vector of stores.\n");
1369
1370      ValueList Operands;
1371      for (unsigned j = 0; j < VL.size(); ++j)
1372        Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
1373
1374      buildTree_rec(Operands, Depth + 1);
1375      return;
1376    }
1377    case Instruction::Call: {
1378      // Check if the calls are all to the same vectorizable intrinsic.
1379      CallInst *CI = cast<CallInst>(VL[0]);
1380      // Check if this is an Intrinsic call or something that can be
1381      // represented by an intrinsic call
1382      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
1383      if (!isTriviallyVectorizable(ID)) {
1384        BS.cancelScheduling(VL);
1385        newTreeEntry(VL, false);
1386        DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
1387        return;
1388      }
1389      Function *Int = CI->getCalledFunction();
1390      Value *A1I = nullptr;
1391      if (hasVectorInstrinsicScalarOpd(ID, 1))
1392        A1I = CI->getArgOperand(1);
1393      for (unsigned i = 1, e = VL.size(); i != e; ++i) {
1394        CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
1395        if (!CI2 || CI2->getCalledFunction() != Int ||
1396            getIntrinsicIDForCall(CI2, TLI) != ID) {
1397          BS.cancelScheduling(VL);
1398          newTreeEntry(VL, false);
1399          DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
1400                       << "\n");
1401          return;
1402        }
1403        // ctlz,cttz and powi are special intrinsics whose second argument
1404        // should be same in order for them to be vectorized.
1405        if (hasVectorInstrinsicScalarOpd(ID, 1)) {
1406          Value *A1J = CI2->getArgOperand(1);
1407          if (A1I != A1J) {
1408            BS.cancelScheduling(VL);
1409            newTreeEntry(VL, false);
1410            DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
1411                         << " argument "<< A1I<<"!=" << A1J
1412                         << "\n");
1413            return;
1414          }
1415        }
1416      }
1417
1418      newTreeEntry(VL, true);
1419      for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
1420        ValueList Operands;
1421        // Prepare the operand vector.
1422        for (unsigned j = 0; j < VL.size(); ++j) {
1423          CallInst *CI2 = dyn_cast<CallInst>(VL[j]);
1424          Operands.push_back(CI2->getArgOperand(i));
1425        }
1426        buildTree_rec(Operands, Depth + 1);
1427      }
1428      return;
1429    }
1430    case Instruction::ShuffleVector: {
1431      // If this is not an alternate sequence of opcode like add-sub
1432      // then do not vectorize this instruction.
1433      if (!isAltShuffle) {
1434        BS.cancelScheduling(VL);
1435        newTreeEntry(VL, false);
1436        DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
1437        return;
1438      }
1439      newTreeEntry(VL, true);
1440      DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
1441
1442      // Reorder operands if reordering would enable vectorization.
1443      if (isa<BinaryOperator>(VL0)) {
1444        ValueList Left, Right;
1445        reorderAltShuffleOperands(VL, Left, Right);
1446        buildTree_rec(Left, Depth + 1);
1447        buildTree_rec(Right, Depth + 1);
1448        return;
1449      }
1450
1451      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1452        ValueList Operands;
1453        // Prepare the operand vector.
1454        for (unsigned j = 0; j < VL.size(); ++j)
1455          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1456
1457        buildTree_rec(Operands, Depth + 1);
1458      }
1459      return;
1460    }
1461    default:
1462      BS.cancelScheduling(VL);
1463      newTreeEntry(VL, false);
1464      DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
1465      return;
1466  }
1467}
1468
1469int BoUpSLP::getEntryCost(TreeEntry *E) {
1470  ArrayRef<Value*> VL = E->Scalars;
1471
1472  Type *ScalarTy = VL[0]->getType();
1473  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1474    ScalarTy = SI->getValueOperand()->getType();
1475  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1476
1477  if (E->NeedToGather) {
1478    if (allConstant(VL))
1479      return 0;
1480    if (isSplat(VL)) {
1481      return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
1482    }
1483    return getGatherCost(E->Scalars);
1484  }
1485  unsigned Opcode = getSameOpcode(VL);
1486  assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL");
1487  Instruction *VL0 = cast<Instruction>(VL[0]);
1488  switch (Opcode) {
1489    case Instruction::PHI: {
1490      return 0;
1491    }
1492    case Instruction::ExtractElement: {
1493      if (CanReuseExtract(VL)) {
1494        int DeadCost = 0;
1495        for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1496          ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
1497          if (E->hasOneUse())
1498            // Take credit for instruction that will become dead.
1499            DeadCost +=
1500                TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
1501        }
1502        return -DeadCost;
1503      }
1504      return getGatherCost(VecTy);
1505    }
1506    case Instruction::ZExt:
1507    case Instruction::SExt:
1508    case Instruction::FPToUI:
1509    case Instruction::FPToSI:
1510    case Instruction::FPExt:
1511    case Instruction::PtrToInt:
1512    case Instruction::IntToPtr:
1513    case Instruction::SIToFP:
1514    case Instruction::UIToFP:
1515    case Instruction::Trunc:
1516    case Instruction::FPTrunc:
1517    case Instruction::BitCast: {
1518      Type *SrcTy = VL0->getOperand(0)->getType();
1519
1520      // Calculate the cost of this instruction.
1521      int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
1522                                                         VL0->getType(), SrcTy);
1523
1524      VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
1525      int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
1526      return VecCost - ScalarCost;
1527    }
1528    case Instruction::FCmp:
1529    case Instruction::ICmp:
1530    case Instruction::Select:
1531    case Instruction::Add:
1532    case Instruction::FAdd:
1533    case Instruction::Sub:
1534    case Instruction::FSub:
1535    case Instruction::Mul:
1536    case Instruction::FMul:
1537    case Instruction::UDiv:
1538    case Instruction::SDiv:
1539    case Instruction::FDiv:
1540    case Instruction::URem:
1541    case Instruction::SRem:
1542    case Instruction::FRem:
1543    case Instruction::Shl:
1544    case Instruction::LShr:
1545    case Instruction::AShr:
1546    case Instruction::And:
1547    case Instruction::Or:
1548    case Instruction::Xor: {
1549      // Calculate the cost of this instruction.
1550      int ScalarCost = 0;
1551      int VecCost = 0;
1552      if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
1553          Opcode == Instruction::Select) {
1554        VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
1555        ScalarCost = VecTy->getNumElements() *
1556        TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
1557        VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
1558      } else {
1559        // Certain instructions can be cheaper to vectorize if they have a
1560        // constant second vector operand.
1561        TargetTransformInfo::OperandValueKind Op1VK =
1562            TargetTransformInfo::OK_AnyValue;
1563        TargetTransformInfo::OperandValueKind Op2VK =
1564            TargetTransformInfo::OK_UniformConstantValue;
1565        TargetTransformInfo::OperandValueProperties Op1VP =
1566            TargetTransformInfo::OP_None;
1567        TargetTransformInfo::OperandValueProperties Op2VP =
1568            TargetTransformInfo::OP_None;
1569
1570        // If all operands are exactly the same ConstantInt then set the
1571        // operand kind to OK_UniformConstantValue.
1572        // If instead not all operands are constants, then set the operand kind
1573        // to OK_AnyValue. If all operands are constants but not the same,
1574        // then set the operand kind to OK_NonUniformConstantValue.
1575        ConstantInt *CInt = nullptr;
1576        for (unsigned i = 0; i < VL.size(); ++i) {
1577          const Instruction *I = cast<Instruction>(VL[i]);
1578          if (!isa<ConstantInt>(I->getOperand(1))) {
1579            Op2VK = TargetTransformInfo::OK_AnyValue;
1580            break;
1581          }
1582          if (i == 0) {
1583            CInt = cast<ConstantInt>(I->getOperand(1));
1584            continue;
1585          }
1586          if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
1587              CInt != cast<ConstantInt>(I->getOperand(1)))
1588            Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
1589        }
1590        // FIXME: Currently cost of model modification for division by
1591        // power of 2 is handled only for X86. Add support for other targets.
1592        if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
1593            CInt->getValue().isPowerOf2())
1594          Op2VP = TargetTransformInfo::OP_PowerOf2;
1595
1596        ScalarCost = VecTy->getNumElements() *
1597                     TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK,
1598                                                 Op1VP, Op2VP);
1599        VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
1600                                              Op1VP, Op2VP);
1601      }
1602      return VecCost - ScalarCost;
1603    }
1604    case Instruction::GetElementPtr: {
1605      TargetTransformInfo::OperandValueKind Op1VK =
1606          TargetTransformInfo::OK_AnyValue;
1607      TargetTransformInfo::OperandValueKind Op2VK =
1608          TargetTransformInfo::OK_UniformConstantValue;
1609
1610      int ScalarCost =
1611          VecTy->getNumElements() *
1612          TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
1613      int VecCost =
1614          TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
1615
1616      return VecCost - ScalarCost;
1617    }
1618    case Instruction::Load: {
1619      // Cost of wide load - cost of scalar loads.
1620      int ScalarLdCost = VecTy->getNumElements() *
1621      TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
1622      int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
1623      return VecLdCost - ScalarLdCost;
1624    }
1625    case Instruction::Store: {
1626      // We know that we can merge the stores. Calculate the cost.
1627      int ScalarStCost = VecTy->getNumElements() *
1628      TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
1629      int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
1630      return VecStCost - ScalarStCost;
1631    }
1632    case Instruction::Call: {
1633      CallInst *CI = cast<CallInst>(VL0);
1634      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
1635
1636      // Calculate the cost of the scalar and vector calls.
1637      SmallVector<Type*, 4> ScalarTys, VecTys;
1638      for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) {
1639        ScalarTys.push_back(CI->getArgOperand(op)->getType());
1640        VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
1641                                         VecTy->getNumElements()));
1642      }
1643
1644      int ScalarCallCost = VecTy->getNumElements() *
1645          TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys);
1646
1647      int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys);
1648
1649      DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
1650            << " (" << VecCallCost  << "-" <<  ScalarCallCost << ")"
1651            << " for " << *CI << "\n");
1652
1653      return VecCallCost - ScalarCallCost;
1654    }
1655    case Instruction::ShuffleVector: {
1656      TargetTransformInfo::OperandValueKind Op1VK =
1657          TargetTransformInfo::OK_AnyValue;
1658      TargetTransformInfo::OperandValueKind Op2VK =
1659          TargetTransformInfo::OK_AnyValue;
1660      int ScalarCost = 0;
1661      int VecCost = 0;
1662      for (unsigned i = 0; i < VL.size(); ++i) {
1663        Instruction *I = cast<Instruction>(VL[i]);
1664        if (!I)
1665          break;
1666        ScalarCost +=
1667            TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
1668      }
1669      // VecCost is equal to sum of the cost of creating 2 vectors
1670      // and the cost of creating shuffle.
1671      Instruction *I0 = cast<Instruction>(VL[0]);
1672      VecCost =
1673          TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
1674      Instruction *I1 = cast<Instruction>(VL[1]);
1675      VecCost +=
1676          TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
1677      VecCost +=
1678          TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
1679      return VecCost - ScalarCost;
1680    }
1681    default:
1682      llvm_unreachable("Unknown instruction");
1683  }
1684}
1685
1686bool BoUpSLP::isFullyVectorizableTinyTree() {
1687  DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
1688        VectorizableTree.size() << " is fully vectorizable .\n");
1689
1690  // We only handle trees of height 2.
1691  if (VectorizableTree.size() != 2)
1692    return false;
1693
1694  // Handle splat and all-constants stores.
1695  if (!VectorizableTree[0].NeedToGather &&
1696      (allConstant(VectorizableTree[1].Scalars) ||
1697       isSplat(VectorizableTree[1].Scalars)))
1698    return true;
1699
1700  // Gathering cost would be too much for tiny trees.
1701  if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
1702    return false;
1703
1704  return true;
1705}
1706
1707int BoUpSLP::getSpillCost() {
1708  // Walk from the bottom of the tree to the top, tracking which values are
1709  // live. When we see a call instruction that is not part of our tree,
1710  // query TTI to see if there is a cost to keeping values live over it
1711  // (for example, if spills and fills are required).
1712  unsigned BundleWidth = VectorizableTree.front().Scalars.size();
1713  int Cost = 0;
1714
1715  SmallPtrSet<Instruction*, 4> LiveValues;
1716  Instruction *PrevInst = nullptr;
1717
1718  for (unsigned N = 0; N < VectorizableTree.size(); ++N) {
1719    Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]);
1720    if (!Inst)
1721      continue;
1722
1723    if (!PrevInst) {
1724      PrevInst = Inst;
1725      continue;
1726    }
1727
1728    DEBUG(
1729      dbgs() << "SLP: #LV: " << LiveValues.size();
1730      for (auto *X : LiveValues)
1731        dbgs() << " " << X->getName();
1732      dbgs() << ", Looking at ";
1733      Inst->dump();
1734      );
1735
1736    // Update LiveValues.
1737    LiveValues.erase(PrevInst);
1738    for (auto &J : PrevInst->operands()) {
1739      if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J))
1740        LiveValues.insert(cast<Instruction>(&*J));
1741    }
1742
1743    // Now find the sequence of instructions between PrevInst and Inst.
1744    BasicBlock::reverse_iterator InstIt(Inst->getIterator()),
1745        PrevInstIt(PrevInst->getIterator());
1746    --PrevInstIt;
1747    while (InstIt != PrevInstIt) {
1748      if (PrevInstIt == PrevInst->getParent()->rend()) {
1749        PrevInstIt = Inst->getParent()->rbegin();
1750        continue;
1751      }
1752
1753      if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
1754        SmallVector<Type*, 4> V;
1755        for (auto *II : LiveValues)
1756          V.push_back(VectorType::get(II->getType(), BundleWidth));
1757        Cost += TTI->getCostOfKeepingLiveOverCall(V);
1758      }
1759
1760      ++PrevInstIt;
1761    }
1762
1763    PrevInst = Inst;
1764  }
1765
1766  DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n");
1767  return Cost;
1768}
1769
1770int BoUpSLP::getTreeCost() {
1771  int Cost = 0;
1772  DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
1773        VectorizableTree.size() << ".\n");
1774
1775  // We only vectorize tiny trees if it is fully vectorizable.
1776  if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
1777    if (VectorizableTree.empty()) {
1778      assert(!ExternalUses.size() && "We should not have any external users");
1779    }
1780    return INT_MAX;
1781  }
1782
1783  unsigned BundleWidth = VectorizableTree[0].Scalars.size();
1784
1785  for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
1786    int C = getEntryCost(&VectorizableTree[i]);
1787    DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
1788          << *VectorizableTree[i].Scalars[0] << " .\n");
1789    Cost += C;
1790  }
1791
1792  SmallSet<Value *, 16> ExtractCostCalculated;
1793  int ExtractCost = 0;
1794  for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
1795       I != E; ++I) {
1796    // We only add extract cost once for the same scalar.
1797    if (!ExtractCostCalculated.insert(I->Scalar).second)
1798      continue;
1799
1800    // Uses by ephemeral values are free (because the ephemeral value will be
1801    // removed prior to code generation, and so the extraction will be
1802    // removed as well).
1803    if (EphValues.count(I->User))
1804      continue;
1805
1806    VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
1807    ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1808                                           I->Lane);
1809  }
1810
1811  Cost += getSpillCost();
1812
1813  DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
1814  return  Cost + ExtractCost;
1815}
1816
1817int BoUpSLP::getGatherCost(Type *Ty) {
1818  int Cost = 0;
1819  for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
1820    Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
1821  return Cost;
1822}
1823
1824int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
1825  // Find the type of the operands in VL.
1826  Type *ScalarTy = VL[0]->getType();
1827  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1828    ScalarTy = SI->getValueOperand()->getType();
1829  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1830  // Find the cost of inserting/extracting values from the vector.
1831  return getGatherCost(VecTy);
1832}
1833
1834Value *BoUpSLP::getPointerOperand(Value *I) {
1835  if (LoadInst *LI = dyn_cast<LoadInst>(I))
1836    return LI->getPointerOperand();
1837  if (StoreInst *SI = dyn_cast<StoreInst>(I))
1838    return SI->getPointerOperand();
1839  return nullptr;
1840}
1841
1842unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
1843  if (LoadInst *L = dyn_cast<LoadInst>(I))
1844    return L->getPointerAddressSpace();
1845  if (StoreInst *S = dyn_cast<StoreInst>(I))
1846    return S->getPointerAddressSpace();
1847  return -1;
1848}
1849
1850bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL) {
1851  Value *PtrA = getPointerOperand(A);
1852  Value *PtrB = getPointerOperand(B);
1853  unsigned ASA = getAddressSpaceOperand(A);
1854  unsigned ASB = getAddressSpaceOperand(B);
1855
1856  // Check that the address spaces match and that the pointers are valid.
1857  if (!PtrA || !PtrB || (ASA != ASB))
1858    return false;
1859
1860  // Make sure that A and B are different pointers of the same type.
1861  if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
1862    return false;
1863
1864  unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1865  Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1866  APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1867
1868  APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1869  PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1870  PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1871
1872  APInt OffsetDelta = OffsetB - OffsetA;
1873
1874  // Check if they are based on the same pointer. That makes the offsets
1875  // sufficient.
1876  if (PtrA == PtrB)
1877    return OffsetDelta == Size;
1878
1879  // Compute the necessary base pointer delta to have the necessary final delta
1880  // equal to the size.
1881  APInt BaseDelta = Size - OffsetDelta;
1882
1883  // Otherwise compute the distance with SCEV between the base pointers.
1884  const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
1885  const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
1886  const SCEV *C = SE->getConstant(BaseDelta);
1887  const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
1888  return X == PtrSCEVB;
1889}
1890
1891// Reorder commutative operations in alternate shuffle if the resulting vectors
1892// are consecutive loads. This would allow us to vectorize the tree.
1893// If we have something like-
1894// load a[0] - load b[0]
1895// load b[1] + load a[1]
1896// load a[2] - load b[2]
1897// load a[3] + load b[3]
1898// Reordering the second load b[1]  load a[1] would allow us to vectorize this
1899// code.
1900void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
1901                                        SmallVectorImpl<Value *> &Left,
1902                                        SmallVectorImpl<Value *> &Right) {
1903  const DataLayout &DL = F->getParent()->getDataLayout();
1904
1905  // Push left and right operands of binary operation into Left and Right
1906  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1907    Left.push_back(cast<Instruction>(VL[i])->getOperand(0));
1908    Right.push_back(cast<Instruction>(VL[i])->getOperand(1));
1909  }
1910
1911  // Reorder if we have a commutative operation and consecutive access
1912  // are on either side of the alternate instructions.
1913  for (unsigned j = 0; j < VL.size() - 1; ++j) {
1914    if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
1915      if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
1916        Instruction *VL1 = cast<Instruction>(VL[j]);
1917        Instruction *VL2 = cast<Instruction>(VL[j + 1]);
1918        if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
1919          std::swap(Left[j], Right[j]);
1920          continue;
1921        } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
1922          std::swap(Left[j + 1], Right[j + 1]);
1923          continue;
1924        }
1925        // else unchanged
1926      }
1927    }
1928    if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
1929      if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
1930        Instruction *VL1 = cast<Instruction>(VL[j]);
1931        Instruction *VL2 = cast<Instruction>(VL[j + 1]);
1932        if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
1933          std::swap(Left[j], Right[j]);
1934          continue;
1935        } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
1936          std::swap(Left[j + 1], Right[j + 1]);
1937          continue;
1938        }
1939        // else unchanged
1940      }
1941    }
1942  }
1943}
1944
1945// Return true if I should be commuted before adding it's left and right
1946// operands to the arrays Left and Right.
1947//
1948// The vectorizer is trying to either have all elements one side being
1949// instruction with the same opcode to enable further vectorization, or having
1950// a splat to lower the vectorizing cost.
1951static bool shouldReorderOperands(int i, Instruction &I,
1952                                  SmallVectorImpl<Value *> &Left,
1953                                  SmallVectorImpl<Value *> &Right,
1954                                  bool AllSameOpcodeLeft,
1955                                  bool AllSameOpcodeRight, bool SplatLeft,
1956                                  bool SplatRight) {
1957  Value *VLeft = I.getOperand(0);
1958  Value *VRight = I.getOperand(1);
1959  // If we have "SplatRight", try to see if commuting is needed to preserve it.
1960  if (SplatRight) {
1961    if (VRight == Right[i - 1])
1962      // Preserve SplatRight
1963      return false;
1964    if (VLeft == Right[i - 1]) {
1965      // Commuting would preserve SplatRight, but we don't want to break
1966      // SplatLeft either, i.e. preserve the original order if possible.
1967      // (FIXME: why do we care?)
1968      if (SplatLeft && VLeft == Left[i - 1])
1969        return false;
1970      return true;
1971    }
1972  }
1973  // Symmetrically handle Right side.
1974  if (SplatLeft) {
1975    if (VLeft == Left[i - 1])
1976      // Preserve SplatLeft
1977      return false;
1978    if (VRight == Left[i - 1])
1979      return true;
1980  }
1981
1982  Instruction *ILeft = dyn_cast<Instruction>(VLeft);
1983  Instruction *IRight = dyn_cast<Instruction>(VRight);
1984
1985  // If we have "AllSameOpcodeRight", try to see if the left operands preserves
1986  // it and not the right, in this case we want to commute.
1987  if (AllSameOpcodeRight) {
1988    unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode();
1989    if (IRight && RightPrevOpcode == IRight->getOpcode())
1990      // Do not commute, a match on the right preserves AllSameOpcodeRight
1991      return false;
1992    if (ILeft && RightPrevOpcode == ILeft->getOpcode()) {
1993      // We have a match and may want to commute, but first check if there is
1994      // not also a match on the existing operands on the Left to preserve
1995      // AllSameOpcodeLeft, i.e. preserve the original order if possible.
1996      // (FIXME: why do we care?)
1997      if (AllSameOpcodeLeft && ILeft &&
1998          cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode())
1999        return false;
2000      return true;
2001    }
2002  }
2003  // Symmetrically handle Left side.
2004  if (AllSameOpcodeLeft) {
2005    unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode();
2006    if (ILeft && LeftPrevOpcode == ILeft->getOpcode())
2007      return false;
2008    if (IRight && LeftPrevOpcode == IRight->getOpcode())
2009      return true;
2010  }
2011  return false;
2012}
2013
2014void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
2015                                             SmallVectorImpl<Value *> &Left,
2016                                             SmallVectorImpl<Value *> &Right) {
2017
2018  if (VL.size()) {
2019    // Peel the first iteration out of the loop since there's nothing
2020    // interesting to do anyway and it simplifies the checks in the loop.
2021    auto VLeft = cast<Instruction>(VL[0])->getOperand(0);
2022    auto VRight = cast<Instruction>(VL[0])->getOperand(1);
2023    if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft))
2024      // Favor having instruction to the right. FIXME: why?
2025      std::swap(VLeft, VRight);
2026    Left.push_back(VLeft);
2027    Right.push_back(VRight);
2028  }
2029
2030  // Keep track if we have instructions with all the same opcode on one side.
2031  bool AllSameOpcodeLeft = isa<Instruction>(Left[0]);
2032  bool AllSameOpcodeRight = isa<Instruction>(Right[0]);
2033  // Keep track if we have one side with all the same value (broadcast).
2034  bool SplatLeft = true;
2035  bool SplatRight = true;
2036
2037  for (unsigned i = 1, e = VL.size(); i != e; ++i) {
2038    Instruction *I = cast<Instruction>(VL[i]);
2039    assert(I->isCommutative() && "Can only process commutative instruction");
2040    // Commute to favor either a splat or maximizing having the same opcodes on
2041    // one side.
2042    if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft,
2043                              AllSameOpcodeRight, SplatLeft, SplatRight)) {
2044      Left.push_back(I->getOperand(1));
2045      Right.push_back(I->getOperand(0));
2046    } else {
2047      Left.push_back(I->getOperand(0));
2048      Right.push_back(I->getOperand(1));
2049    }
2050    // Update Splat* and AllSameOpcode* after the insertion.
2051    SplatRight = SplatRight && (Right[i - 1] == Right[i]);
2052    SplatLeft = SplatLeft && (Left[i - 1] == Left[i]);
2053    AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) &&
2054                        (cast<Instruction>(Left[i - 1])->getOpcode() ==
2055                         cast<Instruction>(Left[i])->getOpcode());
2056    AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) &&
2057                         (cast<Instruction>(Right[i - 1])->getOpcode() ==
2058                          cast<Instruction>(Right[i])->getOpcode());
2059  }
2060
2061  // If one operand end up being broadcast, return this operand order.
2062  if (SplatRight || SplatLeft)
2063    return;
2064
2065  const DataLayout &DL = F->getParent()->getDataLayout();
2066
2067  // Finally check if we can get longer vectorizable chain by reordering
2068  // without breaking the good operand order detected above.
2069  // E.g. If we have something like-
2070  // load a[0]  load b[0]
2071  // load b[1]  load a[1]
2072  // load a[2]  load b[2]
2073  // load a[3]  load b[3]
2074  // Reordering the second load b[1]  load a[1] would allow us to vectorize
2075  // this code and we still retain AllSameOpcode property.
2076  // FIXME: This load reordering might break AllSameOpcode in some rare cases
2077  // such as-
2078  // add a[0],c[0]  load b[0]
2079  // add a[1],c[2]  load b[1]
2080  // b[2]           load b[2]
2081  // add a[3],c[3]  load b[3]
2082  for (unsigned j = 0; j < VL.size() - 1; ++j) {
2083    if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
2084      if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
2085        if (isConsecutiveAccess(L, L1, DL)) {
2086          std::swap(Left[j + 1], Right[j + 1]);
2087          continue;
2088        }
2089      }
2090    }
2091    if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
2092      if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
2093        if (isConsecutiveAccess(L, L1, DL)) {
2094          std::swap(Left[j + 1], Right[j + 1]);
2095          continue;
2096        }
2097      }
2098    }
2099    // else unchanged
2100  }
2101}
2102
2103void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
2104  Instruction *VL0 = cast<Instruction>(VL[0]);
2105  BasicBlock::iterator NextInst(VL0);
2106  ++NextInst;
2107  Builder.SetInsertPoint(VL0->getParent(), NextInst);
2108  Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
2109}
2110
2111Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
2112  Value *Vec = UndefValue::get(Ty);
2113  // Generate the 'InsertElement' instruction.
2114  for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
2115    Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
2116    if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
2117      GatherSeq.insert(Insrt);
2118      CSEBlocks.insert(Insrt->getParent());
2119
2120      // Add to our 'need-to-extract' list.
2121      if (ScalarToTreeEntry.count(VL[i])) {
2122        int Idx = ScalarToTreeEntry[VL[i]];
2123        TreeEntry *E = &VectorizableTree[Idx];
2124        // Find which lane we need to extract.
2125        int FoundLane = -1;
2126        for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
2127          // Is this the lane of the scalar that we are looking for ?
2128          if (E->Scalars[Lane] == VL[i]) {
2129            FoundLane = Lane;
2130            break;
2131          }
2132        }
2133        assert(FoundLane >= 0 && "Could not find the correct lane");
2134        ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
2135      }
2136    }
2137  }
2138
2139  return Vec;
2140}
2141
2142Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
2143  SmallDenseMap<Value*, int>::const_iterator Entry
2144    = ScalarToTreeEntry.find(VL[0]);
2145  if (Entry != ScalarToTreeEntry.end()) {
2146    int Idx = Entry->second;
2147    const TreeEntry *En = &VectorizableTree[Idx];
2148    if (En->isSame(VL) && En->VectorizedValue)
2149      return En->VectorizedValue;
2150  }
2151  return nullptr;
2152}
2153
2154Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
2155  if (ScalarToTreeEntry.count(VL[0])) {
2156    int Idx = ScalarToTreeEntry[VL[0]];
2157    TreeEntry *E = &VectorizableTree[Idx];
2158    if (E->isSame(VL))
2159      return vectorizeTree(E);
2160  }
2161
2162  Type *ScalarTy = VL[0]->getType();
2163  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2164    ScalarTy = SI->getValueOperand()->getType();
2165  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2166
2167  return Gather(VL, VecTy);
2168}
2169
2170Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
2171  IRBuilder<>::InsertPointGuard Guard(Builder);
2172
2173  if (E->VectorizedValue) {
2174    DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
2175    return E->VectorizedValue;
2176  }
2177
2178  Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
2179  Type *ScalarTy = VL0->getType();
2180  if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
2181    ScalarTy = SI->getValueOperand()->getType();
2182  VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
2183
2184  if (E->NeedToGather) {
2185    setInsertPointAfterBundle(E->Scalars);
2186    return Gather(E->Scalars, VecTy);
2187  }
2188
2189  const DataLayout &DL = F->getParent()->getDataLayout();
2190  unsigned Opcode = getSameOpcode(E->Scalars);
2191
2192  switch (Opcode) {
2193    case Instruction::PHI: {
2194      PHINode *PH = dyn_cast<PHINode>(VL0);
2195      Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
2196      Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2197      PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
2198      E->VectorizedValue = NewPhi;
2199
2200      // PHINodes may have multiple entries from the same block. We want to
2201      // visit every block once.
2202      SmallSet<BasicBlock*, 4> VisitedBBs;
2203
2204      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2205        ValueList Operands;
2206        BasicBlock *IBB = PH->getIncomingBlock(i);
2207
2208        if (!VisitedBBs.insert(IBB).second) {
2209          NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
2210          continue;
2211        }
2212
2213        // Prepare the operand vector.
2214        for (Value *V : E->Scalars)
2215          Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
2216
2217        Builder.SetInsertPoint(IBB->getTerminator());
2218        Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2219        Value *Vec = vectorizeTree(Operands);
2220        NewPhi->addIncoming(Vec, IBB);
2221      }
2222
2223      assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
2224             "Invalid number of incoming values");
2225      return NewPhi;
2226    }
2227
2228    case Instruction::ExtractElement: {
2229      if (CanReuseExtract(E->Scalars)) {
2230        Value *V = VL0->getOperand(0);
2231        E->VectorizedValue = V;
2232        return V;
2233      }
2234      return Gather(E->Scalars, VecTy);
2235    }
2236    case Instruction::ZExt:
2237    case Instruction::SExt:
2238    case Instruction::FPToUI:
2239    case Instruction::FPToSI:
2240    case Instruction::FPExt:
2241    case Instruction::PtrToInt:
2242    case Instruction::IntToPtr:
2243    case Instruction::SIToFP:
2244    case Instruction::UIToFP:
2245    case Instruction::Trunc:
2246    case Instruction::FPTrunc:
2247    case Instruction::BitCast: {
2248      ValueList INVL;
2249      for (Value *V : E->Scalars)
2250        INVL.push_back(cast<Instruction>(V)->getOperand(0));
2251
2252      setInsertPointAfterBundle(E->Scalars);
2253
2254      Value *InVec = vectorizeTree(INVL);
2255
2256      if (Value *V = alreadyVectorized(E->Scalars))
2257        return V;
2258
2259      CastInst *CI = dyn_cast<CastInst>(VL0);
2260      Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
2261      E->VectorizedValue = V;
2262      ++NumVectorInstructions;
2263      return V;
2264    }
2265    case Instruction::FCmp:
2266    case Instruction::ICmp: {
2267      ValueList LHSV, RHSV;
2268      for (Value *V : E->Scalars) {
2269        LHSV.push_back(cast<Instruction>(V)->getOperand(0));
2270        RHSV.push_back(cast<Instruction>(V)->getOperand(1));
2271      }
2272
2273      setInsertPointAfterBundle(E->Scalars);
2274
2275      Value *L = vectorizeTree(LHSV);
2276      Value *R = vectorizeTree(RHSV);
2277
2278      if (Value *V = alreadyVectorized(E->Scalars))
2279        return V;
2280
2281      CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2282      Value *V;
2283      if (Opcode == Instruction::FCmp)
2284        V = Builder.CreateFCmp(P0, L, R);
2285      else
2286        V = Builder.CreateICmp(P0, L, R);
2287
2288      E->VectorizedValue = V;
2289      ++NumVectorInstructions;
2290      return V;
2291    }
2292    case Instruction::Select: {
2293      ValueList TrueVec, FalseVec, CondVec;
2294      for (Value *V : E->Scalars) {
2295        CondVec.push_back(cast<Instruction>(V)->getOperand(0));
2296        TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
2297        FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
2298      }
2299
2300      setInsertPointAfterBundle(E->Scalars);
2301
2302      Value *Cond = vectorizeTree(CondVec);
2303      Value *True = vectorizeTree(TrueVec);
2304      Value *False = vectorizeTree(FalseVec);
2305
2306      if (Value *V = alreadyVectorized(E->Scalars))
2307        return V;
2308
2309      Value *V = Builder.CreateSelect(Cond, True, False);
2310      E->VectorizedValue = V;
2311      ++NumVectorInstructions;
2312      return V;
2313    }
2314    case Instruction::Add:
2315    case Instruction::FAdd:
2316    case Instruction::Sub:
2317    case Instruction::FSub:
2318    case Instruction::Mul:
2319    case Instruction::FMul:
2320    case Instruction::UDiv:
2321    case Instruction::SDiv:
2322    case Instruction::FDiv:
2323    case Instruction::URem:
2324    case Instruction::SRem:
2325    case Instruction::FRem:
2326    case Instruction::Shl:
2327    case Instruction::LShr:
2328    case Instruction::AShr:
2329    case Instruction::And:
2330    case Instruction::Or:
2331    case Instruction::Xor: {
2332      ValueList LHSVL, RHSVL;
2333      if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
2334        reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
2335      else
2336        for (Value *V : E->Scalars) {
2337          LHSVL.push_back(cast<Instruction>(V)->getOperand(0));
2338          RHSVL.push_back(cast<Instruction>(V)->getOperand(1));
2339        }
2340
2341      setInsertPointAfterBundle(E->Scalars);
2342
2343      Value *LHS = vectorizeTree(LHSVL);
2344      Value *RHS = vectorizeTree(RHSVL);
2345
2346      if (LHS == RHS && isa<Instruction>(LHS)) {
2347        assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
2348      }
2349
2350      if (Value *V = alreadyVectorized(E->Scalars))
2351        return V;
2352
2353      BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
2354      Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
2355      E->VectorizedValue = V;
2356      propagateIRFlags(E->VectorizedValue, E->Scalars);
2357      ++NumVectorInstructions;
2358
2359      if (Instruction *I = dyn_cast<Instruction>(V))
2360        return propagateMetadata(I, E->Scalars);
2361
2362      return V;
2363    }
2364    case Instruction::Load: {
2365      // Loads are inserted at the head of the tree because we don't want to
2366      // sink them all the way down past store instructions.
2367      setInsertPointAfterBundle(E->Scalars);
2368
2369      LoadInst *LI = cast<LoadInst>(VL0);
2370      Type *ScalarLoadTy = LI->getType();
2371      unsigned AS = LI->getPointerAddressSpace();
2372
2373      Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
2374                                            VecTy->getPointerTo(AS));
2375
2376      // The pointer operand uses an in-tree scalar so we add the new BitCast to
2377      // ExternalUses list to make sure that an extract will be generated in the
2378      // future.
2379      if (ScalarToTreeEntry.count(LI->getPointerOperand()))
2380        ExternalUses.push_back(
2381            ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0));
2382
2383      unsigned Alignment = LI->getAlignment();
2384      LI = Builder.CreateLoad(VecPtr);
2385      if (!Alignment) {
2386        Alignment = DL.getABITypeAlignment(ScalarLoadTy);
2387      }
2388      LI->setAlignment(Alignment);
2389      E->VectorizedValue = LI;
2390      ++NumVectorInstructions;
2391      return propagateMetadata(LI, E->Scalars);
2392    }
2393    case Instruction::Store: {
2394      StoreInst *SI = cast<StoreInst>(VL0);
2395      unsigned Alignment = SI->getAlignment();
2396      unsigned AS = SI->getPointerAddressSpace();
2397
2398      ValueList ValueOp;
2399      for (Value *V : E->Scalars)
2400        ValueOp.push_back(cast<StoreInst>(V)->getValueOperand());
2401
2402      setInsertPointAfterBundle(E->Scalars);
2403
2404      Value *VecValue = vectorizeTree(ValueOp);
2405      Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
2406                                            VecTy->getPointerTo(AS));
2407      StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
2408
2409      // The pointer operand uses an in-tree scalar so we add the new BitCast to
2410      // ExternalUses list to make sure that an extract will be generated in the
2411      // future.
2412      if (ScalarToTreeEntry.count(SI->getPointerOperand()))
2413        ExternalUses.push_back(
2414            ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0));
2415
2416      if (!Alignment) {
2417        Alignment = DL.getABITypeAlignment(SI->getValueOperand()->getType());
2418      }
2419      S->setAlignment(Alignment);
2420      E->VectorizedValue = S;
2421      ++NumVectorInstructions;
2422      return propagateMetadata(S, E->Scalars);
2423    }
2424    case Instruction::GetElementPtr: {
2425      setInsertPointAfterBundle(E->Scalars);
2426
2427      ValueList Op0VL;
2428      for (Value *V : E->Scalars)
2429        Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
2430
2431      Value *Op0 = vectorizeTree(Op0VL);
2432
2433      std::vector<Value *> OpVecs;
2434      for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
2435           ++j) {
2436        ValueList OpVL;
2437        for (Value *V : E->Scalars)
2438          OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
2439
2440        Value *OpVec = vectorizeTree(OpVL);
2441        OpVecs.push_back(OpVec);
2442      }
2443
2444      Value *V = Builder.CreateGEP(
2445          cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
2446      E->VectorizedValue = V;
2447      ++NumVectorInstructions;
2448
2449      if (Instruction *I = dyn_cast<Instruction>(V))
2450        return propagateMetadata(I, E->Scalars);
2451
2452      return V;
2453    }
2454    case Instruction::Call: {
2455      CallInst *CI = cast<CallInst>(VL0);
2456      setInsertPointAfterBundle(E->Scalars);
2457      Function *FI;
2458      Intrinsic::ID IID  = Intrinsic::not_intrinsic;
2459      Value *ScalarArg = nullptr;
2460      if (CI && (FI = CI->getCalledFunction())) {
2461        IID = FI->getIntrinsicID();
2462      }
2463      std::vector<Value *> OpVecs;
2464      for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
2465        ValueList OpVL;
2466        // ctlz,cttz and powi are special intrinsics whose second argument is
2467        // a scalar. This argument should not be vectorized.
2468        if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
2469          CallInst *CEI = cast<CallInst>(E->Scalars[0]);
2470          ScalarArg = CEI->getArgOperand(j);
2471          OpVecs.push_back(CEI->getArgOperand(j));
2472          continue;
2473        }
2474        for (Value *V : E->Scalars) {
2475          CallInst *CEI = cast<CallInst>(V);
2476          OpVL.push_back(CEI->getArgOperand(j));
2477        }
2478
2479        Value *OpVec = vectorizeTree(OpVL);
2480        DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
2481        OpVecs.push_back(OpVec);
2482      }
2483
2484      Module *M = F->getParent();
2485      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
2486      Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
2487      Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
2488      Value *V = Builder.CreateCall(CF, OpVecs);
2489
2490      // The scalar argument uses an in-tree scalar so we add the new vectorized
2491      // call to ExternalUses list to make sure that an extract will be
2492      // generated in the future.
2493      if (ScalarArg && ScalarToTreeEntry.count(ScalarArg))
2494        ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
2495
2496      E->VectorizedValue = V;
2497      ++NumVectorInstructions;
2498      return V;
2499    }
2500    case Instruction::ShuffleVector: {
2501      ValueList LHSVL, RHSVL;
2502      assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand");
2503      reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL);
2504      setInsertPointAfterBundle(E->Scalars);
2505
2506      Value *LHS = vectorizeTree(LHSVL);
2507      Value *RHS = vectorizeTree(RHSVL);
2508
2509      if (Value *V = alreadyVectorized(E->Scalars))
2510        return V;
2511
2512      // Create a vector of LHS op1 RHS
2513      BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
2514      Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
2515
2516      // Create a vector of LHS op2 RHS
2517      Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
2518      BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
2519      Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
2520
2521      // Create shuffle to take alternate operations from the vector.
2522      // Also, gather up odd and even scalar ops to propagate IR flags to
2523      // each vector operation.
2524      ValueList OddScalars, EvenScalars;
2525      unsigned e = E->Scalars.size();
2526      SmallVector<Constant *, 8> Mask(e);
2527      for (unsigned i = 0; i < e; ++i) {
2528        if (i & 1) {
2529          Mask[i] = Builder.getInt32(e + i);
2530          OddScalars.push_back(E->Scalars[i]);
2531        } else {
2532          Mask[i] = Builder.getInt32(i);
2533          EvenScalars.push_back(E->Scalars[i]);
2534        }
2535      }
2536
2537      Value *ShuffleMask = ConstantVector::get(Mask);
2538      propagateIRFlags(V0, EvenScalars);
2539      propagateIRFlags(V1, OddScalars);
2540
2541      Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
2542      E->VectorizedValue = V;
2543      ++NumVectorInstructions;
2544      if (Instruction *I = dyn_cast<Instruction>(V))
2545        return propagateMetadata(I, E->Scalars);
2546
2547      return V;
2548    }
2549    default:
2550    llvm_unreachable("unknown inst");
2551  }
2552  return nullptr;
2553}
2554
2555Value *BoUpSLP::vectorizeTree() {
2556
2557  // All blocks must be scheduled before any instructions are inserted.
2558  for (auto &BSIter : BlocksSchedules) {
2559    scheduleBlock(BSIter.second.get());
2560  }
2561
2562  Builder.SetInsertPoint(&F->getEntryBlock().front());
2563  vectorizeTree(&VectorizableTree[0]);
2564
2565  DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
2566
2567  // Extract all of the elements with the external uses.
2568  for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
2569       it != e; ++it) {
2570    Value *Scalar = it->Scalar;
2571    llvm::User *User = it->User;
2572
2573    // Skip users that we already RAUW. This happens when one instruction
2574    // has multiple uses of the same value.
2575    if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
2576        Scalar->user_end())
2577      continue;
2578    assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
2579
2580    int Idx = ScalarToTreeEntry[Scalar];
2581    TreeEntry *E = &VectorizableTree[Idx];
2582    assert(!E->NeedToGather && "Extracting from a gather list");
2583
2584    Value *Vec = E->VectorizedValue;
2585    assert(Vec && "Can't find vectorizable value");
2586
2587    Value *Lane = Builder.getInt32(it->Lane);
2588    // Generate extracts for out-of-tree users.
2589    // Find the insertion point for the extractelement lane.
2590    if (isa<Instruction>(Vec)){
2591      if (PHINode *PH = dyn_cast<PHINode>(User)) {
2592        for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
2593          if (PH->getIncomingValue(i) == Scalar) {
2594            Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
2595            Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2596            CSEBlocks.insert(PH->getIncomingBlock(i));
2597            PH->setOperand(i, Ex);
2598          }
2599        }
2600      } else {
2601        Builder.SetInsertPoint(cast<Instruction>(User));
2602        Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2603        CSEBlocks.insert(cast<Instruction>(User)->getParent());
2604        User->replaceUsesOfWith(Scalar, Ex);
2605     }
2606    } else {
2607      Builder.SetInsertPoint(&F->getEntryBlock().front());
2608      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2609      CSEBlocks.insert(&F->getEntryBlock());
2610      User->replaceUsesOfWith(Scalar, Ex);
2611    }
2612
2613    DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
2614  }
2615
2616  // For each vectorized value:
2617  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
2618    TreeEntry *Entry = &VectorizableTree[EIdx];
2619
2620    // For each lane:
2621    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2622      Value *Scalar = Entry->Scalars[Lane];
2623      // No need to handle users of gathered values.
2624      if (Entry->NeedToGather)
2625        continue;
2626
2627      assert(Entry->VectorizedValue && "Can't find vectorizable value");
2628
2629      Type *Ty = Scalar->getType();
2630      if (!Ty->isVoidTy()) {
2631#ifndef NDEBUG
2632        for (User *U : Scalar->users()) {
2633          DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
2634
2635          assert((ScalarToTreeEntry.count(U) ||
2636                  // It is legal to replace users in the ignorelist by undef.
2637                  (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=
2638                   UserIgnoreList.end())) &&
2639                 "Replacing out-of-tree value with undef");
2640        }
2641#endif
2642        Value *Undef = UndefValue::get(Ty);
2643        Scalar->replaceAllUsesWith(Undef);
2644      }
2645      DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
2646      eraseInstruction(cast<Instruction>(Scalar));
2647    }
2648  }
2649
2650  Builder.ClearInsertionPoint();
2651
2652  return VectorizableTree[0].VectorizedValue;
2653}
2654
2655void BoUpSLP::optimizeGatherSequence() {
2656  DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
2657        << " gather sequences instructions.\n");
2658  // LICM InsertElementInst sequences.
2659  for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
2660       e = GatherSeq.end(); it != e; ++it) {
2661    InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
2662
2663    if (!Insert)
2664      continue;
2665
2666    // Check if this block is inside a loop.
2667    Loop *L = LI->getLoopFor(Insert->getParent());
2668    if (!L)
2669      continue;
2670
2671    // Check if it has a preheader.
2672    BasicBlock *PreHeader = L->getLoopPreheader();
2673    if (!PreHeader)
2674      continue;
2675
2676    // If the vector or the element that we insert into it are
2677    // instructions that are defined in this basic block then we can't
2678    // hoist this instruction.
2679    Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
2680    Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
2681    if (CurrVec && L->contains(CurrVec))
2682      continue;
2683    if (NewElem && L->contains(NewElem))
2684      continue;
2685
2686    // We can hoist this instruction. Move it to the pre-header.
2687    Insert->moveBefore(PreHeader->getTerminator());
2688  }
2689
2690  // Make a list of all reachable blocks in our CSE queue.
2691  SmallVector<const DomTreeNode *, 8> CSEWorkList;
2692  CSEWorkList.reserve(CSEBlocks.size());
2693  for (BasicBlock *BB : CSEBlocks)
2694    if (DomTreeNode *N = DT->getNode(BB)) {
2695      assert(DT->isReachableFromEntry(N));
2696      CSEWorkList.push_back(N);
2697    }
2698
2699  // Sort blocks by domination. This ensures we visit a block after all blocks
2700  // dominating it are visited.
2701  std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
2702                   [this](const DomTreeNode *A, const DomTreeNode *B) {
2703    return DT->properlyDominates(A, B);
2704  });
2705
2706  // Perform O(N^2) search over the gather sequences and merge identical
2707  // instructions. TODO: We can further optimize this scan if we split the
2708  // instructions into different buckets based on the insert lane.
2709  SmallVector<Instruction *, 16> Visited;
2710  for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
2711    assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
2712           "Worklist not sorted properly!");
2713    BasicBlock *BB = (*I)->getBlock();
2714    // For all instructions in blocks containing gather sequences:
2715    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
2716      Instruction *In = &*it++;
2717      if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
2718        continue;
2719
2720      // Check if we can replace this instruction with any of the
2721      // visited instructions.
2722      for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
2723                                                    ve = Visited.end();
2724           v != ve; ++v) {
2725        if (In->isIdenticalTo(*v) &&
2726            DT->dominates((*v)->getParent(), In->getParent())) {
2727          In->replaceAllUsesWith(*v);
2728          eraseInstruction(In);
2729          In = nullptr;
2730          break;
2731        }
2732      }
2733      if (In) {
2734        assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
2735        Visited.push_back(In);
2736      }
2737    }
2738  }
2739  CSEBlocks.clear();
2740  GatherSeq.clear();
2741}
2742
2743// Groups the instructions to a bundle (which is then a single scheduling entity)
2744// and schedules instructions until the bundle gets ready.
2745bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
2746                                                 BoUpSLP *SLP) {
2747  if (isa<PHINode>(VL[0]))
2748    return true;
2749
2750  // Initialize the instruction bundle.
2751  Instruction *OldScheduleEnd = ScheduleEnd;
2752  ScheduleData *PrevInBundle = nullptr;
2753  ScheduleData *Bundle = nullptr;
2754  bool ReSchedule = false;
2755  DEBUG(dbgs() << "SLP:  bundle: " << *VL[0] << "\n");
2756
2757  // Make sure that the scheduling region contains all
2758  // instructions of the bundle.
2759  for (Value *V : VL) {
2760    if (!extendSchedulingRegion(V))
2761      return false;
2762  }
2763
2764  for (Value *V : VL) {
2765    ScheduleData *BundleMember = getScheduleData(V);
2766    assert(BundleMember &&
2767           "no ScheduleData for bundle member (maybe not in same basic block)");
2768    if (BundleMember->IsScheduled) {
2769      // A bundle member was scheduled as single instruction before and now
2770      // needs to be scheduled as part of the bundle. We just get rid of the
2771      // existing schedule.
2772      DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
2773                   << " was already scheduled\n");
2774      ReSchedule = true;
2775    }
2776    assert(BundleMember->isSchedulingEntity() &&
2777           "bundle member already part of other bundle");
2778    if (PrevInBundle) {
2779      PrevInBundle->NextInBundle = BundleMember;
2780    } else {
2781      Bundle = BundleMember;
2782    }
2783    BundleMember->UnscheduledDepsInBundle = 0;
2784    Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
2785
2786    // Group the instructions to a bundle.
2787    BundleMember->FirstInBundle = Bundle;
2788    PrevInBundle = BundleMember;
2789  }
2790  if (ScheduleEnd != OldScheduleEnd) {
2791    // The scheduling region got new instructions at the lower end (or it is a
2792    // new region for the first bundle). This makes it necessary to
2793    // recalculate all dependencies.
2794    // It is seldom that this needs to be done a second time after adding the
2795    // initial bundle to the region.
2796    for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2797      ScheduleData *SD = getScheduleData(I);
2798      SD->clearDependencies();
2799    }
2800    ReSchedule = true;
2801  }
2802  if (ReSchedule) {
2803    resetSchedule();
2804    initialFillReadyList(ReadyInsts);
2805  }
2806
2807  DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
2808               << BB->getName() << "\n");
2809
2810  calculateDependencies(Bundle, true, SLP);
2811
2812  // Now try to schedule the new bundle. As soon as the bundle is "ready" it
2813  // means that there are no cyclic dependencies and we can schedule it.
2814  // Note that's important that we don't "schedule" the bundle yet (see
2815  // cancelScheduling).
2816  while (!Bundle->isReady() && !ReadyInsts.empty()) {
2817
2818    ScheduleData *pickedSD = ReadyInsts.back();
2819    ReadyInsts.pop_back();
2820
2821    if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
2822      schedule(pickedSD, ReadyInsts);
2823    }
2824  }
2825  if (!Bundle->isReady()) {
2826    cancelScheduling(VL);
2827    return false;
2828  }
2829  return true;
2830}
2831
2832void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) {
2833  if (isa<PHINode>(VL[0]))
2834    return;
2835
2836  ScheduleData *Bundle = getScheduleData(VL[0]);
2837  DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
2838  assert(!Bundle->IsScheduled &&
2839         "Can't cancel bundle which is already scheduled");
2840  assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
2841         "tried to unbundle something which is not a bundle");
2842
2843  // Un-bundle: make single instructions out of the bundle.
2844  ScheduleData *BundleMember = Bundle;
2845  while (BundleMember) {
2846    assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
2847    BundleMember->FirstInBundle = BundleMember;
2848    ScheduleData *Next = BundleMember->NextInBundle;
2849    BundleMember->NextInBundle = nullptr;
2850    BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
2851    if (BundleMember->UnscheduledDepsInBundle == 0) {
2852      ReadyInsts.insert(BundleMember);
2853    }
2854    BundleMember = Next;
2855  }
2856}
2857
2858bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
2859  if (getScheduleData(V))
2860    return true;
2861  Instruction *I = dyn_cast<Instruction>(V);
2862  assert(I && "bundle member must be an instruction");
2863  assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
2864  if (!ScheduleStart) {
2865    // It's the first instruction in the new region.
2866    initScheduleData(I, I->getNextNode(), nullptr, nullptr);
2867    ScheduleStart = I;
2868    ScheduleEnd = I->getNextNode();
2869    assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
2870    DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
2871    return true;
2872  }
2873  // Search up and down at the same time, because we don't know if the new
2874  // instruction is above or below the existing scheduling region.
2875  BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator());
2876  BasicBlock::reverse_iterator UpperEnd = BB->rend();
2877  BasicBlock::iterator DownIter(ScheduleEnd);
2878  BasicBlock::iterator LowerEnd = BB->end();
2879  for (;;) {
2880    if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
2881      DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
2882      return false;
2883    }
2884
2885    if (UpIter != UpperEnd) {
2886      if (&*UpIter == I) {
2887        initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
2888        ScheduleStart = I;
2889        DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I << "\n");
2890        return true;
2891      }
2892      UpIter++;
2893    }
2894    if (DownIter != LowerEnd) {
2895      if (&*DownIter == I) {
2896        initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
2897                         nullptr);
2898        ScheduleEnd = I->getNextNode();
2899        assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
2900        DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
2901        return true;
2902      }
2903      DownIter++;
2904    }
2905    assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
2906           "instruction not found in block");
2907  }
2908  return true;
2909}
2910
2911void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
2912                                                Instruction *ToI,
2913                                                ScheduleData *PrevLoadStore,
2914                                                ScheduleData *NextLoadStore) {
2915  ScheduleData *CurrentLoadStore = PrevLoadStore;
2916  for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
2917    ScheduleData *SD = ScheduleDataMap[I];
2918    if (!SD) {
2919      // Allocate a new ScheduleData for the instruction.
2920      if (ChunkPos >= ChunkSize) {
2921        ScheduleDataChunks.push_back(
2922            llvm::make_unique<ScheduleData[]>(ChunkSize));
2923        ChunkPos = 0;
2924      }
2925      SD = &(ScheduleDataChunks.back()[ChunkPos++]);
2926      ScheduleDataMap[I] = SD;
2927      SD->Inst = I;
2928    }
2929    assert(!isInSchedulingRegion(SD) &&
2930           "new ScheduleData already in scheduling region");
2931    SD->init(SchedulingRegionID);
2932
2933    if (I->mayReadOrWriteMemory()) {
2934      // Update the linked list of memory accessing instructions.
2935      if (CurrentLoadStore) {
2936        CurrentLoadStore->NextLoadStore = SD;
2937      } else {
2938        FirstLoadStoreInRegion = SD;
2939      }
2940      CurrentLoadStore = SD;
2941    }
2942  }
2943  if (NextLoadStore) {
2944    if (CurrentLoadStore)
2945      CurrentLoadStore->NextLoadStore = NextLoadStore;
2946  } else {
2947    LastLoadStoreInRegion = CurrentLoadStore;
2948  }
2949}
2950
2951void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
2952                                                     bool InsertInReadyList,
2953                                                     BoUpSLP *SLP) {
2954  assert(SD->isSchedulingEntity());
2955
2956  SmallVector<ScheduleData *, 10> WorkList;
2957  WorkList.push_back(SD);
2958
2959  while (!WorkList.empty()) {
2960    ScheduleData *SD = WorkList.back();
2961    WorkList.pop_back();
2962
2963    ScheduleData *BundleMember = SD;
2964    while (BundleMember) {
2965      assert(isInSchedulingRegion(BundleMember));
2966      if (!BundleMember->hasValidDependencies()) {
2967
2968        DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember << "\n");
2969        BundleMember->Dependencies = 0;
2970        BundleMember->resetUnscheduledDeps();
2971
2972        // Handle def-use chain dependencies.
2973        for (User *U : BundleMember->Inst->users()) {
2974          if (isa<Instruction>(U)) {
2975            ScheduleData *UseSD = getScheduleData(U);
2976            if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
2977              BundleMember->Dependencies++;
2978              ScheduleData *DestBundle = UseSD->FirstInBundle;
2979              if (!DestBundle->IsScheduled) {
2980                BundleMember->incrementUnscheduledDeps(1);
2981              }
2982              if (!DestBundle->hasValidDependencies()) {
2983                WorkList.push_back(DestBundle);
2984              }
2985            }
2986          } else {
2987            // I'm not sure if this can ever happen. But we need to be safe.
2988            // This lets the instruction/bundle never be scheduled and
2989            // eventually disable vectorization.
2990            BundleMember->Dependencies++;
2991            BundleMember->incrementUnscheduledDeps(1);
2992          }
2993        }
2994
2995        // Handle the memory dependencies.
2996        ScheduleData *DepDest = BundleMember->NextLoadStore;
2997        if (DepDest) {
2998          Instruction *SrcInst = BundleMember->Inst;
2999          MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
3000          bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
3001          unsigned numAliased = 0;
3002          unsigned DistToSrc = 1;
3003
3004          while (DepDest) {
3005            assert(isInSchedulingRegion(DepDest));
3006
3007            // We have two limits to reduce the complexity:
3008            // 1) AliasedCheckLimit: It's a small limit to reduce calls to
3009            //    SLP->isAliased (which is the expensive part in this loop).
3010            // 2) MaxMemDepDistance: It's for very large blocks and it aborts
3011            //    the whole loop (even if the loop is fast, it's quadratic).
3012            //    It's important for the loop break condition (see below) to
3013            //    check this limit even between two read-only instructions.
3014            if (DistToSrc >= MaxMemDepDistance ||
3015                    ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
3016                     (numAliased >= AliasedCheckLimit ||
3017                      SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
3018
3019              // We increment the counter only if the locations are aliased
3020              // (instead of counting all alias checks). This gives a better
3021              // balance between reduced runtime and accurate dependencies.
3022              numAliased++;
3023
3024              DepDest->MemoryDependencies.push_back(BundleMember);
3025              BundleMember->Dependencies++;
3026              ScheduleData *DestBundle = DepDest->FirstInBundle;
3027              if (!DestBundle->IsScheduled) {
3028                BundleMember->incrementUnscheduledDeps(1);
3029              }
3030              if (!DestBundle->hasValidDependencies()) {
3031                WorkList.push_back(DestBundle);
3032              }
3033            }
3034            DepDest = DepDest->NextLoadStore;
3035
3036            // Example, explaining the loop break condition: Let's assume our
3037            // starting instruction is i0 and MaxMemDepDistance = 3.
3038            //
3039            //                      +--------v--v--v
3040            //             i0,i1,i2,i3,i4,i5,i6,i7,i8
3041            //             +--------^--^--^
3042            //
3043            // MaxMemDepDistance let us stop alias-checking at i3 and we add
3044            // dependencies from i0 to i3,i4,.. (even if they are not aliased).
3045            // Previously we already added dependencies from i3 to i6,i7,i8
3046            // (because of MaxMemDepDistance). As we added a dependency from
3047            // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
3048            // and we can abort this loop at i6.
3049            if (DistToSrc >= 2 * MaxMemDepDistance)
3050                break;
3051            DistToSrc++;
3052          }
3053        }
3054      }
3055      BundleMember = BundleMember->NextInBundle;
3056    }
3057    if (InsertInReadyList && SD->isReady()) {
3058      ReadyInsts.push_back(SD);
3059      DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst << "\n");
3060    }
3061  }
3062}
3063
3064void BoUpSLP::BlockScheduling::resetSchedule() {
3065  assert(ScheduleStart &&
3066         "tried to reset schedule on block which has not been scheduled");
3067  for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3068    ScheduleData *SD = getScheduleData(I);
3069    assert(isInSchedulingRegion(SD));
3070    SD->IsScheduled = false;
3071    SD->resetUnscheduledDeps();
3072  }
3073  ReadyInsts.clear();
3074}
3075
3076void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
3077
3078  if (!BS->ScheduleStart)
3079    return;
3080
3081  DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
3082
3083  BS->resetSchedule();
3084
3085  // For the real scheduling we use a more sophisticated ready-list: it is
3086  // sorted by the original instruction location. This lets the final schedule
3087  // be as  close as possible to the original instruction order.
3088  struct ScheduleDataCompare {
3089    bool operator()(ScheduleData *SD1, ScheduleData *SD2) {
3090      return SD2->SchedulingPriority < SD1->SchedulingPriority;
3091    }
3092  };
3093  std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
3094
3095  // Ensure that all dependency data is updated and fill the ready-list with
3096  // initial instructions.
3097  int Idx = 0;
3098  int NumToSchedule = 0;
3099  for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
3100       I = I->getNextNode()) {
3101    ScheduleData *SD = BS->getScheduleData(I);
3102    assert(
3103        SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) &&
3104        "scheduler and vectorizer have different opinion on what is a bundle");
3105    SD->FirstInBundle->SchedulingPriority = Idx++;
3106    if (SD->isSchedulingEntity()) {
3107      BS->calculateDependencies(SD, false, this);
3108      NumToSchedule++;
3109    }
3110  }
3111  BS->initialFillReadyList(ReadyInsts);
3112
3113  Instruction *LastScheduledInst = BS->ScheduleEnd;
3114
3115  // Do the "real" scheduling.
3116  while (!ReadyInsts.empty()) {
3117    ScheduleData *picked = *ReadyInsts.begin();
3118    ReadyInsts.erase(ReadyInsts.begin());
3119
3120    // Move the scheduled instruction(s) to their dedicated places, if not
3121    // there yet.
3122    ScheduleData *BundleMember = picked;
3123    while (BundleMember) {
3124      Instruction *pickedInst = BundleMember->Inst;
3125      if (LastScheduledInst->getNextNode() != pickedInst) {
3126        BS->BB->getInstList().remove(pickedInst);
3127        BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
3128                                     pickedInst);
3129      }
3130      LastScheduledInst = pickedInst;
3131      BundleMember = BundleMember->NextInBundle;
3132    }
3133
3134    BS->schedule(picked, ReadyInsts);
3135    NumToSchedule--;
3136  }
3137  assert(NumToSchedule == 0 && "could not schedule all instructions");
3138
3139  // Avoid duplicate scheduling of the block.
3140  BS->ScheduleStart = nullptr;
3141}
3142
3143/// The SLPVectorizer Pass.
3144struct SLPVectorizer : public FunctionPass {
3145  typedef SmallVector<StoreInst *, 8> StoreList;
3146  typedef MapVector<Value *, StoreList> StoreListMap;
3147
3148  /// Pass identification, replacement for typeid
3149  static char ID;
3150
3151  explicit SLPVectorizer() : FunctionPass(ID) {
3152    initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
3153  }
3154
3155  ScalarEvolution *SE;
3156  TargetTransformInfo *TTI;
3157  TargetLibraryInfo *TLI;
3158  AliasAnalysis *AA;
3159  LoopInfo *LI;
3160  DominatorTree *DT;
3161  AssumptionCache *AC;
3162
3163  bool runOnFunction(Function &F) override {
3164    if (skipOptnoneFunction(F))
3165      return false;
3166
3167    SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3168    TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3169    auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
3170    TLI = TLIP ? &TLIP->getTLI() : nullptr;
3171    AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3172    LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3173    DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3174    AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3175
3176    StoreRefs.clear();
3177    bool Changed = false;
3178
3179    // If the target claims to have no vector registers don't attempt
3180    // vectorization.
3181    if (!TTI->getNumberOfRegisters(true))
3182      return false;
3183
3184    // Use the vector register size specified by the target unless overridden
3185    // by a command-line option.
3186    // TODO: It would be better to limit the vectorization factor based on
3187    //       data type rather than just register size. For example, x86 AVX has
3188    //       256-bit registers, but it does not support integer operations
3189    //       at that width (that requires AVX2).
3190    if (MaxVectorRegSizeOption.getNumOccurrences())
3191      MaxVecRegSize = MaxVectorRegSizeOption;
3192    else
3193      MaxVecRegSize = TTI->getRegisterBitWidth(true);
3194
3195    // Don't vectorize when the attribute NoImplicitFloat is used.
3196    if (F.hasFnAttribute(Attribute::NoImplicitFloat))
3197      return false;
3198
3199    DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
3200
3201    // Use the bottom up slp vectorizer to construct chains that start with
3202    // store instructions.
3203    BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC);
3204
3205    // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
3206    // delete instructions.
3207
3208    // Scan the blocks in the function in post order.
3209    for (auto BB : post_order(&F.getEntryBlock())) {
3210      // Vectorize trees that end at stores.
3211      if (unsigned count = collectStores(BB, R)) {
3212        (void)count;
3213        DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
3214        Changed |= vectorizeStoreChains(R);
3215      }
3216
3217      // Vectorize trees that end at reductions.
3218      Changed |= vectorizeChainsInBlock(BB, R);
3219    }
3220
3221    if (Changed) {
3222      R.optimizeGatherSequence();
3223      DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
3224      DEBUG(verifyFunction(F));
3225    }
3226    return Changed;
3227  }
3228
3229  void getAnalysisUsage(AnalysisUsage &AU) const override {
3230    FunctionPass::getAnalysisUsage(AU);
3231    AU.addRequired<AssumptionCacheTracker>();
3232    AU.addRequired<ScalarEvolutionWrapperPass>();
3233    AU.addRequired<AAResultsWrapperPass>();
3234    AU.addRequired<TargetTransformInfoWrapperPass>();
3235    AU.addRequired<LoopInfoWrapperPass>();
3236    AU.addRequired<DominatorTreeWrapperPass>();
3237    AU.addPreserved<LoopInfoWrapperPass>();
3238    AU.addPreserved<DominatorTreeWrapperPass>();
3239    AU.addPreserved<AAResultsWrapperPass>();
3240    AU.addPreserved<GlobalsAAWrapperPass>();
3241    AU.setPreservesCFG();
3242  }
3243
3244private:
3245
3246  /// \brief Collect memory references and sort them according to their base
3247  /// object. We sort the stores to their base objects to reduce the cost of the
3248  /// quadratic search on the stores. TODO: We can further reduce this cost
3249  /// if we flush the chain creation every time we run into a memory barrier.
3250  unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
3251
3252  /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
3253  bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
3254
3255  /// \brief Try to vectorize a list of operands.
3256  /// \@param BuildVector A list of users to ignore for the purpose of
3257  ///                     scheduling and that don't need extracting.
3258  /// \returns true if a value was vectorized.
3259  bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
3260                          ArrayRef<Value *> BuildVector = None,
3261                          bool allowReorder = false);
3262
3263  /// \brief Try to vectorize a chain that may start at the operands of \V;
3264  bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
3265
3266  /// \brief Vectorize the stores that were collected in StoreRefs.
3267  bool vectorizeStoreChains(BoUpSLP &R);
3268
3269  /// \brief Scan the basic block and look for patterns that are likely to start
3270  /// a vectorization chain.
3271  bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
3272
3273  bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
3274                           BoUpSLP &R, unsigned VecRegSize);
3275
3276  bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
3277                       BoUpSLP &R);
3278private:
3279  StoreListMap StoreRefs;
3280  unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
3281};
3282
3283/// \brief Check that the Values in the slice in VL array are still existent in
3284/// the WeakVH array.
3285/// Vectorization of part of the VL array may cause later values in the VL array
3286/// to become invalid. We track when this has happened in the WeakVH array.
3287static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH,
3288                               unsigned SliceBegin, unsigned SliceSize) {
3289  VL = VL.slice(SliceBegin, SliceSize);
3290  VH = VH.slice(SliceBegin, SliceSize);
3291  return !std::equal(VL.begin(), VL.end(), VH.begin());
3292}
3293
3294bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
3295                                        int CostThreshold, BoUpSLP &R,
3296                                        unsigned VecRegSize) {
3297  unsigned ChainLen = Chain.size();
3298  DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
3299        << "\n");
3300  Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
3301  auto &DL = cast<StoreInst>(Chain[0])->getModule()->getDataLayout();
3302  unsigned Sz = DL.getTypeSizeInBits(StoreTy);
3303  unsigned VF = VecRegSize / Sz;
3304
3305  if (!isPowerOf2_32(Sz) || VF < 2)
3306    return false;
3307
3308  // Keep track of values that were deleted by vectorizing in the loop below.
3309  SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
3310
3311  bool Changed = false;
3312  // Look for profitable vectorizable trees at all offsets, starting at zero.
3313  for (unsigned i = 0, e = ChainLen; i < e; ++i) {
3314    if (i + VF > e)
3315      break;
3316
3317    // Check that a previous iteration of this loop did not delete the Value.
3318    if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
3319      continue;
3320
3321    DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
3322          << "\n");
3323    ArrayRef<Value *> Operands = Chain.slice(i, VF);
3324
3325    R.buildTree(Operands);
3326
3327    int Cost = R.getTreeCost();
3328
3329    DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
3330    if (Cost < CostThreshold) {
3331      DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
3332      R.vectorizeTree();
3333
3334      // Move to the next bundle.
3335      i += VF - 1;
3336      Changed = true;
3337    }
3338  }
3339
3340  return Changed;
3341}
3342
3343bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
3344                                    int costThreshold, BoUpSLP &R) {
3345  SetVector<StoreInst *> Heads, Tails;
3346  SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
3347
3348  // We may run into multiple chains that merge into a single chain. We mark the
3349  // stores that we vectorized so that we don't visit the same store twice.
3350  BoUpSLP::ValueSet VectorizedStores;
3351  bool Changed = false;
3352
3353  // Do a quadratic search on all of the given stores and find
3354  // all of the pairs of stores that follow each other.
3355  SmallVector<unsigned, 16> IndexQueue;
3356  for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
3357    const DataLayout &DL = Stores[i]->getModule()->getDataLayout();
3358    IndexQueue.clear();
3359    // If a store has multiple consecutive store candidates, search Stores
3360    // array according to the sequence: from i+1 to e, then from i-1 to 0.
3361    // This is because usually pairing with immediate succeeding or preceding
3362    // candidate create the best chance to find slp vectorization opportunity.
3363    unsigned j = 0;
3364    for (j = i + 1; j < e; ++j)
3365      IndexQueue.push_back(j);
3366    for (j = i; j > 0; --j)
3367      IndexQueue.push_back(j - 1);
3368
3369    for (auto &k : IndexQueue) {
3370      if (R.isConsecutiveAccess(Stores[i], Stores[k], DL)) {
3371        Tails.insert(Stores[k]);
3372        Heads.insert(Stores[i]);
3373        ConsecutiveChain[Stores[i]] = Stores[k];
3374        break;
3375      }
3376    }
3377  }
3378
3379  // For stores that start but don't end a link in the chain:
3380  for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
3381       it != e; ++it) {
3382    if (Tails.count(*it))
3383      continue;
3384
3385    // We found a store instr that starts a chain. Now follow the chain and try
3386    // to vectorize it.
3387    BoUpSLP::ValueList Operands;
3388    StoreInst *I = *it;
3389    // Collect the chain into a list.
3390    while (Tails.count(I) || Heads.count(I)) {
3391      if (VectorizedStores.count(I))
3392        break;
3393      Operands.push_back(I);
3394      // Move to the next value in the chain.
3395      I = ConsecutiveChain[I];
3396    }
3397
3398    // FIXME: Is division-by-2 the correct step? Should we assert that the
3399    // register size is a power-of-2?
3400    for (unsigned Size = MaxVecRegSize; Size >= MinVecRegSize; Size /= 2) {
3401      if (vectorizeStoreChain(Operands, costThreshold, R, Size)) {
3402        // Mark the vectorized stores so that we don't vectorize them again.
3403        VectorizedStores.insert(Operands.begin(), Operands.end());
3404        Changed = true;
3405        break;
3406      }
3407    }
3408  }
3409
3410  return Changed;
3411}
3412
3413
3414unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
3415  unsigned count = 0;
3416  StoreRefs.clear();
3417  const DataLayout &DL = BB->getModule()->getDataLayout();
3418  for (Instruction &I : *BB) {
3419    StoreInst *SI = dyn_cast<StoreInst>(&I);
3420    if (!SI)
3421      continue;
3422
3423    // Don't touch volatile stores.
3424    if (!SI->isSimple())
3425      continue;
3426
3427    // Check that the pointer points to scalars.
3428    Type *Ty = SI->getValueOperand()->getType();
3429    if (!isValidElementType(Ty))
3430      continue;
3431
3432    // Find the base pointer.
3433    Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
3434
3435    // Save the store locations.
3436    StoreRefs[Ptr].push_back(SI);
3437    count++;
3438  }
3439  return count;
3440}
3441
3442bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
3443  if (!A || !B)
3444    return false;
3445  Value *VL[] = { A, B };
3446  return tryToVectorizeList(VL, R, None, true);
3447}
3448
3449bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
3450                                       ArrayRef<Value *> BuildVector,
3451                                       bool allowReorder) {
3452  if (VL.size() < 2)
3453    return false;
3454
3455  DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
3456
3457  // Check that all of the parts are scalar instructions of the same type.
3458  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
3459  if (!I0)
3460    return false;
3461
3462  unsigned Opcode0 = I0->getOpcode();
3463  const DataLayout &DL = I0->getModule()->getDataLayout();
3464
3465  Type *Ty0 = I0->getType();
3466  unsigned Sz = DL.getTypeSizeInBits(Ty0);
3467  // FIXME: Register size should be a parameter to this function, so we can
3468  // try different vectorization factors.
3469  unsigned VF = MinVecRegSize / Sz;
3470
3471  for (Value *V : VL) {
3472    Type *Ty = V->getType();
3473    if (!isValidElementType(Ty))
3474      return false;
3475    Instruction *Inst = dyn_cast<Instruction>(V);
3476    if (!Inst || Inst->getOpcode() != Opcode0)
3477      return false;
3478  }
3479
3480  bool Changed = false;
3481
3482  // Keep track of values that were deleted by vectorizing in the loop below.
3483  SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
3484
3485  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3486    unsigned OpsWidth = 0;
3487
3488    if (i + VF > e)
3489      OpsWidth = e - i;
3490    else
3491      OpsWidth = VF;
3492
3493    if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
3494      break;
3495
3496    // Check that a previous iteration of this loop did not delete the Value.
3497    if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
3498      continue;
3499
3500    DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
3501                 << "\n");
3502    ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
3503
3504    ArrayRef<Value *> BuildVectorSlice;
3505    if (!BuildVector.empty())
3506      BuildVectorSlice = BuildVector.slice(i, OpsWidth);
3507
3508    R.buildTree(Ops, BuildVectorSlice);
3509    // TODO: check if we can allow reordering also for other cases than
3510    // tryToVectorizePair()
3511    if (allowReorder && R.shouldReorder()) {
3512      assert(Ops.size() == 2);
3513      assert(BuildVectorSlice.empty());
3514      Value *ReorderedOps[] = { Ops[1], Ops[0] };
3515      R.buildTree(ReorderedOps, None);
3516    }
3517    int Cost = R.getTreeCost();
3518
3519    if (Cost < -SLPCostThreshold) {
3520      DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
3521      Value *VectorizedRoot = R.vectorizeTree();
3522
3523      // Reconstruct the build vector by extracting the vectorized root. This
3524      // way we handle the case where some elements of the vector are undefined.
3525      //  (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
3526      if (!BuildVectorSlice.empty()) {
3527        // The insert point is the last build vector instruction. The vectorized
3528        // root will precede it. This guarantees that we get an instruction. The
3529        // vectorized tree could have been constant folded.
3530        Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
3531        unsigned VecIdx = 0;
3532        for (auto &V : BuildVectorSlice) {
3533          IRBuilder<true, NoFolder> Builder(
3534              InsertAfter->getParent(), ++BasicBlock::iterator(InsertAfter));
3535          InsertElementInst *IE = cast<InsertElementInst>(V);
3536          Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
3537              VectorizedRoot, Builder.getInt32(VecIdx++)));
3538          IE->setOperand(1, Extract);
3539          IE->removeFromParent();
3540          IE->insertAfter(Extract);
3541          InsertAfter = IE;
3542        }
3543      }
3544      // Move to the next bundle.
3545      i += VF - 1;
3546      Changed = true;
3547    }
3548  }
3549
3550  return Changed;
3551}
3552
3553bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
3554  if (!V)
3555    return false;
3556
3557  // Try to vectorize V.
3558  if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
3559    return true;
3560
3561  BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
3562  BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
3563  // Try to skip B.
3564  if (B && B->hasOneUse()) {
3565    BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
3566    BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
3567    if (tryToVectorizePair(A, B0, R)) {
3568      return true;
3569    }
3570    if (tryToVectorizePair(A, B1, R)) {
3571      return true;
3572    }
3573  }
3574
3575  // Try to skip A.
3576  if (A && A->hasOneUse()) {
3577    BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
3578    BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
3579    if (tryToVectorizePair(A0, B, R)) {
3580      return true;
3581    }
3582    if (tryToVectorizePair(A1, B, R)) {
3583      return true;
3584    }
3585  }
3586  return 0;
3587}
3588
3589/// \brief Generate a shuffle mask to be used in a reduction tree.
3590///
3591/// \param VecLen The length of the vector to be reduced.
3592/// \param NumEltsToRdx The number of elements that should be reduced in the
3593///        vector.
3594/// \param IsPairwise Whether the reduction is a pairwise or splitting
3595///        reduction. A pairwise reduction will generate a mask of
3596///        <0,2,...> or <1,3,..> while a splitting reduction will generate
3597///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
3598/// \param IsLeft True will generate a mask of even elements, odd otherwise.
3599static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
3600                                   bool IsPairwise, bool IsLeft,
3601                                   IRBuilder<> &Builder) {
3602  assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
3603
3604  SmallVector<Constant *, 32> ShuffleMask(
3605      VecLen, UndefValue::get(Builder.getInt32Ty()));
3606
3607  if (IsPairwise)
3608    // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
3609    for (unsigned i = 0; i != NumEltsToRdx; ++i)
3610      ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
3611  else
3612    // Move the upper half of the vector to the lower half.
3613    for (unsigned i = 0; i != NumEltsToRdx; ++i)
3614      ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
3615
3616  return ConstantVector::get(ShuffleMask);
3617}
3618
3619
3620/// Model horizontal reductions.
3621///
3622/// A horizontal reduction is a tree of reduction operations (currently add and
3623/// fadd) that has operations that can be put into a vector as its leaf.
3624/// For example, this tree:
3625///
3626/// mul mul mul mul
3627///  \  /    \  /
3628///   +       +
3629///    \     /
3630///       +
3631/// This tree has "mul" as its reduced values and "+" as its reduction
3632/// operations. A reduction might be feeding into a store or a binary operation
3633/// feeding a phi.
3634///    ...
3635///    \  /
3636///     +
3637///     |
3638///  phi +=
3639///
3640///  Or:
3641///    ...
3642///    \  /
3643///     +
3644///     |
3645///   *p =
3646///
3647class HorizontalReduction {
3648  SmallVector<Value *, 16> ReductionOps;
3649  SmallVector<Value *, 32> ReducedVals;
3650
3651  BinaryOperator *ReductionRoot;
3652  PHINode *ReductionPHI;
3653
3654  /// The opcode of the reduction.
3655  unsigned ReductionOpcode;
3656  /// The opcode of the values we perform a reduction on.
3657  unsigned ReducedValueOpcode;
3658  /// Should we model this reduction as a pairwise reduction tree or a tree that
3659  /// splits the vector in halves and adds those halves.
3660  bool IsPairwiseReduction;
3661
3662public:
3663  /// The width of one full horizontal reduction operation.
3664  unsigned ReduxWidth;
3665
3666  HorizontalReduction()
3667    : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
3668    ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0) {}
3669
3670  /// \brief Try to find a reduction tree.
3671  bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) {
3672    assert((!Phi ||
3673            std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
3674           "Thi phi needs to use the binary operator");
3675
3676    // We could have a initial reductions that is not an add.
3677    //  r *= v1 + v2 + v3 + v4
3678    // In such a case start looking for a tree rooted in the first '+'.
3679    if (Phi) {
3680      if (B->getOperand(0) == Phi) {
3681        Phi = nullptr;
3682        B = dyn_cast<BinaryOperator>(B->getOperand(1));
3683      } else if (B->getOperand(1) == Phi) {
3684        Phi = nullptr;
3685        B = dyn_cast<BinaryOperator>(B->getOperand(0));
3686      }
3687    }
3688
3689    if (!B)
3690      return false;
3691
3692    Type *Ty = B->getType();
3693    if (!isValidElementType(Ty))
3694      return false;
3695
3696    const DataLayout &DL = B->getModule()->getDataLayout();
3697    ReductionOpcode = B->getOpcode();
3698    ReducedValueOpcode = 0;
3699    // FIXME: Register size should be a parameter to this function, so we can
3700    // try different vectorization factors.
3701    ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty);
3702    ReductionRoot = B;
3703    ReductionPHI = Phi;
3704
3705    if (ReduxWidth < 4)
3706      return false;
3707
3708    // We currently only support adds.
3709    if (ReductionOpcode != Instruction::Add &&
3710        ReductionOpcode != Instruction::FAdd)
3711      return false;
3712
3713    // Post order traverse the reduction tree starting at B. We only handle true
3714    // trees containing only binary operators or selects.
3715    SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
3716    Stack.push_back(std::make_pair(B, 0));
3717    while (!Stack.empty()) {
3718      Instruction *TreeN = Stack.back().first;
3719      unsigned EdgeToVist = Stack.back().second++;
3720      bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
3721
3722      // Only handle trees in the current basic block.
3723      if (TreeN->getParent() != B->getParent())
3724        return false;
3725
3726      // Each tree node needs to have one user except for the ultimate
3727      // reduction.
3728      if (!TreeN->hasOneUse() && TreeN != B)
3729        return false;
3730
3731      // Postorder vist.
3732      if (EdgeToVist == 2 || IsReducedValue) {
3733        if (IsReducedValue) {
3734          // Make sure that the opcodes of the operations that we are going to
3735          // reduce match.
3736          if (!ReducedValueOpcode)
3737            ReducedValueOpcode = TreeN->getOpcode();
3738          else if (ReducedValueOpcode != TreeN->getOpcode())
3739            return false;
3740          ReducedVals.push_back(TreeN);
3741        } else {
3742          // We need to be able to reassociate the adds.
3743          if (!TreeN->isAssociative())
3744            return false;
3745          ReductionOps.push_back(TreeN);
3746        }
3747        // Retract.
3748        Stack.pop_back();
3749        continue;
3750      }
3751
3752      // Visit left or right.
3753      Value *NextV = TreeN->getOperand(EdgeToVist);
3754      // We currently only allow BinaryOperator's and SelectInst's as reduction
3755      // values in our tree.
3756      if (isa<BinaryOperator>(NextV) || isa<SelectInst>(NextV))
3757        Stack.push_back(std::make_pair(cast<Instruction>(NextV), 0));
3758      else if (NextV != Phi)
3759        return false;
3760    }
3761    return true;
3762  }
3763
3764  /// \brief Attempt to vectorize the tree found by
3765  /// matchAssociativeReduction.
3766  bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
3767    if (ReducedVals.empty())
3768      return false;
3769
3770    unsigned NumReducedVals = ReducedVals.size();
3771    if (NumReducedVals < ReduxWidth)
3772      return false;
3773
3774    Value *VectorizedTree = nullptr;
3775    IRBuilder<> Builder(ReductionRoot);
3776    FastMathFlags Unsafe;
3777    Unsafe.setUnsafeAlgebra();
3778    Builder.SetFastMathFlags(Unsafe);
3779    unsigned i = 0;
3780
3781    for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
3782      V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps);
3783
3784      // Estimate cost.
3785      int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
3786      if (Cost >= -SLPCostThreshold)
3787        break;
3788
3789      DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
3790                   << ". (HorRdx)\n");
3791
3792      // Vectorize a tree.
3793      DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
3794      Value *VectorizedRoot = V.vectorizeTree();
3795
3796      // Emit a reduction.
3797      Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
3798      if (VectorizedTree) {
3799        Builder.SetCurrentDebugLocation(Loc);
3800        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
3801                                     ReducedSubTree, "bin.rdx");
3802      } else
3803        VectorizedTree = ReducedSubTree;
3804    }
3805
3806    if (VectorizedTree) {
3807      // Finish the reduction.
3808      for (; i < NumReducedVals; ++i) {
3809        Builder.SetCurrentDebugLocation(
3810          cast<Instruction>(ReducedVals[i])->getDebugLoc());
3811        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
3812                                     ReducedVals[i]);
3813      }
3814      // Update users.
3815      if (ReductionPHI) {
3816        assert(ReductionRoot && "Need a reduction operation");
3817        ReductionRoot->setOperand(0, VectorizedTree);
3818        ReductionRoot->setOperand(1, ReductionPHI);
3819      } else
3820        ReductionRoot->replaceAllUsesWith(VectorizedTree);
3821    }
3822    return VectorizedTree != nullptr;
3823  }
3824
3825  unsigned numReductionValues() const {
3826    return ReducedVals.size();
3827  }
3828
3829private:
3830  /// \brief Calculate the cost of a reduction.
3831  int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
3832    Type *ScalarTy = FirstReducedVal->getType();
3833    Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
3834
3835    int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
3836    int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
3837
3838    IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
3839    int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
3840
3841    int ScalarReduxCost =
3842        ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
3843
3844    DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
3845                 << " for reduction that starts with " << *FirstReducedVal
3846                 << " (It is a "
3847                 << (IsPairwiseReduction ? "pairwise" : "splitting")
3848                 << " reduction)\n");
3849
3850    return VecReduxCost - ScalarReduxCost;
3851  }
3852
3853  static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
3854                            Value *R, const Twine &Name = "") {
3855    if (Opcode == Instruction::FAdd)
3856      return Builder.CreateFAdd(L, R, Name);
3857    return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
3858  }
3859
3860  /// \brief Emit a horizontal reduction of the vectorized value.
3861  Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
3862    assert(VectorizedValue && "Need to have a vectorized tree node");
3863    assert(isPowerOf2_32(ReduxWidth) &&
3864           "We only handle power-of-two reductions for now");
3865
3866    Value *TmpVec = VectorizedValue;
3867    for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
3868      if (IsPairwiseReduction) {
3869        Value *LeftMask =
3870          createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
3871        Value *RightMask =
3872          createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
3873
3874        Value *LeftShuf = Builder.CreateShuffleVector(
3875          TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
3876        Value *RightShuf = Builder.CreateShuffleVector(
3877          TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
3878          "rdx.shuf.r");
3879        TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
3880                             "bin.rdx");
3881      } else {
3882        Value *UpperHalf =
3883          createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
3884        Value *Shuf = Builder.CreateShuffleVector(
3885          TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
3886        TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
3887      }
3888    }
3889
3890    // The result is in the first element of the vector.
3891    return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
3892  }
3893};
3894
3895/// \brief Recognize construction of vectors like
3896///  %ra = insertelement <4 x float> undef, float %s0, i32 0
3897///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
3898///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
3899///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
3900///
3901/// Returns true if it matches
3902///
3903static bool findBuildVector(InsertElementInst *FirstInsertElem,
3904                            SmallVectorImpl<Value *> &BuildVector,
3905                            SmallVectorImpl<Value *> &BuildVectorOpds) {
3906  if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
3907    return false;
3908
3909  InsertElementInst *IE = FirstInsertElem;
3910  while (true) {
3911    BuildVector.push_back(IE);
3912    BuildVectorOpds.push_back(IE->getOperand(1));
3913
3914    if (IE->use_empty())
3915      return false;
3916
3917    InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
3918    if (!NextUse)
3919      return true;
3920
3921    // If this isn't the final use, make sure the next insertelement is the only
3922    // use. It's OK if the final constructed vector is used multiple times
3923    if (!IE->hasOneUse())
3924      return false;
3925
3926    IE = NextUse;
3927  }
3928
3929  return false;
3930}
3931
3932static bool PhiTypeSorterFunc(Value *V, Value *V2) {
3933  return V->getType() < V2->getType();
3934}
3935
3936/// \brief Try and get a reduction value from a phi node.
3937///
3938/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
3939/// if they come from either \p ParentBB or a containing loop latch.
3940///
3941/// \returns A candidate reduction value if possible, or \code nullptr \endcode
3942/// if not possible.
3943static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
3944                                BasicBlock *ParentBB, LoopInfo *LI) {
3945  // There are situations where the reduction value is not dominated by the
3946  // reduction phi. Vectorizing such cases has been reported to cause
3947  // miscompiles. See PR25787.
3948  auto DominatedReduxValue = [&](Value *R) {
3949    return (
3950        dyn_cast<Instruction>(R) &&
3951        DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent()));
3952  };
3953
3954  Value *Rdx = nullptr;
3955
3956  // Return the incoming value if it comes from the same BB as the phi node.
3957  if (P->getIncomingBlock(0) == ParentBB) {
3958    Rdx = P->getIncomingValue(0);
3959  } else if (P->getIncomingBlock(1) == ParentBB) {
3960    Rdx = P->getIncomingValue(1);
3961  }
3962
3963  if (Rdx && DominatedReduxValue(Rdx))
3964    return Rdx;
3965
3966  // Otherwise, check whether we have a loop latch to look at.
3967  Loop *BBL = LI->getLoopFor(ParentBB);
3968  if (!BBL)
3969    return nullptr;
3970  BasicBlock *BBLatch = BBL->getLoopLatch();
3971  if (!BBLatch)
3972    return nullptr;
3973
3974  // There is a loop latch, return the incoming value if it comes from
3975  // that. This reduction pattern occassionaly turns up.
3976  if (P->getIncomingBlock(0) == BBLatch) {
3977    Rdx = P->getIncomingValue(0);
3978  } else if (P->getIncomingBlock(1) == BBLatch) {
3979    Rdx = P->getIncomingValue(1);
3980  }
3981
3982  if (Rdx && DominatedReduxValue(Rdx))
3983    return Rdx;
3984
3985  return nullptr;
3986}
3987
3988/// \brief Attempt to reduce a horizontal reduction.
3989/// If it is legal to match a horizontal reduction feeding
3990/// the phi node P with reduction operators BI, then check if it
3991/// can be done.
3992/// \returns true if a horizontal reduction was matched and reduced.
3993/// \returns false if a horizontal reduction was not matched.
3994static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI,
3995                                        BoUpSLP &R, TargetTransformInfo *TTI) {
3996  if (!ShouldVectorizeHor)
3997    return false;
3998
3999  HorizontalReduction HorRdx;
4000  if (!HorRdx.matchAssociativeReduction(P, BI))
4001    return false;
4002
4003  // If there is a sufficient number of reduction values, reduce
4004  // to a nearby power-of-2. Can safely generate oversized
4005  // vectors and rely on the backend to split them to legal sizes.
4006  HorRdx.ReduxWidth =
4007    std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues()));
4008
4009  return HorRdx.tryToReduce(R, TTI);
4010}
4011
4012bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
4013  bool Changed = false;
4014  SmallVector<Value *, 4> Incoming;
4015  SmallSet<Value *, 16> VisitedInstrs;
4016
4017  bool HaveVectorizedPhiNodes = true;
4018  while (HaveVectorizedPhiNodes) {
4019    HaveVectorizedPhiNodes = false;
4020
4021    // Collect the incoming values from the PHIs.
4022    Incoming.clear();
4023    for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
4024         ++instr) {
4025      PHINode *P = dyn_cast<PHINode>(instr);
4026      if (!P)
4027        break;
4028
4029      if (!VisitedInstrs.count(P))
4030        Incoming.push_back(P);
4031    }
4032
4033    // Sort by type.
4034    std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
4035
4036    // Try to vectorize elements base on their type.
4037    for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
4038                                           E = Incoming.end();
4039         IncIt != E;) {
4040
4041      // Look for the next elements with the same type.
4042      SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
4043      while (SameTypeIt != E &&
4044             (*SameTypeIt)->getType() == (*IncIt)->getType()) {
4045        VisitedInstrs.insert(*SameTypeIt);
4046        ++SameTypeIt;
4047      }
4048
4049      // Try to vectorize them.
4050      unsigned NumElts = (SameTypeIt - IncIt);
4051      DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
4052      if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) {
4053        // Success start over because instructions might have been changed.
4054        HaveVectorizedPhiNodes = true;
4055        Changed = true;
4056        break;
4057      }
4058
4059      // Start over at the next instruction of a different type (or the end).
4060      IncIt = SameTypeIt;
4061    }
4062  }
4063
4064  VisitedInstrs.clear();
4065
4066  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
4067    // We may go through BB multiple times so skip the one we have checked.
4068    if (!VisitedInstrs.insert(&*it).second)
4069      continue;
4070
4071    if (isa<DbgInfoIntrinsic>(it))
4072      continue;
4073
4074    // Try to vectorize reductions that use PHINodes.
4075    if (PHINode *P = dyn_cast<PHINode>(it)) {
4076      // Check that the PHI is a reduction PHI.
4077      if (P->getNumIncomingValues() != 2)
4078        return Changed;
4079
4080      Value *Rdx = getReductionValue(DT, P, BB, LI);
4081
4082      // Check if this is a Binary Operator.
4083      BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
4084      if (!BI)
4085        continue;
4086
4087      // Try to match and vectorize a horizontal reduction.
4088      if (canMatchHorizontalReduction(P, BI, R, TTI)) {
4089        Changed = true;
4090        it = BB->begin();
4091        e = BB->end();
4092        continue;
4093      }
4094
4095     Value *Inst = BI->getOperand(0);
4096      if (Inst == P)
4097        Inst = BI->getOperand(1);
4098
4099      if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
4100        // We would like to start over since some instructions are deleted
4101        // and the iterator may become invalid value.
4102        Changed = true;
4103        it = BB->begin();
4104        e = BB->end();
4105        continue;
4106      }
4107
4108      continue;
4109    }
4110
4111    if (ShouldStartVectorizeHorAtStore)
4112      if (StoreInst *SI = dyn_cast<StoreInst>(it))
4113        if (BinaryOperator *BinOp =
4114                dyn_cast<BinaryOperator>(SI->getValueOperand())) {
4115          if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI) ||
4116              tryToVectorize(BinOp, R)) {
4117            Changed = true;
4118            it = BB->begin();
4119            e = BB->end();
4120            continue;
4121          }
4122        }
4123
4124    // Try to vectorize horizontal reductions feeding into a return.
4125    if (ReturnInst *RI = dyn_cast<ReturnInst>(it))
4126      if (RI->getNumOperands() != 0)
4127        if (BinaryOperator *BinOp =
4128                dyn_cast<BinaryOperator>(RI->getOperand(0))) {
4129          DEBUG(dbgs() << "SLP: Found a return to vectorize.\n");
4130          if (tryToVectorizePair(BinOp->getOperand(0),
4131                                 BinOp->getOperand(1), R)) {
4132            Changed = true;
4133            it = BB->begin();
4134            e = BB->end();
4135            continue;
4136          }
4137        }
4138
4139    // Try to vectorize trees that start at compare instructions.
4140    if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
4141      if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
4142        Changed = true;
4143        // We would like to start over since some instructions are deleted
4144        // and the iterator may become invalid value.
4145        it = BB->begin();
4146        e = BB->end();
4147        continue;
4148      }
4149
4150      for (int i = 0; i < 2; ++i) {
4151        if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
4152          if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
4153            Changed = true;
4154            // We would like to start over since some instructions are deleted
4155            // and the iterator may become invalid value.
4156            it = BB->begin();
4157            e = BB->end();
4158            break;
4159          }
4160        }
4161      }
4162      continue;
4163    }
4164
4165    // Try to vectorize trees that start at insertelement instructions.
4166    if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
4167      SmallVector<Value *, 16> BuildVector;
4168      SmallVector<Value *, 16> BuildVectorOpds;
4169      if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
4170        continue;
4171
4172      // Vectorize starting with the build vector operands ignoring the
4173      // BuildVector instructions for the purpose of scheduling and user
4174      // extraction.
4175      if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
4176        Changed = true;
4177        it = BB->begin();
4178        e = BB->end();
4179      }
4180
4181      continue;
4182    }
4183  }
4184
4185  return Changed;
4186}
4187
4188bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
4189  bool Changed = false;
4190  // Attempt to sort and vectorize each of the store-groups.
4191  for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
4192       it != e; ++it) {
4193    if (it->second.size() < 2)
4194      continue;
4195
4196    DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
4197          << it->second.size() << ".\n");
4198
4199    // Process the stores in chunks of 16.
4200    // TODO: The limit of 16 inhibits greater vectorization factors.
4201    //       For example, AVX2 supports v32i8. Increasing this limit, however,
4202    //       may cause a significant compile-time increase.
4203    for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
4204      unsigned Len = std::min<unsigned>(CE - CI, 16);
4205      Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len),
4206                                 -SLPCostThreshold, R);
4207    }
4208  }
4209  return Changed;
4210}
4211
4212} // end anonymous namespace
4213
4214char SLPVectorizer::ID = 0;
4215static const char lv_name[] = "SLP Vectorizer";
4216INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
4217INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4218INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4219INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4220INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
4221INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4222INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
4223
4224namespace llvm {
4225Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
4226}
4227