1/* 2 * Private includes and definitions for userspace use of XZ Embedded 3 * 4 * Author: Lasse Collin <lasse.collin@tukaani.org> 5 * 6 * This file has been put into the public domain. 7 * You can do whatever you want with this file. 8 */ 9 10#ifndef XZ_CONFIG_H 11#define XZ_CONFIG_H 12 13/* Uncomment to enable CRC64 support. */ 14/* #define XZ_USE_CRC64 */ 15 16/* Uncomment as needed to enable BCJ filter decoders. */ 17#define XZ_DEC_X86 18/* #define XZ_DEC_POWERPC */ 19/* #define XZ_DEC_IA64 */ 20#define XZ_DEC_ARM 21#define XZ_DEC_ARMTHUMB 22/* #define XZ_DEC_SPARC */ 23 24/* 25 * MSVC doesn't support modern C but XZ Embedded is mostly C89 26 * so these are enough. 27 */ 28#ifdef _MSC_VER 29typedef unsigned char bool; 30# define true 1 31# define false 0 32# define inline __inline 33#else 34# include <stdbool.h> 35#endif 36 37#include <stdlib.h> 38#include <string.h> 39 40#include "xz.h" 41 42#define kmalloc(size, flags) malloc(size) 43#define kfree(ptr) free(ptr) 44#define vmalloc(size) malloc(size) 45#define vfree(ptr) free(ptr) 46 47#define memeq(a, b, size) (memcmp(a, b, size) == 0) 48#define memzero(buf, size) memset(buf, 0, size) 49 50#ifndef min 51# define min(x, y) ((x) < (y) ? (x) : (y)) 52#endif 53#define min_t(type, x, y) min(x, y) 54 55/* 56 * Some functions have been marked with __always_inline to keep the 57 * performance reasonable even when the compiler is optimizing for 58 * small code size. You may be able to save a few bytes by #defining 59 * __always_inline to plain inline, but don't complain if the code 60 * becomes slow. 61 * 62 * NOTE: System headers on GNU/Linux may #define this macro already, 63 * so if you want to change it, you need to #undef it first. 64 */ 65#ifndef __always_inline 66# ifdef __GNUC__ 67# define __always_inline \ 68 inline __attribute__((__always_inline__)) 69# else 70# define __always_inline inline 71# endif 72#endif 73 74/* Inline functions to access unaligned unsigned 32-bit integers */ 75#ifndef get_unaligned_le32 76static inline uint32_t get_unaligned_le32(const uint8_t *buf) 77{ 78 return (uint32_t)buf[0] 79 | ((uint32_t)buf[1] << 8) 80 | ((uint32_t)buf[2] << 16) 81 | ((uint32_t)buf[3] << 24); 82} 83#endif 84 85#ifndef get_unaligned_be32 86static inline uint32_t get_unaligned_be32(const uint8_t *buf) 87{ 88 return (uint32_t)(buf[0] << 24) 89 | ((uint32_t)buf[1] << 16) 90 | ((uint32_t)buf[2] << 8) 91 | (uint32_t)buf[3]; 92} 93#endif 94 95#ifndef put_unaligned_le32 96static inline void put_unaligned_le32(uint32_t val, uint8_t *buf) 97{ 98 buf[0] = (uint8_t)val; 99 buf[1] = (uint8_t)(val >> 8); 100 buf[2] = (uint8_t)(val >> 16); 101 buf[3] = (uint8_t)(val >> 24); 102} 103#endif 104 105#ifndef put_unaligned_be32 106static inline void put_unaligned_be32(uint32_t val, uint8_t *buf) 107{ 108 buf[0] = (uint8_t)(val >> 24); 109 buf[1] = (uint8_t)(val >> 16); 110 buf[2] = (uint8_t)(val >> 8); 111 buf[3] = (uint8_t)val; 112} 113#endif 114 115/* 116 * Use get_unaligned_le32() also for aligned access for simplicity. On 117 * little endian systems, #define get_le32(ptr) (*(const uint32_t *)(ptr)) 118 * could save a few bytes in code size. 119 */ 120#ifndef get_le32 121# define get_le32 get_unaligned_le32 122#endif 123 124#endif 125