1/*M///////////////////////////////////////////////////////////////////////////////////////
2//
3//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4//
5//  By downloading, copying, installing or using the software you agree to this license.
6//  If you do not agree to this license, do not download, install,
7//  copy or use the software.
8//
9//
10//                        Intel License Agreement
11//                For Open Source Computer Vision Library
12//
13// Copyright (C) 2000, Intel Corporation, all rights reserved.
14// Third party copyrights are property of their respective owners.
15//
16// Redistribution and use in source and binary forms, with or without modification,
17// are permitted provided that the following conditions are met:
18//
19//   * Redistribution's of source code must retain the above copyright notice,
20//     this list of conditions and the following disclaimer.
21//
22//   * Redistribution's in binary form must reproduce the above copyright notice,
23//     this list of conditions and the following disclaimer in the documentation
24//     and/or other materials provided with the distribution.
25//
26//   * The name of Intel Corporation may not be used to endorse or promote products
27//     derived from this software without specific prior written permission.
28//
29// This software is provided by the copyright holders and contributors "as is" and
30// any express or implied warranties, including, but not limited to, the implied
31// warranties of merchantability and fitness for a particular purpose are disclaimed.
32// In no event shall the Intel Corporation or contributors be liable for any direct,
33// indirect, incidental, special, exemplary, or consequential damages
34// (including, but not limited to, procurement of substitute goods or services;
35// loss of use, data, or profits; or business interruption) however caused
36// and on any theory of liability, whether in contract, strict liability,
37// or tort (including negligence or otherwise) arising in any way out of
38// the use of this software, even if advised of the possibility of such damage.
39//
40//M*/
41
42#include "_cxcore.h"
43#include <float.h>
44
45/****************************************************************************************\
46*                              Mean value over the region                                *
47\****************************************************************************************/
48
49#define ICV_MEAN_CASE_C1( len )         \
50    for( ; x <= (len) - 2; x += 2 )     \
51    {                                   \
52        if( mask[x] )                   \
53             s0 += src[x], pix++;       \
54        if( mask[x+1] )                 \
55            s0 += src[x+1], pix++;      \
56    }                                   \
57                                        \
58    for( ; x < (len); x++ )             \
59        if( mask[x] )                   \
60            s0 += src[x], pix++
61
62
63#define ICV_MEAN_CASE_C2( len )         \
64    for( ; x < (len); x++ )             \
65        if( mask[x] )                   \
66        {                               \
67            s0 += src[x*2];             \
68            s1 += src[x*2+1];           \
69            pix++;                      \
70        }
71
72
73#define ICV_MEAN_CASE_C3( len )         \
74    for( ; x < (len); x++ )             \
75        if( mask[x] )                   \
76        {                               \
77            s0 += src[x*3];             \
78            s1 += src[x*3+1];           \
79            s2 += src[x*3+2];           \
80            pix++;                      \
81        }
82
83
84#define ICV_MEAN_CASE_C4( len )         \
85    for( ; x < (len); x++ )             \
86        if( mask[x] )                   \
87        {                               \
88            s0 += src[x*4];             \
89            s1 += src[x*4+1];           \
90            s2 += src[x*4+2];           \
91            s3 += src[x*4+3];           \
92            pix++;                      \
93        }
94
95
96#define ICV_MEAN_COI_CASE( len, cn )    \
97    for( ; x <= (len) - 2; x += 2 )     \
98    {                                   \
99        if( mask[x] )                   \
100             s0 += src[x*(cn)], pix++;  \
101        if( mask[x+1] )                 \
102            s0+=src[(x+1)*(cn)], pix++; \
103    }                                   \
104                                        \
105    for( ; x < (len); x++ )             \
106        if( mask[x] )                   \
107            s0 += src[x*(cn)], pix++;
108
109
110////////////////////////////////////// entry macros //////////////////////////////////////
111
112#define ICV_MEAN_ENTRY_COMMON()         \
113    int pix = 0;                        \
114    step /= sizeof(src[0])
115
116#define ICV_MEAN_ENTRY_C1( sumtype )    \
117    sumtype s0 = 0;                     \
118    ICV_MEAN_ENTRY_COMMON()
119
120#define ICV_MEAN_ENTRY_C2( sumtype )    \
121    sumtype s0 = 0, s1 = 0;             \
122    ICV_MEAN_ENTRY_COMMON()
123
124#define ICV_MEAN_ENTRY_C3( sumtype )    \
125    sumtype s0 = 0, s1 = 0, s2 = 0;     \
126    ICV_MEAN_ENTRY_COMMON()
127
128#define ICV_MEAN_ENTRY_C4( sumtype )        \
129    sumtype s0 = 0, s1 = 0, s2 = 0, s3 = 0; \
130    ICV_MEAN_ENTRY_COMMON()
131
132
133#define ICV_MEAN_ENTRY_BLOCK_COMMON( block_size ) \
134    int remaining = block_size;                   \
135    ICV_MEAN_ENTRY_COMMON()
136
137#define ICV_MEAN_ENTRY_BLOCK_C1( sumtype, worktype, block_size )\
138    sumtype sum0 = 0;                                           \
139    worktype s0 = 0;                                            \
140    ICV_MEAN_ENTRY_BLOCK_COMMON( block_size )
141
142#define ICV_MEAN_ENTRY_BLOCK_C2( sumtype, worktype, block_size )\
143    sumtype sum0 = 0, sum1 = 0;                                 \
144    worktype s0 = 0, s1 = 0;                                    \
145    ICV_MEAN_ENTRY_BLOCK_COMMON( block_size )
146
147#define ICV_MEAN_ENTRY_BLOCK_C3( sumtype, worktype, block_size )\
148    sumtype sum0 = 0, sum1 = 0, sum2 = 0;                       \
149    worktype s0 = 0, s1 = 0, s2 = 0;                            \
150    ICV_MEAN_ENTRY_BLOCK_COMMON( block_size )
151
152#define ICV_MEAN_ENTRY_BLOCK_C4( sumtype, worktype, block_size )\
153    sumtype sum0 = 0, sum1 = 0, sum2 = 0, sum3 = 0;             \
154    worktype s0 = 0, s1 = 0, s2 = 0, s3 = 0;                    \
155    ICV_MEAN_ENTRY_BLOCK_COMMON( block_size )
156
157
158/////////////////////////////////////// exit macros //////////////////////////////////////
159
160#define ICV_MEAN_EXIT_COMMON()          \
161    double scale = pix ? 1./pix : 0
162
163#define ICV_MEAN_EXIT_C1( tmp )         \
164    ICV_MEAN_EXIT_COMMON();             \
165    mean[0] = scale*(double)tmp##0
166
167#define ICV_MEAN_EXIT_C2( tmp )         \
168    ICV_MEAN_EXIT_COMMON();             \
169    double t0 = scale*(double)tmp##0;   \
170    double t1 = scale*(double)tmp##1;   \
171    mean[0] = t0;                       \
172    mean[1] = t1
173
174#define ICV_MEAN_EXIT_C3( tmp )         \
175    ICV_MEAN_EXIT_COMMON();             \
176    double t0 = scale*(double)tmp##0;   \
177    double t1 = scale*(double)tmp##1;   \
178    double t2 = scale*(double)tmp##2;   \
179    mean[0] = t0;                       \
180    mean[1] = t1;                       \
181    mean[2] = t2
182
183#define ICV_MEAN_EXIT_C4( tmp )         \
184    ICV_MEAN_EXIT_COMMON();             \
185    double t0 = scale*(double)tmp##0;   \
186    double t1 = scale*(double)tmp##1;   \
187    mean[0] = t0;                       \
188    mean[1] = t1;                       \
189    t0 = scale*(double)tmp##2;          \
190    t1 = scale*(double)tmp##3;          \
191    mean[2] = t0;                       \
192    mean[3] = t1
193
194#define ICV_MEAN_EXIT_BLOCK_C1()    \
195    sum0 += s0;                     \
196    ICV_MEAN_EXIT_C1( sum )
197
198#define ICV_MEAN_EXIT_BLOCK_C2()    \
199    sum0 += s0; sum1 += s1;         \
200    ICV_MEAN_EXIT_C2( sum )
201
202#define ICV_MEAN_EXIT_BLOCK_C3()    \
203    sum0 += s0; sum1 += s1;         \
204    sum2 += s2;                     \
205    ICV_MEAN_EXIT_C3( sum )
206
207#define ICV_MEAN_EXIT_BLOCK_C4()    \
208    sum0 += s0; sum1 += s1;         \
209    sum2 += s2; sum3 += s3;         \
210    ICV_MEAN_EXIT_C4( sum )
211
212////////////////////////////////////// update macros /////////////////////////////////////
213
214#define ICV_MEAN_UPDATE_COMMON( block_size )\
215    remaining = block_size
216
217#define ICV_MEAN_UPDATE_C1( block_size )    \
218    ICV_MEAN_UPDATE_COMMON( block_size );   \
219    sum0 += s0;                             \
220    s0 = 0
221
222#define ICV_MEAN_UPDATE_C2( block_size )    \
223    ICV_MEAN_UPDATE_COMMON( block_size );   \
224    sum0 += s0; sum1 += s1;                 \
225    s0 = s1 = 0
226
227#define ICV_MEAN_UPDATE_C3( block_size )    \
228    ICV_MEAN_UPDATE_COMMON( block_size );   \
229    sum0 += s0; sum1 += s1; sum2 += s2;     \
230    s0 = s1 = s2 = 0
231
232#define ICV_MEAN_UPDATE_C4( block_size )    \
233    ICV_MEAN_UPDATE_COMMON( block_size );   \
234    sum0 += s0; sum1 += s1;                 \
235    sum2 += s2; sum3 += s3;                 \
236    s0 = s1 = s2 = s3 = 0
237
238
239#define ICV_IMPL_MEAN_BLOCK_FUNC_2D( flavor, cn,                \
240    arrtype, sumtype, worktype, block_size )                    \
241IPCVAPI_IMPL( CvStatus, icvMean_##flavor##_C##cn##MR,           \
242    ( const arrtype* src, int step,                             \
243      const uchar* mask, int maskstep,                          \
244      CvSize size, double* mean ),                              \
245    (src, step, mask, maskstep, size, mean))                    \
246{                                                               \
247    ICV_MEAN_ENTRY_BLOCK_C##cn( sumtype, worktype, block_size );\
248                                                                \
249    for( ; size.height--; src += step, mask += maskstep )       \
250    {                                                           \
251        int x = 0;                                              \
252        while( x < size.width )                                 \
253        {                                                       \
254            int limit = MIN( remaining, size.width - x );       \
255            remaining -= limit;                                 \
256            limit += x;                                         \
257            ICV_MEAN_CASE_C##cn( limit );                       \
258            if( remaining == 0 )                                \
259            {                                                   \
260                ICV_MEAN_UPDATE_C##cn( block_size );            \
261            }                                                   \
262        }                                                       \
263    }                                                           \
264                                                                \
265    { ICV_MEAN_EXIT_BLOCK_C##cn(); }                            \
266    return CV_OK;                                               \
267}
268
269
270#define ICV_IMPL_MEAN_FUNC_2D( flavor, cn,                      \
271                arrtype, sumtype, worktype )                    \
272IPCVAPI_IMPL( CvStatus, icvMean_##flavor##_C##cn##MR,           \
273    ( const arrtype* src, int step,                             \
274      const uchar* mask, int maskstep,                          \
275      CvSize size, double* mean),                               \
276    (src, step, mask, maskstep, size, mean))                    \
277{                                                               \
278    ICV_MEAN_ENTRY_C##cn( sumtype );                            \
279                                                                \
280    for( ; size.height--; src += step, mask += maskstep )       \
281    {                                                           \
282        int x = 0;                                              \
283        ICV_MEAN_CASE_C##cn( size.width );                      \
284    }                                                           \
285                                                                \
286    { ICV_MEAN_EXIT_C##cn( s ); }                               \
287    return CV_OK;                                               \
288}
289
290
291#define ICV_IMPL_MEAN_BLOCK_FUNC_2D_COI( flavor,                \
292        arrtype, sumtype, worktype, block_size )                \
293static CvStatus CV_STDCALL                                      \
294icvMean_##flavor##_CnCMR( const arrtype* src, int step,         \
295                          const uchar* mask, int maskstep,      \
296                          CvSize size, int cn,                  \
297                          int coi, double* mean )               \
298{                                                               \
299    ICV_MEAN_ENTRY_BLOCK_C1( sumtype, worktype, block_size );   \
300    src += coi - 1;                                             \
301                                                                \
302    for( ; size.height--; src += step, mask += maskstep )       \
303    {                                                           \
304        int x = 0;                                              \
305        while( x < size.width )                                 \
306        {                                                       \
307            int limit = MIN( remaining, size.width - x );       \
308            remaining -= limit;                                 \
309            limit += x;                                         \
310            ICV_MEAN_COI_CASE( limit, cn );                     \
311            if( remaining == 0 )                                \
312            {                                                   \
313                ICV_MEAN_UPDATE_C1( block_size );               \
314            }                                                   \
315        }                                                       \
316    }                                                           \
317                                                                \
318    { ICV_MEAN_EXIT_BLOCK_C1(); }                               \
319    return CV_OK;                                               \
320}
321
322
323#define ICV_IMPL_MEAN_FUNC_2D_COI( flavor,                      \
324                arrtype, sumtype, worktype )                    \
325static CvStatus CV_STDCALL                                      \
326icvMean_##flavor##_CnCMR( const arrtype* src, int step,         \
327                          const uchar* mask, int maskstep,      \
328                          CvSize size, int cn,                  \
329                          int coi, double* mean )               \
330{                                                               \
331    ICV_MEAN_ENTRY_C1( sumtype );                               \
332    src += coi - 1;                                             \
333                                                                \
334    for( ; size.height--; src += step, mask += maskstep )       \
335    {                                                           \
336        int x = 0;                                              \
337        ICV_MEAN_COI_CASE( size.width, cn );                    \
338    }                                                           \
339                                                                \
340    { ICV_MEAN_EXIT_C1( s ); }                                  \
341    return CV_OK;                                               \
342}
343
344
345#define ICV_IMPL_MEAN_BLOCK_ALL( flavor, arrtype, sumtype,      \
346                                 worktype, block_size )         \
347    ICV_IMPL_MEAN_BLOCK_FUNC_2D( flavor, 1, arrtype, sumtype,   \
348                                 worktype, block_size )         \
349    ICV_IMPL_MEAN_BLOCK_FUNC_2D( flavor, 2, arrtype, sumtype,   \
350                                 worktype, block_size )         \
351    ICV_IMPL_MEAN_BLOCK_FUNC_2D( flavor, 3, arrtype, sumtype,   \
352                                 worktype, block_size )         \
353    ICV_IMPL_MEAN_BLOCK_FUNC_2D( flavor, 4, arrtype, sumtype,   \
354                                 worktype, block_size )         \
355    ICV_IMPL_MEAN_BLOCK_FUNC_2D_COI( flavor, arrtype, sumtype,  \
356                                 worktype, block_size )
357
358#define ICV_IMPL_MEAN_ALL( flavor, arrtype, sumtype, worktype )     \
359    ICV_IMPL_MEAN_FUNC_2D( flavor, 1, arrtype, sumtype, worktype )  \
360    ICV_IMPL_MEAN_FUNC_2D( flavor, 2, arrtype, sumtype, worktype )  \
361    ICV_IMPL_MEAN_FUNC_2D( flavor, 3, arrtype, sumtype, worktype )  \
362    ICV_IMPL_MEAN_FUNC_2D( flavor, 4, arrtype, sumtype, worktype )  \
363    ICV_IMPL_MEAN_FUNC_2D_COI( flavor, arrtype, sumtype, worktype )
364
365ICV_IMPL_MEAN_BLOCK_ALL( 8u, uchar, int64, unsigned, 1 << 24 )
366ICV_IMPL_MEAN_BLOCK_ALL( 16u, ushort, int64, unsigned, 1 << 16 )
367ICV_IMPL_MEAN_BLOCK_ALL( 16s, short, int64, int, 1 << 16 )
368ICV_IMPL_MEAN_ALL( 32s, int, double, double )
369ICV_IMPL_MEAN_ALL( 32f, float, double, double )
370ICV_IMPL_MEAN_ALL( 64f, double, double, double )
371
372#define icvMean_8s_C1MR 0
373#define icvMean_8s_C2MR 0
374#define icvMean_8s_C3MR 0
375#define icvMean_8s_C4MR 0
376#define icvMean_8s_CnCMR 0
377
378CV_DEF_INIT_BIG_FUNC_TAB_2D( Mean, MR )
379CV_DEF_INIT_FUNC_TAB_2D( Mean, CnCMR )
380
381CV_IMPL  CvScalar
382cvAvg( const void* img, const void* maskarr )
383{
384    CvScalar mean = {{0,0,0,0}};
385
386    static CvBigFuncTable mean_tab;
387    static CvFuncTable meancoi_tab;
388    static int inittab = 0;
389
390    CV_FUNCNAME("cvAvg");
391
392    __BEGIN__;
393
394    CvSize size;
395    double scale;
396
397    if( !maskarr )
398    {
399        CV_CALL( mean = cvSum(img));
400        size = cvGetSize( img );
401        size.width *= size.height;
402        scale = size.width ? 1./size.width : 0;
403
404        mean.val[0] *= scale;
405        mean.val[1] *= scale;
406        mean.val[2] *= scale;
407        mean.val[3] *= scale;
408    }
409    else
410    {
411        int type, coi = 0;
412        int mat_step, mask_step;
413
414        CvMat stub, maskstub, *mat = (CvMat*)img, *mask = (CvMat*)maskarr;
415
416        if( !inittab )
417        {
418            icvInitMeanMRTable( &mean_tab );
419            icvInitMeanCnCMRTable( &meancoi_tab );
420            inittab = 1;
421        }
422
423        if( !CV_IS_MAT(mat) )
424            CV_CALL( mat = cvGetMat( mat, &stub, &coi ));
425
426        if( !CV_IS_MAT(mask) )
427            CV_CALL( mask = cvGetMat( mask, &maskstub ));
428
429        if( !CV_IS_MASK_ARR(mask) )
430            CV_ERROR( CV_StsBadMask, "" );
431
432        if( !CV_ARE_SIZES_EQ( mat, mask ) )
433            CV_ERROR( CV_StsUnmatchedSizes, "" );
434
435        type = CV_MAT_TYPE( mat->type );
436        size = cvGetMatSize( mat );
437
438        mat_step = mat->step;
439        mask_step = mask->step;
440
441        if( CV_IS_MAT_CONT( mat->type & mask->type ))
442        {
443            size.width *= size.height;
444            size.height = 1;
445            mat_step = mask_step = CV_STUB_STEP;
446        }
447
448        if( CV_MAT_CN(type) == 1 || coi == 0 )
449        {
450            CvFunc2D_2A1P func;
451
452            if( CV_MAT_CN(type) > 4 )
453                CV_ERROR( CV_StsOutOfRange, "The input array must have at most 4 channels unless COI is set" );
454
455            func = (CvFunc2D_2A1P)(mean_tab.fn_2d[type]);
456
457            if( !func )
458                CV_ERROR( CV_StsBadArg, cvUnsupportedFormat );
459
460            IPPI_CALL( func( mat->data.ptr, mat_step, mask->data.ptr,
461                             mask_step, size, mean.val ));
462        }
463        else
464        {
465            CvFunc2DnC_2A1P func = (CvFunc2DnC_2A1P)(
466                meancoi_tab.fn_2d[CV_MAT_DEPTH(type)]);
467
468            if( !func )
469                CV_ERROR( CV_StsBadArg, cvUnsupportedFormat );
470
471            IPPI_CALL( func( mat->data.ptr, mat_step, mask->data.ptr,
472                             mask_step, size, CV_MAT_CN(type), coi, mean.val ));
473        }
474    }
475
476    __END__;
477
478    return  mean;
479}
480
481/*  End of file  */
482