1
2/*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10#include "SkEdge.h"
11#include "SkFDot6.h"
12#include "SkMath.h"
13
14/*
15    In setLine, setQuadratic, setCubic, the first thing we do is to convert
16    the points into FDot6. This is modulated by the shift parameter, which
17    will either be 0, or something like 2 for antialiasing.
18
19    In the float case, we want to turn the float into .6 by saying pt * 64,
20    or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6).
21
22    In the fixed case, we want to turn the fixed into .6 by saying pt >> 10,
23    or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift).
24*/
25
26static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) {
27    // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw
28    // away data in value, so just perform a modify up-shift
29    return SkLeftShift(value, 16 - 6 - 1);
30}
31
32/////////////////////////////////////////////////////////////////////////
33
34int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip,
35                    int shift) {
36    SkFDot6 x0, y0, x1, y1;
37
38    {
39#ifdef SK_RASTERIZE_EVEN_ROUNDING
40        x0 = SkScalarRoundToFDot6(p0.fX, shift);
41        y0 = SkScalarRoundToFDot6(p0.fY, shift);
42        x1 = SkScalarRoundToFDot6(p1.fX, shift);
43        y1 = SkScalarRoundToFDot6(p1.fY, shift);
44#else
45        float scale = float(1 << (shift + 6));
46        x0 = int(p0.fX * scale);
47        y0 = int(p0.fY * scale);
48        x1 = int(p1.fX * scale);
49        y1 = int(p1.fY * scale);
50#endif
51    }
52
53    int winding = 1;
54
55    if (y0 > y1) {
56        SkTSwap(x0, x1);
57        SkTSwap(y0, y1);
58        winding = -1;
59    }
60
61    int top = SkFDot6Round(y0);
62    int bot = SkFDot6Round(y1);
63
64    // are we a zero-height line?
65    if (top == bot) {
66        return 0;
67    }
68    // are we completely above or below the clip?
69    if (clip && (top >= clip->fBottom || bot <= clip->fTop)) {
70        return 0;
71    }
72
73    SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
74    const SkFDot6 dy  = SkEdge_Compute_DY(top, y0);
75
76    fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
77    fDX         = slope;
78    fFirstY     = top;
79    fLastY      = bot - 1;
80    fCurveCount = 0;
81    fWinding    = SkToS8(winding);
82    fCurveShift = 0;
83
84    if (clip) {
85        this->chopLineWithClip(*clip);
86    }
87    return 1;
88}
89
90// called from a curve subclass
91int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1)
92{
93    SkASSERT(fWinding == 1 || fWinding == -1);
94    SkASSERT(fCurveCount != 0);
95//    SkASSERT(fCurveShift != 0);
96
97    y0 >>= 10;
98    y1 >>= 10;
99
100    SkASSERT(y0 <= y1);
101
102    int top = SkFDot6Round(y0);
103    int bot = SkFDot6Round(y1);
104
105//  SkASSERT(top >= fFirstY);
106
107    // are we a zero-height line?
108    if (top == bot)
109        return 0;
110
111    x0 >>= 10;
112    x1 >>= 10;
113
114    SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
115    const SkFDot6 dy  = SkEdge_Compute_DY(top, y0);
116
117    fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
118    fDX         = slope;
119    fFirstY     = top;
120    fLastY      = bot - 1;
121
122    return 1;
123}
124
125void SkEdge::chopLineWithClip(const SkIRect& clip)
126{
127    int top = fFirstY;
128
129    SkASSERT(top < clip.fBottom);
130
131    // clip the line to the top
132    if (top < clip.fTop)
133    {
134        SkASSERT(fLastY >= clip.fTop);
135        fX += fDX * (clip.fTop - top);
136        fFirstY = clip.fTop;
137    }
138}
139
140///////////////////////////////////////////////////////////////////////////////
141
142/*  We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
143    Note that this limits the number of lines we use to approximate a curve.
144    If we need to increase this, we need to store fCurveCount in something
145    larger than int8_t.
146*/
147#define MAX_COEFF_SHIFT     6
148
149static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy)
150{
151    dx = SkAbs32(dx);
152    dy = SkAbs32(dy);
153    // return max + min/2
154    if (dx > dy)
155        dx += dy >> 1;
156    else
157        dx = dy + (dx >> 1);
158    return dx;
159}
160
161static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy)
162{
163    // cheap calc of distance from center of p0-p2 to the center of the curve
164    SkFDot6 dist = cheap_distance(dx, dy);
165
166    // shift down dist (it is currently in dot6)
167    // down by 5 should give us 1/2 pixel accuracy (assuming our dist is accurate...)
168    // this is chosen by heuristic: make it as big as possible (to minimize segments)
169    // ... but small enough so that our curves still look smooth
170    dist = (dist + (1 << 4)) >> 5;
171
172    // each subdivision (shift value) cuts this dist (error) by 1/4
173    return (32 - SkCLZ(dist)) >> 1;
174}
175
176int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift)
177{
178    SkFDot6 x0, y0, x1, y1, x2, y2;
179
180    {
181#ifdef SK_RASTERIZE_EVEN_ROUNDING
182        x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
183        y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
184        x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
185        y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
186        x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
187        y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
188#else
189        float scale = float(1 << (shift + 6));
190        x0 = int(pts[0].fX * scale);
191        y0 = int(pts[0].fY * scale);
192        x1 = int(pts[1].fX * scale);
193        y1 = int(pts[1].fY * scale);
194        x2 = int(pts[2].fX * scale);
195        y2 = int(pts[2].fY * scale);
196#endif
197    }
198
199    int winding = 1;
200    if (y0 > y2)
201    {
202        SkTSwap(x0, x2);
203        SkTSwap(y0, y2);
204        winding = -1;
205    }
206    SkASSERT(y0 <= y1 && y1 <= y2);
207
208    int top = SkFDot6Round(y0);
209    int bot = SkFDot6Round(y2);
210
211    // are we a zero-height quad (line)?
212    if (top == bot)
213        return 0;
214
215    // compute number of steps needed (1 << shift)
216    {
217        SkFDot6 dx = (SkLeftShift(x1, 1) - x0 - x2) >> 2;
218        SkFDot6 dy = (SkLeftShift(y1, 1) - y0 - y2) >> 2;
219        shift = diff_to_shift(dx, dy);
220        SkASSERT(shift >= 0);
221    }
222    // need at least 1 subdivision for our bias trick
223    if (shift == 0) {
224        shift = 1;
225    } else if (shift > MAX_COEFF_SHIFT) {
226        shift = MAX_COEFF_SHIFT;
227    }
228
229    fWinding    = SkToS8(winding);
230    //fCubicDShift only set for cubics
231    fCurveCount = SkToS8(1 << shift);
232
233    /*
234     *  We want to reformulate into polynomial form, to make it clear how we
235     *  should forward-difference.
236     *
237     *  p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C
238     *
239     *  A = p0 - 2p1 + p2
240     *  B = 2(p1 - p0)
241     *  C = p0
242     *
243     *  Our caller must have constrained our inputs (p0..p2) to all fit into
244     *  16.16. However, as seen above, we sometimes compute values that can be
245     *  larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store
246     *  A and B at 1/2 of their actual value, and just apply a 2x scale during
247     *  application in updateQuadratic(). Hence we store (shift - 1) in
248     *  fCurveShift.
249     */
250
251    fCurveShift = SkToU8(shift - 1);
252
253    SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2);  // 1/2 the real value
254    SkFixed B = SkFDot6ToFixed(x1 - x0);                // 1/2 the real value
255
256    fQx     = SkFDot6ToFixed(x0);
257    fQDx    = B + (A >> shift);     // biased by shift
258    fQDDx   = A >> (shift - 1);     // biased by shift
259
260    A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2);  // 1/2 the real value
261    B = SkFDot6ToFixed(y1 - y0);                // 1/2 the real value
262
263    fQy     = SkFDot6ToFixed(y0);
264    fQDy    = B + (A >> shift);     // biased by shift
265    fQDDy   = A >> (shift - 1);     // biased by shift
266
267    fQLastX = SkFDot6ToFixed(x2);
268    fQLastY = SkFDot6ToFixed(y2);
269
270    return this->updateQuadratic();
271}
272
273int SkQuadraticEdge::updateQuadratic()
274{
275    int     success;
276    int     count = fCurveCount;
277    SkFixed oldx = fQx;
278    SkFixed oldy = fQy;
279    SkFixed dx = fQDx;
280    SkFixed dy = fQDy;
281    SkFixed newx, newy;
282    int     shift = fCurveShift;
283
284    SkASSERT(count > 0);
285
286    do {
287        if (--count > 0)
288        {
289            newx    = oldx + (dx >> shift);
290            dx    += fQDDx;
291            newy    = oldy + (dy >> shift);
292            dy    += fQDDy;
293        }
294        else    // last segment
295        {
296            newx    = fQLastX;
297            newy    = fQLastY;
298        }
299        success = this->updateLine(oldx, oldy, newx, newy);
300        oldx = newx;
301        oldy = newy;
302    } while (count > 0 && !success);
303
304    fQx         = newx;
305    fQy         = newy;
306    fQDx        = dx;
307    fQDy        = dy;
308    fCurveCount = SkToS8(count);
309    return success;
310}
311
312/////////////////////////////////////////////////////////////////////////
313
314static inline int SkFDot6UpShift(SkFDot6 x, int upShift) {
315    SkASSERT((SkLeftShift(x, upShift) >> upShift) == x);
316    return SkLeftShift(x, upShift);
317}
318
319/*  f(1/3) = (8a + 12b + 6c + d) / 27
320    f(2/3) = (a + 6b + 12c + 8d) / 27
321
322    f(1/3)-b = (8a - 15b + 6c + d) / 27
323    f(2/3)-c = (a + 6b - 15c + 8d) / 27
324
325    use 16/512 to approximate 1/27
326*/
327static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d)
328{
329    SkFDot6 oneThird = ((a << 3) - ((b << 4) - b) + 6*c + d) * 19 >> 9;
330    SkFDot6 twoThird = (a + 6*b - ((c << 4) - c) + (d << 3)) * 19 >> 9;
331
332    return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird));
333}
334
335int SkCubicEdge::setCubic(const SkPoint pts[4], int shift) {
336    SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;
337
338    {
339#ifdef SK_RASTERIZE_EVEN_ROUNDING
340        x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
341        y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
342        x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
343        y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
344        x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
345        y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
346        x3 = SkScalarRoundToFDot6(pts[3].fX, shift);
347        y3 = SkScalarRoundToFDot6(pts[3].fY, shift);
348#else
349        float scale = float(1 << (shift + 6));
350        x0 = int(pts[0].fX * scale);
351        y0 = int(pts[0].fY * scale);
352        x1 = int(pts[1].fX * scale);
353        y1 = int(pts[1].fY * scale);
354        x2 = int(pts[2].fX * scale);
355        y2 = int(pts[2].fY * scale);
356        x3 = int(pts[3].fX * scale);
357        y3 = int(pts[3].fY * scale);
358#endif
359    }
360
361    int winding = 1;
362    if (y0 > y3)
363    {
364        SkTSwap(x0, x3);
365        SkTSwap(x1, x2);
366        SkTSwap(y0, y3);
367        SkTSwap(y1, y2);
368        winding = -1;
369    }
370
371    int top = SkFDot6Round(y0);
372    int bot = SkFDot6Round(y3);
373
374    // are we a zero-height cubic (line)?
375    if (top == bot)
376        return 0;
377
378    // compute number of steps needed (1 << shift)
379    {
380        // Can't use (center of curve - center of baseline), since center-of-curve
381        // need not be the max delta from the baseline (it could even be coincident)
382        // so we try just looking at the two off-curve points
383        SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3);
384        SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3);
385        // add 1 (by observation)
386        shift = diff_to_shift(dx, dy) + 1;
387    }
388    // need at least 1 subdivision for our bias trick
389    SkASSERT(shift > 0);
390    if (shift > MAX_COEFF_SHIFT) {
391        shift = MAX_COEFF_SHIFT;
392    }
393
394    /*  Since our in coming data is initially shifted down by 10 (or 8 in
395        antialias). That means the most we can shift up is 8. However, we
396        compute coefficients with a 3*, so the safest upshift is really 6
397    */
398    int upShift = 6;    // largest safe value
399    int downShift = shift + upShift - 10;
400    if (downShift < 0) {
401        downShift = 0;
402        upShift = 10 - shift;
403    }
404
405    fWinding    = SkToS8(winding);
406    fCurveCount = SkToS8(SkLeftShift(-1, shift));
407    fCurveShift = SkToU8(shift);
408    fCubicDShift = SkToU8(downShift);
409
410    SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift);
411    SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift);
412    SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift);
413
414    fCx     = SkFDot6ToFixed(x0);
415    fCDx    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
416    fCDDx   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
417    fCDDDx  = 3*D >> (shift - 1);                   // biased by 2*shift
418
419    B = SkFDot6UpShift(3 * (y1 - y0), upShift);
420    C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift);
421    D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift);
422
423    fCy     = SkFDot6ToFixed(y0);
424    fCDy    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
425    fCDDy   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
426    fCDDDy  = 3*D >> (shift - 1);                   // biased by 2*shift
427
428    fCLastX = SkFDot6ToFixed(x3);
429    fCLastY = SkFDot6ToFixed(y3);
430
431    return this->updateCubic();
432}
433
434int SkCubicEdge::updateCubic()
435{
436    int     success;
437    int     count = fCurveCount;
438    SkFixed oldx = fCx;
439    SkFixed oldy = fCy;
440    SkFixed newx, newy;
441    const int ddshift = fCurveShift;
442    const int dshift = fCubicDShift;
443
444    SkASSERT(count < 0);
445
446    do {
447        if (++count < 0)
448        {
449            newx    = oldx + (fCDx >> dshift);
450            fCDx    += fCDDx >> ddshift;
451            fCDDx   += fCDDDx;
452
453            newy    = oldy + (fCDy >> dshift);
454            fCDy    += fCDDy >> ddshift;
455            fCDDy   += fCDDDy;
456        }
457        else    // last segment
458        {
459        //  SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY));
460            newx    = fCLastX;
461            newy    = fCLastY;
462        }
463
464        // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
465        // doesn't always achieve that, so we have to explicitly pin it here.
466        if (newy < oldy) {
467            newy = oldy;
468        }
469
470        success = this->updateLine(oldx, oldy, newx, newy);
471        oldx = newx;
472        oldy = newy;
473    } while (count < 0 && !success);
474
475    fCx         = newx;
476    fCy         = newy;
477    fCurveCount = SkToS8(count);
478    return success;
479}
480