1/* 2 * Copyright 2015 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8#ifndef Sk4pxXfermode_DEFINED 9#define Sk4pxXfermode_DEFINED 10 11#include "Sk4px.h" 12#include "SkMSAN.h" 13#include "SkNx.h" 14#include "SkXfermode_proccoeff.h" 15 16namespace { 17 18// Most xfermodes can be done most efficiently 4 pixels at a time in 8 or 16-bit fixed point. 19#define XFERMODE(Xfermode) \ 20 struct Xfermode { Sk4px operator()(const Sk4px&, const Sk4px&) const; }; \ 21 inline Sk4px Xfermode::operator()(const Sk4px& d, const Sk4px& s) const 22 23XFERMODE(Clear) { return Sk4px::DupPMColor(0); } 24XFERMODE(Src) { return s; } 25XFERMODE(Dst) { return d; } 26XFERMODE(SrcIn) { return s.approxMulDiv255(d.alphas() ); } 27XFERMODE(SrcOut) { return s.approxMulDiv255(d.alphas().inv()); } 28XFERMODE(SrcOver) { return s + d.approxMulDiv255(s.alphas().inv()); } 29XFERMODE(DstIn) { return SrcIn ()(s,d); } 30XFERMODE(DstOut) { return SrcOut ()(s,d); } 31XFERMODE(DstOver) { return SrcOver()(s,d); } 32 33// [ S * Da + (1 - Sa) * D] 34XFERMODE(SrcATop) { return (s * d.alphas() + d * s.alphas().inv()).div255(); } 35XFERMODE(DstATop) { return SrcATop()(s,d); } 36//[ S * (1 - Da) + (1 - Sa) * D ] 37XFERMODE(Xor) { return (s * d.alphas().inv() + d * s.alphas().inv()).div255(); } 38// [S + D ] 39XFERMODE(Plus) { return s.saturatedAdd(d); } 40// [S * D ] 41XFERMODE(Modulate) { return s.approxMulDiv255(d); } 42// [S + D - S * D] 43XFERMODE(Screen) { 44 // Doing the math as S + (1-S)*D or S + (D - S*D) means the add and subtract can be done 45 // in 8-bit space without overflow. S + (1-S)*D is a touch faster because inv() is cheap. 46 return s + d.approxMulDiv255(s.inv()); 47} 48XFERMODE(Multiply) { return (s * d.alphas().inv() + d * s.alphas().inv() + s*d).div255(); } 49// [ Sa + Da - Sa*Da, Sc + Dc - 2*min(Sc*Da, Dc*Sa) ] (And notice Sa*Da == min(Sa*Da, Da*Sa).) 50XFERMODE(Difference) { 51 auto m = Sk4px::Wide::Min(s * d.alphas(), d * s.alphas()).div255(); 52 // There's no chance of underflow, and if we subtract m before adding s+d, no overflow. 53 return (s - m) + (d - m.zeroAlphas()); 54} 55// [ Sa + Da - Sa*Da, Sc + Dc - 2*Sc*Dc ] 56XFERMODE(Exclusion) { 57 auto p = s.approxMulDiv255(d); 58 // There's no chance of underflow, and if we subtract p before adding src+dst, no overflow. 59 return (s - p) + (d - p.zeroAlphas()); 60} 61 62// We take care to use exact math for these next few modes where alphas 63// and colors are calculated using significantly different math. We need 64// to preserve premul invariants, and exact math makes this easier. 65// 66// TODO: Some of these implementations might be able to be sped up a bit 67// while maintaining exact math, but let's follow up with that. 68 69XFERMODE(HardLight) { 70 auto sa = s.alphas(), 71 da = d.alphas(); 72 73 auto srcover = s + (d * sa.inv()).div255(); 74 75 auto isLite = ((sa-s) < s).widenLoHi(); 76 77 auto lite = sa*da - ((da-d)*(sa-s) << 1), 78 dark = s*d << 1, 79 both = s*da.inv() + d*sa.inv(); 80 81 auto alphas = srcover; 82 auto colors = (both + isLite.thenElse(lite, dark)).div255(); 83 return alphas.zeroColors() + colors.zeroAlphas(); 84} 85XFERMODE(Overlay) { return HardLight()(s,d); } 86 87XFERMODE(Darken) { 88 auto sa = s.alphas(), 89 da = d.alphas(); 90 91 auto sda = (s*da).div255(), 92 dsa = (d*sa).div255(); 93 94 auto srcover = s + (d * sa.inv()).div255(), 95 dstover = d + (s * da.inv()).div255(); 96 auto alphas = srcover, 97 colors = (sda < dsa).thenElse(srcover, dstover); 98 return alphas.zeroColors() + colors.zeroAlphas(); 99} 100XFERMODE(Lighten) { 101 auto sa = s.alphas(), 102 da = d.alphas(); 103 104 auto sda = (s*da).div255(), 105 dsa = (d*sa).div255(); 106 107 auto srcover = s + (d * sa.inv()).div255(), 108 dstover = d + (s * da.inv()).div255(); 109 auto alphas = srcover, 110 colors = (dsa < sda).thenElse(srcover, dstover); 111 return alphas.zeroColors() + colors.zeroAlphas(); 112} 113#undef XFERMODE 114 115// Some xfermodes use math like divide or sqrt that's best done in floats 1 pixel at a time. 116#define XFERMODE(Xfermode) \ 117 struct Xfermode { Sk4f operator()(const Sk4f&, const Sk4f&) const; }; \ 118 inline Sk4f Xfermode::operator()(const Sk4f& d, const Sk4f& s) const 119 120static inline Sk4f a_rgb(const Sk4f& a, const Sk4f& rgb) { 121 static_assert(SK_A32_SHIFT == 24, ""); 122 return a * Sk4f(0,0,0,1) + rgb * Sk4f(1,1,1,0); 123} 124static inline Sk4f alphas(const Sk4f& f) { 125 return f[SK_A32_SHIFT/8]; 126} 127 128XFERMODE(ColorDodge) { 129 auto sa = alphas(s), 130 da = alphas(d), 131 isa = Sk4f(1)-sa, 132 ida = Sk4f(1)-da; 133 134 auto srcover = s + d*isa, 135 dstover = d + s*ida, 136 otherwise = sa * Sk4f::Min(da, (d*sa)*(sa-s).approxInvert()) + s*ida + d*isa; 137 138 // Order matters here, preferring d==0 over s==sa. 139 auto colors = (d == Sk4f(0)).thenElse(dstover, 140 (s == sa).thenElse(srcover, 141 otherwise)); 142 return a_rgb(srcover, colors); 143} 144XFERMODE(ColorBurn) { 145 auto sa = alphas(s), 146 da = alphas(d), 147 isa = Sk4f(1)-sa, 148 ida = Sk4f(1)-da; 149 150 auto srcover = s + d*isa, 151 dstover = d + s*ida, 152 otherwise = sa*(da-Sk4f::Min(da, (da-d)*sa*s.approxInvert())) + s*ida + d*isa; 153 154 // Order matters here, preferring d==da over s==0. 155 auto colors = (d == da).thenElse(dstover, 156 (s == Sk4f(0)).thenElse(srcover, 157 otherwise)); 158 return a_rgb(srcover, colors); 159} 160XFERMODE(SoftLight) { 161 auto sa = alphas(s), 162 da = alphas(d), 163 isa = Sk4f(1)-sa, 164 ida = Sk4f(1)-da; 165 166 // Some common terms. 167 auto m = (da > Sk4f(0)).thenElse(d / da, Sk4f(0)), 168 s2 = Sk4f(2)*s, 169 m4 = Sk4f(4)*m; 170 171 // The logic forks three ways: 172 // 1. dark src? 173 // 2. light src, dark dst? 174 // 3. light src, light dst? 175 auto darkSrc = d*(sa + (s2 - sa)*(Sk4f(1) - m)), // Used in case 1. 176 darkDst = (m4*m4 + m4)*(m - Sk4f(1)) + Sk4f(7)*m, // Used in case 2. 177 liteDst = m.sqrt() - m, // Used in case 3. 178 liteSrc = d*sa + da*(s2-sa)*(Sk4f(4)*d <= da).thenElse(darkDst, liteDst); // Case 2 or 3? 179 180 auto alpha = s + d*isa; 181 auto colors = s*ida + d*isa + (s2 <= sa).thenElse(darkSrc, liteSrc); // Case 1 or 2/3? 182 183 return a_rgb(alpha, colors); 184} 185#undef XFERMODE 186 187// A reasonable fallback mode for doing AA is to simply apply the transfermode first, 188// then linearly interpolate the AA. 189template <typename Xfermode> 190static Sk4px xfer_aa(const Sk4px& d, const Sk4px& s, const Sk4px& aa) { 191 Sk4px bw = Xfermode()(d, s); 192 return (bw * aa + d * aa.inv()).div255(); 193} 194 195// For some transfermodes we specialize AA, either for correctness or performance. 196#define XFERMODE_AA(Xfermode) \ 197 template <> Sk4px xfer_aa<Xfermode>(const Sk4px& d, const Sk4px& s, const Sk4px& aa) 198 199// Plus' clamp needs to happen after AA. skia:3852 200XFERMODE_AA(Plus) { // [ clamp( (1-AA)D + (AA)(S+D) ) == clamp(D + AA*S) ] 201 return d.saturatedAdd(s.approxMulDiv255(aa)); 202} 203 204#undef XFERMODE_AA 205 206// Src and Clear modes are safe to use with unitialized dst buffers, 207// even if the implementation branches based on bytes from dst (e.g. asserts in Debug mode). 208// For those modes, just lie to MSAN that dst is always intialized. 209template <typename Xfermode> static void mark_dst_initialized_if_safe(void*, void*) {} 210template <> void mark_dst_initialized_if_safe<Src>(void* dst, void* end) { 211 sk_msan_mark_initialized(dst, end, "Src doesn't read dst."); 212} 213template <> void mark_dst_initialized_if_safe<Clear>(void* dst, void* end) { 214 sk_msan_mark_initialized(dst, end, "Clear doesn't read dst."); 215} 216 217template <typename Xfermode> 218class Sk4pxXfermode : public SkProcCoeffXfermode { 219public: 220 Sk4pxXfermode(const ProcCoeff& rec, SkXfermode::Mode mode) 221 : INHERITED(rec, mode) {} 222 223 void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override { 224 mark_dst_initialized_if_safe<Xfermode>(dst, dst+n); 225 if (nullptr == aa) { 226 Sk4px::MapDstSrc(n, dst, src, Xfermode()); 227 } else { 228 Sk4px::MapDstSrcAlpha(n, dst, src, aa, xfer_aa<Xfermode>); 229 } 230 } 231 232 void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override { 233 mark_dst_initialized_if_safe<Xfermode>(dst, dst+n); 234 SkPMColor dst32[4]; 235 while (n >= 4) { 236 dst32[0] = SkPixel16ToPixel32(dst[0]); 237 dst32[1] = SkPixel16ToPixel32(dst[1]); 238 dst32[2] = SkPixel16ToPixel32(dst[2]); 239 dst32[3] = SkPixel16ToPixel32(dst[3]); 240 241 this->xfer32(dst32, src, 4, aa); 242 243 dst[0] = SkPixel32ToPixel16(dst32[0]); 244 dst[1] = SkPixel32ToPixel16(dst32[1]); 245 dst[2] = SkPixel32ToPixel16(dst32[2]); 246 dst[3] = SkPixel32ToPixel16(dst32[3]); 247 248 dst += 4; 249 src += 4; 250 aa += aa ? 4 : 0; 251 n -= 4; 252 } 253 while (n) { 254 SkPMColor dst32 = SkPixel16ToPixel32(*dst); 255 this->xfer32(&dst32, src, 1, aa); 256 *dst = SkPixel32ToPixel16(dst32); 257 258 dst += 1; 259 src += 1; 260 aa += aa ? 1 : 0; 261 n -= 1; 262 } 263 } 264 265private: 266 typedef SkProcCoeffXfermode INHERITED; 267}; 268 269template <typename Xfermode> 270class Sk4fXfermode : public SkProcCoeffXfermode { 271public: 272 Sk4fXfermode(const ProcCoeff& rec, SkXfermode::Mode mode) 273 : INHERITED(rec, mode) {} 274 275 void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override { 276 for (int i = 0; i < n; i++) { 277 dst[i] = Xfer32_1(dst[i], src[i], aa ? aa+i : nullptr); 278 } 279 } 280 281 void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override { 282 for (int i = 0; i < n; i++) { 283 SkPMColor dst32 = SkPixel16ToPixel32(dst[i]); 284 dst32 = Xfer32_1(dst32, src[i], aa ? aa+i : nullptr); 285 dst[i] = SkPixel32ToPixel16(dst32); 286 } 287 } 288 289private: 290 static SkPMColor Xfer32_1(SkPMColor dst, const SkPMColor src, const SkAlpha* aa) { 291 Sk4f d = Load(dst), 292 s = Load(src), 293 b = Xfermode()(d, s); 294 if (aa) { 295 Sk4f a = Sk4f(*aa) * Sk4f(1.0f/255); 296 b = b*a + d*(Sk4f(1)-a); 297 } 298 return Round(b); 299 } 300 301 static Sk4f Load(SkPMColor c) { 302 return SkNx_cast<float>(Sk4b::Load(&c)) * Sk4f(1.0f/255); 303 } 304 305 static SkPMColor Round(const Sk4f& f) { 306 SkPMColor c; 307 SkNx_cast<uint8_t>(f * Sk4f(255) + Sk4f(0.5f)).store(&c); 308 return c; 309 } 310 311 typedef SkProcCoeffXfermode INHERITED; 312}; 313 314} // namespace 315 316namespace SK_OPTS_NS { 317 318static SkXfermode* create_xfermode(const ProcCoeff& rec, SkXfermode::Mode mode) { 319 switch (mode) { 320#define CASE(Xfermode) \ 321 case SkXfermode::k##Xfermode##_Mode: return new Sk4pxXfermode<Xfermode>(rec, mode) 322 CASE(Clear); 323 CASE(Src); 324 CASE(Dst); 325 CASE(SrcOver); 326 CASE(DstOver); 327 CASE(SrcIn); 328 CASE(DstIn); 329 CASE(SrcOut); 330 CASE(DstOut); 331 CASE(SrcATop); 332 CASE(DstATop); 333 CASE(Xor); 334 CASE(Plus); 335 CASE(Modulate); 336 CASE(Screen); 337 CASE(Multiply); 338 CASE(Difference); 339 CASE(Exclusion); 340 CASE(HardLight); 341 CASE(Overlay); 342 CASE(Darken); 343 CASE(Lighten); 344 #undef CASE 345 346#define CASE(Xfermode) \ 347 case SkXfermode::k##Xfermode##_Mode: return new Sk4fXfermode<Xfermode>(rec, mode) 348 CASE(ColorDodge); 349 CASE(ColorBurn); 350 CASE(SoftLight); 351 #undef CASE 352 353 default: break; 354 } 355 return nullptr; 356} 357 358} // namespace SK_OPTS_NS 359 360#endif//Sk4pxXfermode_DEFINED 361