1/* 2 * Copyright 2012 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7#include "SkIntersections.h" 8#include "SkPathOpsCubic.h" 9#include "SkPathOpsLine.h" 10 11/* 12Find the interection of a line and cubic by solving for valid t values. 13 14Analogous to line-quadratic intersection, solve line-cubic intersection by 15representing the cubic as: 16 x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3 17 y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3 18and the line as: 19 y = i*x + j (if the line is more horizontal) 20or: 21 x = i*y + j (if the line is more vertical) 22 23Then using Mathematica, solve for the values of t where the cubic intersects the 24line: 25 26 (in) Resultant[ 27 a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x, 28 e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x] 29 (out) -e + j + 30 3 e t - 3 f t - 31 3 e t^2 + 6 f t^2 - 3 g t^2 + 32 e t^3 - 3 f t^3 + 3 g t^3 - h t^3 + 33 i ( a - 34 3 a t + 3 b t + 35 3 a t^2 - 6 b t^2 + 3 c t^2 - 36 a t^3 + 3 b t^3 - 3 c t^3 + d t^3 ) 37 38if i goes to infinity, we can rewrite the line in terms of x. Mathematica: 39 40 (in) Resultant[ 41 a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j, 42 e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] 43 (out) a - j - 44 3 a t + 3 b t + 45 3 a t^2 - 6 b t^2 + 3 c t^2 - 46 a t^3 + 3 b t^3 - 3 c t^3 + d t^3 - 47 i ( e - 48 3 e t + 3 f t + 49 3 e t^2 - 6 f t^2 + 3 g t^2 - 50 e t^3 + 3 f t^3 - 3 g t^3 + h t^3 ) 51 52Solving this with Mathematica produces an expression with hundreds of terms; 53instead, use Numeric Solutions recipe to solve the cubic. 54 55The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 56 A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) ) 57 B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) ) 58 C = 3*(-(-e + f ) + i*(-a + b ) ) 59 D = (-( e ) + i*( a ) + j ) 60 61The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 62 A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) ) 63 B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) ) 64 C = 3*( (-a + b ) - i*(-e + f ) ) 65 D = ( ( a ) - i*( e ) - j ) 66 67For horizontal lines: 68(in) Resultant[ 69 a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j, 70 e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] 71(out) e - j - 72 3 e t + 3 f t + 73 3 e t^2 - 6 f t^2 + 3 g t^2 - 74 e t^3 + 3 f t^3 - 3 g t^3 + h t^3 75 */ 76 77class LineCubicIntersections { 78public: 79 enum PinTPoint { 80 kPointUninitialized, 81 kPointInitialized 82 }; 83 84 LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections* i) 85 : fCubic(c) 86 , fLine(l) 87 , fIntersections(i) 88 , fAllowNear(true) { 89 i->setMax(3); 90 } 91 92 void allowNear(bool allow) { 93 fAllowNear = allow; 94 } 95 96 void checkCoincident() { 97 int last = fIntersections->used() - 1; 98 for (int index = 0; index < last; ) { 99 double cubicMidT = ((*fIntersections)[0][index] + (*fIntersections)[0][index + 1]) / 2; 100 SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT); 101 double t = fLine.nearPoint(cubicMidPt, nullptr); 102 if (t < 0) { 103 ++index; 104 continue; 105 } 106 if (fIntersections->isCoincident(index)) { 107 fIntersections->removeOne(index); 108 --last; 109 } else if (fIntersections->isCoincident(index + 1)) { 110 fIntersections->removeOne(index + 1); 111 --last; 112 } else { 113 fIntersections->setCoincident(index++); 114 } 115 fIntersections->setCoincident(index); 116 } 117 } 118 119 // see parallel routine in line quadratic intersections 120 int intersectRay(double roots[3]) { 121 double adj = fLine[1].fX - fLine[0].fX; 122 double opp = fLine[1].fY - fLine[0].fY; 123 SkDCubic c; 124 for (int n = 0; n < 4; ++n) { 125 c[n].fX = (fCubic[n].fY - fLine[0].fY) * adj - (fCubic[n].fX - fLine[0].fX) * opp; 126 } 127 double A, B, C, D; 128 SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D); 129 int count = SkDCubic::RootsValidT(A, B, C, D, roots); 130 for (int index = 0; index < count; ++index) { 131 SkDPoint calcPt = c.ptAtT(roots[index]); 132 if (!approximately_zero(calcPt.fX)) { 133 for (int n = 0; n < 4; ++n) { 134 c[n].fY = (fCubic[n].fY - fLine[0].fY) * opp 135 + (fCubic[n].fX - fLine[0].fX) * adj; 136 } 137 double extremeTs[6]; 138 int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs); 139 count = c.searchRoots(extremeTs, extrema, 0, SkDCubic::kXAxis, roots); 140 break; 141 } 142 } 143 return count; 144 } 145 146 int intersect() { 147 addExactEndPoints(); 148 if (fAllowNear) { 149 addNearEndPoints(); 150 } 151 double rootVals[3]; 152 int roots = intersectRay(rootVals); 153 for (int index = 0; index < roots; ++index) { 154 double cubicT = rootVals[index]; 155 double lineT = findLineT(cubicT); 156 SkDPoint pt; 157 if (pinTs(&cubicT, &lineT, &pt, kPointUninitialized) && uniqueAnswer(cubicT, pt)) { 158 fIntersections->insert(cubicT, lineT, pt); 159 } 160 } 161 checkCoincident(); 162 return fIntersections->used(); 163 } 164 165 static int HorizontalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) { 166 double A, B, C, D; 167 SkDCubic::Coefficients(&c[0].fY, &A, &B, &C, &D); 168 D -= axisIntercept; 169 int count = SkDCubic::RootsValidT(A, B, C, D, roots); 170 for (int index = 0; index < count; ++index) { 171 SkDPoint calcPt = c.ptAtT(roots[index]); 172 if (!approximately_equal(calcPt.fY, axisIntercept)) { 173 double extremeTs[6]; 174 int extrema = SkDCubic::FindExtrema(&c[0].fY, extremeTs); 175 count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kYAxis, roots); 176 break; 177 } 178 } 179 return count; 180 } 181 182 int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { 183 addExactHorizontalEndPoints(left, right, axisIntercept); 184 if (fAllowNear) { 185 addNearHorizontalEndPoints(left, right, axisIntercept); 186 } 187 double roots[3]; 188 int count = HorizontalIntersect(fCubic, axisIntercept, roots); 189 for (int index = 0; index < count; ++index) { 190 double cubicT = roots[index]; 191 SkDPoint pt = { fCubic.ptAtT(cubicT).fX, axisIntercept }; 192 double lineT = (pt.fX - left) / (right - left); 193 if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) { 194 fIntersections->insert(cubicT, lineT, pt); 195 } 196 } 197 if (flipped) { 198 fIntersections->flip(); 199 } 200 checkCoincident(); 201 return fIntersections->used(); 202 } 203 204 bool uniqueAnswer(double cubicT, const SkDPoint& pt) { 205 for (int inner = 0; inner < fIntersections->used(); ++inner) { 206 if (fIntersections->pt(inner) != pt) { 207 continue; 208 } 209 double existingCubicT = (*fIntersections)[0][inner]; 210 if (cubicT == existingCubicT) { 211 return false; 212 } 213 // check if midway on cubic is also same point. If so, discard this 214 double cubicMidT = (existingCubicT + cubicT) / 2; 215 SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT); 216 if (cubicMidPt.approximatelyEqual(pt)) { 217 return false; 218 } 219 } 220#if ONE_OFF_DEBUG 221 SkDPoint cPt = fCubic.ptAtT(cubicT); 222 SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY, 223 cPt.fX, cPt.fY); 224#endif 225 return true; 226 } 227 228 static int VerticalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) { 229 double A, B, C, D; 230 SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D); 231 D -= axisIntercept; 232 int count = SkDCubic::RootsValidT(A, B, C, D, roots); 233 for (int index = 0; index < count; ++index) { 234 SkDPoint calcPt = c.ptAtT(roots[index]); 235 if (!approximately_equal(calcPt.fX, axisIntercept)) { 236 double extremeTs[6]; 237 int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs); 238 count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kXAxis, roots); 239 break; 240 } 241 } 242 return count; 243 } 244 245 int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { 246 addExactVerticalEndPoints(top, bottom, axisIntercept); 247 if (fAllowNear) { 248 addNearVerticalEndPoints(top, bottom, axisIntercept); 249 } 250 double roots[3]; 251 int count = VerticalIntersect(fCubic, axisIntercept, roots); 252 for (int index = 0; index < count; ++index) { 253 double cubicT = roots[index]; 254 SkDPoint pt = { axisIntercept, fCubic.ptAtT(cubicT).fY }; 255 double lineT = (pt.fY - top) / (bottom - top); 256 if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) { 257 fIntersections->insert(cubicT, lineT, pt); 258 } 259 } 260 if (flipped) { 261 fIntersections->flip(); 262 } 263 checkCoincident(); 264 return fIntersections->used(); 265 } 266 267 protected: 268 269 void addExactEndPoints() { 270 for (int cIndex = 0; cIndex < 4; cIndex += 3) { 271 double lineT = fLine.exactPoint(fCubic[cIndex]); 272 if (lineT < 0) { 273 continue; 274 } 275 double cubicT = (double) (cIndex >> 1); 276 fIntersections->insert(cubicT, lineT, fCubic[cIndex]); 277 } 278 } 279 280 /* Note that this does not look for endpoints of the line that are near the cubic. 281 These points are found later when check ends looks for missing points */ 282 void addNearEndPoints() { 283 for (int cIndex = 0; cIndex < 4; cIndex += 3) { 284 double cubicT = (double) (cIndex >> 1); 285 if (fIntersections->hasT(cubicT)) { 286 continue; 287 } 288 double lineT = fLine.nearPoint(fCubic[cIndex], nullptr); 289 if (lineT < 0) { 290 continue; 291 } 292 fIntersections->insert(cubicT, lineT, fCubic[cIndex]); 293 } 294 } 295 296 void addExactHorizontalEndPoints(double left, double right, double y) { 297 for (int cIndex = 0; cIndex < 4; cIndex += 3) { 298 double lineT = SkDLine::ExactPointH(fCubic[cIndex], left, right, y); 299 if (lineT < 0) { 300 continue; 301 } 302 double cubicT = (double) (cIndex >> 1); 303 fIntersections->insert(cubicT, lineT, fCubic[cIndex]); 304 } 305 } 306 307 void addNearHorizontalEndPoints(double left, double right, double y) { 308 for (int cIndex = 0; cIndex < 4; cIndex += 3) { 309 double cubicT = (double) (cIndex >> 1); 310 if (fIntersections->hasT(cubicT)) { 311 continue; 312 } 313 double lineT = SkDLine::NearPointH(fCubic[cIndex], left, right, y); 314 if (lineT < 0) { 315 continue; 316 } 317 fIntersections->insert(cubicT, lineT, fCubic[cIndex]); 318 } 319 // FIXME: see if line end is nearly on cubic 320 } 321 322 void addExactVerticalEndPoints(double top, double bottom, double x) { 323 for (int cIndex = 0; cIndex < 4; cIndex += 3) { 324 double lineT = SkDLine::ExactPointV(fCubic[cIndex], top, bottom, x); 325 if (lineT < 0) { 326 continue; 327 } 328 double cubicT = (double) (cIndex >> 1); 329 fIntersections->insert(cubicT, lineT, fCubic[cIndex]); 330 } 331 } 332 333 void addNearVerticalEndPoints(double top, double bottom, double x) { 334 for (int cIndex = 0; cIndex < 4; cIndex += 3) { 335 double cubicT = (double) (cIndex >> 1); 336 if (fIntersections->hasT(cubicT)) { 337 continue; 338 } 339 double lineT = SkDLine::NearPointV(fCubic[cIndex], top, bottom, x); 340 if (lineT < 0) { 341 continue; 342 } 343 fIntersections->insert(cubicT, lineT, fCubic[cIndex]); 344 } 345 // FIXME: see if line end is nearly on cubic 346 } 347 348 double findLineT(double t) { 349 SkDPoint xy = fCubic.ptAtT(t); 350 double dx = fLine[1].fX - fLine[0].fX; 351 double dy = fLine[1].fY - fLine[0].fY; 352 if (fabs(dx) > fabs(dy)) { 353 return (xy.fX - fLine[0].fX) / dx; 354 } 355 return (xy.fY - fLine[0].fY) / dy; 356 } 357 358 bool pinTs(double* cubicT, double* lineT, SkDPoint* pt, PinTPoint ptSet) { 359 if (!approximately_one_or_less(*lineT)) { 360 return false; 361 } 362 if (!approximately_zero_or_more(*lineT)) { 363 return false; 364 } 365 double cT = *cubicT = SkPinT(*cubicT); 366 double lT = *lineT = SkPinT(*lineT); 367 SkDPoint lPt = fLine.ptAtT(lT); 368 SkDPoint cPt = fCubic.ptAtT(cT); 369 if (!lPt.roughlyEqual(cPt)) { 370 return false; 371 } 372 // FIXME: if points are roughly equal but not approximately equal, need to do 373 // a binary search like quad/quad intersection to find more precise t values 374 if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && cT != 0 && cT != 1)) { 375 *pt = lPt; 376 } else if (ptSet == kPointUninitialized) { 377 *pt = cPt; 378 } 379 SkPoint gridPt = pt->asSkPoint(); 380 if (gridPt == fLine[0].asSkPoint()) { 381 *lineT = 0; 382 } else if (gridPt == fLine[1].asSkPoint()) { 383 *lineT = 1; 384 } 385 if (gridPt == fCubic[0].asSkPoint() && approximately_equal(*cubicT, 0)) { 386 *cubicT = 0; 387 } else if (gridPt == fCubic[3].asSkPoint() && approximately_equal(*cubicT, 1)) { 388 *cubicT = 1; 389 } 390 return true; 391 } 392 393private: 394 const SkDCubic& fCubic; 395 const SkDLine& fLine; 396 SkIntersections* fIntersections; 397 bool fAllowNear; 398}; 399 400int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y, 401 bool flipped) { 402 SkDLine line = {{{ left, y }, { right, y }}}; 403 LineCubicIntersections c(cubic, line, this); 404 return c.horizontalIntersect(y, left, right, flipped); 405} 406 407int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x, 408 bool flipped) { 409 SkDLine line = {{{ x, top }, { x, bottom }}}; 410 LineCubicIntersections c(cubic, line, this); 411 return c.verticalIntersect(x, top, bottom, flipped); 412} 413 414int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) { 415 LineCubicIntersections c(cubic, line, this); 416 c.allowNear(fAllowNear); 417 return c.intersect(); 418} 419 420int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) { 421 LineCubicIntersections c(cubic, line, this); 422 fUsed = c.intersectRay(fT[0]); 423 for (int index = 0; index < fUsed; ++index) { 424 fPt[index] = cubic.ptAtT(fT[0][index]); 425 } 426 return fUsed; 427} 428 429// SkDCubic accessors to Intersection utilities 430 431int SkDCubic::horizontalIntersect(double yIntercept, double roots[3]) const { 432 return LineCubicIntersections::HorizontalIntersect(*this, yIntercept, roots); 433} 434 435int SkDCubic::verticalIntersect(double xIntercept, double roots[3]) const { 436 return LineCubicIntersections::VerticalIntersect(*this, xIntercept, roots); 437} 438