1// Copyright 2012 the V8 project authors. All rights reserved. 2// Use of this source code is governed by a BSD-style license that can be 3// found in the LICENSE file. 4 5#include <stdarg.h> 6#include <stdlib.h> 7#include <cmath> 8 9#if V8_TARGET_ARCH_ARM 10 11#include "src/arm/constants-arm.h" 12#include "src/arm/simulator-arm.h" 13#include "src/assembler.h" 14#include "src/base/bits.h" 15#include "src/codegen.h" 16#include "src/disasm.h" 17#include "src/runtime/runtime-utils.h" 18 19#if defined(USE_SIMULATOR) 20 21// Only build the simulator if not compiling for real ARM hardware. 22namespace v8 { 23namespace internal { 24 25// This macro provides a platform independent use of sscanf. The reason for 26// SScanF not being implemented in a platform independent way through 27// ::v8::internal::OS in the same way as SNPrintF is that the 28// Windows C Run-Time Library does not provide vsscanf. 29#define SScanF sscanf // NOLINT 30 31// The ArmDebugger class is used by the simulator while debugging simulated ARM 32// code. 33class ArmDebugger { 34 public: 35 explicit ArmDebugger(Simulator* sim) : sim_(sim) { } 36 ~ArmDebugger(); 37 38 void Stop(Instruction* instr); 39 void Debug(); 40 41 private: 42 static const Instr kBreakpointInstr = 43 (al | (7*B25) | (1*B24) | kBreakpoint); 44 static const Instr kNopInstr = (al | (13*B21)); 45 46 Simulator* sim_; 47 48 int32_t GetRegisterValue(int regnum); 49 double GetRegisterPairDoubleValue(int regnum); 50 double GetVFPDoubleRegisterValue(int regnum); 51 bool GetValue(const char* desc, int32_t* value); 52 bool GetVFPSingleValue(const char* desc, float* value); 53 bool GetVFPDoubleValue(const char* desc, double* value); 54 55 // Set or delete a breakpoint. Returns true if successful. 56 bool SetBreakpoint(Instruction* breakpc); 57 bool DeleteBreakpoint(Instruction* breakpc); 58 59 // Undo and redo all breakpoints. This is needed to bracket disassembly and 60 // execution to skip past breakpoints when run from the debugger. 61 void UndoBreakpoints(); 62 void RedoBreakpoints(); 63}; 64 65 66ArmDebugger::~ArmDebugger() { 67} 68 69 70 71#ifdef GENERATED_CODE_COVERAGE 72static FILE* coverage_log = NULL; 73 74 75static void InitializeCoverage() { 76 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); 77 if (file_name != NULL) { 78 coverage_log = fopen(file_name, "aw+"); 79 } 80} 81 82 83void ArmDebugger::Stop(Instruction* instr) { 84 // Get the stop code. 85 uint32_t code = instr->SvcValue() & kStopCodeMask; 86 // Retrieve the encoded address, which comes just after this stop. 87 char** msg_address = 88 reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize); 89 char* msg = *msg_address; 90 DCHECK(msg != NULL); 91 92 // Update this stop description. 93 if (isWatchedStop(code) && !watched_stops_[code].desc) { 94 watched_stops_[code].desc = msg; 95 } 96 97 if (strlen(msg) > 0) { 98 if (coverage_log != NULL) { 99 fprintf(coverage_log, "%s\n", msg); 100 fflush(coverage_log); 101 } 102 // Overwrite the instruction and address with nops. 103 instr->SetInstructionBits(kNopInstr); 104 reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr); 105 } 106 sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize); 107} 108 109#else // ndef GENERATED_CODE_COVERAGE 110 111static void InitializeCoverage() { 112} 113 114 115void ArmDebugger::Stop(Instruction* instr) { 116 // Get the stop code. 117 uint32_t code = instr->SvcValue() & kStopCodeMask; 118 // Retrieve the encoded address, which comes just after this stop. 119 char* msg = *reinterpret_cast<char**>(sim_->get_pc() 120 + Instruction::kInstrSize); 121 // Update this stop description. 122 if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) { 123 sim_->watched_stops_[code].desc = msg; 124 } 125 // Print the stop message and code if it is not the default code. 126 if (code != kMaxStopCode) { 127 PrintF("Simulator hit stop %u: %s\n", code, msg); 128 } else { 129 PrintF("Simulator hit %s\n", msg); 130 } 131 sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize); 132 Debug(); 133} 134#endif 135 136 137int32_t ArmDebugger::GetRegisterValue(int regnum) { 138 if (regnum == kPCRegister) { 139 return sim_->get_pc(); 140 } else { 141 return sim_->get_register(regnum); 142 } 143} 144 145 146double ArmDebugger::GetRegisterPairDoubleValue(int regnum) { 147 return sim_->get_double_from_register_pair(regnum); 148} 149 150 151double ArmDebugger::GetVFPDoubleRegisterValue(int regnum) { 152 return sim_->get_double_from_d_register(regnum); 153} 154 155 156bool ArmDebugger::GetValue(const char* desc, int32_t* value) { 157 int regnum = Registers::Number(desc); 158 if (regnum != kNoRegister) { 159 *value = GetRegisterValue(regnum); 160 return true; 161 } else { 162 if (strncmp(desc, "0x", 2) == 0) { 163 return SScanF(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1; 164 } else { 165 return SScanF(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1; 166 } 167 } 168 return false; 169} 170 171 172bool ArmDebugger::GetVFPSingleValue(const char* desc, float* value) { 173 bool is_double; 174 int regnum = VFPRegisters::Number(desc, &is_double); 175 if (regnum != kNoRegister && !is_double) { 176 *value = sim_->get_float_from_s_register(regnum); 177 return true; 178 } 179 return false; 180} 181 182 183bool ArmDebugger::GetVFPDoubleValue(const char* desc, double* value) { 184 bool is_double; 185 int regnum = VFPRegisters::Number(desc, &is_double); 186 if (regnum != kNoRegister && is_double) { 187 *value = sim_->get_double_from_d_register(regnum); 188 return true; 189 } 190 return false; 191} 192 193 194bool ArmDebugger::SetBreakpoint(Instruction* breakpc) { 195 // Check if a breakpoint can be set. If not return without any side-effects. 196 if (sim_->break_pc_ != NULL) { 197 return false; 198 } 199 200 // Set the breakpoint. 201 sim_->break_pc_ = breakpc; 202 sim_->break_instr_ = breakpc->InstructionBits(); 203 // Not setting the breakpoint instruction in the code itself. It will be set 204 // when the debugger shell continues. 205 return true; 206} 207 208 209bool ArmDebugger::DeleteBreakpoint(Instruction* breakpc) { 210 if (sim_->break_pc_ != NULL) { 211 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); 212 } 213 214 sim_->break_pc_ = NULL; 215 sim_->break_instr_ = 0; 216 return true; 217} 218 219 220void ArmDebugger::UndoBreakpoints() { 221 if (sim_->break_pc_ != NULL) { 222 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); 223 } 224} 225 226 227void ArmDebugger::RedoBreakpoints() { 228 if (sim_->break_pc_ != NULL) { 229 sim_->break_pc_->SetInstructionBits(kBreakpointInstr); 230 } 231} 232 233 234void ArmDebugger::Debug() { 235 intptr_t last_pc = -1; 236 bool done = false; 237 238#define COMMAND_SIZE 63 239#define ARG_SIZE 255 240 241#define STR(a) #a 242#define XSTR(a) STR(a) 243 244 char cmd[COMMAND_SIZE + 1]; 245 char arg1[ARG_SIZE + 1]; 246 char arg2[ARG_SIZE + 1]; 247 char* argv[3] = { cmd, arg1, arg2 }; 248 249 // make sure to have a proper terminating character if reaching the limit 250 cmd[COMMAND_SIZE] = 0; 251 arg1[ARG_SIZE] = 0; 252 arg2[ARG_SIZE] = 0; 253 254 // Undo all set breakpoints while running in the debugger shell. This will 255 // make them invisible to all commands. 256 UndoBreakpoints(); 257 258 while (!done && !sim_->has_bad_pc()) { 259 if (last_pc != sim_->get_pc()) { 260 disasm::NameConverter converter; 261 disasm::Disassembler dasm(converter); 262 // use a reasonably large buffer 263 v8::internal::EmbeddedVector<char, 256> buffer; 264 dasm.InstructionDecode(buffer, 265 reinterpret_cast<byte*>(sim_->get_pc())); 266 PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start()); 267 last_pc = sim_->get_pc(); 268 } 269 char* line = ReadLine("sim> "); 270 if (line == NULL) { 271 break; 272 } else { 273 char* last_input = sim_->last_debugger_input(); 274 if (strcmp(line, "\n") == 0 && last_input != NULL) { 275 line = last_input; 276 } else { 277 // Ownership is transferred to sim_; 278 sim_->set_last_debugger_input(line); 279 } 280 // Use sscanf to parse the individual parts of the command line. At the 281 // moment no command expects more than two parameters. 282 int argc = SScanF(line, 283 "%" XSTR(COMMAND_SIZE) "s " 284 "%" XSTR(ARG_SIZE) "s " 285 "%" XSTR(ARG_SIZE) "s", 286 cmd, arg1, arg2); 287 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { 288 sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); 289 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { 290 // Execute the one instruction we broke at with breakpoints disabled. 291 sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); 292 // Leave the debugger shell. 293 done = true; 294 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { 295 if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) { 296 int32_t value; 297 float svalue; 298 double dvalue; 299 if (strcmp(arg1, "all") == 0) { 300 for (int i = 0; i < kNumRegisters; i++) { 301 value = GetRegisterValue(i); 302 PrintF( 303 "%3s: 0x%08x %10d", 304 RegisterConfiguration::Crankshaft()->GetGeneralRegisterName( 305 i), 306 value, value); 307 if ((argc == 3 && strcmp(arg2, "fp") == 0) && 308 i < 8 && 309 (i % 2) == 0) { 310 dvalue = GetRegisterPairDoubleValue(i); 311 PrintF(" (%f)\n", dvalue); 312 } else { 313 PrintF("\n"); 314 } 315 } 316 for (int i = 0; i < DwVfpRegister::NumRegisters(); i++) { 317 dvalue = GetVFPDoubleRegisterValue(i); 318 uint64_t as_words = bit_cast<uint64_t>(dvalue); 319 PrintF("%3s: %f 0x%08x %08x\n", 320 VFPRegisters::Name(i, true), 321 dvalue, 322 static_cast<uint32_t>(as_words >> 32), 323 static_cast<uint32_t>(as_words & 0xffffffff)); 324 } 325 } else { 326 if (GetValue(arg1, &value)) { 327 PrintF("%s: 0x%08x %d \n", arg1, value, value); 328 } else if (GetVFPSingleValue(arg1, &svalue)) { 329 uint32_t as_word = bit_cast<uint32_t>(svalue); 330 PrintF("%s: %f 0x%08x\n", arg1, svalue, as_word); 331 } else if (GetVFPDoubleValue(arg1, &dvalue)) { 332 uint64_t as_words = bit_cast<uint64_t>(dvalue); 333 PrintF("%s: %f 0x%08x %08x\n", 334 arg1, 335 dvalue, 336 static_cast<uint32_t>(as_words >> 32), 337 static_cast<uint32_t>(as_words & 0xffffffff)); 338 } else { 339 PrintF("%s unrecognized\n", arg1); 340 } 341 } 342 } else { 343 PrintF("print <register>\n"); 344 } 345 } else if ((strcmp(cmd, "po") == 0) 346 || (strcmp(cmd, "printobject") == 0)) { 347 if (argc == 2) { 348 int32_t value; 349 OFStream os(stdout); 350 if (GetValue(arg1, &value)) { 351 Object* obj = reinterpret_cast<Object*>(value); 352 os << arg1 << ": \n"; 353#ifdef DEBUG 354 obj->Print(os); 355 os << "\n"; 356#else 357 os << Brief(obj) << "\n"; 358#endif 359 } else { 360 os << arg1 << " unrecognized\n"; 361 } 362 } else { 363 PrintF("printobject <value>\n"); 364 } 365 } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { 366 int32_t* cur = NULL; 367 int32_t* end = NULL; 368 int next_arg = 1; 369 370 if (strcmp(cmd, "stack") == 0) { 371 cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp)); 372 } else { // "mem" 373 int32_t value; 374 if (!GetValue(arg1, &value)) { 375 PrintF("%s unrecognized\n", arg1); 376 continue; 377 } 378 cur = reinterpret_cast<int32_t*>(value); 379 next_arg++; 380 } 381 382 int32_t words; 383 if (argc == next_arg) { 384 words = 10; 385 } else { 386 if (!GetValue(argv[next_arg], &words)) { 387 words = 10; 388 } 389 } 390 end = cur + words; 391 392 while (cur < end) { 393 PrintF(" 0x%08" V8PRIxPTR ": 0x%08x %10d", 394 reinterpret_cast<intptr_t>(cur), *cur, *cur); 395 HeapObject* obj = reinterpret_cast<HeapObject*>(*cur); 396 int value = *cur; 397 Heap* current_heap = sim_->isolate_->heap(); 398 if (((value & 1) == 0) || 399 current_heap->ContainsSlow(obj->address())) { 400 PrintF(" ("); 401 if ((value & 1) == 0) { 402 PrintF("smi %d", value / 2); 403 } else { 404 obj->ShortPrint(); 405 } 406 PrintF(")"); 407 } 408 PrintF("\n"); 409 cur++; 410 } 411 } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { 412 disasm::NameConverter converter; 413 disasm::Disassembler dasm(converter); 414 // use a reasonably large buffer 415 v8::internal::EmbeddedVector<char, 256> buffer; 416 417 byte* prev = NULL; 418 byte* cur = NULL; 419 byte* end = NULL; 420 421 if (argc == 1) { 422 cur = reinterpret_cast<byte*>(sim_->get_pc()); 423 end = cur + (10 * Instruction::kInstrSize); 424 } else if (argc == 2) { 425 int regnum = Registers::Number(arg1); 426 if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) { 427 // The argument is an address or a register name. 428 int32_t value; 429 if (GetValue(arg1, &value)) { 430 cur = reinterpret_cast<byte*>(value); 431 // Disassemble 10 instructions at <arg1>. 432 end = cur + (10 * Instruction::kInstrSize); 433 } 434 } else { 435 // The argument is the number of instructions. 436 int32_t value; 437 if (GetValue(arg1, &value)) { 438 cur = reinterpret_cast<byte*>(sim_->get_pc()); 439 // Disassemble <arg1> instructions. 440 end = cur + (value * Instruction::kInstrSize); 441 } 442 } 443 } else { 444 int32_t value1; 445 int32_t value2; 446 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { 447 cur = reinterpret_cast<byte*>(value1); 448 end = cur + (value2 * Instruction::kInstrSize); 449 } 450 } 451 452 while (cur < end) { 453 prev = cur; 454 cur += dasm.InstructionDecode(buffer, cur); 455 PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev), 456 buffer.start()); 457 } 458 } else if (strcmp(cmd, "gdb") == 0) { 459 PrintF("relinquishing control to gdb\n"); 460 v8::base::OS::DebugBreak(); 461 PrintF("regaining control from gdb\n"); 462 } else if (strcmp(cmd, "break") == 0) { 463 if (argc == 2) { 464 int32_t value; 465 if (GetValue(arg1, &value)) { 466 if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { 467 PrintF("setting breakpoint failed\n"); 468 } 469 } else { 470 PrintF("%s unrecognized\n", arg1); 471 } 472 } else { 473 PrintF("break <address>\n"); 474 } 475 } else if (strcmp(cmd, "del") == 0) { 476 if (!DeleteBreakpoint(NULL)) { 477 PrintF("deleting breakpoint failed\n"); 478 } 479 } else if (strcmp(cmd, "flags") == 0) { 480 PrintF("N flag: %d; ", sim_->n_flag_); 481 PrintF("Z flag: %d; ", sim_->z_flag_); 482 PrintF("C flag: %d; ", sim_->c_flag_); 483 PrintF("V flag: %d\n", sim_->v_flag_); 484 PrintF("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_); 485 PrintF("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_); 486 PrintF("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_); 487 PrintF("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_); 488 PrintF("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_); 489 } else if (strcmp(cmd, "stop") == 0) { 490 int32_t value; 491 intptr_t stop_pc = sim_->get_pc() - 2 * Instruction::kInstrSize; 492 Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); 493 Instruction* msg_address = 494 reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize); 495 if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { 496 // Remove the current stop. 497 if (sim_->isStopInstruction(stop_instr)) { 498 stop_instr->SetInstructionBits(kNopInstr); 499 msg_address->SetInstructionBits(kNopInstr); 500 } else { 501 PrintF("Not at debugger stop.\n"); 502 } 503 } else if (argc == 3) { 504 // Print information about all/the specified breakpoint(s). 505 if (strcmp(arg1, "info") == 0) { 506 if (strcmp(arg2, "all") == 0) { 507 PrintF("Stop information:\n"); 508 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { 509 sim_->PrintStopInfo(i); 510 } 511 } else if (GetValue(arg2, &value)) { 512 sim_->PrintStopInfo(value); 513 } else { 514 PrintF("Unrecognized argument.\n"); 515 } 516 } else if (strcmp(arg1, "enable") == 0) { 517 // Enable all/the specified breakpoint(s). 518 if (strcmp(arg2, "all") == 0) { 519 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { 520 sim_->EnableStop(i); 521 } 522 } else if (GetValue(arg2, &value)) { 523 sim_->EnableStop(value); 524 } else { 525 PrintF("Unrecognized argument.\n"); 526 } 527 } else if (strcmp(arg1, "disable") == 0) { 528 // Disable all/the specified breakpoint(s). 529 if (strcmp(arg2, "all") == 0) { 530 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { 531 sim_->DisableStop(i); 532 } 533 } else if (GetValue(arg2, &value)) { 534 sim_->DisableStop(value); 535 } else { 536 PrintF("Unrecognized argument.\n"); 537 } 538 } 539 } else { 540 PrintF("Wrong usage. Use help command for more information.\n"); 541 } 542 } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) { 543 ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim; 544 PrintF("Trace of executed instructions is %s\n", 545 ::v8::internal::FLAG_trace_sim ? "on" : "off"); 546 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { 547 PrintF("cont\n"); 548 PrintF(" continue execution (alias 'c')\n"); 549 PrintF("stepi\n"); 550 PrintF(" step one instruction (alias 'si')\n"); 551 PrintF("print <register>\n"); 552 PrintF(" print register content (alias 'p')\n"); 553 PrintF(" use register name 'all' to print all registers\n"); 554 PrintF(" add argument 'fp' to print register pair double values\n"); 555 PrintF("printobject <register>\n"); 556 PrintF(" print an object from a register (alias 'po')\n"); 557 PrintF("flags\n"); 558 PrintF(" print flags\n"); 559 PrintF("stack [<words>]\n"); 560 PrintF(" dump stack content, default dump 10 words)\n"); 561 PrintF("mem <address> [<words>]\n"); 562 PrintF(" dump memory content, default dump 10 words)\n"); 563 PrintF("disasm [<instructions>]\n"); 564 PrintF("disasm [<address/register>]\n"); 565 PrintF("disasm [[<address/register>] <instructions>]\n"); 566 PrintF(" disassemble code, default is 10 instructions\n"); 567 PrintF(" from pc (alias 'di')\n"); 568 PrintF("gdb\n"); 569 PrintF(" enter gdb\n"); 570 PrintF("break <address>\n"); 571 PrintF(" set a break point on the address\n"); 572 PrintF("del\n"); 573 PrintF(" delete the breakpoint\n"); 574 PrintF("trace (alias 't')\n"); 575 PrintF(" toogle the tracing of all executed statements\n"); 576 PrintF("stop feature:\n"); 577 PrintF(" Description:\n"); 578 PrintF(" Stops are debug instructions inserted by\n"); 579 PrintF(" the Assembler::stop() function.\n"); 580 PrintF(" When hitting a stop, the Simulator will\n"); 581 PrintF(" stop and and give control to the ArmDebugger.\n"); 582 PrintF(" The first %d stop codes are watched:\n", 583 Simulator::kNumOfWatchedStops); 584 PrintF(" - They can be enabled / disabled: the Simulator\n"); 585 PrintF(" will / won't stop when hitting them.\n"); 586 PrintF(" - The Simulator keeps track of how many times they \n"); 587 PrintF(" are met. (See the info command.) Going over a\n"); 588 PrintF(" disabled stop still increases its counter. \n"); 589 PrintF(" Commands:\n"); 590 PrintF(" stop info all/<code> : print infos about number <code>\n"); 591 PrintF(" or all stop(s).\n"); 592 PrintF(" stop enable/disable all/<code> : enables / disables\n"); 593 PrintF(" all or number <code> stop(s)\n"); 594 PrintF(" stop unstop\n"); 595 PrintF(" ignore the stop instruction at the current location\n"); 596 PrintF(" from now on\n"); 597 } else { 598 PrintF("Unknown command: %s\n", cmd); 599 } 600 } 601 } 602 603 // Add all the breakpoints back to stop execution and enter the debugger 604 // shell when hit. 605 RedoBreakpoints(); 606 607#undef COMMAND_SIZE 608#undef ARG_SIZE 609 610#undef STR 611#undef XSTR 612} 613 614 615static bool ICacheMatch(void* one, void* two) { 616 DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0); 617 DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0); 618 return one == two; 619} 620 621 622static uint32_t ICacheHash(void* key) { 623 return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; 624} 625 626 627static bool AllOnOnePage(uintptr_t start, int size) { 628 intptr_t start_page = (start & ~CachePage::kPageMask); 629 intptr_t end_page = ((start + size) & ~CachePage::kPageMask); 630 return start_page == end_page; 631} 632 633 634void Simulator::set_last_debugger_input(char* input) { 635 DeleteArray(last_debugger_input_); 636 last_debugger_input_ = input; 637} 638 639void Simulator::FlushICache(base::HashMap* i_cache, void* start_addr, 640 size_t size) { 641 intptr_t start = reinterpret_cast<intptr_t>(start_addr); 642 int intra_line = (start & CachePage::kLineMask); 643 start -= intra_line; 644 size += intra_line; 645 size = ((size - 1) | CachePage::kLineMask) + 1; 646 int offset = (start & CachePage::kPageMask); 647 while (!AllOnOnePage(start, size - 1)) { 648 int bytes_to_flush = CachePage::kPageSize - offset; 649 FlushOnePage(i_cache, start, bytes_to_flush); 650 start += bytes_to_flush; 651 size -= bytes_to_flush; 652 DCHECK_EQ(0, start & CachePage::kPageMask); 653 offset = 0; 654 } 655 if (size != 0) { 656 FlushOnePage(i_cache, start, size); 657 } 658} 659 660CachePage* Simulator::GetCachePage(base::HashMap* i_cache, void* page) { 661 base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page)); 662 if (entry->value == NULL) { 663 CachePage* new_page = new CachePage(); 664 entry->value = new_page; 665 } 666 return reinterpret_cast<CachePage*>(entry->value); 667} 668 669 670// Flush from start up to and not including start + size. 671void Simulator::FlushOnePage(base::HashMap* i_cache, intptr_t start, int size) { 672 DCHECK(size <= CachePage::kPageSize); 673 DCHECK(AllOnOnePage(start, size - 1)); 674 DCHECK((start & CachePage::kLineMask) == 0); 675 DCHECK((size & CachePage::kLineMask) == 0); 676 void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); 677 int offset = (start & CachePage::kPageMask); 678 CachePage* cache_page = GetCachePage(i_cache, page); 679 char* valid_bytemap = cache_page->ValidityByte(offset); 680 memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); 681} 682 683void Simulator::CheckICache(base::HashMap* i_cache, Instruction* instr) { 684 intptr_t address = reinterpret_cast<intptr_t>(instr); 685 void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); 686 void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); 687 int offset = (address & CachePage::kPageMask); 688 CachePage* cache_page = GetCachePage(i_cache, page); 689 char* cache_valid_byte = cache_page->ValidityByte(offset); 690 bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); 691 char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); 692 if (cache_hit) { 693 // Check that the data in memory matches the contents of the I-cache. 694 CHECK_EQ(0, 695 memcmp(reinterpret_cast<void*>(instr), 696 cache_page->CachedData(offset), Instruction::kInstrSize)); 697 } else { 698 // Cache miss. Load memory into the cache. 699 memcpy(cached_line, line, CachePage::kLineLength); 700 *cache_valid_byte = CachePage::LINE_VALID; 701 } 702} 703 704 705void Simulator::Initialize(Isolate* isolate) { 706 if (isolate->simulator_initialized()) return; 707 isolate->set_simulator_initialized(true); 708 ::v8::internal::ExternalReference::set_redirector(isolate, 709 &RedirectExternalReference); 710} 711 712 713Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { 714 i_cache_ = isolate_->simulator_i_cache(); 715 if (i_cache_ == NULL) { 716 i_cache_ = new base::HashMap(&ICacheMatch); 717 isolate_->set_simulator_i_cache(i_cache_); 718 } 719 Initialize(isolate); 720 // Set up simulator support first. Some of this information is needed to 721 // setup the architecture state. 722 size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack 723 stack_ = reinterpret_cast<char*>(malloc(stack_size)); 724 pc_modified_ = false; 725 icount_ = 0; 726 break_pc_ = NULL; 727 break_instr_ = 0; 728 729 // Set up architecture state. 730 // All registers are initialized to zero to start with. 731 for (int i = 0; i < num_registers; i++) { 732 registers_[i] = 0; 733 } 734 n_flag_ = false; 735 z_flag_ = false; 736 c_flag_ = false; 737 v_flag_ = false; 738 739 // Initializing VFP registers. 740 // All registers are initialized to zero to start with 741 // even though s_registers_ & d_registers_ share the same 742 // physical registers in the target. 743 for (int i = 0; i < num_d_registers * 2; i++) { 744 vfp_registers_[i] = 0; 745 } 746 n_flag_FPSCR_ = false; 747 z_flag_FPSCR_ = false; 748 c_flag_FPSCR_ = false; 749 v_flag_FPSCR_ = false; 750 FPSCR_rounding_mode_ = RN; 751 FPSCR_default_NaN_mode_ = false; 752 753 inv_op_vfp_flag_ = false; 754 div_zero_vfp_flag_ = false; 755 overflow_vfp_flag_ = false; 756 underflow_vfp_flag_ = false; 757 inexact_vfp_flag_ = false; 758 759 // The sp is initialized to point to the bottom (high address) of the 760 // allocated stack area. To be safe in potential stack underflows we leave 761 // some buffer below. 762 registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64; 763 // The lr and pc are initialized to a known bad value that will cause an 764 // access violation if the simulator ever tries to execute it. 765 registers_[pc] = bad_lr; 766 registers_[lr] = bad_lr; 767 InitializeCoverage(); 768 769 last_debugger_input_ = NULL; 770} 771 772 773Simulator::~Simulator() { free(stack_); } 774 775 776// When the generated code calls an external reference we need to catch that in 777// the simulator. The external reference will be a function compiled for the 778// host architecture. We need to call that function instead of trying to 779// execute it with the simulator. We do that by redirecting the external 780// reference to a svc (Supervisor Call) instruction that is handled by 781// the simulator. We write the original destination of the jump just at a known 782// offset from the svc instruction so the simulator knows what to call. 783class Redirection { 784 public: 785 Redirection(Isolate* isolate, void* external_function, 786 ExternalReference::Type type) 787 : external_function_(external_function), 788 swi_instruction_(al | (0xf * B24) | kCallRtRedirected), 789 type_(type), 790 next_(NULL) { 791 next_ = isolate->simulator_redirection(); 792 Simulator::current(isolate)-> 793 FlushICache(isolate->simulator_i_cache(), 794 reinterpret_cast<void*>(&swi_instruction_), 795 Instruction::kInstrSize); 796 isolate->set_simulator_redirection(this); 797 } 798 799 void* address_of_swi_instruction() { 800 return reinterpret_cast<void*>(&swi_instruction_); 801 } 802 803 void* external_function() { return external_function_; } 804 ExternalReference::Type type() { return type_; } 805 806 static Redirection* Get(Isolate* isolate, void* external_function, 807 ExternalReference::Type type) { 808 Redirection* current = isolate->simulator_redirection(); 809 for (; current != NULL; current = current->next_) { 810 if (current->external_function_ == external_function) { 811 DCHECK_EQ(current->type(), type); 812 return current; 813 } 814 } 815 return new Redirection(isolate, external_function, type); 816 } 817 818 static Redirection* FromSwiInstruction(Instruction* swi_instruction) { 819 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); 820 char* addr_of_redirection = 821 addr_of_swi - offsetof(Redirection, swi_instruction_); 822 return reinterpret_cast<Redirection*>(addr_of_redirection); 823 } 824 825 static void* ReverseRedirection(int32_t reg) { 826 Redirection* redirection = FromSwiInstruction( 827 reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg))); 828 return redirection->external_function(); 829 } 830 831 static void DeleteChain(Redirection* redirection) { 832 while (redirection != nullptr) { 833 Redirection* next = redirection->next_; 834 delete redirection; 835 redirection = next; 836 } 837 } 838 839 private: 840 void* external_function_; 841 uint32_t swi_instruction_; 842 ExternalReference::Type type_; 843 Redirection* next_; 844}; 845 846 847// static 848void Simulator::TearDown(base::HashMap* i_cache, Redirection* first) { 849 Redirection::DeleteChain(first); 850 if (i_cache != nullptr) { 851 for (base::HashMap::Entry* entry = i_cache->Start(); entry != nullptr; 852 entry = i_cache->Next(entry)) { 853 delete static_cast<CachePage*>(entry->value); 854 } 855 delete i_cache; 856 } 857} 858 859 860void* Simulator::RedirectExternalReference(Isolate* isolate, 861 void* external_function, 862 ExternalReference::Type type) { 863 Redirection* redirection = Redirection::Get(isolate, external_function, type); 864 return redirection->address_of_swi_instruction(); 865} 866 867 868// Get the active Simulator for the current thread. 869Simulator* Simulator::current(Isolate* isolate) { 870 v8::internal::Isolate::PerIsolateThreadData* isolate_data = 871 isolate->FindOrAllocatePerThreadDataForThisThread(); 872 DCHECK(isolate_data != NULL); 873 874 Simulator* sim = isolate_data->simulator(); 875 if (sim == NULL) { 876 // TODO(146): delete the simulator object when a thread/isolate goes away. 877 sim = new Simulator(isolate); 878 isolate_data->set_simulator(sim); 879 } 880 return sim; 881} 882 883 884// Sets the register in the architecture state. It will also deal with updating 885// Simulator internal state for special registers such as PC. 886void Simulator::set_register(int reg, int32_t value) { 887 DCHECK((reg >= 0) && (reg < num_registers)); 888 if (reg == pc) { 889 pc_modified_ = true; 890 } 891 registers_[reg] = value; 892} 893 894 895// Get the register from the architecture state. This function does handle 896// the special case of accessing the PC register. 897int32_t Simulator::get_register(int reg) const { 898 DCHECK((reg >= 0) && (reg < num_registers)); 899 // Stupid code added to avoid bug in GCC. 900 // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 901 if (reg >= num_registers) return 0; 902 // End stupid code. 903 return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); 904} 905 906 907double Simulator::get_double_from_register_pair(int reg) { 908 DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0)); 909 910 double dm_val = 0.0; 911 // Read the bits from the unsigned integer register_[] array 912 // into the double precision floating point value and return it. 913 char buffer[2 * sizeof(vfp_registers_[0])]; 914 memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); 915 memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); 916 return(dm_val); 917} 918 919 920void Simulator::set_register_pair_from_double(int reg, double* value) { 921 DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0)); 922 memcpy(registers_ + reg, value, sizeof(*value)); 923} 924 925 926void Simulator::set_dw_register(int dreg, const int* dbl) { 927 DCHECK((dreg >= 0) && (dreg < num_d_registers)); 928 registers_[dreg] = dbl[0]; 929 registers_[dreg + 1] = dbl[1]; 930} 931 932 933void Simulator::get_d_register(int dreg, uint64_t* value) { 934 DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); 935 memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value)); 936} 937 938 939void Simulator::set_d_register(int dreg, const uint64_t* value) { 940 DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); 941 memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value)); 942} 943 944 945void Simulator::get_d_register(int dreg, uint32_t* value) { 946 DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); 947 memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2); 948} 949 950 951void Simulator::set_d_register(int dreg, const uint32_t* value) { 952 DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); 953 memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2); 954} 955 956 957void Simulator::get_q_register(int qreg, uint64_t* value) { 958 DCHECK((qreg >= 0) && (qreg < num_q_registers)); 959 memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 2); 960} 961 962 963void Simulator::set_q_register(int qreg, const uint64_t* value) { 964 DCHECK((qreg >= 0) && (qreg < num_q_registers)); 965 memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 2); 966} 967 968 969void Simulator::get_q_register(int qreg, uint32_t* value) { 970 DCHECK((qreg >= 0) && (qreg < num_q_registers)); 971 memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 4); 972} 973 974 975void Simulator::set_q_register(int qreg, const uint32_t* value) { 976 DCHECK((qreg >= 0) && (qreg < num_q_registers)); 977 memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 4); 978} 979 980 981// Raw access to the PC register. 982void Simulator::set_pc(int32_t value) { 983 pc_modified_ = true; 984 registers_[pc] = value; 985} 986 987 988bool Simulator::has_bad_pc() const { 989 return ((registers_[pc] == bad_lr) || (registers_[pc] == end_sim_pc)); 990} 991 992 993// Raw access to the PC register without the special adjustment when reading. 994int32_t Simulator::get_pc() const { 995 return registers_[pc]; 996} 997 998 999// Getting from and setting into VFP registers. 1000void Simulator::set_s_register(int sreg, unsigned int value) { 1001 DCHECK((sreg >= 0) && (sreg < num_s_registers)); 1002 vfp_registers_[sreg] = value; 1003} 1004 1005 1006unsigned int Simulator::get_s_register(int sreg) const { 1007 DCHECK((sreg >= 0) && (sreg < num_s_registers)); 1008 return vfp_registers_[sreg]; 1009} 1010 1011 1012template<class InputType, int register_size> 1013void Simulator::SetVFPRegister(int reg_index, const InputType& value) { 1014 DCHECK(reg_index >= 0); 1015 if (register_size == 1) DCHECK(reg_index < num_s_registers); 1016 if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters()); 1017 1018 char buffer[register_size * sizeof(vfp_registers_[0])]; 1019 memcpy(buffer, &value, register_size * sizeof(vfp_registers_[0])); 1020 memcpy(&vfp_registers_[reg_index * register_size], buffer, 1021 register_size * sizeof(vfp_registers_[0])); 1022} 1023 1024 1025template<class ReturnType, int register_size> 1026ReturnType Simulator::GetFromVFPRegister(int reg_index) { 1027 DCHECK(reg_index >= 0); 1028 if (register_size == 1) DCHECK(reg_index < num_s_registers); 1029 if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters()); 1030 1031 ReturnType value = 0; 1032 char buffer[register_size * sizeof(vfp_registers_[0])]; 1033 memcpy(buffer, &vfp_registers_[register_size * reg_index], 1034 register_size * sizeof(vfp_registers_[0])); 1035 memcpy(&value, buffer, register_size * sizeof(vfp_registers_[0])); 1036 return value; 1037} 1038 1039void Simulator::SetSpecialRegister(SRegisterFieldMask reg_and_mask, 1040 uint32_t value) { 1041 // Only CPSR_f is implemented. Of that, only N, Z, C and V are implemented. 1042 if ((reg_and_mask == CPSR_f) && ((value & ~kSpecialCondition) == 0)) { 1043 n_flag_ = ((value & (1 << 31)) != 0); 1044 z_flag_ = ((value & (1 << 30)) != 0); 1045 c_flag_ = ((value & (1 << 29)) != 0); 1046 v_flag_ = ((value & (1 << 28)) != 0); 1047 } else { 1048 UNIMPLEMENTED(); 1049 } 1050} 1051 1052uint32_t Simulator::GetFromSpecialRegister(SRegister reg) { 1053 uint32_t result = 0; 1054 // Only CPSR_f is implemented. 1055 if (reg == CPSR) { 1056 if (n_flag_) result |= (1 << 31); 1057 if (z_flag_) result |= (1 << 30); 1058 if (c_flag_) result |= (1 << 29); 1059 if (v_flag_) result |= (1 << 28); 1060 } else { 1061 UNIMPLEMENTED(); 1062 } 1063 return result; 1064} 1065 1066// Runtime FP routines take: 1067// - two double arguments 1068// - one double argument and zero or one integer arguments. 1069// All are consructed here from r0-r3 or d0, d1 and r0. 1070void Simulator::GetFpArgs(double* x, double* y, int32_t* z) { 1071 if (use_eabi_hardfloat()) { 1072 *x = get_double_from_d_register(0); 1073 *y = get_double_from_d_register(1); 1074 *z = get_register(0); 1075 } else { 1076 // Registers 0 and 1 -> x. 1077 *x = get_double_from_register_pair(0); 1078 // Register 2 and 3 -> y. 1079 *y = get_double_from_register_pair(2); 1080 // Register 2 -> z 1081 *z = get_register(2); 1082 } 1083} 1084 1085 1086// The return value is either in r0/r1 or d0. 1087void Simulator::SetFpResult(const double& result) { 1088 if (use_eabi_hardfloat()) { 1089 char buffer[2 * sizeof(vfp_registers_[0])]; 1090 memcpy(buffer, &result, sizeof(buffer)); 1091 // Copy result to d0. 1092 memcpy(vfp_registers_, buffer, sizeof(buffer)); 1093 } else { 1094 char buffer[2 * sizeof(registers_[0])]; 1095 memcpy(buffer, &result, sizeof(buffer)); 1096 // Copy result to r0 and r1. 1097 memcpy(registers_, buffer, sizeof(buffer)); 1098 } 1099} 1100 1101 1102void Simulator::TrashCallerSaveRegisters() { 1103 // We don't trash the registers with the return value. 1104 registers_[2] = 0x50Bad4U; 1105 registers_[3] = 0x50Bad4U; 1106 registers_[12] = 0x50Bad4U; 1107} 1108 1109 1110// Some Operating Systems allow unaligned access on ARMv7 targets. We 1111// assume that unaligned accesses are not allowed unless the v8 build system 1112// defines the CAN_USE_UNALIGNED_ACCESSES macro to be non-zero. 1113// The following statements below describes the behavior of the ARM CPUs 1114// that don't support unaligned access. 1115// Some ARM platforms raise an interrupt on detecting unaligned access. 1116// On others it does a funky rotation thing. For now we 1117// simply disallow unaligned reads. Note that simulator runs have the runtime 1118// system running directly on the host system and only generated code is 1119// executed in the simulator. Since the host is typically IA32 we will not 1120// get the correct ARM-like behaviour on unaligned accesses for those ARM 1121// targets that don't support unaligned loads and stores. 1122 1123 1124int Simulator::ReadW(int32_t addr, Instruction* instr) { 1125 if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) { 1126 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); 1127 return *ptr; 1128 } else { 1129 PrintF("Unaligned read at 0x%08x, pc=0x%08" V8PRIxPTR "\n", 1130 addr, 1131 reinterpret_cast<intptr_t>(instr)); 1132 UNIMPLEMENTED(); 1133 return 0; 1134 } 1135} 1136 1137 1138void Simulator::WriteW(int32_t addr, int value, Instruction* instr) { 1139 if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) { 1140 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); 1141 *ptr = value; 1142 } else { 1143 PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", 1144 addr, 1145 reinterpret_cast<intptr_t>(instr)); 1146 UNIMPLEMENTED(); 1147 } 1148} 1149 1150 1151uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) { 1152 if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) { 1153 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); 1154 return *ptr; 1155 } else { 1156 PrintF("Unaligned unsigned halfword read at 0x%08x, pc=0x%08" 1157 V8PRIxPTR "\n", 1158 addr, 1159 reinterpret_cast<intptr_t>(instr)); 1160 UNIMPLEMENTED(); 1161 return 0; 1162 } 1163} 1164 1165 1166int16_t Simulator::ReadH(int32_t addr, Instruction* instr) { 1167 if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) { 1168 int16_t* ptr = reinterpret_cast<int16_t*>(addr); 1169 return *ptr; 1170 } else { 1171 PrintF("Unaligned signed halfword read at 0x%08x\n", addr); 1172 UNIMPLEMENTED(); 1173 return 0; 1174 } 1175} 1176 1177 1178void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) { 1179 if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) { 1180 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); 1181 *ptr = value; 1182 } else { 1183 PrintF("Unaligned unsigned halfword write at 0x%08x, pc=0x%08" 1184 V8PRIxPTR "\n", 1185 addr, 1186 reinterpret_cast<intptr_t>(instr)); 1187 UNIMPLEMENTED(); 1188 } 1189} 1190 1191 1192void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) { 1193 if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) { 1194 int16_t* ptr = reinterpret_cast<int16_t*>(addr); 1195 *ptr = value; 1196 } else { 1197 PrintF("Unaligned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", 1198 addr, 1199 reinterpret_cast<intptr_t>(instr)); 1200 UNIMPLEMENTED(); 1201 } 1202} 1203 1204 1205uint8_t Simulator::ReadBU(int32_t addr) { 1206 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); 1207 return *ptr; 1208} 1209 1210 1211int8_t Simulator::ReadB(int32_t addr) { 1212 int8_t* ptr = reinterpret_cast<int8_t*>(addr); 1213 return *ptr; 1214} 1215 1216 1217void Simulator::WriteB(int32_t addr, uint8_t value) { 1218 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); 1219 *ptr = value; 1220} 1221 1222 1223void Simulator::WriteB(int32_t addr, int8_t value) { 1224 int8_t* ptr = reinterpret_cast<int8_t*>(addr); 1225 *ptr = value; 1226} 1227 1228 1229int32_t* Simulator::ReadDW(int32_t addr) { 1230 if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) { 1231 int32_t* ptr = reinterpret_cast<int32_t*>(addr); 1232 return ptr; 1233 } else { 1234 PrintF("Unaligned read at 0x%08x\n", addr); 1235 UNIMPLEMENTED(); 1236 return 0; 1237 } 1238} 1239 1240 1241void Simulator::WriteDW(int32_t addr, int32_t value1, int32_t value2) { 1242 if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) { 1243 int32_t* ptr = reinterpret_cast<int32_t*>(addr); 1244 *ptr++ = value1; 1245 *ptr = value2; 1246 } else { 1247 PrintF("Unaligned write at 0x%08x\n", addr); 1248 UNIMPLEMENTED(); 1249 } 1250} 1251 1252 1253// Returns the limit of the stack area to enable checking for stack overflows. 1254uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { 1255 // The simulator uses a separate JS stack. If we have exhausted the C stack, 1256 // we also drop down the JS limit to reflect the exhaustion on the JS stack. 1257 if (GetCurrentStackPosition() < c_limit) { 1258 return reinterpret_cast<uintptr_t>(get_sp()); 1259 } 1260 1261 // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes 1262 // to prevent overrunning the stack when pushing values. 1263 return reinterpret_cast<uintptr_t>(stack_) + 1024; 1264} 1265 1266 1267// Unsupported instructions use Format to print an error and stop execution. 1268void Simulator::Format(Instruction* instr, const char* format) { 1269 PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n", 1270 reinterpret_cast<intptr_t>(instr), format); 1271 UNIMPLEMENTED(); 1272} 1273 1274 1275// Checks if the current instruction should be executed based on its 1276// condition bits. 1277bool Simulator::ConditionallyExecute(Instruction* instr) { 1278 switch (instr->ConditionField()) { 1279 case eq: return z_flag_; 1280 case ne: return !z_flag_; 1281 case cs: return c_flag_; 1282 case cc: return !c_flag_; 1283 case mi: return n_flag_; 1284 case pl: return !n_flag_; 1285 case vs: return v_flag_; 1286 case vc: return !v_flag_; 1287 case hi: return c_flag_ && !z_flag_; 1288 case ls: return !c_flag_ || z_flag_; 1289 case ge: return n_flag_ == v_flag_; 1290 case lt: return n_flag_ != v_flag_; 1291 case gt: return !z_flag_ && (n_flag_ == v_flag_); 1292 case le: return z_flag_ || (n_flag_ != v_flag_); 1293 case al: return true; 1294 default: UNREACHABLE(); 1295 } 1296 return false; 1297} 1298 1299 1300// Calculate and set the Negative and Zero flags. 1301void Simulator::SetNZFlags(int32_t val) { 1302 n_flag_ = (val < 0); 1303 z_flag_ = (val == 0); 1304} 1305 1306 1307// Set the Carry flag. 1308void Simulator::SetCFlag(bool val) { 1309 c_flag_ = val; 1310} 1311 1312 1313// Set the oVerflow flag. 1314void Simulator::SetVFlag(bool val) { 1315 v_flag_ = val; 1316} 1317 1318 1319// Calculate C flag value for additions. 1320bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) { 1321 uint32_t uleft = static_cast<uint32_t>(left); 1322 uint32_t uright = static_cast<uint32_t>(right); 1323 uint32_t urest = 0xffffffffU - uleft; 1324 1325 return (uright > urest) || 1326 (carry && (((uright + 1) > urest) || (uright > (urest - 1)))); 1327} 1328 1329 1330// Calculate C flag value for subtractions. 1331bool Simulator::BorrowFrom(int32_t left, int32_t right, int32_t carry) { 1332 uint32_t uleft = static_cast<uint32_t>(left); 1333 uint32_t uright = static_cast<uint32_t>(right); 1334 1335 return (uright > uleft) || 1336 (!carry && (((uright + 1) > uleft) || (uright > (uleft - 1)))); 1337} 1338 1339 1340// Calculate V flag value for additions and subtractions. 1341bool Simulator::OverflowFrom(int32_t alu_out, 1342 int32_t left, int32_t right, bool addition) { 1343 bool overflow; 1344 if (addition) { 1345 // operands have the same sign 1346 overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) 1347 // and operands and result have different sign 1348 && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); 1349 } else { 1350 // operands have different signs 1351 overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) 1352 // and first operand and result have different signs 1353 && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); 1354 } 1355 return overflow; 1356} 1357 1358 1359// Support for VFP comparisons. 1360void Simulator::Compute_FPSCR_Flags(float val1, float val2) { 1361 if (std::isnan(val1) || std::isnan(val2)) { 1362 n_flag_FPSCR_ = false; 1363 z_flag_FPSCR_ = false; 1364 c_flag_FPSCR_ = true; 1365 v_flag_FPSCR_ = true; 1366 // All non-NaN cases. 1367 } else if (val1 == val2) { 1368 n_flag_FPSCR_ = false; 1369 z_flag_FPSCR_ = true; 1370 c_flag_FPSCR_ = true; 1371 v_flag_FPSCR_ = false; 1372 } else if (val1 < val2) { 1373 n_flag_FPSCR_ = true; 1374 z_flag_FPSCR_ = false; 1375 c_flag_FPSCR_ = false; 1376 v_flag_FPSCR_ = false; 1377 } else { 1378 // Case when (val1 > val2). 1379 n_flag_FPSCR_ = false; 1380 z_flag_FPSCR_ = false; 1381 c_flag_FPSCR_ = true; 1382 v_flag_FPSCR_ = false; 1383 } 1384} 1385 1386 1387void Simulator::Compute_FPSCR_Flags(double val1, double val2) { 1388 if (std::isnan(val1) || std::isnan(val2)) { 1389 n_flag_FPSCR_ = false; 1390 z_flag_FPSCR_ = false; 1391 c_flag_FPSCR_ = true; 1392 v_flag_FPSCR_ = true; 1393 // All non-NaN cases. 1394 } else if (val1 == val2) { 1395 n_flag_FPSCR_ = false; 1396 z_flag_FPSCR_ = true; 1397 c_flag_FPSCR_ = true; 1398 v_flag_FPSCR_ = false; 1399 } else if (val1 < val2) { 1400 n_flag_FPSCR_ = true; 1401 z_flag_FPSCR_ = false; 1402 c_flag_FPSCR_ = false; 1403 v_flag_FPSCR_ = false; 1404 } else { 1405 // Case when (val1 > val2). 1406 n_flag_FPSCR_ = false; 1407 z_flag_FPSCR_ = false; 1408 c_flag_FPSCR_ = true; 1409 v_flag_FPSCR_ = false; 1410 } 1411} 1412 1413 1414void Simulator::Copy_FPSCR_to_APSR() { 1415 n_flag_ = n_flag_FPSCR_; 1416 z_flag_ = z_flag_FPSCR_; 1417 c_flag_ = c_flag_FPSCR_; 1418 v_flag_ = v_flag_FPSCR_; 1419} 1420 1421 1422// Addressing Mode 1 - Data-processing operands: 1423// Get the value based on the shifter_operand with register. 1424int32_t Simulator::GetShiftRm(Instruction* instr, bool* carry_out) { 1425 ShiftOp shift = instr->ShiftField(); 1426 int shift_amount = instr->ShiftAmountValue(); 1427 int32_t result = get_register(instr->RmValue()); 1428 if (instr->Bit(4) == 0) { 1429 // by immediate 1430 if ((shift == ROR) && (shift_amount == 0)) { 1431 UNIMPLEMENTED(); 1432 return result; 1433 } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) { 1434 shift_amount = 32; 1435 } 1436 switch (shift) { 1437 case ASR: { 1438 if (shift_amount == 0) { 1439 if (result < 0) { 1440 result = 0xffffffff; 1441 *carry_out = true; 1442 } else { 1443 result = 0; 1444 *carry_out = false; 1445 } 1446 } else { 1447 result >>= (shift_amount - 1); 1448 *carry_out = (result & 1) == 1; 1449 result >>= 1; 1450 } 1451 break; 1452 } 1453 1454 case LSL: { 1455 if (shift_amount == 0) { 1456 *carry_out = c_flag_; 1457 } else { 1458 result <<= (shift_amount - 1); 1459 *carry_out = (result < 0); 1460 result <<= 1; 1461 } 1462 break; 1463 } 1464 1465 case LSR: { 1466 if (shift_amount == 0) { 1467 result = 0; 1468 *carry_out = c_flag_; 1469 } else { 1470 uint32_t uresult = static_cast<uint32_t>(result); 1471 uresult >>= (shift_amount - 1); 1472 *carry_out = (uresult & 1) == 1; 1473 uresult >>= 1; 1474 result = static_cast<int32_t>(uresult); 1475 } 1476 break; 1477 } 1478 1479 case ROR: { 1480 if (shift_amount == 0) { 1481 *carry_out = c_flag_; 1482 } else { 1483 uint32_t left = static_cast<uint32_t>(result) >> shift_amount; 1484 uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount); 1485 result = right | left; 1486 *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; 1487 } 1488 break; 1489 } 1490 1491 default: { 1492 UNREACHABLE(); 1493 break; 1494 } 1495 } 1496 } else { 1497 // by register 1498 int rs = instr->RsValue(); 1499 shift_amount = get_register(rs) &0xff; 1500 switch (shift) { 1501 case ASR: { 1502 if (shift_amount == 0) { 1503 *carry_out = c_flag_; 1504 } else if (shift_amount < 32) { 1505 result >>= (shift_amount - 1); 1506 *carry_out = (result & 1) == 1; 1507 result >>= 1; 1508 } else { 1509 DCHECK(shift_amount >= 32); 1510 if (result < 0) { 1511 *carry_out = true; 1512 result = 0xffffffff; 1513 } else { 1514 *carry_out = false; 1515 result = 0; 1516 } 1517 } 1518 break; 1519 } 1520 1521 case LSL: { 1522 if (shift_amount == 0) { 1523 *carry_out = c_flag_; 1524 } else if (shift_amount < 32) { 1525 result <<= (shift_amount - 1); 1526 *carry_out = (result < 0); 1527 result <<= 1; 1528 } else if (shift_amount == 32) { 1529 *carry_out = (result & 1) == 1; 1530 result = 0; 1531 } else { 1532 DCHECK(shift_amount > 32); 1533 *carry_out = false; 1534 result = 0; 1535 } 1536 break; 1537 } 1538 1539 case LSR: { 1540 if (shift_amount == 0) { 1541 *carry_out = c_flag_; 1542 } else if (shift_amount < 32) { 1543 uint32_t uresult = static_cast<uint32_t>(result); 1544 uresult >>= (shift_amount - 1); 1545 *carry_out = (uresult & 1) == 1; 1546 uresult >>= 1; 1547 result = static_cast<int32_t>(uresult); 1548 } else if (shift_amount == 32) { 1549 *carry_out = (result < 0); 1550 result = 0; 1551 } else { 1552 *carry_out = false; 1553 result = 0; 1554 } 1555 break; 1556 } 1557 1558 case ROR: { 1559 if (shift_amount == 0) { 1560 *carry_out = c_flag_; 1561 } else { 1562 uint32_t left = static_cast<uint32_t>(result) >> shift_amount; 1563 uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount); 1564 result = right | left; 1565 *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; 1566 } 1567 break; 1568 } 1569 1570 default: { 1571 UNREACHABLE(); 1572 break; 1573 } 1574 } 1575 } 1576 return result; 1577} 1578 1579 1580// Addressing Mode 1 - Data-processing operands: 1581// Get the value based on the shifter_operand with immediate. 1582int32_t Simulator::GetImm(Instruction* instr, bool* carry_out) { 1583 int rotate = instr->RotateValue() * 2; 1584 int immed8 = instr->Immed8Value(); 1585 int imm = base::bits::RotateRight32(immed8, rotate); 1586 *carry_out = (rotate == 0) ? c_flag_ : (imm < 0); 1587 return imm; 1588} 1589 1590 1591static int count_bits(int bit_vector) { 1592 int count = 0; 1593 while (bit_vector != 0) { 1594 if ((bit_vector & 1) != 0) { 1595 count++; 1596 } 1597 bit_vector >>= 1; 1598 } 1599 return count; 1600} 1601 1602 1603int32_t Simulator::ProcessPU(Instruction* instr, 1604 int num_regs, 1605 int reg_size, 1606 intptr_t* start_address, 1607 intptr_t* end_address) { 1608 int rn = instr->RnValue(); 1609 int32_t rn_val = get_register(rn); 1610 switch (instr->PUField()) { 1611 case da_x: { 1612 UNIMPLEMENTED(); 1613 break; 1614 } 1615 case ia_x: { 1616 *start_address = rn_val; 1617 *end_address = rn_val + (num_regs * reg_size) - reg_size; 1618 rn_val = rn_val + (num_regs * reg_size); 1619 break; 1620 } 1621 case db_x: { 1622 *start_address = rn_val - (num_regs * reg_size); 1623 *end_address = rn_val - reg_size; 1624 rn_val = *start_address; 1625 break; 1626 } 1627 case ib_x: { 1628 *start_address = rn_val + reg_size; 1629 *end_address = rn_val + (num_regs * reg_size); 1630 rn_val = *end_address; 1631 break; 1632 } 1633 default: { 1634 UNREACHABLE(); 1635 break; 1636 } 1637 } 1638 return rn_val; 1639} 1640 1641 1642// Addressing Mode 4 - Load and Store Multiple 1643void Simulator::HandleRList(Instruction* instr, bool load) { 1644 int rlist = instr->RlistValue(); 1645 int num_regs = count_bits(rlist); 1646 1647 intptr_t start_address = 0; 1648 intptr_t end_address = 0; 1649 int32_t rn_val = 1650 ProcessPU(instr, num_regs, kPointerSize, &start_address, &end_address); 1651 1652 intptr_t* address = reinterpret_cast<intptr_t*>(start_address); 1653 // Catch null pointers a little earlier. 1654 DCHECK(start_address > 8191 || start_address < 0); 1655 int reg = 0; 1656 while (rlist != 0) { 1657 if ((rlist & 1) != 0) { 1658 if (load) { 1659 set_register(reg, *address); 1660 } else { 1661 *address = get_register(reg); 1662 } 1663 address += 1; 1664 } 1665 reg++; 1666 rlist >>= 1; 1667 } 1668 DCHECK(end_address == ((intptr_t)address) - 4); 1669 if (instr->HasW()) { 1670 set_register(instr->RnValue(), rn_val); 1671 } 1672} 1673 1674 1675// Addressing Mode 6 - Load and Store Multiple Coprocessor registers. 1676void Simulator::HandleVList(Instruction* instr) { 1677 VFPRegPrecision precision = 1678 (instr->SzValue() == 0) ? kSinglePrecision : kDoublePrecision; 1679 int operand_size = (precision == kSinglePrecision) ? 4 : 8; 1680 1681 bool load = (instr->VLValue() == 0x1); 1682 1683 int vd; 1684 int num_regs; 1685 vd = instr->VFPDRegValue(precision); 1686 if (precision == kSinglePrecision) { 1687 num_regs = instr->Immed8Value(); 1688 } else { 1689 num_regs = instr->Immed8Value() / 2; 1690 } 1691 1692 intptr_t start_address = 0; 1693 intptr_t end_address = 0; 1694 int32_t rn_val = 1695 ProcessPU(instr, num_regs, operand_size, &start_address, &end_address); 1696 1697 intptr_t* address = reinterpret_cast<intptr_t*>(start_address); 1698 for (int reg = vd; reg < vd + num_regs; reg++) { 1699 if (precision == kSinglePrecision) { 1700 if (load) { 1701 set_s_register_from_sinteger( 1702 reg, ReadW(reinterpret_cast<int32_t>(address), instr)); 1703 } else { 1704 WriteW(reinterpret_cast<int32_t>(address), 1705 get_sinteger_from_s_register(reg), instr); 1706 } 1707 address += 1; 1708 } else { 1709 if (load) { 1710 int32_t data[] = { 1711 ReadW(reinterpret_cast<int32_t>(address), instr), 1712 ReadW(reinterpret_cast<int32_t>(address + 1), instr) 1713 }; 1714 set_d_register(reg, reinterpret_cast<uint32_t*>(data)); 1715 } else { 1716 uint32_t data[2]; 1717 get_d_register(reg, data); 1718 WriteW(reinterpret_cast<int32_t>(address), data[0], instr); 1719 WriteW(reinterpret_cast<int32_t>(address + 1), data[1], instr); 1720 } 1721 address += 2; 1722 } 1723 } 1724 DCHECK(reinterpret_cast<intptr_t>(address) - operand_size == end_address); 1725 if (instr->HasW()) { 1726 set_register(instr->RnValue(), rn_val); 1727 } 1728} 1729 1730 1731// Calls into the V8 runtime are based on this very simple interface. 1732// Note: To be able to return two values from some calls the code in runtime.cc 1733// uses the ObjectPair which is essentially two 32-bit values stuffed into a 1734// 64-bit value. With the code below we assume that all runtime calls return 1735// 64 bits of result. If they don't, the r1 result register contains a bogus 1736// value, which is fine because it is caller-saved. 1737typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0, 1738 int32_t arg1, 1739 int32_t arg2, 1740 int32_t arg3, 1741 int32_t arg4, 1742 int32_t arg5); 1743 1744typedef ObjectTriple (*SimulatorRuntimeTripleCall)(int32_t arg0, int32_t arg1, 1745 int32_t arg2, int32_t arg3, 1746 int32_t arg4); 1747 1748// These prototypes handle the four types of FP calls. 1749typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1); 1750typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1); 1751typedef double (*SimulatorRuntimeFPCall)(double darg0); 1752typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0); 1753 1754// This signature supports direct call in to API function native callback 1755// (refer to InvocationCallback in v8.h). 1756typedef void (*SimulatorRuntimeDirectApiCall)(int32_t arg0); 1757typedef void (*SimulatorRuntimeProfilingApiCall)(int32_t arg0, void* arg1); 1758 1759// This signature supports direct call to accessor getter callback. 1760typedef void (*SimulatorRuntimeDirectGetterCall)(int32_t arg0, int32_t arg1); 1761typedef void (*SimulatorRuntimeProfilingGetterCall)( 1762 int32_t arg0, int32_t arg1, void* arg2); 1763 1764// Software interrupt instructions are used by the simulator to call into the 1765// C-based V8 runtime. 1766void Simulator::SoftwareInterrupt(Instruction* instr) { 1767 int svc = instr->SvcValue(); 1768 switch (svc) { 1769 case kCallRtRedirected: { 1770 // Check if stack is aligned. Error if not aligned is reported below to 1771 // include information on the function called. 1772 bool stack_aligned = 1773 (get_register(sp) 1774 & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0; 1775 Redirection* redirection = Redirection::FromSwiInstruction(instr); 1776 int32_t arg0 = get_register(r0); 1777 int32_t arg1 = get_register(r1); 1778 int32_t arg2 = get_register(r2); 1779 int32_t arg3 = get_register(r3); 1780 int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp)); 1781 int32_t arg4 = stack_pointer[0]; 1782 int32_t arg5 = stack_pointer[1]; 1783 bool fp_call = 1784 (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || 1785 (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || 1786 (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || 1787 (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); 1788 // This is dodgy but it works because the C entry stubs are never moved. 1789 // See comment in codegen-arm.cc and bug 1242173. 1790 int32_t saved_lr = get_register(lr); 1791 intptr_t external = 1792 reinterpret_cast<intptr_t>(redirection->external_function()); 1793 if (fp_call) { 1794 double dval0, dval1; // one or two double parameters 1795 int32_t ival; // zero or one integer parameters 1796 int64_t iresult = 0; // integer return value 1797 double dresult = 0; // double return value 1798 GetFpArgs(&dval0, &dval1, &ival); 1799 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1800 SimulatorRuntimeCall generic_target = 1801 reinterpret_cast<SimulatorRuntimeCall>(external); 1802 switch (redirection->type()) { 1803 case ExternalReference::BUILTIN_FP_FP_CALL: 1804 case ExternalReference::BUILTIN_COMPARE_CALL: 1805 PrintF("Call to host function at %p with args %f, %f", 1806 static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0, 1807 dval1); 1808 break; 1809 case ExternalReference::BUILTIN_FP_CALL: 1810 PrintF("Call to host function at %p with arg %f", 1811 static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0); 1812 break; 1813 case ExternalReference::BUILTIN_FP_INT_CALL: 1814 PrintF("Call to host function at %p with args %f, %d", 1815 static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0, 1816 ival); 1817 break; 1818 default: 1819 UNREACHABLE(); 1820 break; 1821 } 1822 if (!stack_aligned) { 1823 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1824 } 1825 PrintF("\n"); 1826 } 1827 CHECK(stack_aligned); 1828 switch (redirection->type()) { 1829 case ExternalReference::BUILTIN_COMPARE_CALL: { 1830 SimulatorRuntimeCompareCall target = 1831 reinterpret_cast<SimulatorRuntimeCompareCall>(external); 1832 iresult = target(dval0, dval1); 1833 set_register(r0, static_cast<int32_t>(iresult)); 1834 set_register(r1, static_cast<int32_t>(iresult >> 32)); 1835 break; 1836 } 1837 case ExternalReference::BUILTIN_FP_FP_CALL: { 1838 SimulatorRuntimeFPFPCall target = 1839 reinterpret_cast<SimulatorRuntimeFPFPCall>(external); 1840 dresult = target(dval0, dval1); 1841 SetFpResult(dresult); 1842 break; 1843 } 1844 case ExternalReference::BUILTIN_FP_CALL: { 1845 SimulatorRuntimeFPCall target = 1846 reinterpret_cast<SimulatorRuntimeFPCall>(external); 1847 dresult = target(dval0); 1848 SetFpResult(dresult); 1849 break; 1850 } 1851 case ExternalReference::BUILTIN_FP_INT_CALL: { 1852 SimulatorRuntimeFPIntCall target = 1853 reinterpret_cast<SimulatorRuntimeFPIntCall>(external); 1854 dresult = target(dval0, ival); 1855 SetFpResult(dresult); 1856 break; 1857 } 1858 default: 1859 UNREACHABLE(); 1860 break; 1861 } 1862 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1863 switch (redirection->type()) { 1864 case ExternalReference::BUILTIN_COMPARE_CALL: 1865 PrintF("Returned %08x\n", static_cast<int32_t>(iresult)); 1866 break; 1867 case ExternalReference::BUILTIN_FP_FP_CALL: 1868 case ExternalReference::BUILTIN_FP_CALL: 1869 case ExternalReference::BUILTIN_FP_INT_CALL: 1870 PrintF("Returned %f\n", dresult); 1871 break; 1872 default: 1873 UNREACHABLE(); 1874 break; 1875 } 1876 } 1877 } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { 1878 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1879 PrintF("Call to host function at %p args %08x", 1880 reinterpret_cast<void*>(external), arg0); 1881 if (!stack_aligned) { 1882 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1883 } 1884 PrintF("\n"); 1885 } 1886 CHECK(stack_aligned); 1887 SimulatorRuntimeDirectApiCall target = 1888 reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); 1889 target(arg0); 1890 } else if ( 1891 redirection->type() == ExternalReference::PROFILING_API_CALL) { 1892 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1893 PrintF("Call to host function at %p args %08x %08x", 1894 reinterpret_cast<void*>(external), arg0, arg1); 1895 if (!stack_aligned) { 1896 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1897 } 1898 PrintF("\n"); 1899 } 1900 CHECK(stack_aligned); 1901 SimulatorRuntimeProfilingApiCall target = 1902 reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external); 1903 target(arg0, Redirection::ReverseRedirection(arg1)); 1904 } else if ( 1905 redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { 1906 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1907 PrintF("Call to host function at %p args %08x %08x", 1908 reinterpret_cast<void*>(external), arg0, arg1); 1909 if (!stack_aligned) { 1910 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1911 } 1912 PrintF("\n"); 1913 } 1914 CHECK(stack_aligned); 1915 SimulatorRuntimeDirectGetterCall target = 1916 reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); 1917 target(arg0, arg1); 1918 } else if ( 1919 redirection->type() == ExternalReference::PROFILING_GETTER_CALL) { 1920 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1921 PrintF("Call to host function at %p args %08x %08x %08x", 1922 reinterpret_cast<void*>(external), arg0, arg1, arg2); 1923 if (!stack_aligned) { 1924 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1925 } 1926 PrintF("\n"); 1927 } 1928 CHECK(stack_aligned); 1929 SimulatorRuntimeProfilingGetterCall target = 1930 reinterpret_cast<SimulatorRuntimeProfilingGetterCall>( 1931 external); 1932 target(arg0, arg1, Redirection::ReverseRedirection(arg2)); 1933 } else if (redirection->type() == 1934 ExternalReference::BUILTIN_CALL_TRIPLE) { 1935 // builtin call returning ObjectTriple. 1936 SimulatorRuntimeTripleCall target = 1937 reinterpret_cast<SimulatorRuntimeTripleCall>(external); 1938 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1939 PrintF( 1940 "Call to host triple returning runtime function %p " 1941 "args %08x, %08x, %08x, %08x, %08x", 1942 static_cast<void*>(FUNCTION_ADDR(target)), arg1, arg2, arg3, arg4, 1943 arg5); 1944 if (!stack_aligned) { 1945 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1946 } 1947 PrintF("\n"); 1948 } 1949 CHECK(stack_aligned); 1950 // arg0 is a hidden argument pointing to the return location, so don't 1951 // pass it to the target function. 1952 ObjectTriple result = target(arg1, arg2, arg3, arg4, arg5); 1953 if (::v8::internal::FLAG_trace_sim) { 1954 PrintF("Returned { %p, %p, %p }\n", static_cast<void*>(result.x), 1955 static_cast<void*>(result.y), static_cast<void*>(result.z)); 1956 } 1957 // Return is passed back in address pointed to by hidden first argument. 1958 ObjectTriple* sim_result = reinterpret_cast<ObjectTriple*>(arg0); 1959 *sim_result = result; 1960 set_register(r0, arg0); 1961 } else { 1962 // builtin call. 1963 DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL || 1964 redirection->type() == ExternalReference::BUILTIN_CALL_PAIR); 1965 SimulatorRuntimeCall target = 1966 reinterpret_cast<SimulatorRuntimeCall>(external); 1967 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1968 PrintF( 1969 "Call to host function at %p " 1970 "args %08x, %08x, %08x, %08x, %08x, %08x", 1971 static_cast<void*>(FUNCTION_ADDR(target)), arg0, arg1, arg2, arg3, 1972 arg4, arg5); 1973 if (!stack_aligned) { 1974 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1975 } 1976 PrintF("\n"); 1977 } 1978 CHECK(stack_aligned); 1979 int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); 1980 int32_t lo_res = static_cast<int32_t>(result); 1981 int32_t hi_res = static_cast<int32_t>(result >> 32); 1982 if (::v8::internal::FLAG_trace_sim) { 1983 PrintF("Returned %08x\n", lo_res); 1984 } 1985 set_register(r0, lo_res); 1986 set_register(r1, hi_res); 1987 } 1988 set_register(lr, saved_lr); 1989 set_pc(get_register(lr)); 1990 break; 1991 } 1992 case kBreakpoint: { 1993 ArmDebugger dbg(this); 1994 dbg.Debug(); 1995 break; 1996 } 1997 // stop uses all codes greater than 1 << 23. 1998 default: { 1999 if (svc >= (1 << 23)) { 2000 uint32_t code = svc & kStopCodeMask; 2001 if (isWatchedStop(code)) { 2002 IncreaseStopCounter(code); 2003 } 2004 // Stop if it is enabled, otherwise go on jumping over the stop 2005 // and the message address. 2006 if (isEnabledStop(code)) { 2007 ArmDebugger dbg(this); 2008 dbg.Stop(instr); 2009 } else { 2010 set_pc(get_pc() + 2 * Instruction::kInstrSize); 2011 } 2012 } else { 2013 // This is not a valid svc code. 2014 UNREACHABLE(); 2015 break; 2016 } 2017 } 2018 } 2019} 2020 2021 2022float Simulator::canonicalizeNaN(float value) { 2023 // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation 2024 // choices" of the ARM Reference Manual. 2025 const uint32_t kDefaultNaN = 0x7FC00000u; 2026 if (FPSCR_default_NaN_mode_ && std::isnan(value)) { 2027 value = bit_cast<float>(kDefaultNaN); 2028 } 2029 return value; 2030} 2031 2032 2033double Simulator::canonicalizeNaN(double value) { 2034 // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation 2035 // choices" of the ARM Reference Manual. 2036 const uint64_t kDefaultNaN = V8_UINT64_C(0x7FF8000000000000); 2037 if (FPSCR_default_NaN_mode_ && std::isnan(value)) { 2038 value = bit_cast<double>(kDefaultNaN); 2039 } 2040 return value; 2041} 2042 2043 2044// Stop helper functions. 2045bool Simulator::isStopInstruction(Instruction* instr) { 2046 return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode); 2047} 2048 2049 2050bool Simulator::isWatchedStop(uint32_t code) { 2051 DCHECK(code <= kMaxStopCode); 2052 return code < kNumOfWatchedStops; 2053} 2054 2055 2056bool Simulator::isEnabledStop(uint32_t code) { 2057 DCHECK(code <= kMaxStopCode); 2058 // Unwatched stops are always enabled. 2059 return !isWatchedStop(code) || 2060 !(watched_stops_[code].count & kStopDisabledBit); 2061} 2062 2063 2064void Simulator::EnableStop(uint32_t code) { 2065 DCHECK(isWatchedStop(code)); 2066 if (!isEnabledStop(code)) { 2067 watched_stops_[code].count &= ~kStopDisabledBit; 2068 } 2069} 2070 2071 2072void Simulator::DisableStop(uint32_t code) { 2073 DCHECK(isWatchedStop(code)); 2074 if (isEnabledStop(code)) { 2075 watched_stops_[code].count |= kStopDisabledBit; 2076 } 2077} 2078 2079 2080void Simulator::IncreaseStopCounter(uint32_t code) { 2081 DCHECK(code <= kMaxStopCode); 2082 DCHECK(isWatchedStop(code)); 2083 if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) { 2084 PrintF("Stop counter for code %i has overflowed.\n" 2085 "Enabling this code and reseting the counter to 0.\n", code); 2086 watched_stops_[code].count = 0; 2087 EnableStop(code); 2088 } else { 2089 watched_stops_[code].count++; 2090 } 2091} 2092 2093 2094// Print a stop status. 2095void Simulator::PrintStopInfo(uint32_t code) { 2096 DCHECK(code <= kMaxStopCode); 2097 if (!isWatchedStop(code)) { 2098 PrintF("Stop not watched."); 2099 } else { 2100 const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; 2101 int32_t count = watched_stops_[code].count & ~kStopDisabledBit; 2102 // Don't print the state of unused breakpoints. 2103 if (count != 0) { 2104 if (watched_stops_[code].desc) { 2105 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", 2106 code, code, state, count, watched_stops_[code].desc); 2107 } else { 2108 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", 2109 code, code, state, count); 2110 } 2111 } 2112 } 2113} 2114 2115 2116// Handle execution based on instruction types. 2117 2118// Instruction types 0 and 1 are both rolled into one function because they 2119// only differ in the handling of the shifter_operand. 2120void Simulator::DecodeType01(Instruction* instr) { 2121 int type = instr->TypeValue(); 2122 if ((type == 0) && instr->IsSpecialType0()) { 2123 // multiply instruction or extra loads and stores 2124 if (instr->Bits(7, 4) == 9) { 2125 if (instr->Bit(24) == 0) { 2126 // Raw field decoding here. Multiply instructions have their Rd in 2127 // funny places. 2128 int rn = instr->RnValue(); 2129 int rm = instr->RmValue(); 2130 int rs = instr->RsValue(); 2131 int32_t rs_val = get_register(rs); 2132 int32_t rm_val = get_register(rm); 2133 if (instr->Bit(23) == 0) { 2134 if (instr->Bit(21) == 0) { 2135 // The MUL instruction description (A 4.1.33) refers to Rd as being 2136 // the destination for the operation, but it confusingly uses the 2137 // Rn field to encode it. 2138 // Format(instr, "mul'cond's 'rn, 'rm, 'rs"); 2139 int rd = rn; // Remap the rn field to the Rd register. 2140 int32_t alu_out = rm_val * rs_val; 2141 set_register(rd, alu_out); 2142 if (instr->HasS()) { 2143 SetNZFlags(alu_out); 2144 } 2145 } else { 2146 int rd = instr->RdValue(); 2147 int32_t acc_value = get_register(rd); 2148 if (instr->Bit(22) == 0) { 2149 // The MLA instruction description (A 4.1.28) refers to the order 2150 // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the 2151 // Rn field to encode the Rd register and the Rd field to encode 2152 // the Rn register. 2153 // Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd"); 2154 int32_t mul_out = rm_val * rs_val; 2155 int32_t result = acc_value + mul_out; 2156 set_register(rn, result); 2157 } else { 2158 // Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd"); 2159 int32_t mul_out = rm_val * rs_val; 2160 int32_t result = acc_value - mul_out; 2161 set_register(rn, result); 2162 } 2163 } 2164 } else { 2165 // The signed/long multiply instructions use the terms RdHi and RdLo 2166 // when referring to the target registers. They are mapped to the Rn 2167 // and Rd fields as follows: 2168 // RdLo == Rd 2169 // RdHi == Rn (This is confusingly stored in variable rd here 2170 // because the mul instruction from above uses the 2171 // Rn field to encode the Rd register. Good luck figuring 2172 // this out without reading the ARM instruction manual 2173 // at a very detailed level.) 2174 // Format(instr, "'um'al'cond's 'rd, 'rn, 'rs, 'rm"); 2175 int rd_hi = rn; // Remap the rn field to the RdHi register. 2176 int rd_lo = instr->RdValue(); 2177 int32_t hi_res = 0; 2178 int32_t lo_res = 0; 2179 if (instr->Bit(22) == 1) { 2180 int64_t left_op = static_cast<int32_t>(rm_val); 2181 int64_t right_op = static_cast<int32_t>(rs_val); 2182 uint64_t result = left_op * right_op; 2183 hi_res = static_cast<int32_t>(result >> 32); 2184 lo_res = static_cast<int32_t>(result & 0xffffffff); 2185 } else { 2186 // unsigned multiply 2187 uint64_t left_op = static_cast<uint32_t>(rm_val); 2188 uint64_t right_op = static_cast<uint32_t>(rs_val); 2189 uint64_t result = left_op * right_op; 2190 hi_res = static_cast<int32_t>(result >> 32); 2191 lo_res = static_cast<int32_t>(result & 0xffffffff); 2192 } 2193 set_register(rd_lo, lo_res); 2194 set_register(rd_hi, hi_res); 2195 if (instr->HasS()) { 2196 UNIMPLEMENTED(); 2197 } 2198 } 2199 } else { 2200 UNIMPLEMENTED(); // Not used by V8. 2201 } 2202 } else { 2203 // extra load/store instructions 2204 int rd = instr->RdValue(); 2205 int rn = instr->RnValue(); 2206 int32_t rn_val = get_register(rn); 2207 int32_t addr = 0; 2208 if (instr->Bit(22) == 0) { 2209 int rm = instr->RmValue(); 2210 int32_t rm_val = get_register(rm); 2211 switch (instr->PUField()) { 2212 case da_x: { 2213 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm"); 2214 DCHECK(!instr->HasW()); 2215 addr = rn_val; 2216 rn_val -= rm_val; 2217 set_register(rn, rn_val); 2218 break; 2219 } 2220 case ia_x: { 2221 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm"); 2222 DCHECK(!instr->HasW()); 2223 addr = rn_val; 2224 rn_val += rm_val; 2225 set_register(rn, rn_val); 2226 break; 2227 } 2228 case db_x: { 2229 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w"); 2230 rn_val -= rm_val; 2231 addr = rn_val; 2232 if (instr->HasW()) { 2233 set_register(rn, rn_val); 2234 } 2235 break; 2236 } 2237 case ib_x: { 2238 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w"); 2239 rn_val += rm_val; 2240 addr = rn_val; 2241 if (instr->HasW()) { 2242 set_register(rn, rn_val); 2243 } 2244 break; 2245 } 2246 default: { 2247 // The PU field is a 2-bit field. 2248 UNREACHABLE(); 2249 break; 2250 } 2251 } 2252 } else { 2253 int32_t imm_val = (instr->ImmedHValue() << 4) | instr->ImmedLValue(); 2254 switch (instr->PUField()) { 2255 case da_x: { 2256 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8"); 2257 DCHECK(!instr->HasW()); 2258 addr = rn_val; 2259 rn_val -= imm_val; 2260 set_register(rn, rn_val); 2261 break; 2262 } 2263 case ia_x: { 2264 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8"); 2265 DCHECK(!instr->HasW()); 2266 addr = rn_val; 2267 rn_val += imm_val; 2268 set_register(rn, rn_val); 2269 break; 2270 } 2271 case db_x: { 2272 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w"); 2273 rn_val -= imm_val; 2274 addr = rn_val; 2275 if (instr->HasW()) { 2276 set_register(rn, rn_val); 2277 } 2278 break; 2279 } 2280 case ib_x: { 2281 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w"); 2282 rn_val += imm_val; 2283 addr = rn_val; 2284 if (instr->HasW()) { 2285 set_register(rn, rn_val); 2286 } 2287 break; 2288 } 2289 default: { 2290 // The PU field is a 2-bit field. 2291 UNREACHABLE(); 2292 break; 2293 } 2294 } 2295 } 2296 if (((instr->Bits(7, 4) & 0xd) == 0xd) && (instr->Bit(20) == 0)) { 2297 DCHECK((rd % 2) == 0); 2298 if (instr->HasH()) { 2299 // The strd instruction. 2300 int32_t value1 = get_register(rd); 2301 int32_t value2 = get_register(rd+1); 2302 WriteDW(addr, value1, value2); 2303 } else { 2304 // The ldrd instruction. 2305 int* rn_data = ReadDW(addr); 2306 set_dw_register(rd, rn_data); 2307 } 2308 } else if (instr->HasH()) { 2309 if (instr->HasSign()) { 2310 if (instr->HasL()) { 2311 int16_t val = ReadH(addr, instr); 2312 set_register(rd, val); 2313 } else { 2314 int16_t val = get_register(rd); 2315 WriteH(addr, val, instr); 2316 } 2317 } else { 2318 if (instr->HasL()) { 2319 uint16_t val = ReadHU(addr, instr); 2320 set_register(rd, val); 2321 } else { 2322 uint16_t val = get_register(rd); 2323 WriteH(addr, val, instr); 2324 } 2325 } 2326 } else { 2327 // signed byte loads 2328 DCHECK(instr->HasSign()); 2329 DCHECK(instr->HasL()); 2330 int8_t val = ReadB(addr); 2331 set_register(rd, val); 2332 } 2333 return; 2334 } 2335 } else if ((type == 0) && instr->IsMiscType0()) { 2336 if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 2) && 2337 (instr->Bits(15, 4) == 0xf00)) { 2338 // MSR 2339 int rm = instr->RmValue(); 2340 DCHECK_NE(pc, rm); // UNPREDICTABLE 2341 SRegisterFieldMask sreg_and_mask = 2342 instr->BitField(22, 22) | instr->BitField(19, 16); 2343 SetSpecialRegister(sreg_and_mask, get_register(rm)); 2344 } else if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 0) && 2345 (instr->Bits(11, 0) == 0)) { 2346 // MRS 2347 int rd = instr->RdValue(); 2348 DCHECK_NE(pc, rd); // UNPREDICTABLE 2349 SRegister sreg = static_cast<SRegister>(instr->BitField(22, 22)); 2350 set_register(rd, GetFromSpecialRegister(sreg)); 2351 } else if (instr->Bits(22, 21) == 1) { 2352 int rm = instr->RmValue(); 2353 switch (instr->BitField(7, 4)) { 2354 case BX: 2355 set_pc(get_register(rm)); 2356 break; 2357 case BLX: { 2358 uint32_t old_pc = get_pc(); 2359 set_pc(get_register(rm)); 2360 set_register(lr, old_pc + Instruction::kInstrSize); 2361 break; 2362 } 2363 case BKPT: { 2364 ArmDebugger dbg(this); 2365 PrintF("Simulator hit BKPT.\n"); 2366 dbg.Debug(); 2367 break; 2368 } 2369 default: 2370 UNIMPLEMENTED(); 2371 } 2372 } else if (instr->Bits(22, 21) == 3) { 2373 int rm = instr->RmValue(); 2374 int rd = instr->RdValue(); 2375 switch (instr->BitField(7, 4)) { 2376 case CLZ: { 2377 uint32_t bits = get_register(rm); 2378 int leading_zeros = 0; 2379 if (bits == 0) { 2380 leading_zeros = 32; 2381 } else { 2382 while ((bits & 0x80000000u) == 0) { 2383 bits <<= 1; 2384 leading_zeros++; 2385 } 2386 } 2387 set_register(rd, leading_zeros); 2388 break; 2389 } 2390 default: 2391 UNIMPLEMENTED(); 2392 } 2393 } else { 2394 PrintF("%08x\n", instr->InstructionBits()); 2395 UNIMPLEMENTED(); 2396 } 2397 } else if ((type == 1) && instr->IsNopType1()) { 2398 // NOP. 2399 } else { 2400 int rd = instr->RdValue(); 2401 int rn = instr->RnValue(); 2402 int32_t rn_val = get_register(rn); 2403 int32_t shifter_operand = 0; 2404 bool shifter_carry_out = 0; 2405 if (type == 0) { 2406 shifter_operand = GetShiftRm(instr, &shifter_carry_out); 2407 } else { 2408 DCHECK(instr->TypeValue() == 1); 2409 shifter_operand = GetImm(instr, &shifter_carry_out); 2410 } 2411 int32_t alu_out; 2412 2413 switch (instr->OpcodeField()) { 2414 case AND: { 2415 // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm"); 2416 // Format(instr, "and'cond's 'rd, 'rn, 'imm"); 2417 alu_out = rn_val & shifter_operand; 2418 set_register(rd, alu_out); 2419 if (instr->HasS()) { 2420 SetNZFlags(alu_out); 2421 SetCFlag(shifter_carry_out); 2422 } 2423 break; 2424 } 2425 2426 case EOR: { 2427 // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm"); 2428 // Format(instr, "eor'cond's 'rd, 'rn, 'imm"); 2429 alu_out = rn_val ^ shifter_operand; 2430 set_register(rd, alu_out); 2431 if (instr->HasS()) { 2432 SetNZFlags(alu_out); 2433 SetCFlag(shifter_carry_out); 2434 } 2435 break; 2436 } 2437 2438 case SUB: { 2439 // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm"); 2440 // Format(instr, "sub'cond's 'rd, 'rn, 'imm"); 2441 alu_out = rn_val - shifter_operand; 2442 set_register(rd, alu_out); 2443 if (instr->HasS()) { 2444 SetNZFlags(alu_out); 2445 SetCFlag(!BorrowFrom(rn_val, shifter_operand)); 2446 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); 2447 } 2448 break; 2449 } 2450 2451 case RSB: { 2452 // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm"); 2453 // Format(instr, "rsb'cond's 'rd, 'rn, 'imm"); 2454 alu_out = shifter_operand - rn_val; 2455 set_register(rd, alu_out); 2456 if (instr->HasS()) { 2457 SetNZFlags(alu_out); 2458 SetCFlag(!BorrowFrom(shifter_operand, rn_val)); 2459 SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false)); 2460 } 2461 break; 2462 } 2463 2464 case ADD: { 2465 // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm"); 2466 // Format(instr, "add'cond's 'rd, 'rn, 'imm"); 2467 alu_out = rn_val + shifter_operand; 2468 set_register(rd, alu_out); 2469 if (instr->HasS()) { 2470 SetNZFlags(alu_out); 2471 SetCFlag(CarryFrom(rn_val, shifter_operand)); 2472 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); 2473 } 2474 break; 2475 } 2476 2477 case ADC: { 2478 // Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm"); 2479 // Format(instr, "adc'cond's 'rd, 'rn, 'imm"); 2480 alu_out = rn_val + shifter_operand + GetCarry(); 2481 set_register(rd, alu_out); 2482 if (instr->HasS()) { 2483 SetNZFlags(alu_out); 2484 SetCFlag(CarryFrom(rn_val, shifter_operand, GetCarry())); 2485 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); 2486 } 2487 break; 2488 } 2489 2490 case SBC: { 2491 // Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm"); 2492 // Format(instr, "sbc'cond's 'rd, 'rn, 'imm"); 2493 alu_out = (rn_val - shifter_operand) - (GetCarry() ? 0 : 1); 2494 set_register(rd, alu_out); 2495 if (instr->HasS()) { 2496 SetNZFlags(alu_out); 2497 SetCFlag(!BorrowFrom(rn_val, shifter_operand, GetCarry())); 2498 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); 2499 } 2500 break; 2501 } 2502 2503 case RSC: { 2504 Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm"); 2505 Format(instr, "rsc'cond's 'rd, 'rn, 'imm"); 2506 break; 2507 } 2508 2509 case TST: { 2510 if (instr->HasS()) { 2511 // Format(instr, "tst'cond 'rn, 'shift_rm"); 2512 // Format(instr, "tst'cond 'rn, 'imm"); 2513 alu_out = rn_val & shifter_operand; 2514 SetNZFlags(alu_out); 2515 SetCFlag(shifter_carry_out); 2516 } else { 2517 // Format(instr, "movw'cond 'rd, 'imm"). 2518 alu_out = instr->ImmedMovwMovtValue(); 2519 set_register(rd, alu_out); 2520 } 2521 break; 2522 } 2523 2524 case TEQ: { 2525 if (instr->HasS()) { 2526 // Format(instr, "teq'cond 'rn, 'shift_rm"); 2527 // Format(instr, "teq'cond 'rn, 'imm"); 2528 alu_out = rn_val ^ shifter_operand; 2529 SetNZFlags(alu_out); 2530 SetCFlag(shifter_carry_out); 2531 } else { 2532 // Other instructions matching this pattern are handled in the 2533 // miscellaneous instructions part above. 2534 UNREACHABLE(); 2535 } 2536 break; 2537 } 2538 2539 case CMP: { 2540 if (instr->HasS()) { 2541 // Format(instr, "cmp'cond 'rn, 'shift_rm"); 2542 // Format(instr, "cmp'cond 'rn, 'imm"); 2543 alu_out = rn_val - shifter_operand; 2544 SetNZFlags(alu_out); 2545 SetCFlag(!BorrowFrom(rn_val, shifter_operand)); 2546 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); 2547 } else { 2548 // Format(instr, "movt'cond 'rd, 'imm"). 2549 alu_out = (get_register(rd) & 0xffff) | 2550 (instr->ImmedMovwMovtValue() << 16); 2551 set_register(rd, alu_out); 2552 } 2553 break; 2554 } 2555 2556 case CMN: { 2557 if (instr->HasS()) { 2558 // Format(instr, "cmn'cond 'rn, 'shift_rm"); 2559 // Format(instr, "cmn'cond 'rn, 'imm"); 2560 alu_out = rn_val + shifter_operand; 2561 SetNZFlags(alu_out); 2562 SetCFlag(CarryFrom(rn_val, shifter_operand)); 2563 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); 2564 } else { 2565 // Other instructions matching this pattern are handled in the 2566 // miscellaneous instructions part above. 2567 UNREACHABLE(); 2568 } 2569 break; 2570 } 2571 2572 case ORR: { 2573 // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm"); 2574 // Format(instr, "orr'cond's 'rd, 'rn, 'imm"); 2575 alu_out = rn_val | shifter_operand; 2576 set_register(rd, alu_out); 2577 if (instr->HasS()) { 2578 SetNZFlags(alu_out); 2579 SetCFlag(shifter_carry_out); 2580 } 2581 break; 2582 } 2583 2584 case MOV: { 2585 // Format(instr, "mov'cond's 'rd, 'shift_rm"); 2586 // Format(instr, "mov'cond's 'rd, 'imm"); 2587 alu_out = shifter_operand; 2588 set_register(rd, alu_out); 2589 if (instr->HasS()) { 2590 SetNZFlags(alu_out); 2591 SetCFlag(shifter_carry_out); 2592 } 2593 break; 2594 } 2595 2596 case BIC: { 2597 // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm"); 2598 // Format(instr, "bic'cond's 'rd, 'rn, 'imm"); 2599 alu_out = rn_val & ~shifter_operand; 2600 set_register(rd, alu_out); 2601 if (instr->HasS()) { 2602 SetNZFlags(alu_out); 2603 SetCFlag(shifter_carry_out); 2604 } 2605 break; 2606 } 2607 2608 case MVN: { 2609 // Format(instr, "mvn'cond's 'rd, 'shift_rm"); 2610 // Format(instr, "mvn'cond's 'rd, 'imm"); 2611 alu_out = ~shifter_operand; 2612 set_register(rd, alu_out); 2613 if (instr->HasS()) { 2614 SetNZFlags(alu_out); 2615 SetCFlag(shifter_carry_out); 2616 } 2617 break; 2618 } 2619 2620 default: { 2621 UNREACHABLE(); 2622 break; 2623 } 2624 } 2625 } 2626} 2627 2628 2629void Simulator::DecodeType2(Instruction* instr) { 2630 int rd = instr->RdValue(); 2631 int rn = instr->RnValue(); 2632 int32_t rn_val = get_register(rn); 2633 int32_t im_val = instr->Offset12Value(); 2634 int32_t addr = 0; 2635 switch (instr->PUField()) { 2636 case da_x: { 2637 // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12"); 2638 DCHECK(!instr->HasW()); 2639 addr = rn_val; 2640 rn_val -= im_val; 2641 set_register(rn, rn_val); 2642 break; 2643 } 2644 case ia_x: { 2645 // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12"); 2646 DCHECK(!instr->HasW()); 2647 addr = rn_val; 2648 rn_val += im_val; 2649 set_register(rn, rn_val); 2650 break; 2651 } 2652 case db_x: { 2653 // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w"); 2654 rn_val -= im_val; 2655 addr = rn_val; 2656 if (instr->HasW()) { 2657 set_register(rn, rn_val); 2658 } 2659 break; 2660 } 2661 case ib_x: { 2662 // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w"); 2663 rn_val += im_val; 2664 addr = rn_val; 2665 if (instr->HasW()) { 2666 set_register(rn, rn_val); 2667 } 2668 break; 2669 } 2670 default: { 2671 UNREACHABLE(); 2672 break; 2673 } 2674 } 2675 if (instr->HasB()) { 2676 if (instr->HasL()) { 2677 byte val = ReadBU(addr); 2678 set_register(rd, val); 2679 } else { 2680 byte val = get_register(rd); 2681 WriteB(addr, val); 2682 } 2683 } else { 2684 if (instr->HasL()) { 2685 set_register(rd, ReadW(addr, instr)); 2686 } else { 2687 WriteW(addr, get_register(rd), instr); 2688 } 2689 } 2690} 2691 2692 2693void Simulator::DecodeType3(Instruction* instr) { 2694 int rd = instr->RdValue(); 2695 int rn = instr->RnValue(); 2696 int32_t rn_val = get_register(rn); 2697 bool shifter_carry_out = 0; 2698 int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out); 2699 int32_t addr = 0; 2700 switch (instr->PUField()) { 2701 case da_x: { 2702 DCHECK(!instr->HasW()); 2703 Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm"); 2704 UNIMPLEMENTED(); 2705 break; 2706 } 2707 case ia_x: { 2708 if (instr->Bit(4) == 0) { 2709 // Memop. 2710 } else { 2711 if (instr->Bit(5) == 0) { 2712 switch (instr->Bits(22, 21)) { 2713 case 0: 2714 if (instr->Bit(20) == 0) { 2715 if (instr->Bit(6) == 0) { 2716 // Pkhbt. 2717 uint32_t rn_val = get_register(rn); 2718 uint32_t rm_val = get_register(instr->RmValue()); 2719 int32_t shift = instr->Bits(11, 7); 2720 rm_val <<= shift; 2721 set_register(rd, (rn_val & 0xFFFF) | (rm_val & 0xFFFF0000U)); 2722 } else { 2723 // Pkhtb. 2724 uint32_t rn_val = get_register(rn); 2725 int32_t rm_val = get_register(instr->RmValue()); 2726 int32_t shift = instr->Bits(11, 7); 2727 if (shift == 0) { 2728 shift = 32; 2729 } 2730 rm_val >>= shift; 2731 set_register(rd, (rn_val & 0xFFFF0000U) | (rm_val & 0xFFFF)); 2732 } 2733 } else { 2734 UNIMPLEMENTED(); 2735 } 2736 break; 2737 case 1: 2738 UNIMPLEMENTED(); 2739 break; 2740 case 2: 2741 UNIMPLEMENTED(); 2742 break; 2743 case 3: { 2744 // Usat. 2745 int32_t sat_pos = instr->Bits(20, 16); 2746 int32_t sat_val = (1 << sat_pos) - 1; 2747 int32_t shift = instr->Bits(11, 7); 2748 int32_t shift_type = instr->Bit(6); 2749 int32_t rm_val = get_register(instr->RmValue()); 2750 if (shift_type == 0) { // LSL 2751 rm_val <<= shift; 2752 } else { // ASR 2753 rm_val >>= shift; 2754 } 2755 // If saturation occurs, the Q flag should be set in the CPSR. 2756 // There is no Q flag yet, and no instruction (MRS) to read the 2757 // CPSR directly. 2758 if (rm_val > sat_val) { 2759 rm_val = sat_val; 2760 } else if (rm_val < 0) { 2761 rm_val = 0; 2762 } 2763 set_register(rd, rm_val); 2764 break; 2765 } 2766 } 2767 } else { 2768 switch (instr->Bits(22, 21)) { 2769 case 0: 2770 UNIMPLEMENTED(); 2771 break; 2772 case 1: 2773 if (instr->Bits(9, 6) == 1) { 2774 if (instr->Bit(20) == 0) { 2775 if (instr->Bits(19, 16) == 0xF) { 2776 // Sxtb. 2777 int32_t rm_val = get_register(instr->RmValue()); 2778 int32_t rotate = instr->Bits(11, 10); 2779 switch (rotate) { 2780 case 0: 2781 break; 2782 case 1: 2783 rm_val = (rm_val >> 8) | (rm_val << 24); 2784 break; 2785 case 2: 2786 rm_val = (rm_val >> 16) | (rm_val << 16); 2787 break; 2788 case 3: 2789 rm_val = (rm_val >> 24) | (rm_val << 8); 2790 break; 2791 } 2792 set_register(rd, static_cast<int8_t>(rm_val)); 2793 } else { 2794 // Sxtab. 2795 int32_t rn_val = get_register(rn); 2796 int32_t rm_val = get_register(instr->RmValue()); 2797 int32_t rotate = instr->Bits(11, 10); 2798 switch (rotate) { 2799 case 0: 2800 break; 2801 case 1: 2802 rm_val = (rm_val >> 8) | (rm_val << 24); 2803 break; 2804 case 2: 2805 rm_val = (rm_val >> 16) | (rm_val << 16); 2806 break; 2807 case 3: 2808 rm_val = (rm_val >> 24) | (rm_val << 8); 2809 break; 2810 } 2811 set_register(rd, rn_val + static_cast<int8_t>(rm_val)); 2812 } 2813 } else { 2814 if (instr->Bits(19, 16) == 0xF) { 2815 // Sxth. 2816 int32_t rm_val = get_register(instr->RmValue()); 2817 int32_t rotate = instr->Bits(11, 10); 2818 switch (rotate) { 2819 case 0: 2820 break; 2821 case 1: 2822 rm_val = (rm_val >> 8) | (rm_val << 24); 2823 break; 2824 case 2: 2825 rm_val = (rm_val >> 16) | (rm_val << 16); 2826 break; 2827 case 3: 2828 rm_val = (rm_val >> 24) | (rm_val << 8); 2829 break; 2830 } 2831 set_register(rd, static_cast<int16_t>(rm_val)); 2832 } else { 2833 // Sxtah. 2834 int32_t rn_val = get_register(rn); 2835 int32_t rm_val = get_register(instr->RmValue()); 2836 int32_t rotate = instr->Bits(11, 10); 2837 switch (rotate) { 2838 case 0: 2839 break; 2840 case 1: 2841 rm_val = (rm_val >> 8) | (rm_val << 24); 2842 break; 2843 case 2: 2844 rm_val = (rm_val >> 16) | (rm_val << 16); 2845 break; 2846 case 3: 2847 rm_val = (rm_val >> 24) | (rm_val << 8); 2848 break; 2849 } 2850 set_register(rd, rn_val + static_cast<int16_t>(rm_val)); 2851 } 2852 } 2853 } else { 2854 UNREACHABLE(); 2855 } 2856 break; 2857 case 2: 2858 if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) { 2859 if (instr->Bits(19, 16) == 0xF) { 2860 // Uxtb16. 2861 uint32_t rm_val = get_register(instr->RmValue()); 2862 int32_t rotate = instr->Bits(11, 10); 2863 switch (rotate) { 2864 case 0: 2865 break; 2866 case 1: 2867 rm_val = (rm_val >> 8) | (rm_val << 24); 2868 break; 2869 case 2: 2870 rm_val = (rm_val >> 16) | (rm_val << 16); 2871 break; 2872 case 3: 2873 rm_val = (rm_val >> 24) | (rm_val << 8); 2874 break; 2875 } 2876 set_register(rd, (rm_val & 0xFF) | (rm_val & 0xFF0000)); 2877 } else { 2878 UNIMPLEMENTED(); 2879 } 2880 } else { 2881 UNIMPLEMENTED(); 2882 } 2883 break; 2884 case 3: 2885 if ((instr->Bits(9, 6) == 1)) { 2886 if (instr->Bit(20) == 0) { 2887 if (instr->Bits(19, 16) == 0xF) { 2888 // Uxtb. 2889 uint32_t rm_val = get_register(instr->RmValue()); 2890 int32_t rotate = instr->Bits(11, 10); 2891 switch (rotate) { 2892 case 0: 2893 break; 2894 case 1: 2895 rm_val = (rm_val >> 8) | (rm_val << 24); 2896 break; 2897 case 2: 2898 rm_val = (rm_val >> 16) | (rm_val << 16); 2899 break; 2900 case 3: 2901 rm_val = (rm_val >> 24) | (rm_val << 8); 2902 break; 2903 } 2904 set_register(rd, (rm_val & 0xFF)); 2905 } else { 2906 // Uxtab. 2907 uint32_t rn_val = get_register(rn); 2908 uint32_t rm_val = get_register(instr->RmValue()); 2909 int32_t rotate = instr->Bits(11, 10); 2910 switch (rotate) { 2911 case 0: 2912 break; 2913 case 1: 2914 rm_val = (rm_val >> 8) | (rm_val << 24); 2915 break; 2916 case 2: 2917 rm_val = (rm_val >> 16) | (rm_val << 16); 2918 break; 2919 case 3: 2920 rm_val = (rm_val >> 24) | (rm_val << 8); 2921 break; 2922 } 2923 set_register(rd, rn_val + (rm_val & 0xFF)); 2924 } 2925 } else { 2926 if (instr->Bits(19, 16) == 0xF) { 2927 // Uxth. 2928 uint32_t rm_val = get_register(instr->RmValue()); 2929 int32_t rotate = instr->Bits(11, 10); 2930 switch (rotate) { 2931 case 0: 2932 break; 2933 case 1: 2934 rm_val = (rm_val >> 8) | (rm_val << 24); 2935 break; 2936 case 2: 2937 rm_val = (rm_val >> 16) | (rm_val << 16); 2938 break; 2939 case 3: 2940 rm_val = (rm_val >> 24) | (rm_val << 8); 2941 break; 2942 } 2943 set_register(rd, (rm_val & 0xFFFF)); 2944 } else { 2945 // Uxtah. 2946 uint32_t rn_val = get_register(rn); 2947 uint32_t rm_val = get_register(instr->RmValue()); 2948 int32_t rotate = instr->Bits(11, 10); 2949 switch (rotate) { 2950 case 0: 2951 break; 2952 case 1: 2953 rm_val = (rm_val >> 8) | (rm_val << 24); 2954 break; 2955 case 2: 2956 rm_val = (rm_val >> 16) | (rm_val << 16); 2957 break; 2958 case 3: 2959 rm_val = (rm_val >> 24) | (rm_val << 8); 2960 break; 2961 } 2962 set_register(rd, rn_val + (rm_val & 0xFFFF)); 2963 } 2964 } 2965 } else { 2966 // PU == 0b01, BW == 0b11, Bits(9, 6) != 0b0001 2967 if ((instr->Bits(20, 16) == 0x1f) && 2968 (instr->Bits(11, 4) == 0xf3)) { 2969 // Rbit. 2970 uint32_t rm_val = get_register(instr->RmValue()); 2971 set_register(rd, base::bits::ReverseBits(rm_val)); 2972 } else { 2973 UNIMPLEMENTED(); 2974 } 2975 } 2976 break; 2977 } 2978 } 2979 return; 2980 } 2981 break; 2982 } 2983 case db_x: { 2984 if (instr->Bits(22, 20) == 0x5) { 2985 if (instr->Bits(7, 4) == 0x1) { 2986 int rm = instr->RmValue(); 2987 int32_t rm_val = get_register(rm); 2988 int rs = instr->RsValue(); 2989 int32_t rs_val = get_register(rs); 2990 if (instr->Bits(15, 12) == 0xF) { 2991 // SMMUL (in V8 notation matching ARM ISA format) 2992 // Format(instr, "smmul'cond 'rn, 'rm, 'rs"); 2993 rn_val = base::bits::SignedMulHigh32(rm_val, rs_val); 2994 } else { 2995 // SMMLA (in V8 notation matching ARM ISA format) 2996 // Format(instr, "smmla'cond 'rn, 'rm, 'rs, 'rd"); 2997 int rd = instr->RdValue(); 2998 int32_t rd_val = get_register(rd); 2999 rn_val = base::bits::SignedMulHighAndAdd32(rm_val, rs_val, rd_val); 3000 } 3001 set_register(rn, rn_val); 3002 return; 3003 } 3004 } 3005 if (FLAG_enable_sudiv) { 3006 if (instr->Bits(5, 4) == 0x1) { 3007 if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) { 3008 // (s/u)div (in V8 notation matching ARM ISA format) rn = rm/rs 3009 // Format(instr, "'(s/u)div'cond'b 'rn, 'rm, 'rs); 3010 int rm = instr->RmValue(); 3011 int32_t rm_val = get_register(rm); 3012 int rs = instr->RsValue(); 3013 int32_t rs_val = get_register(rs); 3014 int32_t ret_val = 0; 3015 // udiv 3016 if (instr->Bit(21) == 0x1) { 3017 ret_val = bit_cast<int32_t>(base::bits::UnsignedDiv32( 3018 bit_cast<uint32_t>(rm_val), bit_cast<uint32_t>(rs_val))); 3019 } else { 3020 ret_val = base::bits::SignedDiv32(rm_val, rs_val); 3021 } 3022 set_register(rn, ret_val); 3023 return; 3024 } 3025 } 3026 } 3027 // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w"); 3028 addr = rn_val - shifter_operand; 3029 if (instr->HasW()) { 3030 set_register(rn, addr); 3031 } 3032 break; 3033 } 3034 case ib_x: { 3035 if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) { 3036 uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16)); 3037 uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); 3038 uint32_t msbit = widthminus1 + lsbit; 3039 if (msbit <= 31) { 3040 if (instr->Bit(22)) { 3041 // ubfx - unsigned bitfield extract. 3042 uint32_t rm_val = 3043 static_cast<uint32_t>(get_register(instr->RmValue())); 3044 uint32_t extr_val = rm_val << (31 - msbit); 3045 extr_val = extr_val >> (31 - widthminus1); 3046 set_register(instr->RdValue(), extr_val); 3047 } else { 3048 // sbfx - signed bitfield extract. 3049 int32_t rm_val = get_register(instr->RmValue()); 3050 int32_t extr_val = rm_val << (31 - msbit); 3051 extr_val = extr_val >> (31 - widthminus1); 3052 set_register(instr->RdValue(), extr_val); 3053 } 3054 } else { 3055 UNREACHABLE(); 3056 } 3057 return; 3058 } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) { 3059 uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); 3060 uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16)); 3061 if (msbit >= lsbit) { 3062 // bfc or bfi - bitfield clear/insert. 3063 uint32_t rd_val = 3064 static_cast<uint32_t>(get_register(instr->RdValue())); 3065 uint32_t bitcount = msbit - lsbit + 1; 3066 uint32_t mask = 0xffffffffu >> (32 - bitcount); 3067 rd_val &= ~(mask << lsbit); 3068 if (instr->RmValue() != 15) { 3069 // bfi - bitfield insert. 3070 uint32_t rm_val = 3071 static_cast<uint32_t>(get_register(instr->RmValue())); 3072 rm_val &= mask; 3073 rd_val |= rm_val << lsbit; 3074 } 3075 set_register(instr->RdValue(), rd_val); 3076 } else { 3077 UNREACHABLE(); 3078 } 3079 return; 3080 } else { 3081 // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w"); 3082 addr = rn_val + shifter_operand; 3083 if (instr->HasW()) { 3084 set_register(rn, addr); 3085 } 3086 } 3087 break; 3088 } 3089 default: { 3090 UNREACHABLE(); 3091 break; 3092 } 3093 } 3094 if (instr->HasB()) { 3095 if (instr->HasL()) { 3096 uint8_t byte = ReadB(addr); 3097 set_register(rd, byte); 3098 } else { 3099 uint8_t byte = get_register(rd); 3100 WriteB(addr, byte); 3101 } 3102 } else { 3103 if (instr->HasL()) { 3104 set_register(rd, ReadW(addr, instr)); 3105 } else { 3106 WriteW(addr, get_register(rd), instr); 3107 } 3108 } 3109} 3110 3111 3112void Simulator::DecodeType4(Instruction* instr) { 3113 DCHECK(instr->Bit(22) == 0); // only allowed to be set in privileged mode 3114 if (instr->HasL()) { 3115 // Format(instr, "ldm'cond'pu 'rn'w, 'rlist"); 3116 HandleRList(instr, true); 3117 } else { 3118 // Format(instr, "stm'cond'pu 'rn'w, 'rlist"); 3119 HandleRList(instr, false); 3120 } 3121} 3122 3123 3124void Simulator::DecodeType5(Instruction* instr) { 3125 // Format(instr, "b'l'cond 'target"); 3126 int off = (instr->SImmed24Value() << 2); 3127 intptr_t pc_address = get_pc(); 3128 if (instr->HasLink()) { 3129 set_register(lr, pc_address + Instruction::kInstrSize); 3130 } 3131 int pc_reg = get_register(pc); 3132 set_pc(pc_reg + off); 3133} 3134 3135 3136void Simulator::DecodeType6(Instruction* instr) { 3137 DecodeType6CoprocessorIns(instr); 3138} 3139 3140 3141void Simulator::DecodeType7(Instruction* instr) { 3142 if (instr->Bit(24) == 1) { 3143 SoftwareInterrupt(instr); 3144 } else { 3145 DecodeTypeVFP(instr); 3146 } 3147} 3148 3149 3150// void Simulator::DecodeTypeVFP(Instruction* instr) 3151// The Following ARMv7 VFPv instructions are currently supported. 3152// vmov :Sn = Rt 3153// vmov :Rt = Sn 3154// vcvt: Dd = Sm 3155// vcvt: Sd = Dm 3156// vcvt.f64.s32 Dd, Dd, #<fbits> 3157// Dd = vabs(Dm) 3158// Sd = vabs(Sm) 3159// Dd = vneg(Dm) 3160// Sd = vneg(Sm) 3161// Dd = vadd(Dn, Dm) 3162// Sd = vadd(Sn, Sm) 3163// Dd = vsub(Dn, Dm) 3164// Sd = vsub(Sn, Sm) 3165// Dd = vmul(Dn, Dm) 3166// Sd = vmul(Sn, Sm) 3167// Dd = vdiv(Dn, Dm) 3168// Sd = vdiv(Sn, Sm) 3169// vcmp(Dd, Dm) 3170// vcmp(Sd, Sm) 3171// Dd = vsqrt(Dm) 3172// Sd = vsqrt(Sm) 3173// vmrs 3174void Simulator::DecodeTypeVFP(Instruction* instr) { 3175 DCHECK((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) ); 3176 DCHECK(instr->Bits(11, 9) == 0x5); 3177 3178 // Obtain single precision register codes. 3179 int m = instr->VFPMRegValue(kSinglePrecision); 3180 int d = instr->VFPDRegValue(kSinglePrecision); 3181 int n = instr->VFPNRegValue(kSinglePrecision); 3182 // Obtain double precision register codes. 3183 int vm = instr->VFPMRegValue(kDoublePrecision); 3184 int vd = instr->VFPDRegValue(kDoublePrecision); 3185 int vn = instr->VFPNRegValue(kDoublePrecision); 3186 3187 if (instr->Bit(4) == 0) { 3188 if (instr->Opc1Value() == 0x7) { 3189 // Other data processing instructions 3190 if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) { 3191 // vmov register to register. 3192 if (instr->SzValue() == 0x1) { 3193 uint32_t data[2]; 3194 get_d_register(vm, data); 3195 set_d_register(vd, data); 3196 } else { 3197 set_s_register(d, get_s_register(m)); 3198 } 3199 } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) { 3200 // vabs 3201 if (instr->SzValue() == 0x1) { 3202 double dm_value = get_double_from_d_register(vm); 3203 double dd_value = std::fabs(dm_value); 3204 dd_value = canonicalizeNaN(dd_value); 3205 set_d_register_from_double(vd, dd_value); 3206 } else { 3207 float sm_value = get_float_from_s_register(m); 3208 float sd_value = std::fabs(sm_value); 3209 sd_value = canonicalizeNaN(sd_value); 3210 set_s_register_from_float(d, sd_value); 3211 } 3212 } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) { 3213 // vneg 3214 if (instr->SzValue() == 0x1) { 3215 double dm_value = get_double_from_d_register(vm); 3216 double dd_value = -dm_value; 3217 dd_value = canonicalizeNaN(dd_value); 3218 set_d_register_from_double(vd, dd_value); 3219 } else { 3220 float sm_value = get_float_from_s_register(m); 3221 float sd_value = -sm_value; 3222 sd_value = canonicalizeNaN(sd_value); 3223 set_s_register_from_float(d, sd_value); 3224 } 3225 } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) { 3226 DecodeVCVTBetweenDoubleAndSingle(instr); 3227 } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) { 3228 DecodeVCVTBetweenFloatingPointAndInteger(instr); 3229 } else if ((instr->Opc2Value() == 0xA) && (instr->Opc3Value() == 0x3) && 3230 (instr->Bit(8) == 1)) { 3231 // vcvt.f64.s32 Dd, Dd, #<fbits> 3232 int fraction_bits = 32 - ((instr->Bits(3, 0) << 1) | instr->Bit(5)); 3233 int fixed_value = get_sinteger_from_s_register(vd * 2); 3234 double divide = 1 << fraction_bits; 3235 set_d_register_from_double(vd, fixed_value / divide); 3236 } else if (((instr->Opc2Value() >> 1) == 0x6) && 3237 (instr->Opc3Value() & 0x1)) { 3238 DecodeVCVTBetweenFloatingPointAndInteger(instr); 3239 } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && 3240 (instr->Opc3Value() & 0x1)) { 3241 DecodeVCMP(instr); 3242 } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) { 3243 // vsqrt 3244 lazily_initialize_fast_sqrt(isolate_); 3245 if (instr->SzValue() == 0x1) { 3246 double dm_value = get_double_from_d_register(vm); 3247 double dd_value = fast_sqrt(dm_value, isolate_); 3248 dd_value = canonicalizeNaN(dd_value); 3249 set_d_register_from_double(vd, dd_value); 3250 } else { 3251 float sm_value = get_float_from_s_register(m); 3252 float sd_value = fast_sqrt(sm_value, isolate_); 3253 sd_value = canonicalizeNaN(sd_value); 3254 set_s_register_from_float(d, sd_value); 3255 } 3256 } else if (instr->Opc3Value() == 0x0) { 3257 // vmov immediate. 3258 if (instr->SzValue() == 0x1) { 3259 set_d_register_from_double(vd, instr->DoubleImmedVmov()); 3260 } else { 3261 set_s_register_from_float(d, instr->DoubleImmedVmov()); 3262 } 3263 } else if (((instr->Opc2Value() == 0x6)) && (instr->Opc3Value() == 0x3)) { 3264 // vrintz - truncate 3265 if (instr->SzValue() == 0x1) { 3266 double dm_value = get_double_from_d_register(vm); 3267 double dd_value = trunc(dm_value); 3268 dd_value = canonicalizeNaN(dd_value); 3269 set_d_register_from_double(vd, dd_value); 3270 } else { 3271 float sm_value = get_float_from_s_register(m); 3272 float sd_value = truncf(sm_value); 3273 sd_value = canonicalizeNaN(sd_value); 3274 set_s_register_from_float(d, sd_value); 3275 } 3276 } else { 3277 UNREACHABLE(); // Not used by V8. 3278 } 3279 } else if (instr->Opc1Value() == 0x3) { 3280 if (instr->Opc3Value() & 0x1) { 3281 // vsub 3282 if (instr->SzValue() == 0x1) { 3283 double dn_value = get_double_from_d_register(vn); 3284 double dm_value = get_double_from_d_register(vm); 3285 double dd_value = dn_value - dm_value; 3286 dd_value = canonicalizeNaN(dd_value); 3287 set_d_register_from_double(vd, dd_value); 3288 } else { 3289 float sn_value = get_float_from_s_register(n); 3290 float sm_value = get_float_from_s_register(m); 3291 float sd_value = sn_value - sm_value; 3292 sd_value = canonicalizeNaN(sd_value); 3293 set_s_register_from_float(d, sd_value); 3294 } 3295 } else { 3296 // vadd 3297 if (instr->SzValue() == 0x1) { 3298 double dn_value = get_double_from_d_register(vn); 3299 double dm_value = get_double_from_d_register(vm); 3300 double dd_value = dn_value + dm_value; 3301 dd_value = canonicalizeNaN(dd_value); 3302 set_d_register_from_double(vd, dd_value); 3303 } else { 3304 float sn_value = get_float_from_s_register(n); 3305 float sm_value = get_float_from_s_register(m); 3306 float sd_value = sn_value + sm_value; 3307 sd_value = canonicalizeNaN(sd_value); 3308 set_s_register_from_float(d, sd_value); 3309 } 3310 } 3311 } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) { 3312 // vmul 3313 if (instr->SzValue() == 0x1) { 3314 double dn_value = get_double_from_d_register(vn); 3315 double dm_value = get_double_from_d_register(vm); 3316 double dd_value = dn_value * dm_value; 3317 dd_value = canonicalizeNaN(dd_value); 3318 set_d_register_from_double(vd, dd_value); 3319 } else { 3320 float sn_value = get_float_from_s_register(n); 3321 float sm_value = get_float_from_s_register(m); 3322 float sd_value = sn_value * sm_value; 3323 sd_value = canonicalizeNaN(sd_value); 3324 set_s_register_from_float(d, sd_value); 3325 } 3326 } else if ((instr->Opc1Value() == 0x0)) { 3327 // vmla, vmls 3328 const bool is_vmls = (instr->Opc3Value() & 0x1); 3329 if (instr->SzValue() == 0x1) { 3330 const double dd_val = get_double_from_d_register(vd); 3331 const double dn_val = get_double_from_d_register(vn); 3332 const double dm_val = get_double_from_d_register(vm); 3333 3334 // Note: we do the mul and add/sub in separate steps to avoid getting a 3335 // result with too high precision. 3336 set_d_register_from_double(vd, dn_val * dm_val); 3337 if (is_vmls) { 3338 set_d_register_from_double( 3339 vd, canonicalizeNaN(dd_val - get_double_from_d_register(vd))); 3340 } else { 3341 set_d_register_from_double( 3342 vd, canonicalizeNaN(dd_val + get_double_from_d_register(vd))); 3343 } 3344 } else { 3345 const float sd_val = get_float_from_s_register(d); 3346 const float sn_val = get_float_from_s_register(n); 3347 const float sm_val = get_float_from_s_register(m); 3348 3349 // Note: we do the mul and add/sub in separate steps to avoid getting a 3350 // result with too high precision. 3351 set_s_register_from_float(d, sn_val * sm_val); 3352 if (is_vmls) { 3353 set_s_register_from_float( 3354 d, canonicalizeNaN(sd_val - get_float_from_s_register(d))); 3355 } else { 3356 set_s_register_from_float( 3357 d, canonicalizeNaN(sd_val + get_float_from_s_register(d))); 3358 } 3359 } 3360 } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) { 3361 // vdiv 3362 if (instr->SzValue() == 0x1) { 3363 double dn_value = get_double_from_d_register(vn); 3364 double dm_value = get_double_from_d_register(vm); 3365 double dd_value = dn_value / dm_value; 3366 div_zero_vfp_flag_ = (dm_value == 0); 3367 dd_value = canonicalizeNaN(dd_value); 3368 set_d_register_from_double(vd, dd_value); 3369 } else { 3370 float sn_value = get_float_from_s_register(n); 3371 float sm_value = get_float_from_s_register(m); 3372 float sd_value = sn_value / sm_value; 3373 div_zero_vfp_flag_ = (sm_value == 0); 3374 sd_value = canonicalizeNaN(sd_value); 3375 set_s_register_from_float(d, sd_value); 3376 } 3377 } else { 3378 UNIMPLEMENTED(); // Not used by V8. 3379 } 3380 } else { 3381 if ((instr->VCValue() == 0x0) && 3382 (instr->VAValue() == 0x0)) { 3383 DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr); 3384 } else if ((instr->VLValue() == 0x0) && 3385 (instr->VCValue() == 0x1) && 3386 (instr->Bit(23) == 0x0)) { 3387 // vmov (ARM core register to scalar) 3388 int vd = instr->Bits(19, 16) | (instr->Bit(7) << 4); 3389 uint32_t data[2]; 3390 get_d_register(vd, data); 3391 data[instr->Bit(21)] = get_register(instr->RtValue()); 3392 set_d_register(vd, data); 3393 } else if ((instr->VLValue() == 0x1) && 3394 (instr->VCValue() == 0x1) && 3395 (instr->Bit(23) == 0x0)) { 3396 // vmov (scalar to ARM core register) 3397 int vn = instr->Bits(19, 16) | (instr->Bit(7) << 4); 3398 double dn_value = get_double_from_d_register(vn); 3399 int32_t data[2]; 3400 memcpy(data, &dn_value, 8); 3401 set_register(instr->RtValue(), data[instr->Bit(21)]); 3402 } else if ((instr->VLValue() == 0x1) && 3403 (instr->VCValue() == 0x0) && 3404 (instr->VAValue() == 0x7) && 3405 (instr->Bits(19, 16) == 0x1)) { 3406 // vmrs 3407 uint32_t rt = instr->RtValue(); 3408 if (rt == 0xF) { 3409 Copy_FPSCR_to_APSR(); 3410 } else { 3411 // Emulate FPSCR from the Simulator flags. 3412 uint32_t fpscr = (n_flag_FPSCR_ << 31) | 3413 (z_flag_FPSCR_ << 30) | 3414 (c_flag_FPSCR_ << 29) | 3415 (v_flag_FPSCR_ << 28) | 3416 (FPSCR_default_NaN_mode_ << 25) | 3417 (inexact_vfp_flag_ << 4) | 3418 (underflow_vfp_flag_ << 3) | 3419 (overflow_vfp_flag_ << 2) | 3420 (div_zero_vfp_flag_ << 1) | 3421 (inv_op_vfp_flag_ << 0) | 3422 (FPSCR_rounding_mode_); 3423 set_register(rt, fpscr); 3424 } 3425 } else if ((instr->VLValue() == 0x0) && 3426 (instr->VCValue() == 0x0) && 3427 (instr->VAValue() == 0x7) && 3428 (instr->Bits(19, 16) == 0x1)) { 3429 // vmsr 3430 uint32_t rt = instr->RtValue(); 3431 if (rt == pc) { 3432 UNREACHABLE(); 3433 } else { 3434 uint32_t rt_value = get_register(rt); 3435 n_flag_FPSCR_ = (rt_value >> 31) & 1; 3436 z_flag_FPSCR_ = (rt_value >> 30) & 1; 3437 c_flag_FPSCR_ = (rt_value >> 29) & 1; 3438 v_flag_FPSCR_ = (rt_value >> 28) & 1; 3439 FPSCR_default_NaN_mode_ = (rt_value >> 25) & 1; 3440 inexact_vfp_flag_ = (rt_value >> 4) & 1; 3441 underflow_vfp_flag_ = (rt_value >> 3) & 1; 3442 overflow_vfp_flag_ = (rt_value >> 2) & 1; 3443 div_zero_vfp_flag_ = (rt_value >> 1) & 1; 3444 inv_op_vfp_flag_ = (rt_value >> 0) & 1; 3445 FPSCR_rounding_mode_ = 3446 static_cast<VFPRoundingMode>((rt_value) & kVFPRoundingModeMask); 3447 } 3448 } else { 3449 UNIMPLEMENTED(); // Not used by V8. 3450 } 3451 } 3452} 3453 3454 3455void Simulator::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters( 3456 Instruction* instr) { 3457 DCHECK((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) && 3458 (instr->VAValue() == 0x0)); 3459 3460 int t = instr->RtValue(); 3461 int n = instr->VFPNRegValue(kSinglePrecision); 3462 bool to_arm_register = (instr->VLValue() == 0x1); 3463 3464 if (to_arm_register) { 3465 int32_t int_value = get_sinteger_from_s_register(n); 3466 set_register(t, int_value); 3467 } else { 3468 int32_t rs_val = get_register(t); 3469 set_s_register_from_sinteger(n, rs_val); 3470 } 3471} 3472 3473 3474void Simulator::DecodeVCMP(Instruction* instr) { 3475 DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); 3476 DCHECK(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && 3477 (instr->Opc3Value() & 0x1)); 3478 // Comparison. 3479 3480 VFPRegPrecision precision = kSinglePrecision; 3481 if (instr->SzValue() == 0x1) { 3482 precision = kDoublePrecision; 3483 } 3484 3485 int d = instr->VFPDRegValue(precision); 3486 int m = 0; 3487 if (instr->Opc2Value() == 0x4) { 3488 m = instr->VFPMRegValue(precision); 3489 } 3490 3491 if (precision == kDoublePrecision) { 3492 double dd_value = get_double_from_d_register(d); 3493 double dm_value = 0.0; 3494 if (instr->Opc2Value() == 0x4) { 3495 dm_value = get_double_from_d_register(m); 3496 } 3497 3498 // Raise exceptions for quiet NaNs if necessary. 3499 if (instr->Bit(7) == 1) { 3500 if (std::isnan(dd_value)) { 3501 inv_op_vfp_flag_ = true; 3502 } 3503 } 3504 3505 Compute_FPSCR_Flags(dd_value, dm_value); 3506 } else { 3507 float sd_value = get_float_from_s_register(d); 3508 float sm_value = 0.0; 3509 if (instr->Opc2Value() == 0x4) { 3510 sm_value = get_float_from_s_register(m); 3511 } 3512 3513 // Raise exceptions for quiet NaNs if necessary. 3514 if (instr->Bit(7) == 1) { 3515 if (std::isnan(sd_value)) { 3516 inv_op_vfp_flag_ = true; 3517 } 3518 } 3519 3520 Compute_FPSCR_Flags(sd_value, sm_value); 3521 } 3522} 3523 3524 3525void Simulator::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) { 3526 DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); 3527 DCHECK((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)); 3528 3529 VFPRegPrecision dst_precision = kDoublePrecision; 3530 VFPRegPrecision src_precision = kSinglePrecision; 3531 if (instr->SzValue() == 1) { 3532 dst_precision = kSinglePrecision; 3533 src_precision = kDoublePrecision; 3534 } 3535 3536 int dst = instr->VFPDRegValue(dst_precision); 3537 int src = instr->VFPMRegValue(src_precision); 3538 3539 if (dst_precision == kSinglePrecision) { 3540 double val = get_double_from_d_register(src); 3541 set_s_register_from_float(dst, static_cast<float>(val)); 3542 } else { 3543 float val = get_float_from_s_register(src); 3544 set_d_register_from_double(dst, static_cast<double>(val)); 3545 } 3546} 3547 3548bool get_inv_op_vfp_flag(VFPRoundingMode mode, 3549 double val, 3550 bool unsigned_) { 3551 DCHECK((mode == RN) || (mode == RM) || (mode == RZ)); 3552 double max_uint = static_cast<double>(0xffffffffu); 3553 double max_int = static_cast<double>(kMaxInt); 3554 double min_int = static_cast<double>(kMinInt); 3555 3556 // Check for NaN. 3557 if (val != val) { 3558 return true; 3559 } 3560 3561 // Check for overflow. This code works because 32bit integers can be 3562 // exactly represented by ieee-754 64bit floating-point values. 3563 switch (mode) { 3564 case RN: 3565 return unsigned_ ? (val >= (max_uint + 0.5)) || 3566 (val < -0.5) 3567 : (val >= (max_int + 0.5)) || 3568 (val < (min_int - 0.5)); 3569 3570 case RM: 3571 return unsigned_ ? (val >= (max_uint + 1.0)) || 3572 (val < 0) 3573 : (val >= (max_int + 1.0)) || 3574 (val < min_int); 3575 3576 case RZ: 3577 return unsigned_ ? (val >= (max_uint + 1.0)) || 3578 (val <= -1) 3579 : (val >= (max_int + 1.0)) || 3580 (val <= (min_int - 1.0)); 3581 default: 3582 UNREACHABLE(); 3583 return true; 3584 } 3585} 3586 3587 3588// We call this function only if we had a vfp invalid exception. 3589// It returns the correct saturated value. 3590int VFPConversionSaturate(double val, bool unsigned_res) { 3591 if (val != val) { 3592 return 0; 3593 } else { 3594 if (unsigned_res) { 3595 return (val < 0) ? 0 : 0xffffffffu; 3596 } else { 3597 return (val < 0) ? kMinInt : kMaxInt; 3598 } 3599 } 3600} 3601 3602 3603void Simulator::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) { 3604 DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7) && 3605 (instr->Bits(27, 23) == 0x1D)); 3606 DCHECK(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) || 3607 (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1))); 3608 3609 // Conversion between floating-point and integer. 3610 bool to_integer = (instr->Bit(18) == 1); 3611 3612 VFPRegPrecision src_precision = (instr->SzValue() == 1) ? kDoublePrecision 3613 : kSinglePrecision; 3614 3615 if (to_integer) { 3616 // We are playing with code close to the C++ standard's limits below, 3617 // hence the very simple code and heavy checks. 3618 // 3619 // Note: 3620 // C++ defines default type casting from floating point to integer as 3621 // (close to) rounding toward zero ("fractional part discarded"). 3622 3623 int dst = instr->VFPDRegValue(kSinglePrecision); 3624 int src = instr->VFPMRegValue(src_precision); 3625 3626 // Bit 7 in vcvt instructions indicates if we should use the FPSCR rounding 3627 // mode or the default Round to Zero mode. 3628 VFPRoundingMode mode = (instr->Bit(7) != 1) ? FPSCR_rounding_mode_ 3629 : RZ; 3630 DCHECK((mode == RM) || (mode == RZ) || (mode == RN)); 3631 3632 bool unsigned_integer = (instr->Bit(16) == 0); 3633 bool double_precision = (src_precision == kDoublePrecision); 3634 3635 double val = double_precision ? get_double_from_d_register(src) 3636 : get_float_from_s_register(src); 3637 3638 int temp = unsigned_integer ? static_cast<uint32_t>(val) 3639 : static_cast<int32_t>(val); 3640 3641 inv_op_vfp_flag_ = get_inv_op_vfp_flag(mode, val, unsigned_integer); 3642 3643 double abs_diff = 3644 unsigned_integer ? std::fabs(val - static_cast<uint32_t>(temp)) 3645 : std::fabs(val - temp); 3646 3647 inexact_vfp_flag_ = (abs_diff != 0); 3648 3649 if (inv_op_vfp_flag_) { 3650 temp = VFPConversionSaturate(val, unsigned_integer); 3651 } else { 3652 switch (mode) { 3653 case RN: { 3654 int val_sign = (val > 0) ? 1 : -1; 3655 if (abs_diff > 0.5) { 3656 temp += val_sign; 3657 } else if (abs_diff == 0.5) { 3658 // Round to even if exactly halfway. 3659 temp = ((temp % 2) == 0) ? temp : temp + val_sign; 3660 } 3661 break; 3662 } 3663 3664 case RM: 3665 temp = temp > val ? temp - 1 : temp; 3666 break; 3667 3668 case RZ: 3669 // Nothing to do. 3670 break; 3671 3672 default: 3673 UNREACHABLE(); 3674 } 3675 } 3676 3677 // Update the destination register. 3678 set_s_register_from_sinteger(dst, temp); 3679 3680 } else { 3681 bool unsigned_integer = (instr->Bit(7) == 0); 3682 3683 int dst = instr->VFPDRegValue(src_precision); 3684 int src = instr->VFPMRegValue(kSinglePrecision); 3685 3686 int val = get_sinteger_from_s_register(src); 3687 3688 if (src_precision == kDoublePrecision) { 3689 if (unsigned_integer) { 3690 set_d_register_from_double( 3691 dst, static_cast<double>(static_cast<uint32_t>(val))); 3692 } else { 3693 set_d_register_from_double(dst, static_cast<double>(val)); 3694 } 3695 } else { 3696 if (unsigned_integer) { 3697 set_s_register_from_float( 3698 dst, static_cast<float>(static_cast<uint32_t>(val))); 3699 } else { 3700 set_s_register_from_float(dst, static_cast<float>(val)); 3701 } 3702 } 3703 } 3704} 3705 3706 3707// void Simulator::DecodeType6CoprocessorIns(Instruction* instr) 3708// Decode Type 6 coprocessor instructions. 3709// Dm = vmov(Rt, Rt2) 3710// <Rt, Rt2> = vmov(Dm) 3711// Ddst = MEM(Rbase + 4*offset). 3712// MEM(Rbase + 4*offset) = Dsrc. 3713void Simulator::DecodeType6CoprocessorIns(Instruction* instr) { 3714 DCHECK((instr->TypeValue() == 6)); 3715 3716 if (instr->CoprocessorValue() == 0xA) { 3717 switch (instr->OpcodeValue()) { 3718 case 0x8: 3719 case 0xA: 3720 case 0xC: 3721 case 0xE: { // Load and store single precision float to memory. 3722 int rn = instr->RnValue(); 3723 int vd = instr->VFPDRegValue(kSinglePrecision); 3724 int offset = instr->Immed8Value(); 3725 if (!instr->HasU()) { 3726 offset = -offset; 3727 } 3728 3729 int32_t address = get_register(rn) + 4 * offset; 3730 if (instr->HasL()) { 3731 // Load double from memory: vldr. 3732 set_s_register_from_sinteger(vd, ReadW(address, instr)); 3733 } else { 3734 // Store double to memory: vstr. 3735 WriteW(address, get_sinteger_from_s_register(vd), instr); 3736 } 3737 break; 3738 } 3739 case 0x4: 3740 case 0x5: 3741 case 0x6: 3742 case 0x7: 3743 case 0x9: 3744 case 0xB: 3745 // Load/store multiple single from memory: vldm/vstm. 3746 HandleVList(instr); 3747 break; 3748 default: 3749 UNIMPLEMENTED(); // Not used by V8. 3750 } 3751 } else if (instr->CoprocessorValue() == 0xB) { 3752 switch (instr->OpcodeValue()) { 3753 case 0x2: 3754 // Load and store double to two GP registers 3755 if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) { 3756 UNIMPLEMENTED(); // Not used by V8. 3757 } else { 3758 int rt = instr->RtValue(); 3759 int rn = instr->RnValue(); 3760 int vm = instr->VFPMRegValue(kDoublePrecision); 3761 if (instr->HasL()) { 3762 uint32_t data[2]; 3763 get_d_register(vm, data); 3764 set_register(rt, data[0]); 3765 set_register(rn, data[1]); 3766 } else { 3767 int32_t data[] = { get_register(rt), get_register(rn) }; 3768 set_d_register(vm, reinterpret_cast<uint32_t*>(data)); 3769 } 3770 } 3771 break; 3772 case 0x8: 3773 case 0xA: 3774 case 0xC: 3775 case 0xE: { // Load and store double to memory. 3776 int rn = instr->RnValue(); 3777 int vd = instr->VFPDRegValue(kDoublePrecision); 3778 int offset = instr->Immed8Value(); 3779 if (!instr->HasU()) { 3780 offset = -offset; 3781 } 3782 int32_t address = get_register(rn) + 4 * offset; 3783 if (instr->HasL()) { 3784 // Load double from memory: vldr. 3785 int32_t data[] = { 3786 ReadW(address, instr), 3787 ReadW(address + 4, instr) 3788 }; 3789 set_d_register(vd, reinterpret_cast<uint32_t*>(data)); 3790 } else { 3791 // Store double to memory: vstr. 3792 uint32_t data[2]; 3793 get_d_register(vd, data); 3794 WriteW(address, data[0], instr); 3795 WriteW(address + 4, data[1], instr); 3796 } 3797 break; 3798 } 3799 case 0x4: 3800 case 0x5: 3801 case 0x6: 3802 case 0x7: 3803 case 0x9: 3804 case 0xB: 3805 // Load/store multiple double from memory: vldm/vstm. 3806 HandleVList(instr); 3807 break; 3808 default: 3809 UNIMPLEMENTED(); // Not used by V8. 3810 } 3811 } else { 3812 UNIMPLEMENTED(); // Not used by V8. 3813 } 3814} 3815 3816 3817void Simulator::DecodeSpecialCondition(Instruction* instr) { 3818 switch (instr->SpecialValue()) { 3819 case 5: 3820 if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) && 3821 (instr->Bit(4) == 1)) { 3822 // vmovl signed 3823 if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED(); 3824 int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1); 3825 int Vm = (instr->Bit(5) << 4) | instr->VmValue(); 3826 int imm3 = instr->Bits(21, 19); 3827 if ((imm3 != 1) && (imm3 != 2) && (imm3 != 4)) UNIMPLEMENTED(); 3828 int esize = 8 * imm3; 3829 int elements = 64 / esize; 3830 int8_t from[8]; 3831 get_d_register(Vm, reinterpret_cast<uint64_t*>(from)); 3832 int16_t to[8]; 3833 int e = 0; 3834 while (e < elements) { 3835 to[e] = from[e]; 3836 e++; 3837 } 3838 set_q_register(Vd, reinterpret_cast<uint64_t*>(to)); 3839 } else { 3840 UNIMPLEMENTED(); 3841 } 3842 break; 3843 case 7: 3844 if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) && 3845 (instr->Bit(4) == 1)) { 3846 // vmovl unsigned 3847 if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED(); 3848 int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1); 3849 int Vm = (instr->Bit(5) << 4) | instr->VmValue(); 3850 int imm3 = instr->Bits(21, 19); 3851 if ((imm3 != 1) && (imm3 != 2) && (imm3 != 4)) UNIMPLEMENTED(); 3852 int esize = 8 * imm3; 3853 int elements = 64 / esize; 3854 uint8_t from[8]; 3855 get_d_register(Vm, reinterpret_cast<uint64_t*>(from)); 3856 uint16_t to[8]; 3857 int e = 0; 3858 while (e < elements) { 3859 to[e] = from[e]; 3860 e++; 3861 } 3862 set_q_register(Vd, reinterpret_cast<uint64_t*>(to)); 3863 } else { 3864 UNIMPLEMENTED(); 3865 } 3866 break; 3867 case 8: 3868 if (instr->Bits(21, 20) == 0) { 3869 // vst1 3870 int Vd = (instr->Bit(22) << 4) | instr->VdValue(); 3871 int Rn = instr->VnValue(); 3872 int type = instr->Bits(11, 8); 3873 int Rm = instr->VmValue(); 3874 int32_t address = get_register(Rn); 3875 int regs = 0; 3876 switch (type) { 3877 case nlt_1: 3878 regs = 1; 3879 break; 3880 case nlt_2: 3881 regs = 2; 3882 break; 3883 case nlt_3: 3884 regs = 3; 3885 break; 3886 case nlt_4: 3887 regs = 4; 3888 break; 3889 default: 3890 UNIMPLEMENTED(); 3891 break; 3892 } 3893 int r = 0; 3894 while (r < regs) { 3895 uint32_t data[2]; 3896 get_d_register(Vd + r, data); 3897 WriteW(address, data[0], instr); 3898 WriteW(address + 4, data[1], instr); 3899 address += 8; 3900 r++; 3901 } 3902 if (Rm != 15) { 3903 if (Rm == 13) { 3904 set_register(Rn, address); 3905 } else { 3906 set_register(Rn, get_register(Rn) + get_register(Rm)); 3907 } 3908 } 3909 } else if (instr->Bits(21, 20) == 2) { 3910 // vld1 3911 int Vd = (instr->Bit(22) << 4) | instr->VdValue(); 3912 int Rn = instr->VnValue(); 3913 int type = instr->Bits(11, 8); 3914 int Rm = instr->VmValue(); 3915 int32_t address = get_register(Rn); 3916 int regs = 0; 3917 switch (type) { 3918 case nlt_1: 3919 regs = 1; 3920 break; 3921 case nlt_2: 3922 regs = 2; 3923 break; 3924 case nlt_3: 3925 regs = 3; 3926 break; 3927 case nlt_4: 3928 regs = 4; 3929 break; 3930 default: 3931 UNIMPLEMENTED(); 3932 break; 3933 } 3934 int r = 0; 3935 while (r < regs) { 3936 uint32_t data[2]; 3937 data[0] = ReadW(address, instr); 3938 data[1] = ReadW(address + 4, instr); 3939 set_d_register(Vd + r, data); 3940 address += 8; 3941 r++; 3942 } 3943 if (Rm != 15) { 3944 if (Rm == 13) { 3945 set_register(Rn, address); 3946 } else { 3947 set_register(Rn, get_register(Rn) + get_register(Rm)); 3948 } 3949 } 3950 } else { 3951 UNIMPLEMENTED(); 3952 } 3953 break; 3954 case 0xA: 3955 case 0xB: 3956 if ((instr->Bits(22, 20) == 5) && (instr->Bits(15, 12) == 0xf)) { 3957 // pld: ignore instruction. 3958 } else if (instr->SpecialValue() == 0xA && instr->Bits(22, 20) == 7) { 3959 // dsb, dmb, isb: ignore instruction for now. 3960 // TODO(binji): implement 3961 } else { 3962 UNIMPLEMENTED(); 3963 } 3964 break; 3965 case 0x1D: 3966 if (instr->Opc1Value() == 0x7 && instr->Opc3Value() == 0x1 && 3967 instr->Bits(11, 9) == 0x5 && instr->Bits(19, 18) == 0x2) { 3968 if (instr->SzValue() == 0x1) { 3969 int vm = instr->VFPMRegValue(kDoublePrecision); 3970 int vd = instr->VFPDRegValue(kDoublePrecision); 3971 double dm_value = get_double_from_d_register(vm); 3972 double dd_value = 0.0; 3973 int rounding_mode = instr->Bits(17, 16); 3974 switch (rounding_mode) { 3975 case 0x0: // vrinta - round with ties to away from zero 3976 dd_value = round(dm_value); 3977 break; 3978 case 0x1: { // vrintn - round with ties to even 3979 dd_value = nearbyint(dm_value); 3980 break; 3981 } 3982 case 0x2: // vrintp - ceil 3983 dd_value = ceil(dm_value); 3984 break; 3985 case 0x3: // vrintm - floor 3986 dd_value = floor(dm_value); 3987 break; 3988 default: 3989 UNREACHABLE(); // Case analysis is exhaustive. 3990 break; 3991 } 3992 dd_value = canonicalizeNaN(dd_value); 3993 set_d_register_from_double(vd, dd_value); 3994 } else { 3995 int m = instr->VFPMRegValue(kSinglePrecision); 3996 int d = instr->VFPDRegValue(kSinglePrecision); 3997 float sm_value = get_float_from_s_register(m); 3998 float sd_value = 0.0; 3999 int rounding_mode = instr->Bits(17, 16); 4000 switch (rounding_mode) { 4001 case 0x0: // vrinta - round with ties to away from zero 4002 sd_value = roundf(sm_value); 4003 break; 4004 case 0x1: { // vrintn - round with ties to even 4005 sd_value = nearbyintf(sm_value); 4006 break; 4007 } 4008 case 0x2: // vrintp - ceil 4009 sd_value = ceilf(sm_value); 4010 break; 4011 case 0x3: // vrintm - floor 4012 sd_value = floorf(sm_value); 4013 break; 4014 default: 4015 UNREACHABLE(); // Case analysis is exhaustive. 4016 break; 4017 } 4018 sd_value = canonicalizeNaN(sd_value); 4019 set_s_register_from_float(d, sd_value); 4020 } 4021 } else { 4022 UNIMPLEMENTED(); 4023 } 4024 break; 4025 case 0x1C: 4026 if ((instr->Bits(11, 9) == 0x5) && (instr->Bit(6) == 0) && 4027 (instr->Bit(4) == 0)) { 4028 // VSEL* (floating-point) 4029 bool condition_holds; 4030 switch (instr->Bits(21, 20)) { 4031 case 0x0: // VSELEQ 4032 condition_holds = (z_flag_ == 1); 4033 break; 4034 case 0x1: // VSELVS 4035 condition_holds = (v_flag_ == 1); 4036 break; 4037 case 0x2: // VSELGE 4038 condition_holds = (n_flag_ == v_flag_); 4039 break; 4040 case 0x3: // VSELGT 4041 condition_holds = ((z_flag_ == 0) && (n_flag_ == v_flag_)); 4042 break; 4043 default: 4044 UNREACHABLE(); // Case analysis is exhaustive. 4045 break; 4046 } 4047 if (instr->SzValue() == 0x1) { 4048 int n = instr->VFPNRegValue(kDoublePrecision); 4049 int m = instr->VFPMRegValue(kDoublePrecision); 4050 int d = instr->VFPDRegValue(kDoublePrecision); 4051 double result = get_double_from_d_register(condition_holds ? n : m); 4052 set_d_register_from_double(d, result); 4053 } else { 4054 int n = instr->VFPNRegValue(kSinglePrecision); 4055 int m = instr->VFPMRegValue(kSinglePrecision); 4056 int d = instr->VFPDRegValue(kSinglePrecision); 4057 float result = get_float_from_s_register(condition_holds ? n : m); 4058 set_s_register_from_float(d, result); 4059 } 4060 } else { 4061 UNIMPLEMENTED(); 4062 } 4063 break; 4064 default: 4065 UNIMPLEMENTED(); 4066 break; 4067 } 4068} 4069 4070 4071// Executes the current instruction. 4072void Simulator::InstructionDecode(Instruction* instr) { 4073 if (v8::internal::FLAG_check_icache) { 4074 CheckICache(isolate_->simulator_i_cache(), instr); 4075 } 4076 pc_modified_ = false; 4077 if (::v8::internal::FLAG_trace_sim) { 4078 disasm::NameConverter converter; 4079 disasm::Disassembler dasm(converter); 4080 // use a reasonably large buffer 4081 v8::internal::EmbeddedVector<char, 256> buffer; 4082 dasm.InstructionDecode(buffer, 4083 reinterpret_cast<byte*>(instr)); 4084 PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(instr), 4085 buffer.start()); 4086 } 4087 if (instr->ConditionField() == kSpecialCondition) { 4088 DecodeSpecialCondition(instr); 4089 } else if (ConditionallyExecute(instr)) { 4090 switch (instr->TypeValue()) { 4091 case 0: 4092 case 1: { 4093 DecodeType01(instr); 4094 break; 4095 } 4096 case 2: { 4097 DecodeType2(instr); 4098 break; 4099 } 4100 case 3: { 4101 DecodeType3(instr); 4102 break; 4103 } 4104 case 4: { 4105 DecodeType4(instr); 4106 break; 4107 } 4108 case 5: { 4109 DecodeType5(instr); 4110 break; 4111 } 4112 case 6: { 4113 DecodeType6(instr); 4114 break; 4115 } 4116 case 7: { 4117 DecodeType7(instr); 4118 break; 4119 } 4120 default: { 4121 UNIMPLEMENTED(); 4122 break; 4123 } 4124 } 4125 // If the instruction is a non taken conditional stop, we need to skip the 4126 // inlined message address. 4127 } else if (instr->IsStop()) { 4128 set_pc(get_pc() + 2 * Instruction::kInstrSize); 4129 } 4130 if (!pc_modified_) { 4131 set_register(pc, reinterpret_cast<int32_t>(instr) 4132 + Instruction::kInstrSize); 4133 } 4134} 4135 4136 4137void Simulator::Execute() { 4138 // Get the PC to simulate. Cannot use the accessor here as we need the 4139 // raw PC value and not the one used as input to arithmetic instructions. 4140 int program_counter = get_pc(); 4141 4142 if (::v8::internal::FLAG_stop_sim_at == 0) { 4143 // Fast version of the dispatch loop without checking whether the simulator 4144 // should be stopping at a particular executed instruction. 4145 while (program_counter != end_sim_pc) { 4146 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); 4147 icount_++; 4148 InstructionDecode(instr); 4149 program_counter = get_pc(); 4150 } 4151 } else { 4152 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when 4153 // we reach the particular instuction count. 4154 while (program_counter != end_sim_pc) { 4155 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); 4156 icount_++; 4157 if (icount_ == ::v8::internal::FLAG_stop_sim_at) { 4158 ArmDebugger dbg(this); 4159 dbg.Debug(); 4160 } else { 4161 InstructionDecode(instr); 4162 } 4163 program_counter = get_pc(); 4164 } 4165 } 4166} 4167 4168 4169void Simulator::CallInternal(byte* entry) { 4170 // Adjust JS-based stack limit to C-based stack limit. 4171 isolate_->stack_guard()->AdjustStackLimitForSimulator(); 4172 4173 // Prepare to execute the code at entry 4174 set_register(pc, reinterpret_cast<int32_t>(entry)); 4175 // Put down marker for end of simulation. The simulator will stop simulation 4176 // when the PC reaches this value. By saving the "end simulation" value into 4177 // the LR the simulation stops when returning to this call point. 4178 set_register(lr, end_sim_pc); 4179 4180 // Remember the values of callee-saved registers. 4181 // The code below assumes that r9 is not used as sb (static base) in 4182 // simulator code and therefore is regarded as a callee-saved register. 4183 int32_t r4_val = get_register(r4); 4184 int32_t r5_val = get_register(r5); 4185 int32_t r6_val = get_register(r6); 4186 int32_t r7_val = get_register(r7); 4187 int32_t r8_val = get_register(r8); 4188 int32_t r9_val = get_register(r9); 4189 int32_t r10_val = get_register(r10); 4190 int32_t r11_val = get_register(r11); 4191 4192 // Set up the callee-saved registers with a known value. To be able to check 4193 // that they are preserved properly across JS execution. 4194 int32_t callee_saved_value = icount_; 4195 set_register(r4, callee_saved_value); 4196 set_register(r5, callee_saved_value); 4197 set_register(r6, callee_saved_value); 4198 set_register(r7, callee_saved_value); 4199 set_register(r8, callee_saved_value); 4200 set_register(r9, callee_saved_value); 4201 set_register(r10, callee_saved_value); 4202 set_register(r11, callee_saved_value); 4203 4204 // Start the simulation 4205 Execute(); 4206 4207 // Check that the callee-saved registers have been preserved. 4208 CHECK_EQ(callee_saved_value, get_register(r4)); 4209 CHECK_EQ(callee_saved_value, get_register(r5)); 4210 CHECK_EQ(callee_saved_value, get_register(r6)); 4211 CHECK_EQ(callee_saved_value, get_register(r7)); 4212 CHECK_EQ(callee_saved_value, get_register(r8)); 4213 CHECK_EQ(callee_saved_value, get_register(r9)); 4214 CHECK_EQ(callee_saved_value, get_register(r10)); 4215 CHECK_EQ(callee_saved_value, get_register(r11)); 4216 4217 // Restore callee-saved registers with the original value. 4218 set_register(r4, r4_val); 4219 set_register(r5, r5_val); 4220 set_register(r6, r6_val); 4221 set_register(r7, r7_val); 4222 set_register(r8, r8_val); 4223 set_register(r9, r9_val); 4224 set_register(r10, r10_val); 4225 set_register(r11, r11_val); 4226} 4227 4228 4229int32_t Simulator::Call(byte* entry, int argument_count, ...) { 4230 va_list parameters; 4231 va_start(parameters, argument_count); 4232 // Set up arguments 4233 4234 // First four arguments passed in registers. 4235 DCHECK(argument_count >= 4); 4236 set_register(r0, va_arg(parameters, int32_t)); 4237 set_register(r1, va_arg(parameters, int32_t)); 4238 set_register(r2, va_arg(parameters, int32_t)); 4239 set_register(r3, va_arg(parameters, int32_t)); 4240 4241 // Remaining arguments passed on stack. 4242 int original_stack = get_register(sp); 4243 // Compute position of stack on entry to generated code. 4244 int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t)); 4245 if (base::OS::ActivationFrameAlignment() != 0) { 4246 entry_stack &= -base::OS::ActivationFrameAlignment(); 4247 } 4248 // Store remaining arguments on stack, from low to high memory. 4249 intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); 4250 for (int i = 4; i < argument_count; i++) { 4251 stack_argument[i - 4] = va_arg(parameters, int32_t); 4252 } 4253 va_end(parameters); 4254 set_register(sp, entry_stack); 4255 4256 CallInternal(entry); 4257 4258 // Pop stack passed arguments. 4259 CHECK_EQ(entry_stack, get_register(sp)); 4260 set_register(sp, original_stack); 4261 4262 int32_t result = get_register(r0); 4263 return result; 4264} 4265 4266 4267void Simulator::CallFP(byte* entry, double d0, double d1) { 4268 if (use_eabi_hardfloat()) { 4269 set_d_register_from_double(0, d0); 4270 set_d_register_from_double(1, d1); 4271 } else { 4272 set_register_pair_from_double(0, &d0); 4273 set_register_pair_from_double(2, &d1); 4274 } 4275 CallInternal(entry); 4276} 4277 4278 4279int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) { 4280 CallFP(entry, d0, d1); 4281 int32_t result = get_register(r0); 4282 return result; 4283} 4284 4285 4286double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) { 4287 CallFP(entry, d0, d1); 4288 if (use_eabi_hardfloat()) { 4289 return get_double_from_d_register(0); 4290 } else { 4291 return get_double_from_register_pair(0); 4292 } 4293} 4294 4295 4296uintptr_t Simulator::PushAddress(uintptr_t address) { 4297 int new_sp = get_register(sp) - sizeof(uintptr_t); 4298 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); 4299 *stack_slot = address; 4300 set_register(sp, new_sp); 4301 return new_sp; 4302} 4303 4304 4305uintptr_t Simulator::PopAddress() { 4306 int current_sp = get_register(sp); 4307 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); 4308 uintptr_t address = *stack_slot; 4309 set_register(sp, current_sp + sizeof(uintptr_t)); 4310 return address; 4311} 4312 4313} // namespace internal 4314} // namespace v8 4315 4316#endif // USE_SIMULATOR 4317 4318#endif // V8_TARGET_ARCH_ARM 4319