1// Copyright 2013 the V8 project authors. All rights reserved. 2// Use of this source code is governed by a BSD-style license that can be 3// found in the LICENSE file. 4 5// CPU specific code for arm independent of OS goes here. 6 7#if V8_TARGET_ARCH_ARM64 8 9#include "src/arm64/utils-arm64.h" 10#include "src/assembler.h" 11 12namespace v8 { 13namespace internal { 14 15class CacheLineSizes { 16 public: 17 CacheLineSizes() { 18#ifdef USE_SIMULATOR 19 cache_type_register_ = 0; 20#else 21 // Copy the content of the cache type register to a core register. 22 __asm__ __volatile__("mrs %x[ctr], ctr_el0" // NOLINT 23 : [ctr] "=r"(cache_type_register_)); 24#endif 25 } 26 27 uint32_t icache_line_size() const { return ExtractCacheLineSize(0); } 28 uint32_t dcache_line_size() const { return ExtractCacheLineSize(16); } 29 30 private: 31 uint32_t ExtractCacheLineSize(int cache_line_size_shift) const { 32 // The cache type register holds the size of cache lines in words as a 33 // power of two. 34 return 4 << ((cache_type_register_ >> cache_line_size_shift) & 0xf); 35 } 36 37 uint32_t cache_type_register_; 38}; 39 40void CpuFeatures::FlushICache(void* address, size_t length) { 41#ifdef V8_HOST_ARCH_ARM64 42 // The code below assumes user space cache operations are allowed. The goal 43 // of this routine is to make sure the code generated is visible to the I 44 // side of the CPU. 45 46 uintptr_t start = reinterpret_cast<uintptr_t>(address); 47 // Sizes will be used to generate a mask big enough to cover a pointer. 48 CacheLineSizes sizes; 49 uintptr_t dsize = sizes.dcache_line_size(); 50 uintptr_t isize = sizes.icache_line_size(); 51 // Cache line sizes are always a power of 2. 52 DCHECK(CountSetBits(dsize, 64) == 1); 53 DCHECK(CountSetBits(isize, 64) == 1); 54 uintptr_t dstart = start & ~(dsize - 1); 55 uintptr_t istart = start & ~(isize - 1); 56 uintptr_t end = start + length; 57 58 __asm__ __volatile__ ( // NOLINT 59 // Clean every line of the D cache containing the target data. 60 "0: \n\t" 61 // dc : Data Cache maintenance 62 // c : Clean 63 // i : Invalidate 64 // va : by (Virtual) Address 65 // c : to the point of Coherency 66 // See ARM DDI 0406B page B2-12 for more information. 67 // We would prefer to use "cvau" (clean to the point of unification) here 68 // but we use "civac" to work around Cortex-A53 errata 819472, 826319, 69 // 827319 and 824069. 70 "dc civac, %[dline] \n\t" 71 "add %[dline], %[dline], %[dsize] \n\t" 72 "cmp %[dline], %[end] \n\t" 73 "b.lt 0b \n\t" 74 // Barrier to make sure the effect of the code above is visible to the rest 75 // of the world. 76 // dsb : Data Synchronisation Barrier 77 // ish : Inner SHareable domain 78 // The point of unification for an Inner Shareable shareability domain is 79 // the point by which the instruction and data caches of all the processors 80 // in that Inner Shareable shareability domain are guaranteed to see the 81 // same copy of a memory location. See ARM DDI 0406B page B2-12 for more 82 // information. 83 "dsb ish \n\t" 84 // Invalidate every line of the I cache containing the target data. 85 "1: \n\t" 86 // ic : instruction cache maintenance 87 // i : invalidate 88 // va : by address 89 // u : to the point of unification 90 "ic ivau, %[iline] \n\t" 91 "add %[iline], %[iline], %[isize] \n\t" 92 "cmp %[iline], %[end] \n\t" 93 "b.lt 1b \n\t" 94 // Barrier to make sure the effect of the code above is visible to the rest 95 // of the world. 96 "dsb ish \n\t" 97 // Barrier to ensure any prefetching which happened before this code is 98 // discarded. 99 // isb : Instruction Synchronisation Barrier 100 "isb \n\t" 101 : [dline] "+r" (dstart), 102 [iline] "+r" (istart) 103 : [dsize] "r" (dsize), 104 [isize] "r" (isize), 105 [end] "r" (end) 106 // This code does not write to memory but without the dependency gcc might 107 // move this code before the code is generated. 108 : "cc", "memory" 109 ); // NOLINT 110#endif // V8_HOST_ARCH_ARM64 111} 112 113} // namespace internal 114} // namespace v8 115 116#endif // V8_TARGET_ARCH_ARM64 117