1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_HEAP_HEAP_H_
6#define V8_HEAP_HEAP_H_
7
8#include <cmath>
9#include <map>
10
11// Clients of this interface shouldn't depend on lots of heap internals.
12// Do not include anything from src/heap here!
13#include "include/v8.h"
14#include "src/allocation.h"
15#include "src/assert-scope.h"
16#include "src/base/atomic-utils.h"
17#include "src/globals.h"
18#include "src/heap-symbols.h"
19// TODO(mstarzinger): Two more includes to kill!
20#include "src/heap/spaces.h"
21#include "src/heap/store-buffer.h"
22#include "src/list.h"
23
24namespace v8 {
25namespace internal {
26
27using v8::MemoryPressureLevel;
28
29// Defines all the roots in Heap.
30#define STRONG_ROOT_LIST(V)                                                    \
31  /* Cluster the most popular ones in a few cache lines here at the top.    */ \
32  /* The first 32 entries are most often used in the startup snapshot and   */ \
33  /* can use a shorter representation in the serialization format.          */ \
34  V(Map, free_space_map, FreeSpaceMap)                                         \
35  V(Map, one_pointer_filler_map, OnePointerFillerMap)                          \
36  V(Map, two_pointer_filler_map, TwoPointerFillerMap)                          \
37  V(Oddball, uninitialized_value, UninitializedValue)                          \
38  V(Oddball, undefined_value, UndefinedValue)                                  \
39  V(Oddball, the_hole_value, TheHoleValue)                                     \
40  V(Oddball, null_value, NullValue)                                            \
41  V(Oddball, true_value, TrueValue)                                            \
42  V(Oddball, false_value, FalseValue)                                          \
43  V(String, empty_string, empty_string)                                        \
44  V(Map, meta_map, MetaMap)                                                    \
45  V(Map, byte_array_map, ByteArrayMap)                                         \
46  V(Map, fixed_array_map, FixedArrayMap)                                       \
47  V(Map, fixed_cow_array_map, FixedCOWArrayMap)                                \
48  V(Map, hash_table_map, HashTableMap)                                         \
49  V(Map, symbol_map, SymbolMap)                                                \
50  V(Map, one_byte_string_map, OneByteStringMap)                                \
51  V(Map, one_byte_internalized_string_map, OneByteInternalizedStringMap)       \
52  V(Map, scope_info_map, ScopeInfoMap)                                         \
53  V(Map, shared_function_info_map, SharedFunctionInfoMap)                      \
54  V(Map, code_map, CodeMap)                                                    \
55  V(Map, function_context_map, FunctionContextMap)                             \
56  V(Map, cell_map, CellMap)                                                    \
57  V(Map, weak_cell_map, WeakCellMap)                                           \
58  V(Map, global_property_cell_map, GlobalPropertyCellMap)                      \
59  V(Map, foreign_map, ForeignMap)                                              \
60  V(Map, heap_number_map, HeapNumberMap)                                       \
61  V(Map, transition_array_map, TransitionArrayMap)                             \
62  V(FixedArray, empty_literals_array, EmptyLiteralsArray)                      \
63  V(FixedArray, empty_fixed_array, EmptyFixedArray)                            \
64  V(FixedArray, cleared_optimized_code_map, ClearedOptimizedCodeMap)           \
65  V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray)             \
66  /* Entries beyond the first 32                                            */ \
67  /* The roots above this line should be boring from a GC point of view.    */ \
68  /* This means they are never in new space and never on a page that is     */ \
69  /* being compacted.                                                       */ \
70  /* Oddballs */                                                               \
71  V(Oddball, no_interceptor_result_sentinel, NoInterceptorResultSentinel)      \
72  V(Oddball, arguments_marker, ArgumentsMarker)                                \
73  V(Oddball, exception, Exception)                                             \
74  V(Oddball, termination_exception, TerminationException)                      \
75  V(Oddball, optimized_out, OptimizedOut)                                      \
76  V(Oddball, stale_register, StaleRegister)                                    \
77  /* Context maps */                                                           \
78  V(Map, native_context_map, NativeContextMap)                                 \
79  V(Map, module_context_map, ModuleContextMap)                                 \
80  V(Map, script_context_map, ScriptContextMap)                                 \
81  V(Map, block_context_map, BlockContextMap)                                   \
82  V(Map, catch_context_map, CatchContextMap)                                   \
83  V(Map, with_context_map, WithContextMap)                                     \
84  V(Map, debug_evaluate_context_map, DebugEvaluateContextMap)                  \
85  V(Map, script_context_table_map, ScriptContextTableMap)                      \
86  /* Maps */                                                                   \
87  V(Map, fixed_double_array_map, FixedDoubleArrayMap)                          \
88  V(Map, mutable_heap_number_map, MutableHeapNumberMap)                        \
89  V(Map, ordered_hash_table_map, OrderedHashTableMap)                          \
90  V(Map, sloppy_arguments_elements_map, SloppyArgumentsElementsMap)            \
91  V(Map, message_object_map, JSMessageObjectMap)                               \
92  V(Map, neander_map, NeanderMap)                                              \
93  V(Map, external_map, ExternalMap)                                            \
94  V(Map, bytecode_array_map, BytecodeArrayMap)                                 \
95  /* String maps */                                                            \
96  V(Map, native_source_string_map, NativeSourceStringMap)                      \
97  V(Map, string_map, StringMap)                                                \
98  V(Map, cons_one_byte_string_map, ConsOneByteStringMap)                       \
99  V(Map, cons_string_map, ConsStringMap)                                       \
100  V(Map, sliced_string_map, SlicedStringMap)                                   \
101  V(Map, sliced_one_byte_string_map, SlicedOneByteStringMap)                   \
102  V(Map, external_string_map, ExternalStringMap)                               \
103  V(Map, external_string_with_one_byte_data_map,                               \
104    ExternalStringWithOneByteDataMap)                                          \
105  V(Map, external_one_byte_string_map, ExternalOneByteStringMap)               \
106  V(Map, short_external_string_map, ShortExternalStringMap)                    \
107  V(Map, short_external_string_with_one_byte_data_map,                         \
108    ShortExternalStringWithOneByteDataMap)                                     \
109  V(Map, internalized_string_map, InternalizedStringMap)                       \
110  V(Map, external_internalized_string_map, ExternalInternalizedStringMap)      \
111  V(Map, external_internalized_string_with_one_byte_data_map,                  \
112    ExternalInternalizedStringWithOneByteDataMap)                              \
113  V(Map, external_one_byte_internalized_string_map,                            \
114    ExternalOneByteInternalizedStringMap)                                      \
115  V(Map, short_external_internalized_string_map,                               \
116    ShortExternalInternalizedStringMap)                                        \
117  V(Map, short_external_internalized_string_with_one_byte_data_map,            \
118    ShortExternalInternalizedStringWithOneByteDataMap)                         \
119  V(Map, short_external_one_byte_internalized_string_map,                      \
120    ShortExternalOneByteInternalizedStringMap)                                 \
121  V(Map, short_external_one_byte_string_map, ShortExternalOneByteStringMap)    \
122  /* Array element maps */                                                     \
123  V(Map, fixed_uint8_array_map, FixedUint8ArrayMap)                            \
124  V(Map, fixed_int8_array_map, FixedInt8ArrayMap)                              \
125  V(Map, fixed_uint16_array_map, FixedUint16ArrayMap)                          \
126  V(Map, fixed_int16_array_map, FixedInt16ArrayMap)                            \
127  V(Map, fixed_uint32_array_map, FixedUint32ArrayMap)                          \
128  V(Map, fixed_int32_array_map, FixedInt32ArrayMap)                            \
129  V(Map, fixed_float32_array_map, FixedFloat32ArrayMap)                        \
130  V(Map, fixed_float64_array_map, FixedFloat64ArrayMap)                        \
131  V(Map, fixed_uint8_clamped_array_map, FixedUint8ClampedArrayMap)             \
132  V(Map, float32x4_map, Float32x4Map)                                          \
133  V(Map, int32x4_map, Int32x4Map)                                              \
134  V(Map, uint32x4_map, Uint32x4Map)                                            \
135  V(Map, bool32x4_map, Bool32x4Map)                                            \
136  V(Map, int16x8_map, Int16x8Map)                                              \
137  V(Map, uint16x8_map, Uint16x8Map)                                            \
138  V(Map, bool16x8_map, Bool16x8Map)                                            \
139  V(Map, int8x16_map, Int8x16Map)                                              \
140  V(Map, uint8x16_map, Uint8x16Map)                                            \
141  V(Map, bool8x16_map, Bool8x16Map)                                            \
142  /* Canonical empty values */                                                 \
143  V(ByteArray, empty_byte_array, EmptyByteArray)                               \
144  V(FixedTypedArrayBase, empty_fixed_uint8_array, EmptyFixedUint8Array)        \
145  V(FixedTypedArrayBase, empty_fixed_int8_array, EmptyFixedInt8Array)          \
146  V(FixedTypedArrayBase, empty_fixed_uint16_array, EmptyFixedUint16Array)      \
147  V(FixedTypedArrayBase, empty_fixed_int16_array, EmptyFixedInt16Array)        \
148  V(FixedTypedArrayBase, empty_fixed_uint32_array, EmptyFixedUint32Array)      \
149  V(FixedTypedArrayBase, empty_fixed_int32_array, EmptyFixedInt32Array)        \
150  V(FixedTypedArrayBase, empty_fixed_float32_array, EmptyFixedFloat32Array)    \
151  V(FixedTypedArrayBase, empty_fixed_float64_array, EmptyFixedFloat64Array)    \
152  V(FixedTypedArrayBase, empty_fixed_uint8_clamped_array,                      \
153    EmptyFixedUint8ClampedArray)                                               \
154  V(Script, empty_script, EmptyScript)                                         \
155  V(Cell, undefined_cell, UndefinedCell)                                       \
156  V(FixedArray, empty_sloppy_arguments_elements, EmptySloppyArgumentsElements) \
157  V(SeededNumberDictionary, empty_slow_element_dictionary,                     \
158    EmptySlowElementDictionary)                                                \
159  V(TypeFeedbackVector, dummy_vector, DummyVector)                             \
160  V(PropertyCell, empty_property_cell, EmptyPropertyCell)                      \
161  V(WeakCell, empty_weak_cell, EmptyWeakCell)                                  \
162  /* Protectors */                                                             \
163  V(PropertyCell, array_protector, ArrayProtector)                             \
164  V(Cell, is_concat_spreadable_protector, IsConcatSpreadableProtector)         \
165  V(PropertyCell, has_instance_protector, HasInstanceProtector)                \
166  V(Cell, species_protector, SpeciesProtector)                                 \
167  /* Special numbers */                                                        \
168  V(HeapNumber, nan_value, NanValue)                                           \
169  V(HeapNumber, infinity_value, InfinityValue)                                 \
170  V(HeapNumber, minus_zero_value, MinusZeroValue)                              \
171  V(HeapNumber, minus_infinity_value, MinusInfinityValue)                      \
172  /* Caches */                                                                 \
173  V(FixedArray, number_string_cache, NumberStringCache)                        \
174  V(FixedArray, single_character_string_cache, SingleCharacterStringCache)     \
175  V(FixedArray, string_split_cache, StringSplitCache)                          \
176  V(FixedArray, regexp_multiple_cache, RegExpMultipleCache)                    \
177  V(Object, instanceof_cache_function, InstanceofCacheFunction)                \
178  V(Object, instanceof_cache_map, InstanceofCacheMap)                          \
179  V(Object, instanceof_cache_answer, InstanceofCacheAnswer)                    \
180  V(FixedArray, natives_source_cache, NativesSourceCache)                      \
181  V(FixedArray, experimental_natives_source_cache,                             \
182    ExperimentalNativesSourceCache)                                            \
183  V(FixedArray, extra_natives_source_cache, ExtraNativesSourceCache)           \
184  V(FixedArray, experimental_extra_natives_source_cache,                       \
185    ExperimentalExtraNativesSourceCache)                                       \
186  /* Lists and dictionaries */                                                 \
187  V(NameDictionary, intrinsic_function_names, IntrinsicFunctionNames)          \
188  V(NameDictionary, empty_properties_dictionary, EmptyPropertiesDictionary)    \
189  V(Object, symbol_registry, SymbolRegistry)                                   \
190  V(Object, script_list, ScriptList)                                           \
191  V(UnseededNumberDictionary, code_stubs, CodeStubs)                           \
192  V(FixedArray, materialized_objects, MaterializedObjects)                     \
193  V(FixedArray, microtask_queue, MicrotaskQueue)                               \
194  V(FixedArray, detached_contexts, DetachedContexts)                           \
195  V(ArrayList, retained_maps, RetainedMaps)                                    \
196  V(WeakHashTable, weak_object_to_code_table, WeakObjectToCodeTable)           \
197  V(Object, weak_stack_trace_list, WeakStackTraceList)                         \
198  V(Object, noscript_shared_function_infos, NoScriptSharedFunctionInfos)       \
199  V(FixedArray, serialized_templates, SerializedTemplates)                     \
200  /* Configured values */                                                      \
201  V(JSObject, message_listeners, MessageListeners)                             \
202  V(Code, js_entry_code, JsEntryCode)                                          \
203  V(Code, js_construct_entry_code, JsConstructEntryCode)                       \
204  /* Oddball maps */                                                           \
205  V(Map, undefined_map, UndefinedMap)                                          \
206  V(Map, the_hole_map, TheHoleMap)                                             \
207  V(Map, null_map, NullMap)                                                    \
208  V(Map, boolean_map, BooleanMap)                                              \
209  V(Map, uninitialized_map, UninitializedMap)                                  \
210  V(Map, arguments_marker_map, ArgumentsMarkerMap)                             \
211  V(Map, no_interceptor_result_sentinel_map, NoInterceptorResultSentinelMap)   \
212  V(Map, exception_map, ExceptionMap)                                          \
213  V(Map, termination_exception_map, TerminationExceptionMap)                   \
214  V(Map, optimized_out_map, OptimizedOutMap)                                   \
215  V(Map, stale_register_map, StaleRegisterMap)
216
217// Entries in this list are limited to Smis and are not visited during GC.
218#define SMI_ROOT_LIST(V)                                                       \
219  V(Smi, stack_limit, StackLimit)                                              \
220  V(Smi, real_stack_limit, RealStackLimit)                                     \
221  V(Smi, last_script_id, LastScriptId)                                         \
222  V(Smi, hash_seed, HashSeed)                                                  \
223  /* To distinguish the function templates, so that we can find them in the */ \
224  /* function cache of the native context. */                                  \
225  V(Smi, next_template_serial_number, NextTemplateSerialNumber)                \
226  V(Smi, arguments_adaptor_deopt_pc_offset, ArgumentsAdaptorDeoptPCOffset)     \
227  V(Smi, construct_stub_deopt_pc_offset, ConstructStubDeoptPCOffset)           \
228  V(Smi, getter_stub_deopt_pc_offset, GetterStubDeoptPCOffset)                 \
229  V(Smi, setter_stub_deopt_pc_offset, SetterStubDeoptPCOffset)                 \
230  V(Smi, interpreter_entry_return_pc_offset, InterpreterEntryReturnPCOffset)
231
232#define ROOT_LIST(V)  \
233  STRONG_ROOT_LIST(V) \
234  SMI_ROOT_LIST(V)    \
235  V(StringTable, string_table, StringTable)
236
237
238// Heap roots that are known to be immortal immovable, for which we can safely
239// skip write barriers. This list is not complete and has omissions.
240#define IMMORTAL_IMMOVABLE_ROOT_LIST(V) \
241  V(ByteArrayMap)                       \
242  V(BytecodeArrayMap)                   \
243  V(FreeSpaceMap)                       \
244  V(OnePointerFillerMap)                \
245  V(TwoPointerFillerMap)                \
246  V(UndefinedValue)                     \
247  V(TheHoleValue)                       \
248  V(NullValue)                          \
249  V(TrueValue)                          \
250  V(FalseValue)                         \
251  V(UninitializedValue)                 \
252  V(CellMap)                            \
253  V(GlobalPropertyCellMap)              \
254  V(SharedFunctionInfoMap)              \
255  V(MetaMap)                            \
256  V(HeapNumberMap)                      \
257  V(MutableHeapNumberMap)               \
258  V(Float32x4Map)                       \
259  V(Int32x4Map)                         \
260  V(Uint32x4Map)                        \
261  V(Bool32x4Map)                        \
262  V(Int16x8Map)                         \
263  V(Uint16x8Map)                        \
264  V(Bool16x8Map)                        \
265  V(Int8x16Map)                         \
266  V(Uint8x16Map)                        \
267  V(Bool8x16Map)                        \
268  V(NativeContextMap)                   \
269  V(FixedArrayMap)                      \
270  V(CodeMap)                            \
271  V(ScopeInfoMap)                       \
272  V(FixedCOWArrayMap)                   \
273  V(FixedDoubleArrayMap)                \
274  V(WeakCellMap)                        \
275  V(TransitionArrayMap)                 \
276  V(NoInterceptorResultSentinel)        \
277  V(HashTableMap)                       \
278  V(OrderedHashTableMap)                \
279  V(EmptyFixedArray)                    \
280  V(EmptyByteArray)                     \
281  V(EmptyDescriptorArray)               \
282  V(ArgumentsMarker)                    \
283  V(SymbolMap)                          \
284  V(SloppyArgumentsElementsMap)         \
285  V(FunctionContextMap)                 \
286  V(CatchContextMap)                    \
287  V(WithContextMap)                     \
288  V(BlockContextMap)                    \
289  V(ModuleContextMap)                   \
290  V(ScriptContextMap)                   \
291  V(UndefinedMap)                       \
292  V(TheHoleMap)                         \
293  V(NullMap)                            \
294  V(BooleanMap)                         \
295  V(UninitializedMap)                   \
296  V(ArgumentsMarkerMap)                 \
297  V(JSMessageObjectMap)                 \
298  V(ForeignMap)                         \
299  V(NeanderMap)                         \
300  V(NanValue)                           \
301  V(InfinityValue)                      \
302  V(MinusZeroValue)                     \
303  V(MinusInfinityValue)                 \
304  V(EmptyWeakCell)                      \
305  V(empty_string)                       \
306  PRIVATE_SYMBOL_LIST(V)
307
308// Forward declarations.
309class AllocationObserver;
310class ArrayBufferTracker;
311class GCIdleTimeAction;
312class GCIdleTimeHandler;
313class GCIdleTimeHeapState;
314class GCTracer;
315class HeapObjectsFilter;
316class HeapStats;
317class HistogramTimer;
318class Isolate;
319class MemoryReducer;
320class ObjectStats;
321class Scavenger;
322class ScavengeJob;
323class WeakObjectRetainer;
324
325enum PromotionMode { PROMOTE_MARKED, DEFAULT_PROMOTION };
326
327typedef void (*ObjectSlotCallback)(HeapObject** from, HeapObject* to);
328
329// A queue of objects promoted during scavenge. Each object is accompanied
330// by it's size to avoid dereferencing a map pointer for scanning.
331// The last page in to-space is used for the promotion queue. On conflict
332// during scavenge, the promotion queue is allocated externally and all
333// entries are copied to the external queue.
334class PromotionQueue {
335 public:
336  explicit PromotionQueue(Heap* heap)
337      : front_(NULL),
338        rear_(NULL),
339        limit_(NULL),
340        emergency_stack_(0),
341        heap_(heap) {}
342
343  void Initialize();
344
345  void Destroy() {
346    DCHECK(is_empty());
347    delete emergency_stack_;
348    emergency_stack_ = NULL;
349  }
350
351  Page* GetHeadPage() {
352    return Page::FromAllocationAreaAddress(reinterpret_cast<Address>(rear_));
353  }
354
355  void SetNewLimit(Address limit) {
356    // If we are already using an emergency stack, we can ignore it.
357    if (emergency_stack_) return;
358
359    // If the limit is not on the same page, we can ignore it.
360    if (Page::FromAllocationAreaAddress(limit) != GetHeadPage()) return;
361
362    limit_ = reinterpret_cast<struct Entry*>(limit);
363
364    if (limit_ <= rear_) {
365      return;
366    }
367
368    RelocateQueueHead();
369  }
370
371  bool IsBelowPromotionQueue(Address to_space_top) {
372    // If an emergency stack is used, the to-space address cannot interfere
373    // with the promotion queue.
374    if (emergency_stack_) return true;
375
376    // If the given to-space top pointer and the head of the promotion queue
377    // are not on the same page, then the to-space objects are below the
378    // promotion queue.
379    if (GetHeadPage() != Page::FromAddress(to_space_top)) {
380      return true;
381    }
382    // If the to space top pointer is smaller or equal than the promotion
383    // queue head, then the to-space objects are below the promotion queue.
384    return reinterpret_cast<struct Entry*>(to_space_top) <= rear_;
385  }
386
387  bool is_empty() {
388    return (front_ == rear_) &&
389           (emergency_stack_ == NULL || emergency_stack_->length() == 0);
390  }
391
392  inline void insert(HeapObject* target, int32_t size, bool was_marked_black);
393
394  void remove(HeapObject** target, int32_t* size, bool* was_marked_black) {
395    DCHECK(!is_empty());
396    if (front_ == rear_) {
397      Entry e = emergency_stack_->RemoveLast();
398      *target = e.obj_;
399      *size = e.size_;
400      *was_marked_black = e.was_marked_black_;
401      return;
402    }
403
404    struct Entry* entry = reinterpret_cast<struct Entry*>(--front_);
405    *target = entry->obj_;
406    *size = entry->size_;
407    *was_marked_black = entry->was_marked_black_;
408
409    // Assert no underflow.
410    SemiSpace::AssertValidRange(reinterpret_cast<Address>(rear_),
411                                reinterpret_cast<Address>(front_));
412  }
413
414 private:
415  struct Entry {
416    Entry(HeapObject* obj, int32_t size, bool was_marked_black)
417        : obj_(obj), size_(size), was_marked_black_(was_marked_black) {}
418
419    HeapObject* obj_;
420    int32_t size_ : 31;
421    bool was_marked_black_ : 1;
422  };
423
424  void RelocateQueueHead();
425
426  // The front of the queue is higher in the memory page chain than the rear.
427  struct Entry* front_;
428  struct Entry* rear_;
429  struct Entry* limit_;
430
431  List<Entry>* emergency_stack_;
432
433  Heap* heap_;
434
435  DISALLOW_COPY_AND_ASSIGN(PromotionQueue);
436};
437
438
439enum ArrayStorageAllocationMode {
440  DONT_INITIALIZE_ARRAY_ELEMENTS,
441  INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE
442};
443
444enum class ClearRecordedSlots { kYes, kNo };
445
446class Heap {
447 public:
448  // Declare all the root indices.  This defines the root list order.
449  enum RootListIndex {
450#define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
451    STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION)
452#undef ROOT_INDEX_DECLARATION
453
454#define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex,
455        INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION)
456#undef STRING_DECLARATION
457
458#define SYMBOL_INDEX_DECLARATION(name) k##name##RootIndex,
459            PRIVATE_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
460#undef SYMBOL_INDEX_DECLARATION
461
462#define SYMBOL_INDEX_DECLARATION(name, description) k##name##RootIndex,
463                PUBLIC_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
464                    WELL_KNOWN_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
465#undef SYMBOL_INDEX_DECLARATION
466
467// Utility type maps
468#define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex,
469                        STRUCT_LIST(DECLARE_STRUCT_MAP)
470#undef DECLARE_STRUCT_MAP
471                            kStringTableRootIndex,
472
473#define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
474    SMI_ROOT_LIST(ROOT_INDEX_DECLARATION)
475#undef ROOT_INDEX_DECLARATION
476        kRootListLength,
477    kStrongRootListLength = kStringTableRootIndex,
478    kSmiRootsStart = kStringTableRootIndex + 1
479  };
480
481  enum FindMementoMode { kForRuntime, kForGC };
482
483  enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT };
484
485  // Indicates whether live bytes adjustment is triggered
486  // - from within the GC code before sweeping started (SEQUENTIAL_TO_SWEEPER),
487  // - or from within GC (CONCURRENT_TO_SWEEPER),
488  // - or mutator code (CONCURRENT_TO_SWEEPER).
489  enum InvocationMode { SEQUENTIAL_TO_SWEEPER, CONCURRENT_TO_SWEEPER };
490
491  enum UpdateAllocationSiteMode { kGlobal, kCached };
492
493  // Taking this lock prevents the GC from entering a phase that relocates
494  // object references.
495  class RelocationLock {
496   public:
497    explicit RelocationLock(Heap* heap) : heap_(heap) {
498      heap_->relocation_mutex_.Lock();
499    }
500
501    ~RelocationLock() { heap_->relocation_mutex_.Unlock(); }
502
503   private:
504    Heap* heap_;
505  };
506
507  // Support for partial snapshots.  After calling this we have a linear
508  // space to write objects in each space.
509  struct Chunk {
510    uint32_t size;
511    Address start;
512    Address end;
513  };
514  typedef List<Chunk> Reservation;
515
516  static const intptr_t kMinimumOldGenerationAllocationLimit =
517      8 * (Page::kPageSize > MB ? Page::kPageSize : MB);
518
519  static const int kInitalOldGenerationLimitFactor = 2;
520
521#if V8_OS_ANDROID
522  // Don't apply pointer multiplier on Android since it has no swap space and
523  // should instead adapt it's heap size based on available physical memory.
524  static const int kPointerMultiplier = 1;
525#else
526  static const int kPointerMultiplier = i::kPointerSize / 4;
527#endif
528
529  // The new space size has to be a power of 2. Sizes are in MB.
530  static const int kMaxSemiSpaceSizeLowMemoryDevice = 1 * kPointerMultiplier;
531  static const int kMaxSemiSpaceSizeMediumMemoryDevice = 4 * kPointerMultiplier;
532  static const int kMaxSemiSpaceSizeHighMemoryDevice = 8 * kPointerMultiplier;
533  static const int kMaxSemiSpaceSizeHugeMemoryDevice = 8 * kPointerMultiplier;
534
535  // The old space size has to be a multiple of Page::kPageSize.
536  // Sizes are in MB.
537  static const int kMaxOldSpaceSizeLowMemoryDevice = 128 * kPointerMultiplier;
538  static const int kMaxOldSpaceSizeMediumMemoryDevice =
539      256 * kPointerMultiplier;
540  static const int kMaxOldSpaceSizeHighMemoryDevice = 512 * kPointerMultiplier;
541  static const int kMaxOldSpaceSizeHugeMemoryDevice = 700 * kPointerMultiplier;
542
543  // The executable size has to be a multiple of Page::kPageSize.
544  // Sizes are in MB.
545  static const int kMaxExecutableSizeLowMemoryDevice = 96 * kPointerMultiplier;
546  static const int kMaxExecutableSizeMediumMemoryDevice =
547      192 * kPointerMultiplier;
548  static const int kMaxExecutableSizeHighMemoryDevice =
549      256 * kPointerMultiplier;
550  static const int kMaxExecutableSizeHugeMemoryDevice =
551      256 * kPointerMultiplier;
552
553  static const int kTraceRingBufferSize = 512;
554  static const int kStacktraceBufferSize = 512;
555
556  static const double kMinHeapGrowingFactor;
557  static const double kMaxHeapGrowingFactor;
558  static const double kMaxHeapGrowingFactorMemoryConstrained;
559  static const double kMaxHeapGrowingFactorIdle;
560  static const double kTargetMutatorUtilization;
561
562  static const int kNoGCFlags = 0;
563  static const int kReduceMemoryFootprintMask = 1;
564  static const int kAbortIncrementalMarkingMask = 2;
565  static const int kFinalizeIncrementalMarkingMask = 4;
566
567  // Making the heap iterable requires us to abort incremental marking.
568  static const int kMakeHeapIterableMask = kAbortIncrementalMarkingMask;
569
570  // The roots that have an index less than this are always in old space.
571  static const int kOldSpaceRoots = 0x20;
572
573  // The minimum size of a HeapObject on the heap.
574  static const int kMinObjectSizeInWords = 2;
575
576  STATIC_ASSERT(kUndefinedValueRootIndex ==
577                Internals::kUndefinedValueRootIndex);
578  STATIC_ASSERT(kTheHoleValueRootIndex == Internals::kTheHoleValueRootIndex);
579  STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex);
580  STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex);
581  STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex);
582  STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex);
583
584  // Calculates the maximum amount of filler that could be required by the
585  // given alignment.
586  static int GetMaximumFillToAlign(AllocationAlignment alignment);
587  // Calculates the actual amount of filler required for a given address at the
588  // given alignment.
589  static int GetFillToAlign(Address address, AllocationAlignment alignment);
590
591  template <typename T>
592  static inline bool IsOneByte(T t, int chars);
593
594  static void FatalProcessOutOfMemory(const char* location,
595                                      bool is_heap_oom = false);
596
597  static bool RootIsImmortalImmovable(int root_index);
598
599  // Checks whether the space is valid.
600  static bool IsValidAllocationSpace(AllocationSpace space);
601
602  // Generated code can embed direct references to non-writable roots if
603  // they are in new space.
604  static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index);
605
606  // Zapping is needed for verify heap, and always done in debug builds.
607  static inline bool ShouldZapGarbage() {
608#ifdef DEBUG
609    return true;
610#else
611#ifdef VERIFY_HEAP
612    return FLAG_verify_heap;
613#else
614    return false;
615#endif
616#endif
617  }
618
619  static double HeapGrowingFactor(double gc_speed, double mutator_speed);
620
621  // Copy block of memory from src to dst. Size of block should be aligned
622  // by pointer size.
623  static inline void CopyBlock(Address dst, Address src, int byte_size);
624
625  // Determines a static visitor id based on the given {map} that can then be
626  // stored on the map to facilitate fast dispatch for {StaticVisitorBase}.
627  static int GetStaticVisitorIdForMap(Map* map);
628
629  // We cannot avoid stale handles to left-trimmed objects, but can only make
630  // sure all handles still needed are updated. Filter out a stale pointer
631  // and clear the slot to allow post processing of handles (needed because
632  // the sweeper might actually free the underlying page).
633  inline bool PurgeLeftTrimmedObject(Object** object);
634
635  // Notifies the heap that is ok to start marking or other activities that
636  // should not happen during deserialization.
637  void NotifyDeserializationComplete();
638
639  intptr_t old_generation_allocation_limit() const {
640    return old_generation_allocation_limit_;
641  }
642
643  bool always_allocate() { return always_allocate_scope_count_.Value() != 0; }
644
645  Address* NewSpaceAllocationTopAddress() {
646    return new_space_.allocation_top_address();
647  }
648  Address* NewSpaceAllocationLimitAddress() {
649    return new_space_.allocation_limit_address();
650  }
651
652  Address* OldSpaceAllocationTopAddress() {
653    return old_space_->allocation_top_address();
654  }
655  Address* OldSpaceAllocationLimitAddress() {
656    return old_space_->allocation_limit_address();
657  }
658
659  bool CanExpandOldGeneration(int size) {
660    if (force_oom_) return false;
661    return (OldGenerationCapacity() + size) < MaxOldGenerationSize();
662  }
663
664  // Clear the Instanceof cache (used when a prototype changes).
665  inline void ClearInstanceofCache();
666
667  // FreeSpace objects have a null map after deserialization. Update the map.
668  void RepairFreeListsAfterDeserialization();
669
670  // Move len elements within a given array from src_index index to dst_index
671  // index.
672  void MoveElements(FixedArray* array, int dst_index, int src_index, int len);
673
674  // Initialize a filler object to keep the ability to iterate over the heap
675  // when introducing gaps within pages. If slots could have been recorded in
676  // the freed area, then pass ClearRecordedSlots::kYes as the mode. Otherwise,
677  // pass ClearRecordedSlots::kNo.
678  void CreateFillerObjectAt(Address addr, int size, ClearRecordedSlots mode);
679
680  bool CanMoveObjectStart(HeapObject* object);
681
682  // Maintain consistency of live bytes during incremental marking.
683  void AdjustLiveBytes(HeapObject* object, int by, InvocationMode mode);
684
685  // Trim the given array from the left. Note that this relocates the object
686  // start and hence is only valid if there is only a single reference to it.
687  FixedArrayBase* LeftTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
688
689  // Trim the given array from the right.
690  template<Heap::InvocationMode mode>
691  void RightTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
692
693  // Converts the given boolean condition to JavaScript boolean value.
694  inline Oddball* ToBoolean(bool condition);
695
696  // Check whether the heap is currently iterable.
697  bool IsHeapIterable();
698
699  // Notify the heap that a context has been disposed.
700  int NotifyContextDisposed(bool dependant_context);
701
702  void set_native_contexts_list(Object* object) {
703    native_contexts_list_ = object;
704  }
705  Object* native_contexts_list() const { return native_contexts_list_; }
706
707  void set_allocation_sites_list(Object* object) {
708    allocation_sites_list_ = object;
709  }
710  Object* allocation_sites_list() { return allocation_sites_list_; }
711
712  // Used in CreateAllocationSiteStub and the (de)serializer.
713  Object** allocation_sites_list_address() { return &allocation_sites_list_; }
714
715  void set_encountered_weak_collections(Object* weak_collection) {
716    encountered_weak_collections_ = weak_collection;
717  }
718  Object* encountered_weak_collections() const {
719    return encountered_weak_collections_;
720  }
721
722  void set_encountered_weak_cells(Object* weak_cell) {
723    encountered_weak_cells_ = weak_cell;
724  }
725  Object* encountered_weak_cells() const { return encountered_weak_cells_; }
726
727  void set_encountered_transition_arrays(Object* transition_array) {
728    encountered_transition_arrays_ = transition_array;
729  }
730  Object* encountered_transition_arrays() const {
731    return encountered_transition_arrays_;
732  }
733
734  // Number of mark-sweeps.
735  int ms_count() const { return ms_count_; }
736
737  // Checks whether the given object is allowed to be migrated from it's
738  // current space into the given destination space. Used for debugging.
739  inline bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest);
740
741  void CheckHandleCount();
742
743  // Number of "runtime allocations" done so far.
744  uint32_t allocations_count() { return allocations_count_; }
745
746  // Print short heap statistics.
747  void PrintShortHeapStatistics();
748
749  inline HeapState gc_state() { return gc_state_; }
750
751  inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; }
752
753  // If an object has an AllocationMemento trailing it, return it, otherwise
754  // return NULL;
755  template <FindMementoMode mode>
756  inline AllocationMemento* FindAllocationMemento(HeapObject* object);
757
758  // Returns false if not able to reserve.
759  bool ReserveSpace(Reservation* reservations);
760
761  void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer);
762
763  bool UsingEmbedderHeapTracer();
764
765  void TracePossibleWrapper(JSObject* js_object);
766
767  void RegisterExternallyReferencedObject(Object** object);
768
769  //
770  // Support for the API.
771  //
772
773  void CreateApiObjects();
774
775  // Implements the corresponding V8 API function.
776  bool IdleNotification(double deadline_in_seconds);
777  bool IdleNotification(int idle_time_in_ms);
778
779  void MemoryPressureNotification(MemoryPressureLevel level,
780                                  bool is_isolate_locked);
781  void CheckMemoryPressure();
782
783  double MonotonicallyIncreasingTimeInMs();
784
785  void RecordStats(HeapStats* stats, bool take_snapshot = false);
786
787  // Check new space expansion criteria and expand semispaces if it was hit.
788  void CheckNewSpaceExpansionCriteria();
789
790  inline bool HeapIsFullEnoughToStartIncrementalMarking(intptr_t limit) {
791    if (FLAG_stress_compaction && (gc_count_ & 1) != 0) return true;
792
793    intptr_t adjusted_allocation_limit = limit - new_space_.Capacity();
794
795    if (PromotedTotalSize() >= adjusted_allocation_limit) return true;
796
797    if (HighMemoryPressure()) return true;
798
799    return false;
800  }
801
802  void VisitExternalResources(v8::ExternalResourceVisitor* visitor);
803
804  // An object should be promoted if the object has survived a
805  // scavenge operation.
806  template <PromotionMode promotion_mode>
807  inline bool ShouldBePromoted(Address old_address, int object_size);
808
809  inline PromotionMode CurrentPromotionMode();
810
811  void ClearNormalizedMapCaches();
812
813  void IncrementDeferredCount(v8::Isolate::UseCounterFeature feature);
814
815  inline bool OldGenerationAllocationLimitReached();
816
817  // Completely clear the Instanceof cache (to stop it keeping objects alive
818  // around a GC).
819  inline void CompletelyClearInstanceofCache();
820
821  inline uint32_t HashSeed();
822
823  inline int NextScriptId();
824
825  inline void SetArgumentsAdaptorDeoptPCOffset(int pc_offset);
826  inline void SetConstructStubDeoptPCOffset(int pc_offset);
827  inline void SetGetterStubDeoptPCOffset(int pc_offset);
828  inline void SetSetterStubDeoptPCOffset(int pc_offset);
829  inline void SetInterpreterEntryReturnPCOffset(int pc_offset);
830  inline int GetNextTemplateSerialNumber();
831
832  inline void SetSerializedTemplates(FixedArray* templates);
833
834  // For post mortem debugging.
835  void RememberUnmappedPage(Address page, bool compacted);
836
837  // Global inline caching age: it is incremented on some GCs after context
838  // disposal. We use it to flush inline caches.
839  int global_ic_age() { return global_ic_age_; }
840
841  void AgeInlineCaches() {
842    global_ic_age_ = (global_ic_age_ + 1) & SharedFunctionInfo::ICAgeBits::kMax;
843  }
844
845  int64_t external_memory() { return external_memory_; }
846  void update_external_memory(int64_t delta) { external_memory_ += delta; }
847
848  void update_external_memory_concurrently_freed(intptr_t freed) {
849    external_memory_concurrently_freed_.Increment(freed);
850  }
851
852  void account_external_memory_concurrently_freed() {
853    external_memory_ -= external_memory_concurrently_freed_.Value();
854    external_memory_concurrently_freed_.SetValue(0);
855  }
856
857  void DeoptMarkedAllocationSites();
858
859  bool DeoptMaybeTenuredAllocationSites() {
860    return new_space_.IsAtMaximumCapacity() && maximum_size_scavenges_ == 0;
861  }
862
863  void AddWeakObjectToCodeDependency(Handle<HeapObject> obj,
864                                     Handle<DependentCode> dep);
865
866  DependentCode* LookupWeakObjectToCodeDependency(Handle<HeapObject> obj);
867
868  void CompactWeakFixedArrays();
869
870  void AddRetainedMap(Handle<Map> map);
871
872  // This event is triggered after successful allocation of a new object made
873  // by runtime. Allocations of target space for object evacuation do not
874  // trigger the event. In order to track ALL allocations one must turn off
875  // FLAG_inline_new and FLAG_use_allocation_folding.
876  inline void OnAllocationEvent(HeapObject* object, int size_in_bytes);
877
878  // This event is triggered after object is moved to a new place.
879  inline void OnMoveEvent(HeapObject* target, HeapObject* source,
880                          int size_in_bytes);
881
882  bool deserialization_complete() const { return deserialization_complete_; }
883
884  bool HasLowAllocationRate();
885  bool HasHighFragmentation();
886  bool HasHighFragmentation(intptr_t used, intptr_t committed);
887
888  void SetOptimizeForLatency() { optimize_for_memory_usage_ = false; }
889  void SetOptimizeForMemoryUsage();
890  bool ShouldOptimizeForMemoryUsage() {
891    return optimize_for_memory_usage_ || HighMemoryPressure();
892  }
893  bool HighMemoryPressure() {
894    return memory_pressure_level_.Value() != MemoryPressureLevel::kNone;
895  }
896
897  // ===========================================================================
898  // Initialization. ===========================================================
899  // ===========================================================================
900
901  // Configure heap size in MB before setup. Return false if the heap has been
902  // set up already.
903  bool ConfigureHeap(int max_semi_space_size, int max_old_space_size,
904                     int max_executable_size, size_t code_range_size);
905  bool ConfigureHeapDefault();
906
907  // Prepares the heap, setting up memory areas that are needed in the isolate
908  // without actually creating any objects.
909  bool SetUp();
910
911  // Bootstraps the object heap with the core set of objects required to run.
912  // Returns whether it succeeded.
913  bool CreateHeapObjects();
914
915  // Destroys all memory allocated by the heap.
916  void TearDown();
917
918  // Returns whether SetUp has been called.
919  bool HasBeenSetUp();
920
921  // ===========================================================================
922  // Getters for spaces. =======================================================
923  // ===========================================================================
924
925  Address NewSpaceTop() { return new_space_.top(); }
926
927  NewSpace* new_space() { return &new_space_; }
928  OldSpace* old_space() { return old_space_; }
929  OldSpace* code_space() { return code_space_; }
930  MapSpace* map_space() { return map_space_; }
931  LargeObjectSpace* lo_space() { return lo_space_; }
932
933  PagedSpace* paged_space(int idx) {
934    switch (idx) {
935      case OLD_SPACE:
936        return old_space();
937      case MAP_SPACE:
938        return map_space();
939      case CODE_SPACE:
940        return code_space();
941      case NEW_SPACE:
942      case LO_SPACE:
943        UNREACHABLE();
944    }
945    return NULL;
946  }
947
948  Space* space(int idx) {
949    switch (idx) {
950      case NEW_SPACE:
951        return new_space();
952      case LO_SPACE:
953        return lo_space();
954      default:
955        return paged_space(idx);
956    }
957  }
958
959  // Returns name of the space.
960  const char* GetSpaceName(int idx);
961
962  // ===========================================================================
963  // Getters to other components. ==============================================
964  // ===========================================================================
965
966  GCTracer* tracer() { return tracer_; }
967
968  MemoryAllocator* memory_allocator() { return memory_allocator_; }
969
970  PromotionQueue* promotion_queue() { return &promotion_queue_; }
971
972  inline Isolate* isolate();
973
974  MarkCompactCollector* mark_compact_collector() {
975    return mark_compact_collector_;
976  }
977
978  // ===========================================================================
979  // Root set access. ==========================================================
980  // ===========================================================================
981
982  // Heap root getters.
983#define ROOT_ACCESSOR(type, name, camel_name) inline type* name();
984  ROOT_LIST(ROOT_ACCESSOR)
985#undef ROOT_ACCESSOR
986
987  // Utility type maps.
988#define STRUCT_MAP_ACCESSOR(NAME, Name, name) inline Map* name##_map();
989  STRUCT_LIST(STRUCT_MAP_ACCESSOR)
990#undef STRUCT_MAP_ACCESSOR
991
992#define STRING_ACCESSOR(name, str) inline String* name();
993  INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
994#undef STRING_ACCESSOR
995
996#define SYMBOL_ACCESSOR(name) inline Symbol* name();
997  PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
998#undef SYMBOL_ACCESSOR
999
1000#define SYMBOL_ACCESSOR(name, description) inline Symbol* name();
1001  PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
1002  WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR)
1003#undef SYMBOL_ACCESSOR
1004
1005  Object* root(RootListIndex index) { return roots_[index]; }
1006  Handle<Object> root_handle(RootListIndex index) {
1007    return Handle<Object>(&roots_[index]);
1008  }
1009
1010  // Generated code can embed this address to get access to the roots.
1011  Object** roots_array_start() { return roots_; }
1012
1013  // Sets the stub_cache_ (only used when expanding the dictionary).
1014  void SetRootCodeStubs(UnseededNumberDictionary* value) {
1015    roots_[kCodeStubsRootIndex] = value;
1016  }
1017
1018  void SetRootMaterializedObjects(FixedArray* objects) {
1019    roots_[kMaterializedObjectsRootIndex] = objects;
1020  }
1021
1022  void SetRootScriptList(Object* value) {
1023    roots_[kScriptListRootIndex] = value;
1024  }
1025
1026  void SetRootStringTable(StringTable* value) {
1027    roots_[kStringTableRootIndex] = value;
1028  }
1029
1030  void SetRootNoScriptSharedFunctionInfos(Object* value) {
1031    roots_[kNoScriptSharedFunctionInfosRootIndex] = value;
1032  }
1033
1034  // Set the stack limit in the roots_ array.  Some architectures generate
1035  // code that looks here, because it is faster than loading from the static
1036  // jslimit_/real_jslimit_ variable in the StackGuard.
1037  void SetStackLimits();
1038
1039  // The stack limit is thread-dependent. To be able to reproduce the same
1040  // snapshot blob, we need to reset it before serializing.
1041  void ClearStackLimits();
1042
1043  // Generated code can treat direct references to this root as constant.
1044  bool RootCanBeTreatedAsConstant(RootListIndex root_index);
1045
1046  Map* MapForFixedTypedArray(ExternalArrayType array_type);
1047  RootListIndex RootIndexForFixedTypedArray(ExternalArrayType array_type);
1048
1049  RootListIndex RootIndexForEmptyFixedTypedArray(ElementsKind kind);
1050  FixedTypedArrayBase* EmptyFixedTypedArrayForMap(Map* map);
1051
1052  void RegisterStrongRoots(Object** start, Object** end);
1053  void UnregisterStrongRoots(Object** start);
1054
1055  // ===========================================================================
1056  // Inline allocation. ========================================================
1057  // ===========================================================================
1058
1059  // Indicates whether inline bump-pointer allocation has been disabled.
1060  bool inline_allocation_disabled() { return inline_allocation_disabled_; }
1061
1062  // Switch whether inline bump-pointer allocation should be used.
1063  void EnableInlineAllocation();
1064  void DisableInlineAllocation();
1065
1066  // ===========================================================================
1067  // Methods triggering GCs. ===================================================
1068  // ===========================================================================
1069
1070  // Performs garbage collection operation.
1071  // Returns whether there is a chance that another major GC could
1072  // collect more garbage.
1073  inline bool CollectGarbage(
1074      AllocationSpace space, const char* gc_reason = NULL,
1075      const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1076
1077  // Performs a full garbage collection.  If (flags & kMakeHeapIterableMask) is
1078  // non-zero, then the slower precise sweeper is used, which leaves the heap
1079  // in a state where we can iterate over the heap visiting all objects.
1080  void CollectAllGarbage(
1081      int flags = kFinalizeIncrementalMarkingMask, const char* gc_reason = NULL,
1082      const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1083
1084  // Last hope GC, should try to squeeze as much as possible.
1085  void CollectAllAvailableGarbage(const char* gc_reason = NULL);
1086
1087  // Reports and external memory pressure event, either performs a major GC or
1088  // completes incremental marking in order to free external resources.
1089  void ReportExternalMemoryPressure(const char* gc_reason = NULL);
1090
1091  // Invoked when GC was requested via the stack guard.
1092  void HandleGCRequest();
1093
1094  // ===========================================================================
1095  // Iterators. ================================================================
1096  // ===========================================================================
1097
1098  // Iterates over all roots in the heap.
1099  void IterateRoots(ObjectVisitor* v, VisitMode mode);
1100  // Iterates over all strong roots in the heap.
1101  void IterateStrongRoots(ObjectVisitor* v, VisitMode mode);
1102  // Iterates over entries in the smi roots list.  Only interesting to the
1103  // serializer/deserializer, since GC does not care about smis.
1104  void IterateSmiRoots(ObjectVisitor* v);
1105  // Iterates over all the other roots in the heap.
1106  void IterateWeakRoots(ObjectVisitor* v, VisitMode mode);
1107
1108  // Iterate pointers of promoted objects.
1109  void IteratePromotedObject(HeapObject* target, int size,
1110                             bool was_marked_black,
1111                             ObjectSlotCallback callback);
1112
1113  void IteratePromotedObjectPointers(HeapObject* object, Address start,
1114                                     Address end, bool record_slots,
1115                                     ObjectSlotCallback callback);
1116
1117  // ===========================================================================
1118  // Store buffer API. =========================================================
1119  // ===========================================================================
1120
1121  // Write barrier support for object[offset] = o;
1122  inline void RecordWrite(Object* object, int offset, Object* o);
1123  inline void RecordFixedArrayElements(FixedArray* array, int offset,
1124                                       int length);
1125
1126  Address* store_buffer_top_address() { return store_buffer()->top_address(); }
1127
1128  void ClearRecordedSlot(HeapObject* object, Object** slot);
1129  void ClearRecordedSlotRange(Address start, Address end);
1130
1131  // ===========================================================================
1132  // Incremental marking API. ==================================================
1133  // ===========================================================================
1134
1135  // Start incremental marking and ensure that idle time handler can perform
1136  // incremental steps.
1137  void StartIdleIncrementalMarking();
1138
1139  // Starts incremental marking assuming incremental marking is currently
1140  // stopped.
1141  void StartIncrementalMarking(int gc_flags = kNoGCFlags,
1142                               const GCCallbackFlags gc_callback_flags =
1143                                   GCCallbackFlags::kNoGCCallbackFlags,
1144                               const char* reason = nullptr);
1145
1146  void FinalizeIncrementalMarkingIfComplete(const char* comment);
1147
1148  bool TryFinalizeIdleIncrementalMarking(double idle_time_in_ms);
1149
1150  void RegisterReservationsForBlackAllocation(Reservation* reservations);
1151
1152  IncrementalMarking* incremental_marking() { return incremental_marking_; }
1153
1154  // ===========================================================================
1155  // External string table API. ================================================
1156  // ===========================================================================
1157
1158  // Registers an external string.
1159  inline void RegisterExternalString(String* string);
1160
1161  // Finalizes an external string by deleting the associated external
1162  // data and clearing the resource pointer.
1163  inline void FinalizeExternalString(String* string);
1164
1165  // ===========================================================================
1166  // Methods checking/returning the space of a given object/address. ===========
1167  // ===========================================================================
1168
1169  // Returns whether the object resides in new space.
1170  inline bool InNewSpace(Object* object);
1171  inline bool InFromSpace(Object* object);
1172  inline bool InToSpace(Object* object);
1173
1174  // Returns whether the object resides in old space.
1175  inline bool InOldSpace(Object* object);
1176
1177  // Checks whether an address/object in the heap (including auxiliary
1178  // area and unused area).
1179  bool Contains(HeapObject* value);
1180
1181  // Checks whether an address/object in a space.
1182  // Currently used by tests, serialization and heap verification only.
1183  bool InSpace(HeapObject* value, AllocationSpace space);
1184
1185  // Slow methods that can be used for verification as they can also be used
1186  // with off-heap Addresses.
1187  bool ContainsSlow(Address addr);
1188  bool InSpaceSlow(Address addr, AllocationSpace space);
1189  inline bool InNewSpaceSlow(Address address);
1190  inline bool InOldSpaceSlow(Address address);
1191
1192  // ===========================================================================
1193  // Object statistics tracking. ===============================================
1194  // ===========================================================================
1195
1196  // Returns the number of buckets used by object statistics tracking during a
1197  // major GC. Note that the following methods fail gracefully when the bounds
1198  // are exceeded though.
1199  size_t NumberOfTrackedHeapObjectTypes();
1200
1201  // Returns object statistics about count and size at the last major GC.
1202  // Objects are being grouped into buckets that roughly resemble existing
1203  // instance types.
1204  size_t ObjectCountAtLastGC(size_t index);
1205  size_t ObjectSizeAtLastGC(size_t index);
1206
1207  // Retrieves names of buckets used by object statistics tracking.
1208  bool GetObjectTypeName(size_t index, const char** object_type,
1209                         const char** object_sub_type);
1210
1211  // ===========================================================================
1212  // Code statistics. ==========================================================
1213  // ===========================================================================
1214
1215  // Collect code (Code and BytecodeArray objects) statistics.
1216  void CollectCodeStatistics();
1217
1218  // ===========================================================================
1219  // GC statistics. ============================================================
1220  // ===========================================================================
1221
1222  // Returns the maximum amount of memory reserved for the heap.
1223  intptr_t MaxReserved() {
1224    return 2 * max_semi_space_size_ + max_old_generation_size_;
1225  }
1226  int MaxSemiSpaceSize() { return max_semi_space_size_; }
1227  int InitialSemiSpaceSize() { return initial_semispace_size_; }
1228  intptr_t MaxOldGenerationSize() { return max_old_generation_size_; }
1229  intptr_t MaxExecutableSize() { return max_executable_size_; }
1230
1231  // Returns the capacity of the heap in bytes w/o growing. Heap grows when
1232  // more spaces are needed until it reaches the limit.
1233  intptr_t Capacity();
1234
1235  // Returns the capacity of the old generation.
1236  intptr_t OldGenerationCapacity();
1237
1238  // Returns the amount of memory currently committed for the heap.
1239  intptr_t CommittedMemory();
1240
1241  // Returns the amount of memory currently committed for the old space.
1242  intptr_t CommittedOldGenerationMemory();
1243
1244  // Returns the amount of executable memory currently committed for the heap.
1245  intptr_t CommittedMemoryExecutable();
1246
1247  // Returns the amount of phyical memory currently committed for the heap.
1248  size_t CommittedPhysicalMemory();
1249
1250  // Returns the maximum amount of memory ever committed for the heap.
1251  intptr_t MaximumCommittedMemory() { return maximum_committed_; }
1252
1253  // Updates the maximum committed memory for the heap. Should be called
1254  // whenever a space grows.
1255  void UpdateMaximumCommitted();
1256
1257  // Returns the available bytes in space w/o growing.
1258  // Heap doesn't guarantee that it can allocate an object that requires
1259  // all available bytes. Check MaxHeapObjectSize() instead.
1260  intptr_t Available();
1261
1262  // Returns of size of all objects residing in the heap.
1263  intptr_t SizeOfObjects();
1264
1265  void UpdateSurvivalStatistics(int start_new_space_size);
1266
1267  inline void IncrementPromotedObjectsSize(intptr_t object_size) {
1268    DCHECK_GE(object_size, 0);
1269    promoted_objects_size_ += object_size;
1270  }
1271  inline intptr_t promoted_objects_size() { return promoted_objects_size_; }
1272
1273  inline void IncrementSemiSpaceCopiedObjectSize(intptr_t object_size) {
1274    DCHECK_GE(object_size, 0);
1275    semi_space_copied_object_size_ += object_size;
1276  }
1277  inline intptr_t semi_space_copied_object_size() {
1278    return semi_space_copied_object_size_;
1279  }
1280
1281  inline intptr_t SurvivedNewSpaceObjectSize() {
1282    return promoted_objects_size_ + semi_space_copied_object_size_;
1283  }
1284
1285  inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; }
1286
1287  inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; }
1288
1289  inline void IncrementNodesPromoted() { nodes_promoted_++; }
1290
1291  inline void IncrementYoungSurvivorsCounter(intptr_t survived) {
1292    DCHECK_GE(survived, 0);
1293    survived_last_scavenge_ = survived;
1294    survived_since_last_expansion_ += survived;
1295  }
1296
1297  inline intptr_t PromotedTotalSize() {
1298    int64_t total = PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize();
1299    if (total > std::numeric_limits<intptr_t>::max()) {
1300      // TODO(erikcorry): Use uintptr_t everywhere we do heap size calculations.
1301      return std::numeric_limits<intptr_t>::max();
1302    }
1303    if (total < 0) return 0;
1304    return static_cast<intptr_t>(total);
1305  }
1306
1307  void UpdateNewSpaceAllocationCounter() {
1308    new_space_allocation_counter_ = NewSpaceAllocationCounter();
1309  }
1310
1311  size_t NewSpaceAllocationCounter() {
1312    return new_space_allocation_counter_ + new_space()->AllocatedSinceLastGC();
1313  }
1314
1315  // This should be used only for testing.
1316  void set_new_space_allocation_counter(size_t new_value) {
1317    new_space_allocation_counter_ = new_value;
1318  }
1319
1320  void UpdateOldGenerationAllocationCounter() {
1321    old_generation_allocation_counter_ = OldGenerationAllocationCounter();
1322  }
1323
1324  size_t OldGenerationAllocationCounter() {
1325    return old_generation_allocation_counter_ + PromotedSinceLastGC();
1326  }
1327
1328  // This should be used only for testing.
1329  void set_old_generation_allocation_counter(size_t new_value) {
1330    old_generation_allocation_counter_ = new_value;
1331  }
1332
1333  size_t PromotedSinceLastGC() {
1334    return PromotedSpaceSizeOfObjects() - old_generation_size_at_last_gc_;
1335  }
1336
1337  int gc_count() const { return gc_count_; }
1338
1339  // Returns the size of objects residing in non new spaces.
1340  intptr_t PromotedSpaceSizeOfObjects();
1341
1342  double total_regexp_code_generated() { return total_regexp_code_generated_; }
1343  void IncreaseTotalRegexpCodeGenerated(int size) {
1344    total_regexp_code_generated_ += size;
1345  }
1346
1347  void IncrementCodeGeneratedBytes(bool is_crankshafted, int size) {
1348    if (is_crankshafted) {
1349      crankshaft_codegen_bytes_generated_ += size;
1350    } else {
1351      full_codegen_bytes_generated_ += size;
1352    }
1353  }
1354
1355  // ===========================================================================
1356  // Prologue/epilogue callback methods.========================================
1357  // ===========================================================================
1358
1359  void AddGCPrologueCallback(v8::Isolate::GCCallback callback,
1360                             GCType gc_type_filter, bool pass_isolate = true);
1361  void RemoveGCPrologueCallback(v8::Isolate::GCCallback callback);
1362
1363  void AddGCEpilogueCallback(v8::Isolate::GCCallback callback,
1364                             GCType gc_type_filter, bool pass_isolate = true);
1365  void RemoveGCEpilogueCallback(v8::Isolate::GCCallback callback);
1366
1367  void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
1368  void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags);
1369
1370  // ===========================================================================
1371  // Allocation methods. =======================================================
1372  // ===========================================================================
1373
1374  // Creates a filler object and returns a heap object immediately after it.
1375  MUST_USE_RESULT HeapObject* PrecedeWithFiller(HeapObject* object,
1376                                                int filler_size);
1377
1378  // Creates a filler object if needed for alignment and returns a heap object
1379  // immediately after it. If any space is left after the returned object,
1380  // another filler object is created so the over allocated memory is iterable.
1381  MUST_USE_RESULT HeapObject* AlignWithFiller(HeapObject* object,
1382                                              int object_size,
1383                                              int allocation_size,
1384                                              AllocationAlignment alignment);
1385
1386  // ===========================================================================
1387  // ArrayBuffer tracking. =====================================================
1388  // ===========================================================================
1389
1390  void RegisterNewArrayBuffer(JSArrayBuffer* buffer);
1391  void UnregisterArrayBuffer(JSArrayBuffer* buffer);
1392
1393  // ===========================================================================
1394  // Allocation site tracking. =================================================
1395  // ===========================================================================
1396
1397  // Updates the AllocationSite of a given {object}. If the global prenuring
1398  // storage is passed as {pretenuring_feedback} the memento found count on
1399  // the corresponding allocation site is immediately updated and an entry
1400  // in the hash map is created. Otherwise the entry (including a the count
1401  // value) is cached on the local pretenuring feedback.
1402  template <UpdateAllocationSiteMode mode>
1403  inline void UpdateAllocationSite(HeapObject* object,
1404                                   base::HashMap* pretenuring_feedback);
1405
1406  // Removes an entry from the global pretenuring storage.
1407  inline void RemoveAllocationSitePretenuringFeedback(AllocationSite* site);
1408
1409  // Merges local pretenuring feedback into the global one. Note that this
1410  // method needs to be called after evacuation, as allocation sites may be
1411  // evacuated and this method resolves forward pointers accordingly.
1412  void MergeAllocationSitePretenuringFeedback(
1413      const base::HashMap& local_pretenuring_feedback);
1414
1415// =============================================================================
1416
1417#ifdef VERIFY_HEAP
1418  // Verify the heap is in its normal state before or after a GC.
1419  void Verify();
1420#endif
1421
1422#ifdef DEBUG
1423  void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; }
1424
1425  void TracePathToObjectFrom(Object* target, Object* root);
1426  void TracePathToObject(Object* target);
1427  void TracePathToGlobal();
1428
1429  void Print();
1430  void PrintHandles();
1431
1432  // Report heap statistics.
1433  void ReportHeapStatistics(const char* title);
1434  void ReportCodeStatistics(const char* title);
1435#endif
1436
1437 private:
1438  class PretenuringScope;
1439
1440  // External strings table is a place where all external strings are
1441  // registered.  We need to keep track of such strings to properly
1442  // finalize them.
1443  class ExternalStringTable {
1444   public:
1445    // Registers an external string.
1446    inline void AddString(String* string);
1447
1448    inline void Iterate(ObjectVisitor* v);
1449
1450    // Restores internal invariant and gets rid of collected strings.
1451    // Must be called after each Iterate() that modified the strings.
1452    void CleanUp();
1453
1454    // Destroys all allocated memory.
1455    void TearDown();
1456
1457   private:
1458    explicit ExternalStringTable(Heap* heap) : heap_(heap) {}
1459
1460    inline void Verify();
1461
1462    inline void AddOldString(String* string);
1463
1464    // Notifies the table that only a prefix of the new list is valid.
1465    inline void ShrinkNewStrings(int position);
1466
1467    // To speed up scavenge collections new space string are kept
1468    // separate from old space strings.
1469    List<Object*> new_space_strings_;
1470    List<Object*> old_space_strings_;
1471
1472    Heap* heap_;
1473
1474    friend class Heap;
1475
1476    DISALLOW_COPY_AND_ASSIGN(ExternalStringTable);
1477  };
1478
1479  struct StrongRootsList;
1480
1481  struct StringTypeTable {
1482    InstanceType type;
1483    int size;
1484    RootListIndex index;
1485  };
1486
1487  struct ConstantStringTable {
1488    const char* contents;
1489    RootListIndex index;
1490  };
1491
1492  struct StructTable {
1493    InstanceType type;
1494    int size;
1495    RootListIndex index;
1496  };
1497
1498  struct GCCallbackPair {
1499    GCCallbackPair(v8::Isolate::GCCallback callback, GCType gc_type,
1500                   bool pass_isolate)
1501        : callback(callback), gc_type(gc_type), pass_isolate(pass_isolate) {}
1502
1503    bool operator==(const GCCallbackPair& other) const {
1504      return other.callback == callback;
1505    }
1506
1507    v8::Isolate::GCCallback callback;
1508    GCType gc_type;
1509    bool pass_isolate;
1510  };
1511
1512  typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap,
1513                                                        Object** pointer);
1514
1515  static const int kInitialStringTableSize = 2048;
1516  static const int kInitialEvalCacheSize = 64;
1517  static const int kInitialNumberStringCacheSize = 256;
1518
1519  static const int kRememberedUnmappedPages = 128;
1520
1521  static const StringTypeTable string_type_table[];
1522  static const ConstantStringTable constant_string_table[];
1523  static const StructTable struct_table[];
1524
1525  static const int kYoungSurvivalRateHighThreshold = 90;
1526  static const int kYoungSurvivalRateAllowedDeviation = 15;
1527  static const int kOldSurvivalRateLowThreshold = 10;
1528
1529  static const int kMaxMarkCompactsInIdleRound = 7;
1530  static const int kIdleScavengeThreshold = 5;
1531
1532  static const int kInitialFeedbackCapacity = 256;
1533
1534  Heap();
1535
1536  static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
1537      Heap* heap, Object** pointer);
1538
1539  // Selects the proper allocation space based on the pretenuring decision.
1540  static AllocationSpace SelectSpace(PretenureFlag pretenure) {
1541    return (pretenure == TENURED) ? OLD_SPACE : NEW_SPACE;
1542  }
1543
1544#define ROOT_ACCESSOR(type, name, camel_name) \
1545  inline void set_##name(type* value);
1546  ROOT_LIST(ROOT_ACCESSOR)
1547#undef ROOT_ACCESSOR
1548
1549  StoreBuffer* store_buffer() { return &store_buffer_; }
1550
1551  void set_current_gc_flags(int flags) {
1552    current_gc_flags_ = flags;
1553    DCHECK(!ShouldFinalizeIncrementalMarking() ||
1554           !ShouldAbortIncrementalMarking());
1555  }
1556
1557  inline bool ShouldReduceMemory() const {
1558    return current_gc_flags_ & kReduceMemoryFootprintMask;
1559  }
1560
1561  inline bool ShouldAbortIncrementalMarking() const {
1562    return current_gc_flags_ & kAbortIncrementalMarkingMask;
1563  }
1564
1565  inline bool ShouldFinalizeIncrementalMarking() const {
1566    return current_gc_flags_ & kFinalizeIncrementalMarkingMask;
1567  }
1568
1569  void PreprocessStackTraces();
1570
1571  // Checks whether a global GC is necessary
1572  GarbageCollector SelectGarbageCollector(AllocationSpace space,
1573                                          const char** reason);
1574
1575  // Make sure there is a filler value behind the top of the new space
1576  // so that the GC does not confuse some unintialized/stale memory
1577  // with the allocation memento of the object at the top
1578  void EnsureFillerObjectAtTop();
1579
1580  // Ensure that we have swept all spaces in such a way that we can iterate
1581  // over all objects.  May cause a GC.
1582  void MakeHeapIterable();
1583
1584  // Performs garbage collection operation.
1585  // Returns whether there is a chance that another major GC could
1586  // collect more garbage.
1587  bool CollectGarbage(
1588      GarbageCollector collector, const char* gc_reason,
1589      const char* collector_reason,
1590      const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1591
1592  // Performs garbage collection
1593  // Returns whether there is a chance another major GC could
1594  // collect more garbage.
1595  bool PerformGarbageCollection(
1596      GarbageCollector collector,
1597      const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1598
1599  inline void UpdateOldSpaceLimits();
1600
1601  // Initializes a JSObject based on its map.
1602  void InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties,
1603                                 Map* map);
1604
1605  // Initializes JSObject body starting at given offset.
1606  void InitializeJSObjectBody(JSObject* obj, Map* map, int start_offset);
1607
1608  void InitializeAllocationMemento(AllocationMemento* memento,
1609                                   AllocationSite* allocation_site);
1610
1611  bool CreateInitialMaps();
1612  void CreateInitialObjects();
1613
1614  // These five Create*EntryStub functions are here and forced to not be inlined
1615  // because of a gcc-4.4 bug that assigns wrong vtable entries.
1616  NO_INLINE(void CreateJSEntryStub());
1617  NO_INLINE(void CreateJSConstructEntryStub());
1618
1619  void CreateFixedStubs();
1620
1621  HeapObject* DoubleAlignForDeserialization(HeapObject* object, int size);
1622
1623  // Commits from space if it is uncommitted.
1624  void EnsureFromSpaceIsCommitted();
1625
1626  // Uncommit unused semi space.
1627  bool UncommitFromSpace() { return new_space_.UncommitFromSpace(); }
1628
1629  // Fill in bogus values in from space
1630  void ZapFromSpace();
1631
1632  // Deopts all code that contains allocation instruction which are tenured or
1633  // not tenured. Moreover it clears the pretenuring allocation site statistics.
1634  void ResetAllAllocationSitesDependentCode(PretenureFlag flag);
1635
1636  // Evaluates local pretenuring for the old space and calls
1637  // ResetAllTenuredAllocationSitesDependentCode if too many objects died in
1638  // the old space.
1639  void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc);
1640
1641  // Record statistics before and after garbage collection.
1642  void ReportStatisticsBeforeGC();
1643  void ReportStatisticsAfterGC();
1644
1645  // Creates and installs the full-sized number string cache.
1646  int FullSizeNumberStringCacheLength();
1647  // Flush the number to string cache.
1648  void FlushNumberStringCache();
1649
1650  // TODO(hpayer): Allocation site pretenuring may make this method obsolete.
1651  // Re-visit incremental marking heuristics.
1652  bool IsHighSurvivalRate() { return high_survival_rate_period_length_ > 0; }
1653
1654  void ConfigureInitialOldGenerationSize();
1655
1656  bool HasLowYoungGenerationAllocationRate();
1657  bool HasLowOldGenerationAllocationRate();
1658  double YoungGenerationMutatorUtilization();
1659  double OldGenerationMutatorUtilization();
1660
1661  void ReduceNewSpaceSize();
1662
1663  bool TryFinalizeIdleIncrementalMarking(
1664      double idle_time_in_ms, size_t size_of_objects,
1665      size_t mark_compact_speed_in_bytes_per_ms);
1666
1667  GCIdleTimeHeapState ComputeHeapState();
1668
1669  bool PerformIdleTimeAction(GCIdleTimeAction action,
1670                             GCIdleTimeHeapState heap_state,
1671                             double deadline_in_ms);
1672
1673  void IdleNotificationEpilogue(GCIdleTimeAction action,
1674                                GCIdleTimeHeapState heap_state, double start_ms,
1675                                double deadline_in_ms);
1676
1677  inline void UpdateAllocationsHash(HeapObject* object);
1678  inline void UpdateAllocationsHash(uint32_t value);
1679  void PrintAlloctionsHash();
1680
1681  void AddToRingBuffer(const char* string);
1682  void GetFromRingBuffer(char* buffer);
1683
1684  void CompactRetainedMaps(ArrayList* retained_maps);
1685
1686  void CollectGarbageOnMemoryPressure(const char* source);
1687
1688  // Attempt to over-approximate the weak closure by marking object groups and
1689  // implicit references from global handles, but don't atomically complete
1690  // marking. If we continue to mark incrementally, we might have marked
1691  // objects that die later.
1692  void FinalizeIncrementalMarking(const char* gc_reason);
1693
1694  // Returns the timer used for a given GC type.
1695  // - GCScavenger: young generation GC
1696  // - GCCompactor: full GC
1697  // - GCFinalzeMC: finalization of incremental full GC
1698  // - GCFinalizeMCReduceMemory: finalization of incremental full GC with
1699  // memory reduction
1700  HistogramTimer* GCTypeTimer(GarbageCollector collector);
1701
1702  // ===========================================================================
1703  // Pretenuring. ==============================================================
1704  // ===========================================================================
1705
1706  // Pretenuring decisions are made based on feedback collected during new space
1707  // evacuation. Note that between feedback collection and calling this method
1708  // object in old space must not move.
1709  void ProcessPretenuringFeedback();
1710
1711  // ===========================================================================
1712  // Actual GC. ================================================================
1713  // ===========================================================================
1714
1715  // Code that should be run before and after each GC.  Includes some
1716  // reporting/verification activities when compiled with DEBUG set.
1717  void GarbageCollectionPrologue();
1718  void GarbageCollectionEpilogue();
1719
1720  // Performs a major collection in the whole heap.
1721  void MarkCompact();
1722
1723  // Code to be run before and after mark-compact.
1724  void MarkCompactPrologue();
1725  void MarkCompactEpilogue();
1726
1727  // Performs a minor collection in new generation.
1728  void Scavenge();
1729
1730  Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front,
1731                     PromotionMode promotion_mode);
1732
1733  void UpdateNewSpaceReferencesInExternalStringTable(
1734      ExternalStringTableUpdaterCallback updater_func);
1735
1736  void UpdateReferencesInExternalStringTable(
1737      ExternalStringTableUpdaterCallback updater_func);
1738
1739  void ProcessAllWeakReferences(WeakObjectRetainer* retainer);
1740  void ProcessYoungWeakReferences(WeakObjectRetainer* retainer);
1741  void ProcessNativeContexts(WeakObjectRetainer* retainer);
1742  void ProcessAllocationSites(WeakObjectRetainer* retainer);
1743  void ProcessWeakListRoots(WeakObjectRetainer* retainer);
1744
1745  // ===========================================================================
1746  // GC statistics. ============================================================
1747  // ===========================================================================
1748
1749  inline intptr_t OldGenerationSpaceAvailable() {
1750    return old_generation_allocation_limit_ - PromotedTotalSize();
1751  }
1752
1753  // Returns maximum GC pause.
1754  double get_max_gc_pause() { return max_gc_pause_; }
1755
1756  // Returns maximum size of objects alive after GC.
1757  intptr_t get_max_alive_after_gc() { return max_alive_after_gc_; }
1758
1759  // Returns minimal interval between two subsequent collections.
1760  double get_min_in_mutator() { return min_in_mutator_; }
1761
1762  // Update GC statistics that are tracked on the Heap.
1763  void UpdateCumulativeGCStatistics(double duration, double spent_in_mutator,
1764                                    double marking_time);
1765
1766  bool MaximumSizeScavenge() { return maximum_size_scavenges_ > 0; }
1767
1768  // ===========================================================================
1769  // Growing strategy. =========================================================
1770  // ===========================================================================
1771
1772  // Decrease the allocation limit if the new limit based on the given
1773  // parameters is lower than the current limit.
1774  void DampenOldGenerationAllocationLimit(intptr_t old_gen_size,
1775                                          double gc_speed,
1776                                          double mutator_speed);
1777
1778
1779  // Calculates the allocation limit based on a given growing factor and a
1780  // given old generation size.
1781  intptr_t CalculateOldGenerationAllocationLimit(double factor,
1782                                                 intptr_t old_gen_size);
1783
1784  // Sets the allocation limit to trigger the next full garbage collection.
1785  void SetOldGenerationAllocationLimit(intptr_t old_gen_size, double gc_speed,
1786                                       double mutator_speed);
1787
1788  // ===========================================================================
1789  // Idle notification. ========================================================
1790  // ===========================================================================
1791
1792  bool RecentIdleNotificationHappened();
1793  void ScheduleIdleScavengeIfNeeded(int bytes_allocated);
1794
1795  // ===========================================================================
1796  // HeapIterator helpers. =====================================================
1797  // ===========================================================================
1798
1799  void heap_iterator_start() { heap_iterator_depth_++; }
1800
1801  void heap_iterator_end() { heap_iterator_depth_--; }
1802
1803  bool in_heap_iterator() { return heap_iterator_depth_ > 0; }
1804
1805  // ===========================================================================
1806  // Allocation methods. =======================================================
1807  // ===========================================================================
1808
1809  // Returns a deep copy of the JavaScript object.
1810  // Properties and elements are copied too.
1811  // Optionally takes an AllocationSite to be appended in an AllocationMemento.
1812  MUST_USE_RESULT AllocationResult CopyJSObject(JSObject* source,
1813                                                AllocationSite* site = NULL);
1814
1815  // Allocates a JS Map in the heap.
1816  MUST_USE_RESULT AllocationResult
1817  AllocateMap(InstanceType instance_type, int instance_size,
1818              ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
1819
1820  // Allocates and initializes a new JavaScript object based on a
1821  // constructor.
1822  // If allocation_site is non-null, then a memento is emitted after the object
1823  // that points to the site.
1824  MUST_USE_RESULT AllocationResult AllocateJSObject(
1825      JSFunction* constructor, PretenureFlag pretenure = NOT_TENURED,
1826      AllocationSite* allocation_site = NULL);
1827
1828  // Allocates and initializes a new JavaScript object based on a map.
1829  // Passing an allocation site means that a memento will be created that
1830  // points to the site.
1831  MUST_USE_RESULT AllocationResult
1832  AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure = NOT_TENURED,
1833                          AllocationSite* allocation_site = NULL);
1834
1835  // Allocates a HeapNumber from value.
1836  MUST_USE_RESULT AllocationResult
1837  AllocateHeapNumber(double value, MutableMode mode = IMMUTABLE,
1838                     PretenureFlag pretenure = NOT_TENURED);
1839
1840// Allocates SIMD values from the given lane values.
1841#define SIMD_ALLOCATE_DECLARATION(TYPE, Type, type, lane_count, lane_type) \
1842  AllocationResult Allocate##Type(lane_type lanes[lane_count],             \
1843                                  PretenureFlag pretenure = NOT_TENURED);
1844  SIMD128_TYPES(SIMD_ALLOCATE_DECLARATION)
1845#undef SIMD_ALLOCATE_DECLARATION
1846
1847  // Allocates a byte array of the specified length
1848  MUST_USE_RESULT AllocationResult
1849  AllocateByteArray(int length, PretenureFlag pretenure = NOT_TENURED);
1850
1851  // Allocates a bytecode array with given contents.
1852  MUST_USE_RESULT AllocationResult
1853  AllocateBytecodeArray(int length, const byte* raw_bytecodes, int frame_size,
1854                        int parameter_count, FixedArray* constant_pool);
1855
1856  MUST_USE_RESULT AllocationResult CopyCode(Code* code);
1857
1858  MUST_USE_RESULT AllocationResult
1859  CopyBytecodeArray(BytecodeArray* bytecode_array);
1860
1861  // Allocates a fixed array initialized with undefined values
1862  MUST_USE_RESULT AllocationResult
1863  AllocateFixedArray(int length, PretenureFlag pretenure = NOT_TENURED);
1864
1865  // Allocate an uninitialized object.  The memory is non-executable if the
1866  // hardware and OS allow.  This is the single choke-point for allocations
1867  // performed by the runtime and should not be bypassed (to extend this to
1868  // inlined allocations, use the Heap::DisableInlineAllocation() support).
1869  MUST_USE_RESULT inline AllocationResult AllocateRaw(
1870      int size_in_bytes, AllocationSpace space,
1871      AllocationAlignment aligment = kWordAligned);
1872
1873  // Allocates a heap object based on the map.
1874  MUST_USE_RESULT AllocationResult
1875      Allocate(Map* map, AllocationSpace space,
1876               AllocationSite* allocation_site = NULL);
1877
1878  // Allocates a partial map for bootstrapping.
1879  MUST_USE_RESULT AllocationResult
1880      AllocatePartialMap(InstanceType instance_type, int instance_size);
1881
1882  // Allocate a block of memory in the given space (filled with a filler).
1883  // Used as a fall-back for generated code when the space is full.
1884  MUST_USE_RESULT AllocationResult
1885      AllocateFillerObject(int size, bool double_align, AllocationSpace space);
1886
1887  // Allocate an uninitialized fixed array.
1888  MUST_USE_RESULT AllocationResult
1889      AllocateRawFixedArray(int length, PretenureFlag pretenure);
1890
1891  // Allocate an uninitialized fixed double array.
1892  MUST_USE_RESULT AllocationResult
1893      AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure);
1894
1895  // Allocate an initialized fixed array with the given filler value.
1896  MUST_USE_RESULT AllocationResult
1897      AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure,
1898                                   Object* filler);
1899
1900  // Allocate and partially initializes a String.  There are two String
1901  // encodings: one-byte and two-byte.  These functions allocate a string of
1902  // the given length and set its map and length fields.  The characters of
1903  // the string are uninitialized.
1904  MUST_USE_RESULT AllocationResult
1905      AllocateRawOneByteString(int length, PretenureFlag pretenure);
1906  MUST_USE_RESULT AllocationResult
1907      AllocateRawTwoByteString(int length, PretenureFlag pretenure);
1908
1909  // Allocates an internalized string in old space based on the character
1910  // stream.
1911  MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringFromUtf8(
1912      Vector<const char> str, int chars, uint32_t hash_field);
1913
1914  MUST_USE_RESULT inline AllocationResult AllocateOneByteInternalizedString(
1915      Vector<const uint8_t> str, uint32_t hash_field);
1916
1917  MUST_USE_RESULT inline AllocationResult AllocateTwoByteInternalizedString(
1918      Vector<const uc16> str, uint32_t hash_field);
1919
1920  template <bool is_one_byte, typename T>
1921  MUST_USE_RESULT AllocationResult
1922      AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field);
1923
1924  template <typename T>
1925  MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringImpl(
1926      T t, int chars, uint32_t hash_field);
1927
1928  // Allocates an uninitialized fixed array. It must be filled by the caller.
1929  MUST_USE_RESULT AllocationResult AllocateUninitializedFixedArray(int length);
1930
1931  // Make a copy of src and return it.
1932  MUST_USE_RESULT inline AllocationResult CopyFixedArray(FixedArray* src);
1933
1934  // Make a copy of src, also grow the copy, and return the copy.
1935  MUST_USE_RESULT AllocationResult
1936  CopyFixedArrayAndGrow(FixedArray* src, int grow_by, PretenureFlag pretenure);
1937
1938  // Make a copy of src, also grow the copy, and return the copy.
1939  MUST_USE_RESULT AllocationResult CopyFixedArrayUpTo(FixedArray* src,
1940                                                      int new_len,
1941                                                      PretenureFlag pretenure);
1942
1943  // Make a copy of src, set the map, and return the copy.
1944  MUST_USE_RESULT AllocationResult
1945      CopyFixedArrayWithMap(FixedArray* src, Map* map);
1946
1947  // Make a copy of src and return it.
1948  MUST_USE_RESULT inline AllocationResult CopyFixedDoubleArray(
1949      FixedDoubleArray* src);
1950
1951  // Computes a single character string where the character has code.
1952  // A cache is used for one-byte (Latin1) codes.
1953  MUST_USE_RESULT AllocationResult
1954      LookupSingleCharacterStringFromCode(uint16_t code);
1955
1956  // Allocate a symbol in old space.
1957  MUST_USE_RESULT AllocationResult AllocateSymbol();
1958
1959  // Allocates an external array of the specified length and type.
1960  MUST_USE_RESULT AllocationResult AllocateFixedTypedArrayWithExternalPointer(
1961      int length, ExternalArrayType array_type, void* external_pointer,
1962      PretenureFlag pretenure);
1963
1964  // Allocates a fixed typed array of the specified length and type.
1965  MUST_USE_RESULT AllocationResult
1966  AllocateFixedTypedArray(int length, ExternalArrayType array_type,
1967                          bool initialize, PretenureFlag pretenure);
1968
1969  // Make a copy of src and return it.
1970  MUST_USE_RESULT AllocationResult CopyAndTenureFixedCOWArray(FixedArray* src);
1971
1972  // Make a copy of src, set the map, and return the copy.
1973  MUST_USE_RESULT AllocationResult
1974      CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map);
1975
1976  // Allocates a fixed double array with uninitialized values. Returns
1977  MUST_USE_RESULT AllocationResult AllocateUninitializedFixedDoubleArray(
1978      int length, PretenureFlag pretenure = NOT_TENURED);
1979
1980  // Allocate empty fixed array.
1981  MUST_USE_RESULT AllocationResult AllocateEmptyFixedArray();
1982
1983  // Allocate empty fixed typed array of given type.
1984  MUST_USE_RESULT AllocationResult
1985      AllocateEmptyFixedTypedArray(ExternalArrayType array_type);
1986
1987  // Allocate a tenured simple cell.
1988  MUST_USE_RESULT AllocationResult AllocateCell(Object* value);
1989
1990  // Allocate a tenured JS global property cell initialized with the hole.
1991  MUST_USE_RESULT AllocationResult AllocatePropertyCell();
1992
1993  MUST_USE_RESULT AllocationResult AllocateWeakCell(HeapObject* value);
1994
1995  MUST_USE_RESULT AllocationResult AllocateTransitionArray(int capacity);
1996
1997  // Allocates a new utility object in the old generation.
1998  MUST_USE_RESULT AllocationResult AllocateStruct(InstanceType type);
1999
2000  // Allocates a new foreign object.
2001  MUST_USE_RESULT AllocationResult
2002      AllocateForeign(Address address, PretenureFlag pretenure = NOT_TENURED);
2003
2004  MUST_USE_RESULT AllocationResult
2005      AllocateCode(int object_size, bool immovable);
2006
2007  MUST_USE_RESULT AllocationResult InternalizeStringWithKey(HashTableKey* key);
2008
2009  MUST_USE_RESULT AllocationResult InternalizeString(String* str);
2010
2011  // ===========================================================================
2012
2013  void set_force_oom(bool value) { force_oom_ = value; }
2014
2015  // The amount of external memory registered through the API.
2016  int64_t external_memory_;
2017
2018  // The limit when to trigger memory pressure from the API.
2019  int64_t external_memory_limit_;
2020
2021  // Caches the amount of external memory registered at the last MC.
2022  int64_t external_memory_at_last_mark_compact_;
2023
2024  // The amount of memory that has been freed concurrently.
2025  base::AtomicNumber<intptr_t> external_memory_concurrently_freed_;
2026
2027  // This can be calculated directly from a pointer to the heap; however, it is
2028  // more expedient to get at the isolate directly from within Heap methods.
2029  Isolate* isolate_;
2030
2031  Object* roots_[kRootListLength];
2032
2033  size_t code_range_size_;
2034  int max_semi_space_size_;
2035  int initial_semispace_size_;
2036  intptr_t max_old_generation_size_;
2037  intptr_t initial_old_generation_size_;
2038  bool old_generation_size_configured_;
2039  intptr_t max_executable_size_;
2040  intptr_t maximum_committed_;
2041
2042  // For keeping track of how much data has survived
2043  // scavenge since last new space expansion.
2044  intptr_t survived_since_last_expansion_;
2045
2046  // ... and since the last scavenge.
2047  intptr_t survived_last_scavenge_;
2048
2049  // This is not the depth of nested AlwaysAllocateScope's but rather a single
2050  // count, as scopes can be acquired from multiple tasks (read: threads).
2051  base::AtomicNumber<size_t> always_allocate_scope_count_;
2052
2053  // Stores the memory pressure level that set by MemoryPressureNotification
2054  // and reset by a mark-compact garbage collection.
2055  base::AtomicValue<MemoryPressureLevel> memory_pressure_level_;
2056
2057  // For keeping track of context disposals.
2058  int contexts_disposed_;
2059
2060  // The length of the retained_maps array at the time of context disposal.
2061  // This separates maps in the retained_maps array that were created before
2062  // and after context disposal.
2063  int number_of_disposed_maps_;
2064
2065  int global_ic_age_;
2066
2067  NewSpace new_space_;
2068  OldSpace* old_space_;
2069  OldSpace* code_space_;
2070  MapSpace* map_space_;
2071  LargeObjectSpace* lo_space_;
2072  HeapState gc_state_;
2073  int gc_post_processing_depth_;
2074  Address new_space_top_after_last_gc_;
2075
2076  // Returns the amount of external memory registered since last global gc.
2077  int64_t PromotedExternalMemorySize();
2078
2079  // How many "runtime allocations" happened.
2080  uint32_t allocations_count_;
2081
2082  // Running hash over allocations performed.
2083  uint32_t raw_allocations_hash_;
2084
2085  // How many mark-sweep collections happened.
2086  unsigned int ms_count_;
2087
2088  // How many gc happened.
2089  unsigned int gc_count_;
2090
2091  // For post mortem debugging.
2092  int remembered_unmapped_pages_index_;
2093  Address remembered_unmapped_pages_[kRememberedUnmappedPages];
2094
2095#ifdef DEBUG
2096  // If the --gc-interval flag is set to a positive value, this
2097  // variable holds the value indicating the number of allocations
2098  // remain until the next failure and garbage collection.
2099  int allocation_timeout_;
2100#endif  // DEBUG
2101
2102  // Limit that triggers a global GC on the next (normally caused) GC.  This
2103  // is checked when we have already decided to do a GC to help determine
2104  // which collector to invoke, before expanding a paged space in the old
2105  // generation and on every allocation in large object space.
2106  intptr_t old_generation_allocation_limit_;
2107
2108  // Indicates that an allocation has failed in the old generation since the
2109  // last GC.
2110  bool old_gen_exhausted_;
2111
2112  // Indicates that memory usage is more important than latency.
2113  // TODO(ulan): Merge it with memory reducer once chromium:490559 is fixed.
2114  bool optimize_for_memory_usage_;
2115
2116  // Indicates that inline bump-pointer allocation has been globally disabled
2117  // for all spaces. This is used to disable allocations in generated code.
2118  bool inline_allocation_disabled_;
2119
2120  // Weak list heads, threaded through the objects.
2121  // List heads are initialized lazily and contain the undefined_value at start.
2122  Object* native_contexts_list_;
2123  Object* allocation_sites_list_;
2124
2125  // List of encountered weak collections (JSWeakMap and JSWeakSet) during
2126  // marking. It is initialized during marking, destroyed after marking and
2127  // contains Smi(0) while marking is not active.
2128  Object* encountered_weak_collections_;
2129
2130  Object* encountered_weak_cells_;
2131
2132  Object* encountered_transition_arrays_;
2133
2134  List<GCCallbackPair> gc_epilogue_callbacks_;
2135  List<GCCallbackPair> gc_prologue_callbacks_;
2136
2137  // Total RegExp code ever generated
2138  double total_regexp_code_generated_;
2139
2140  int deferred_counters_[v8::Isolate::kUseCounterFeatureCount];
2141
2142  GCTracer* tracer_;
2143
2144  int high_survival_rate_period_length_;
2145  intptr_t promoted_objects_size_;
2146  double promotion_ratio_;
2147  double promotion_rate_;
2148  intptr_t semi_space_copied_object_size_;
2149  intptr_t previous_semi_space_copied_object_size_;
2150  double semi_space_copied_rate_;
2151  int nodes_died_in_new_space_;
2152  int nodes_copied_in_new_space_;
2153  int nodes_promoted_;
2154
2155  // This is the pretenuring trigger for allocation sites that are in maybe
2156  // tenure state. When we switched to the maximum new space size we deoptimize
2157  // the code that belongs to the allocation site and derive the lifetime
2158  // of the allocation site.
2159  unsigned int maximum_size_scavenges_;
2160
2161  // Maximum GC pause.
2162  double max_gc_pause_;
2163
2164  // Total time spent in GC.
2165  double total_gc_time_ms_;
2166
2167  // Maximum size of objects alive after GC.
2168  intptr_t max_alive_after_gc_;
2169
2170  // Minimal interval between two subsequent collections.
2171  double min_in_mutator_;
2172
2173  // Cumulative GC time spent in marking.
2174  double marking_time_;
2175
2176  // Cumulative GC time spent in sweeping.
2177  double sweeping_time_;
2178
2179  // Last time an idle notification happened.
2180  double last_idle_notification_time_;
2181
2182  // Last time a garbage collection happened.
2183  double last_gc_time_;
2184
2185  Scavenger* scavenge_collector_;
2186
2187  MarkCompactCollector* mark_compact_collector_;
2188
2189  MemoryAllocator* memory_allocator_;
2190
2191  StoreBuffer store_buffer_;
2192
2193  IncrementalMarking* incremental_marking_;
2194
2195  GCIdleTimeHandler* gc_idle_time_handler_;
2196
2197  MemoryReducer* memory_reducer_;
2198
2199  ObjectStats* object_stats_;
2200
2201  ScavengeJob* scavenge_job_;
2202
2203  AllocationObserver* idle_scavenge_observer_;
2204
2205  // These two counters are monotomically increasing and never reset.
2206  size_t full_codegen_bytes_generated_;
2207  size_t crankshaft_codegen_bytes_generated_;
2208
2209  // This counter is increased before each GC and never reset.
2210  // To account for the bytes allocated since the last GC, use the
2211  // NewSpaceAllocationCounter() function.
2212  size_t new_space_allocation_counter_;
2213
2214  // This counter is increased before each GC and never reset. To
2215  // account for the bytes allocated since the last GC, use the
2216  // OldGenerationAllocationCounter() function.
2217  size_t old_generation_allocation_counter_;
2218
2219  // The size of objects in old generation after the last MarkCompact GC.
2220  size_t old_generation_size_at_last_gc_;
2221
2222  // If the --deopt_every_n_garbage_collections flag is set to a positive value,
2223  // this variable holds the number of garbage collections since the last
2224  // deoptimization triggered by garbage collection.
2225  int gcs_since_last_deopt_;
2226
2227  // The feedback storage is used to store allocation sites (keys) and how often
2228  // they have been visited (values) by finding a memento behind an object. The
2229  // storage is only alive temporary during a GC. The invariant is that all
2230  // pointers in this map are already fixed, i.e., they do not point to
2231  // forwarding pointers.
2232  base::HashMap* global_pretenuring_feedback_;
2233
2234  char trace_ring_buffer_[kTraceRingBufferSize];
2235  // If it's not full then the data is from 0 to ring_buffer_end_.  If it's
2236  // full then the data is from ring_buffer_end_ to the end of the buffer and
2237  // from 0 to ring_buffer_end_.
2238  bool ring_buffer_full_;
2239  size_t ring_buffer_end_;
2240
2241  // Shared state read by the scavenge collector and set by ScavengeObject.
2242  PromotionQueue promotion_queue_;
2243
2244  // Flag is set when the heap has been configured.  The heap can be repeatedly
2245  // configured through the API until it is set up.
2246  bool configured_;
2247
2248  // Currently set GC flags that are respected by all GC components.
2249  int current_gc_flags_;
2250
2251  // Currently set GC callback flags that are used to pass information between
2252  // the embedder and V8's GC.
2253  GCCallbackFlags current_gc_callback_flags_;
2254
2255  ExternalStringTable external_string_table_;
2256
2257  base::Mutex relocation_mutex_;
2258
2259  int gc_callbacks_depth_;
2260
2261  bool deserialization_complete_;
2262
2263  StrongRootsList* strong_roots_list_;
2264
2265  // The depth of HeapIterator nestings.
2266  int heap_iterator_depth_;
2267
2268  // Used for testing purposes.
2269  bool force_oom_;
2270
2271  // Classes in "heap" can be friends.
2272  friend class AlwaysAllocateScope;
2273  friend class GCCallbacksScope;
2274  friend class GCTracer;
2275  friend class HeapIterator;
2276  friend class IdleScavengeObserver;
2277  friend class IncrementalMarking;
2278  friend class IteratePromotedObjectsVisitor;
2279  friend class MarkCompactCollector;
2280  friend class MarkCompactMarkingVisitor;
2281  friend class NewSpace;
2282  friend class ObjectStatsCollector;
2283  friend class Page;
2284  friend class Scavenger;
2285  friend class StoreBuffer;
2286  friend class TestMemoryAllocatorScope;
2287
2288  // The allocator interface.
2289  friend class Factory;
2290
2291  // The Isolate constructs us.
2292  friend class Isolate;
2293
2294  // Used in cctest.
2295  friend class HeapTester;
2296
2297  DISALLOW_COPY_AND_ASSIGN(Heap);
2298};
2299
2300
2301class HeapStats {
2302 public:
2303  static const int kStartMarker = 0xDECADE00;
2304  static const int kEndMarker = 0xDECADE01;
2305
2306  int* start_marker;                       //  0
2307  int* new_space_size;                     //  1
2308  int* new_space_capacity;                 //  2
2309  intptr_t* old_space_size;                //  3
2310  intptr_t* old_space_capacity;            //  4
2311  intptr_t* code_space_size;               //  5
2312  intptr_t* code_space_capacity;           //  6
2313  intptr_t* map_space_size;                //  7
2314  intptr_t* map_space_capacity;            //  8
2315  intptr_t* lo_space_size;                 //  9
2316  int* global_handle_count;                // 10
2317  int* weak_global_handle_count;           // 11
2318  int* pending_global_handle_count;        // 12
2319  int* near_death_global_handle_count;     // 13
2320  int* free_global_handle_count;           // 14
2321  intptr_t* memory_allocator_size;         // 15
2322  intptr_t* memory_allocator_capacity;     // 16
2323  int* objects_per_type;                   // 17
2324  int* size_per_type;                      // 18
2325  int* os_error;                           // 19
2326  char* last_few_messages;                 // 20
2327  char* js_stacktrace;                     // 21
2328  int* end_marker;                         // 22
2329};
2330
2331
2332class AlwaysAllocateScope {
2333 public:
2334  explicit inline AlwaysAllocateScope(Isolate* isolate);
2335  inline ~AlwaysAllocateScope();
2336
2337 private:
2338  Heap* heap_;
2339};
2340
2341
2342// Visitor class to verify interior pointers in spaces that do not contain
2343// or care about intergenerational references. All heap object pointers have to
2344// point into the heap to a location that has a map pointer at its first word.
2345// Caveat: Heap::Contains is an approximation because it can return true for
2346// objects in a heap space but above the allocation pointer.
2347class VerifyPointersVisitor : public ObjectVisitor {
2348 public:
2349  inline void VisitPointers(Object** start, Object** end) override;
2350};
2351
2352
2353// Verify that all objects are Smis.
2354class VerifySmisVisitor : public ObjectVisitor {
2355 public:
2356  inline void VisitPointers(Object** start, Object** end) override;
2357};
2358
2359
2360// Space iterator for iterating over all spaces of the heap.  Returns each space
2361// in turn, and null when it is done.
2362class AllSpaces BASE_EMBEDDED {
2363 public:
2364  explicit AllSpaces(Heap* heap) : heap_(heap), counter_(FIRST_SPACE) {}
2365  Space* next();
2366
2367 private:
2368  Heap* heap_;
2369  int counter_;
2370};
2371
2372
2373// Space iterator for iterating over all old spaces of the heap: Old space
2374// and code space.  Returns each space in turn, and null when it is done.
2375class OldSpaces BASE_EMBEDDED {
2376 public:
2377  explicit OldSpaces(Heap* heap) : heap_(heap), counter_(OLD_SPACE) {}
2378  OldSpace* next();
2379
2380 private:
2381  Heap* heap_;
2382  int counter_;
2383};
2384
2385
2386// Space iterator for iterating over all the paged spaces of the heap: Map
2387// space, old space, code space and cell space.  Returns
2388// each space in turn, and null when it is done.
2389class PagedSpaces BASE_EMBEDDED {
2390 public:
2391  explicit PagedSpaces(Heap* heap) : heap_(heap), counter_(OLD_SPACE) {}
2392  PagedSpace* next();
2393
2394 private:
2395  Heap* heap_;
2396  int counter_;
2397};
2398
2399
2400// Space iterator for iterating over all spaces of the heap.
2401// For each space an object iterator is provided. The deallocation of the
2402// returned object iterators is handled by the space iterator.
2403class SpaceIterator : public Malloced {
2404 public:
2405  explicit SpaceIterator(Heap* heap);
2406  virtual ~SpaceIterator();
2407
2408  bool has_next();
2409  ObjectIterator* next();
2410
2411 private:
2412  ObjectIterator* CreateIterator();
2413
2414  Heap* heap_;
2415  int current_space_;         // from enum AllocationSpace.
2416  ObjectIterator* iterator_;  // object iterator for the current space.
2417};
2418
2419
2420// A HeapIterator provides iteration over the whole heap. It
2421// aggregates the specific iterators for the different spaces as
2422// these can only iterate over one space only.
2423//
2424// HeapIterator ensures there is no allocation during its lifetime
2425// (using an embedded DisallowHeapAllocation instance).
2426//
2427// HeapIterator can skip free list nodes (that is, de-allocated heap
2428// objects that still remain in the heap). As implementation of free
2429// nodes filtering uses GC marks, it can't be used during MS/MC GC
2430// phases. Also, it is forbidden to interrupt iteration in this mode,
2431// as this will leave heap objects marked (and thus, unusable).
2432class HeapIterator BASE_EMBEDDED {
2433 public:
2434  enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable };
2435
2436  explicit HeapIterator(Heap* heap,
2437                        HeapObjectsFiltering filtering = kNoFiltering);
2438  ~HeapIterator();
2439
2440  HeapObject* next();
2441
2442 private:
2443  struct MakeHeapIterableHelper {
2444    explicit MakeHeapIterableHelper(Heap* heap) { heap->MakeHeapIterable(); }
2445  };
2446
2447  HeapObject* NextObject();
2448
2449  // The following two fields need to be declared in this order. Initialization
2450  // order guarantees that we first make the heap iterable (which may involve
2451  // allocations) and only then lock it down by not allowing further
2452  // allocations.
2453  MakeHeapIterableHelper make_heap_iterable_helper_;
2454  DisallowHeapAllocation no_heap_allocation_;
2455
2456  Heap* heap_;
2457  HeapObjectsFiltering filtering_;
2458  HeapObjectsFilter* filter_;
2459  // Space iterator for iterating all the spaces.
2460  SpaceIterator* space_iterator_;
2461  // Object iterator for the space currently being iterated.
2462  ObjectIterator* object_iterator_;
2463};
2464
2465
2466// Cache for mapping (map, property name) into field offset.
2467// Cleared at startup and prior to mark sweep collection.
2468class KeyedLookupCache {
2469 public:
2470  // Lookup field offset for (map, name). If absent, -1 is returned.
2471  int Lookup(Handle<Map> map, Handle<Name> name);
2472
2473  // Update an element in the cache.
2474  void Update(Handle<Map> map, Handle<Name> name, int field_offset);
2475
2476  // Clear the cache.
2477  void Clear();
2478
2479  static const int kLength = 256;
2480  static const int kCapacityMask = kLength - 1;
2481  static const int kMapHashShift = 5;
2482  static const int kHashMask = -4;  // Zero the last two bits.
2483  static const int kEntriesPerBucket = 4;
2484  static const int kEntryLength = 2;
2485  static const int kMapIndex = 0;
2486  static const int kKeyIndex = 1;
2487  static const int kNotFound = -1;
2488
2489  // kEntriesPerBucket should be a power of 2.
2490  STATIC_ASSERT((kEntriesPerBucket & (kEntriesPerBucket - 1)) == 0);
2491  STATIC_ASSERT(kEntriesPerBucket == -kHashMask);
2492
2493 private:
2494  KeyedLookupCache() {
2495    for (int i = 0; i < kLength; ++i) {
2496      keys_[i].map = NULL;
2497      keys_[i].name = NULL;
2498      field_offsets_[i] = kNotFound;
2499    }
2500  }
2501
2502  static inline int Hash(Handle<Map> map, Handle<Name> name);
2503
2504  // Get the address of the keys and field_offsets arrays.  Used in
2505  // generated code to perform cache lookups.
2506  Address keys_address() { return reinterpret_cast<Address>(&keys_); }
2507
2508  Address field_offsets_address() {
2509    return reinterpret_cast<Address>(&field_offsets_);
2510  }
2511
2512  struct Key {
2513    Map* map;
2514    Name* name;
2515  };
2516
2517  Key keys_[kLength];
2518  int field_offsets_[kLength];
2519
2520  friend class ExternalReference;
2521  friend class Isolate;
2522  DISALLOW_COPY_AND_ASSIGN(KeyedLookupCache);
2523};
2524
2525
2526// Cache for mapping (map, property name) into descriptor index.
2527// The cache contains both positive and negative results.
2528// Descriptor index equals kNotFound means the property is absent.
2529// Cleared at startup and prior to any gc.
2530class DescriptorLookupCache {
2531 public:
2532  // Lookup descriptor index for (map, name).
2533  // If absent, kAbsent is returned.
2534  inline int Lookup(Map* source, Name* name);
2535
2536  // Update an element in the cache.
2537  inline void Update(Map* source, Name* name, int result);
2538
2539  // Clear the cache.
2540  void Clear();
2541
2542  static const int kAbsent = -2;
2543
2544 private:
2545  DescriptorLookupCache() {
2546    for (int i = 0; i < kLength; ++i) {
2547      keys_[i].source = NULL;
2548      keys_[i].name = NULL;
2549      results_[i] = kAbsent;
2550    }
2551  }
2552
2553  static inline int Hash(Object* source, Name* name);
2554
2555  static const int kLength = 64;
2556  struct Key {
2557    Map* source;
2558    Name* name;
2559  };
2560
2561  Key keys_[kLength];
2562  int results_[kLength];
2563
2564  friend class Isolate;
2565  DISALLOW_COPY_AND_ASSIGN(DescriptorLookupCache);
2566};
2567
2568
2569// Abstract base class for checking whether a weak object should be retained.
2570class WeakObjectRetainer {
2571 public:
2572  virtual ~WeakObjectRetainer() {}
2573
2574  // Return whether this object should be retained. If NULL is returned the
2575  // object has no references. Otherwise the address of the retained object
2576  // should be returned as in some GC situations the object has been moved.
2577  virtual Object* RetainAs(Object* object) = 0;
2578};
2579
2580
2581#ifdef DEBUG
2582// Helper class for tracing paths to a search target Object from all roots.
2583// The TracePathFrom() method can be used to trace paths from a specific
2584// object to the search target object.
2585class PathTracer : public ObjectVisitor {
2586 public:
2587  enum WhatToFind {
2588    FIND_ALL,   // Will find all matches.
2589    FIND_FIRST  // Will stop the search after first match.
2590  };
2591
2592  // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
2593  static const int kMarkTag = 2;
2594
2595  // For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop
2596  // after the first match.  If FIND_ALL is specified, then tracing will be
2597  // done for all matches.
2598  PathTracer(Object* search_target, WhatToFind what_to_find,
2599             VisitMode visit_mode)
2600      : search_target_(search_target),
2601        found_target_(false),
2602        found_target_in_trace_(false),
2603        what_to_find_(what_to_find),
2604        visit_mode_(visit_mode),
2605        object_stack_(20),
2606        no_allocation() {}
2607
2608  void VisitPointers(Object** start, Object** end) override;
2609
2610  void Reset();
2611  void TracePathFrom(Object** root);
2612
2613  bool found() const { return found_target_; }
2614
2615  static Object* const kAnyGlobalObject;
2616
2617 protected:
2618  class MarkVisitor;
2619  class UnmarkVisitor;
2620
2621  void MarkRecursively(Object** p, MarkVisitor* mark_visitor);
2622  void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor);
2623  virtual void ProcessResults();
2624
2625  Object* search_target_;
2626  bool found_target_;
2627  bool found_target_in_trace_;
2628  WhatToFind what_to_find_;
2629  VisitMode visit_mode_;
2630  List<Object*> object_stack_;
2631
2632  DisallowHeapAllocation no_allocation;  // i.e. no gc allowed.
2633
2634 private:
2635  DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer);
2636};
2637#endif  // DEBUG
2638
2639// -----------------------------------------------------------------------------
2640// Allows observation of allocations.
2641class AllocationObserver {
2642 public:
2643  explicit AllocationObserver(intptr_t step_size)
2644      : step_size_(step_size), bytes_to_next_step_(step_size) {
2645    DCHECK(step_size >= kPointerSize);
2646  }
2647  virtual ~AllocationObserver() {}
2648
2649  // Called each time the observed space does an allocation step. This may be
2650  // more frequently than the step_size we are monitoring (e.g. when there are
2651  // multiple observers, or when page or space boundary is encountered.)
2652  void AllocationStep(int bytes_allocated, Address soon_object, size_t size) {
2653    bytes_to_next_step_ -= bytes_allocated;
2654    if (bytes_to_next_step_ <= 0) {
2655      Step(static_cast<int>(step_size_ - bytes_to_next_step_), soon_object,
2656           size);
2657      step_size_ = GetNextStepSize();
2658      bytes_to_next_step_ = step_size_;
2659    }
2660  }
2661
2662 protected:
2663  intptr_t step_size() const { return step_size_; }
2664  intptr_t bytes_to_next_step() const { return bytes_to_next_step_; }
2665
2666  // Pure virtual method provided by the subclasses that gets called when at
2667  // least step_size bytes have been allocated. soon_object is the address just
2668  // allocated (but not yet initialized.) size is the size of the object as
2669  // requested (i.e. w/o the alignment fillers). Some complexities to be aware
2670  // of:
2671  // 1) soon_object will be nullptr in cases where we end up observing an
2672  //    allocation that happens to be a filler space (e.g. page boundaries.)
2673  // 2) size is the requested size at the time of allocation. Right-trimming
2674  //    may change the object size dynamically.
2675  // 3) soon_object may actually be the first object in an allocation-folding
2676  //    group. In such a case size is the size of the group rather than the
2677  //    first object.
2678  virtual void Step(int bytes_allocated, Address soon_object, size_t size) = 0;
2679
2680  // Subclasses can override this method to make step size dynamic.
2681  virtual intptr_t GetNextStepSize() { return step_size_; }
2682
2683  intptr_t step_size_;
2684  intptr_t bytes_to_next_step_;
2685
2686 private:
2687  friend class LargeObjectSpace;
2688  friend class NewSpace;
2689  friend class PagedSpace;
2690  DISALLOW_COPY_AND_ASSIGN(AllocationObserver);
2691};
2692
2693}  // namespace internal
2694}  // namespace v8
2695
2696#endif  // V8_HEAP_HEAP_H_
2697