1// Copyright (c) 1994-2006 Sun Microsystems Inc. 2// All Rights Reserved. 3// 4// Redistribution and use in source and binary forms, with or without 5// modification, are permitted provided that the following conditions are 6// met: 7// 8// - Redistributions of source code must retain the above copyright notice, 9// this list of conditions and the following disclaimer. 10// 11// - Redistribution in binary form must reproduce the above copyright 12// notice, this list of conditions and the following disclaimer in the 13// documentation and/or other materials provided with the distribution. 14// 15// - Neither the name of Sun Microsystems or the names of contributors may 16// be used to endorse or promote products derived from this software without 17// specific prior written permission. 18// 19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31// The original source code covered by the above license above has been 32// modified significantly by Google Inc. 33// Copyright 2012 the V8 project authors. All rights reserved. 34 35 36#ifndef V8_MIPS_ASSEMBLER_MIPS_H_ 37#define V8_MIPS_ASSEMBLER_MIPS_H_ 38 39#include <stdio.h> 40 41#include <set> 42 43#include "src/assembler.h" 44#include "src/mips64/constants-mips64.h" 45 46namespace v8 { 47namespace internal { 48 49// clang-format off 50#define GENERAL_REGISTERS(V) \ 51 V(zero_reg) V(at) V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \ 52 V(a4) V(a5) V(a6) V(a7) V(t0) V(t1) V(t2) V(t3) \ 53 V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) V(t8) V(t9) \ 54 V(k0) V(k1) V(gp) V(sp) V(fp) V(ra) 55 56#define ALLOCATABLE_GENERAL_REGISTERS(V) \ 57 V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \ 58 V(a4) V(a5) V(a6) V(a7) V(t0) V(t1) V(t2) V(s7) 59 60#define DOUBLE_REGISTERS(V) \ 61 V(f0) V(f1) V(f2) V(f3) V(f4) V(f5) V(f6) V(f7) \ 62 V(f8) V(f9) V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \ 63 V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \ 64 V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31) 65 66#define FLOAT_REGISTERS DOUBLE_REGISTERS 67 68#define ALLOCATABLE_DOUBLE_REGISTERS(V) \ 69 V(f0) V(f2) V(f4) V(f6) V(f8) V(f10) V(f12) V(f14) \ 70 V(f16) V(f18) V(f20) V(f22) V(f24) V(f26) 71// clang-format on 72 73// CPU Registers. 74// 75// 1) We would prefer to use an enum, but enum values are assignment- 76// compatible with int, which has caused code-generation bugs. 77// 78// 2) We would prefer to use a class instead of a struct but we don't like 79// the register initialization to depend on the particular initialization 80// order (which appears to be different on OS X, Linux, and Windows for the 81// installed versions of C++ we tried). Using a struct permits C-style 82// "initialization". Also, the Register objects cannot be const as this 83// forces initialization stubs in MSVC, making us dependent on initialization 84// order. 85// 86// 3) By not using an enum, we are possibly preventing the compiler from 87// doing certain constant folds, which may significantly reduce the 88// code generated for some assembly instructions (because they boil down 89// to a few constants). If this is a problem, we could change the code 90// such that we use an enum in optimized mode, and the struct in debug 91// mode. This way we get the compile-time error checking in debug mode 92// and best performance in optimized code. 93 94 95// ----------------------------------------------------------------------------- 96// Implementation of Register and FPURegister. 97 98struct Register { 99 static const int kCpRegister = 23; // cp (s7) is the 23rd register. 100 101#if defined(V8_TARGET_LITTLE_ENDIAN) 102 static const int kMantissaOffset = 0; 103 static const int kExponentOffset = 4; 104#elif defined(V8_TARGET_BIG_ENDIAN) 105 static const int kMantissaOffset = 4; 106 static const int kExponentOffset = 0; 107#else 108#error Unknown endianness 109#endif 110 111 enum Code { 112#define REGISTER_CODE(R) kCode_##R, 113 GENERAL_REGISTERS(REGISTER_CODE) 114#undef REGISTER_CODE 115 kAfterLast, 116 kCode_no_reg = -1 117 }; 118 119 static const int kNumRegisters = Code::kAfterLast; 120 121 static Register from_code(int code) { 122 DCHECK(code >= 0); 123 DCHECK(code < kNumRegisters); 124 Register r = { code }; 125 return r; 126 } 127 128 bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; } 129 bool is(Register reg) const { return reg_code == reg.reg_code; } 130 int code() const { 131 DCHECK(is_valid()); 132 return reg_code; 133 } 134 int bit() const { 135 DCHECK(is_valid()); 136 return 1 << reg_code; 137 } 138 139 // Unfortunately we can't make this private in a struct. 140 int reg_code; 141}; 142 143// s7: context register 144// s3: lithium scratch 145// s4: lithium scratch2 146#define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R}; 147GENERAL_REGISTERS(DECLARE_REGISTER) 148#undef DECLARE_REGISTER 149const Register no_reg = {Register::kCode_no_reg}; 150 151 152int ToNumber(Register reg); 153 154Register ToRegister(int num); 155 156static const bool kSimpleFPAliasing = true; 157 158// Coprocessor register. 159struct FPURegister { 160 enum Code { 161#define REGISTER_CODE(R) kCode_##R, 162 DOUBLE_REGISTERS(REGISTER_CODE) 163#undef REGISTER_CODE 164 kAfterLast, 165 kCode_no_reg = -1 166 }; 167 168 static const int kMaxNumRegisters = Code::kAfterLast; 169 170 inline static int NumRegisters(); 171 172 // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers 173 // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to 174 // number of Double regs (64-bit regs, or FPU-reg-pairs). 175 176 bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; } 177 bool is(FPURegister reg) const { return reg_code == reg.reg_code; } 178 FPURegister low() const { 179 // TODO(plind): Create DCHECK for FR=0 mode. This usage suspect for FR=1. 180 // Find low reg of a Double-reg pair, which is the reg itself. 181 DCHECK(reg_code % 2 == 0); // Specified Double reg must be even. 182 FPURegister reg; 183 reg.reg_code = reg_code; 184 DCHECK(reg.is_valid()); 185 return reg; 186 } 187 FPURegister high() const { 188 // TODO(plind): Create DCHECK for FR=0 mode. This usage illegal in FR=1. 189 // Find high reg of a Doubel-reg pair, which is reg + 1. 190 DCHECK(reg_code % 2 == 0); // Specified Double reg must be even. 191 FPURegister reg; 192 reg.reg_code = reg_code + 1; 193 DCHECK(reg.is_valid()); 194 return reg; 195 } 196 197 int code() const { 198 DCHECK(is_valid()); 199 return reg_code; 200 } 201 int bit() const { 202 DCHECK(is_valid()); 203 return 1 << reg_code; 204 } 205 206 static FPURegister from_code(int code) { 207 FPURegister r = {code}; 208 return r; 209 } 210 void setcode(int f) { 211 reg_code = f; 212 DCHECK(is_valid()); 213 } 214 // Unfortunately we can't make this private in a struct. 215 int reg_code; 216}; 217 218// A few double registers are reserved: one as a scratch register and one to 219// hold 0.0. 220// f28: 0.0 221// f30: scratch register. 222 223// V8 now supports the O32 ABI, and the FPU Registers are organized as 32 224// 32-bit registers, f0 through f31. When used as 'double' they are used 225// in pairs, starting with the even numbered register. So a double operation 226// on f0 really uses f0 and f1. 227// (Modern mips hardware also supports 32 64-bit registers, via setting 228// (privileged) Status Register FR bit to 1. This is used by the N32 ABI, 229// but it is not in common use. Someday we will want to support this in v8.) 230 231// For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers. 232typedef FPURegister FloatRegister; 233 234typedef FPURegister DoubleRegister; 235 236// TODO(mips64) Define SIMD registers. 237typedef FPURegister Simd128Register; 238 239const DoubleRegister no_freg = {-1}; 240 241const DoubleRegister f0 = {0}; // Return value in hard float mode. 242const DoubleRegister f1 = {1}; 243const DoubleRegister f2 = {2}; 244const DoubleRegister f3 = {3}; 245const DoubleRegister f4 = {4}; 246const DoubleRegister f5 = {5}; 247const DoubleRegister f6 = {6}; 248const DoubleRegister f7 = {7}; 249const DoubleRegister f8 = {8}; 250const DoubleRegister f9 = {9}; 251const DoubleRegister f10 = {10}; 252const DoubleRegister f11 = {11}; 253const DoubleRegister f12 = {12}; // Arg 0 in hard float mode. 254const DoubleRegister f13 = {13}; 255const DoubleRegister f14 = {14}; // Arg 1 in hard float mode. 256const DoubleRegister f15 = {15}; 257const DoubleRegister f16 = {16}; 258const DoubleRegister f17 = {17}; 259const DoubleRegister f18 = {18}; 260const DoubleRegister f19 = {19}; 261const DoubleRegister f20 = {20}; 262const DoubleRegister f21 = {21}; 263const DoubleRegister f22 = {22}; 264const DoubleRegister f23 = {23}; 265const DoubleRegister f24 = {24}; 266const DoubleRegister f25 = {25}; 267const DoubleRegister f26 = {26}; 268const DoubleRegister f27 = {27}; 269const DoubleRegister f28 = {28}; 270const DoubleRegister f29 = {29}; 271const DoubleRegister f30 = {30}; 272const DoubleRegister f31 = {31}; 273 274// Register aliases. 275// cp is assumed to be a callee saved register. 276// Defined using #define instead of "static const Register&" because Clang 277// complains otherwise when a compilation unit that includes this header 278// doesn't use the variables. 279#define kRootRegister s6 280#define cp s7 281#define kLithiumScratchReg s3 282#define kLithiumScratchReg2 s4 283#define kLithiumScratchDouble f30 284#define kDoubleRegZero f28 285// Used on mips64r6 for compare operations. 286// We use the last non-callee saved odd register for N64 ABI 287#define kDoubleCompareReg f23 288 289// FPU (coprocessor 1) control registers. 290// Currently only FCSR (#31) is implemented. 291struct FPUControlRegister { 292 bool is_valid() const { return reg_code == kFCSRRegister; } 293 bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; } 294 int code() const { 295 DCHECK(is_valid()); 296 return reg_code; 297 } 298 int bit() const { 299 DCHECK(is_valid()); 300 return 1 << reg_code; 301 } 302 void setcode(int f) { 303 reg_code = f; 304 DCHECK(is_valid()); 305 } 306 // Unfortunately we can't make this private in a struct. 307 int reg_code; 308}; 309 310const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister }; 311const FPUControlRegister FCSR = { kFCSRRegister }; 312 313// ----------------------------------------------------------------------------- 314// Machine instruction Operands. 315const int kSmiShift = kSmiTagSize + kSmiShiftSize; 316const uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1; 317// Class Operand represents a shifter operand in data processing instructions. 318class Operand BASE_EMBEDDED { 319 public: 320 // Immediate. 321 INLINE(explicit Operand(int64_t immediate, 322 RelocInfo::Mode rmode = RelocInfo::NONE64)); 323 INLINE(explicit Operand(const ExternalReference& f)); 324 INLINE(explicit Operand(const char* s)); 325 INLINE(explicit Operand(Object** opp)); 326 INLINE(explicit Operand(Context** cpp)); 327 explicit Operand(Handle<Object> handle); 328 INLINE(explicit Operand(Smi* value)); 329 330 // Register. 331 INLINE(explicit Operand(Register rm)); 332 333 // Return true if this is a register operand. 334 INLINE(bool is_reg() const); 335 336 inline int64_t immediate() const { 337 DCHECK(!is_reg()); 338 return imm64_; 339 } 340 341 Register rm() const { return rm_; } 342 343 private: 344 Register rm_; 345 int64_t imm64_; // Valid if rm_ == no_reg. 346 RelocInfo::Mode rmode_; 347 348 friend class Assembler; 349 friend class MacroAssembler; 350}; 351 352 353// On MIPS we have only one adressing mode with base_reg + offset. 354// Class MemOperand represents a memory operand in load and store instructions. 355class MemOperand : public Operand { 356 public: 357 // Immediate value attached to offset. 358 enum OffsetAddend { 359 offset_minus_one = -1, 360 offset_zero = 0 361 }; 362 363 explicit MemOperand(Register rn, int32_t offset = 0); 364 explicit MemOperand(Register rn, int32_t unit, int32_t multiplier, 365 OffsetAddend offset_addend = offset_zero); 366 int32_t offset() const { return offset_; } 367 368 bool OffsetIsInt16Encodable() const { 369 return is_int16(offset_); 370 } 371 372 private: 373 int32_t offset_; 374 375 friend class Assembler; 376}; 377 378 379class Assembler : public AssemblerBase { 380 public: 381 // Create an assembler. Instructions and relocation information are emitted 382 // into a buffer, with the instructions starting from the beginning and the 383 // relocation information starting from the end of the buffer. See CodeDesc 384 // for a detailed comment on the layout (globals.h). 385 // 386 // If the provided buffer is NULL, the assembler allocates and grows its own 387 // buffer, and buffer_size determines the initial buffer size. The buffer is 388 // owned by the assembler and deallocated upon destruction of the assembler. 389 // 390 // If the provided buffer is not NULL, the assembler uses the provided buffer 391 // for code generation and assumes its size to be buffer_size. If the buffer 392 // is too small, a fatal error occurs. No deallocation of the buffer is done 393 // upon destruction of the assembler. 394 Assembler(Isolate* isolate, void* buffer, int buffer_size); 395 virtual ~Assembler() { } 396 397 // GetCode emits any pending (non-emitted) code and fills the descriptor 398 // desc. GetCode() is idempotent; it returns the same result if no other 399 // Assembler functions are invoked in between GetCode() calls. 400 void GetCode(CodeDesc* desc); 401 402 // Label operations & relative jumps (PPUM Appendix D). 403 // 404 // Takes a branch opcode (cc) and a label (L) and generates 405 // either a backward branch or a forward branch and links it 406 // to the label fixup chain. Usage: 407 // 408 // Label L; // unbound label 409 // j(cc, &L); // forward branch to unbound label 410 // bind(&L); // bind label to the current pc 411 // j(cc, &L); // backward branch to bound label 412 // bind(&L); // illegal: a label may be bound only once 413 // 414 // Note: The same Label can be used for forward and backward branches 415 // but it may be bound only once. 416 void bind(Label* L); // Binds an unbound label L to current code position. 417 418 enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 }; 419 420 // Determines if Label is bound and near enough so that branch instruction 421 // can be used to reach it, instead of jump instruction. 422 bool is_near(Label* L); 423 bool is_near(Label* L, OffsetSize bits); 424 bool is_near_branch(Label* L); 425 inline bool is_near_pre_r6(Label* L) { 426 DCHECK(!(kArchVariant == kMips64r6)); 427 return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize; 428 } 429 inline bool is_near_r6(Label* L) { 430 DCHECK(kArchVariant == kMips64r6); 431 return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize; 432 } 433 434 int BranchOffset(Instr instr); 435 436 // Returns the branch offset to the given label from the current code 437 // position. Links the label to the current position if it is still unbound. 438 // Manages the jump elimination optimization if the second parameter is true. 439 int32_t branch_offset_helper(Label* L, OffsetSize bits); 440 inline int32_t branch_offset(Label* L) { 441 return branch_offset_helper(L, OffsetSize::kOffset16); 442 } 443 inline int32_t branch_offset21(Label* L) { 444 return branch_offset_helper(L, OffsetSize::kOffset21); 445 } 446 inline int32_t branch_offset26(Label* L) { 447 return branch_offset_helper(L, OffsetSize::kOffset26); 448 } 449 inline int32_t shifted_branch_offset(Label* L) { 450 return branch_offset(L) >> 2; 451 } 452 inline int32_t shifted_branch_offset21(Label* L) { 453 return branch_offset21(L) >> 2; 454 } 455 inline int32_t shifted_branch_offset26(Label* L) { 456 return branch_offset26(L) >> 2; 457 } 458 uint64_t jump_address(Label* L); 459 uint64_t jump_offset(Label* L); 460 461 // Puts a labels target address at the given position. 462 // The high 8 bits are set to zero. 463 void label_at_put(Label* L, int at_offset); 464 465 // Read/Modify the code target address in the branch/call instruction at pc. 466 static Address target_address_at(Address pc); 467 static void set_target_address_at( 468 Isolate* isolate, Address pc, Address target, 469 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); 470 // On MIPS there is no Constant Pool so we skip that parameter. 471 INLINE(static Address target_address_at(Address pc, Address constant_pool)) { 472 return target_address_at(pc); 473 } 474 INLINE(static void set_target_address_at( 475 Isolate* isolate, Address pc, Address constant_pool, Address target, 476 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) { 477 set_target_address_at(isolate, pc, target, icache_flush_mode); 478 } 479 INLINE(static Address target_address_at(Address pc, Code* code)) { 480 Address constant_pool = code ? code->constant_pool() : NULL; 481 return target_address_at(pc, constant_pool); 482 } 483 INLINE(static void set_target_address_at( 484 Isolate* isolate, Address pc, Code* code, Address target, 485 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) { 486 Address constant_pool = code ? code->constant_pool() : NULL; 487 set_target_address_at(isolate, pc, constant_pool, target, 488 icache_flush_mode); 489 } 490 491 // Return the code target address at a call site from the return address 492 // of that call in the instruction stream. 493 inline static Address target_address_from_return_address(Address pc); 494 495 static void JumpLabelToJumpRegister(Address pc); 496 497 static void QuietNaN(HeapObject* nan); 498 499 // This sets the branch destination (which gets loaded at the call address). 500 // This is for calls and branches within generated code. The serializer 501 // has already deserialized the lui/ori instructions etc. 502 inline static void deserialization_set_special_target_at( 503 Isolate* isolate, Address instruction_payload, Code* code, 504 Address target) { 505 set_target_address_at( 506 isolate, 507 instruction_payload - kInstructionsFor64BitConstant * kInstrSize, code, 508 target); 509 } 510 511 // This sets the internal reference at the pc. 512 inline static void deserialization_set_target_internal_reference_at( 513 Isolate* isolate, Address pc, Address target, 514 RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE); 515 516 // Size of an instruction. 517 static const int kInstrSize = sizeof(Instr); 518 519 // Difference between address of current opcode and target address offset. 520 static const int kBranchPCOffset = 4; 521 522 // Here we are patching the address in the LUI/ORI instruction pair. 523 // These values are used in the serialization process and must be zero for 524 // MIPS platform, as Code, Embedded Object or External-reference pointers 525 // are split across two consecutive instructions and don't exist separately 526 // in the code, so the serializer should not step forwards in memory after 527 // a target is resolved and written. 528 static const int kSpecialTargetSize = 0; 529 530 // Number of consecutive instructions used to store 32bit/64bit constant. 531 // This constant was used in RelocInfo::target_address_address() function 532 // to tell serializer address of the instruction that follows 533 // LUI/ORI instruction pair. 534 static const int kInstructionsFor32BitConstant = 2; 535 static const int kInstructionsFor64BitConstant = 4; 536 537 // Distance between the instruction referring to the address of the call 538 // target and the return address. 539#ifdef _MIPS_ARCH_MIPS64R6 540 static const int kCallTargetAddressOffset = 5 * kInstrSize; 541#else 542 static const int kCallTargetAddressOffset = 6 * kInstrSize; 543#endif 544 545 // Distance between start of patched debug break slot and the emitted address 546 // to jump to. 547 static const int kPatchDebugBreakSlotAddressOffset = 6 * kInstrSize; 548 549 // Difference between address of current opcode and value read from pc 550 // register. 551 static const int kPcLoadDelta = 4; 552 553#ifdef _MIPS_ARCH_MIPS64R6 554 static const int kDebugBreakSlotInstructions = 5; 555#else 556 static const int kDebugBreakSlotInstructions = 6; 557#endif 558 static const int kDebugBreakSlotLength = 559 kDebugBreakSlotInstructions * kInstrSize; 560 561 562 // --------------------------------------------------------------------------- 563 // Code generation. 564 565 // Insert the smallest number of nop instructions 566 // possible to align the pc offset to a multiple 567 // of m. m must be a power of 2 (>= 4). 568 void Align(int m); 569 // Insert the smallest number of zero bytes possible to align the pc offset 570 // to a mulitple of m. m must be a power of 2 (>= 2). 571 void DataAlign(int m); 572 // Aligns code to something that's optimal for a jump target for the platform. 573 void CodeTargetAlign(); 574 575 // Different nop operations are used by the code generator to detect certain 576 // states of the generated code. 577 enum NopMarkerTypes { 578 NON_MARKING_NOP = 0, 579 DEBUG_BREAK_NOP, 580 // IC markers. 581 PROPERTY_ACCESS_INLINED, 582 PROPERTY_ACCESS_INLINED_CONTEXT, 583 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE, 584 // Helper values. 585 LAST_CODE_MARKER, 586 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED, 587 // Code aging 588 CODE_AGE_MARKER_NOP = 6, 589 CODE_AGE_SEQUENCE_NOP 590 }; 591 592 // Type == 0 is the default non-marking nop. For mips this is a 593 // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero 594 // marking, to avoid conflict with ssnop and ehb instructions. 595 void nop(unsigned int type = 0) { 596 DCHECK(type < 32); 597 Register nop_rt_reg = (type == 0) ? zero_reg : at; 598 sll(zero_reg, nop_rt_reg, type, true); 599 } 600 601 602 // --------Branch-and-jump-instructions---------- 603 // We don't use likely variant of instructions. 604 void b(int16_t offset); 605 inline void b(Label* L) { b(shifted_branch_offset(L)); } 606 void bal(int16_t offset); 607 inline void bal(Label* L) { bal(shifted_branch_offset(L)); } 608 void bc(int32_t offset); 609 inline void bc(Label* L) { bc(shifted_branch_offset26(L)); } 610 void balc(int32_t offset); 611 inline void balc(Label* L) { balc(shifted_branch_offset26(L)); } 612 613 void beq(Register rs, Register rt, int16_t offset); 614 inline void beq(Register rs, Register rt, Label* L) { 615 beq(rs, rt, shifted_branch_offset(L)); 616 } 617 void bgez(Register rs, int16_t offset); 618 void bgezc(Register rt, int16_t offset); 619 inline void bgezc(Register rt, Label* L) { 620 bgezc(rt, shifted_branch_offset(L)); 621 } 622 void bgeuc(Register rs, Register rt, int16_t offset); 623 inline void bgeuc(Register rs, Register rt, Label* L) { 624 bgeuc(rs, rt, shifted_branch_offset(L)); 625 } 626 void bgec(Register rs, Register rt, int16_t offset); 627 inline void bgec(Register rs, Register rt, Label* L) { 628 bgec(rs, rt, shifted_branch_offset(L)); 629 } 630 void bgezal(Register rs, int16_t offset); 631 void bgezalc(Register rt, int16_t offset); 632 inline void bgezalc(Register rt, Label* L) { 633 bgezalc(rt, shifted_branch_offset(L)); 634 } 635 void bgezall(Register rs, int16_t offset); 636 inline void bgezall(Register rs, Label* L) { 637 bgezall(rs, branch_offset(L) >> 2); 638 } 639 void bgtz(Register rs, int16_t offset); 640 void bgtzc(Register rt, int16_t offset); 641 inline void bgtzc(Register rt, Label* L) { 642 bgtzc(rt, shifted_branch_offset(L)); 643 } 644 void blez(Register rs, int16_t offset); 645 void blezc(Register rt, int16_t offset); 646 inline void blezc(Register rt, Label* L) { 647 blezc(rt, shifted_branch_offset(L)); 648 } 649 void bltz(Register rs, int16_t offset); 650 void bltzc(Register rt, int16_t offset); 651 inline void bltzc(Register rt, Label* L) { 652 bltzc(rt, shifted_branch_offset(L)); 653 } 654 void bltuc(Register rs, Register rt, int16_t offset); 655 inline void bltuc(Register rs, Register rt, Label* L) { 656 bltuc(rs, rt, shifted_branch_offset(L)); 657 } 658 void bltc(Register rs, Register rt, int16_t offset); 659 inline void bltc(Register rs, Register rt, Label* L) { 660 bltc(rs, rt, shifted_branch_offset(L)); 661 } 662 void bltzal(Register rs, int16_t offset); 663 void blezalc(Register rt, int16_t offset); 664 inline void blezalc(Register rt, Label* L) { 665 blezalc(rt, shifted_branch_offset(L)); 666 } 667 void bltzalc(Register rt, int16_t offset); 668 inline void bltzalc(Register rt, Label* L) { 669 bltzalc(rt, shifted_branch_offset(L)); 670 } 671 void bgtzalc(Register rt, int16_t offset); 672 inline void bgtzalc(Register rt, Label* L) { 673 bgtzalc(rt, shifted_branch_offset(L)); 674 } 675 void beqzalc(Register rt, int16_t offset); 676 inline void beqzalc(Register rt, Label* L) { 677 beqzalc(rt, shifted_branch_offset(L)); 678 } 679 void beqc(Register rs, Register rt, int16_t offset); 680 inline void beqc(Register rs, Register rt, Label* L) { 681 beqc(rs, rt, shifted_branch_offset(L)); 682 } 683 void beqzc(Register rs, int32_t offset); 684 inline void beqzc(Register rs, Label* L) { 685 beqzc(rs, shifted_branch_offset21(L)); 686 } 687 void bnezalc(Register rt, int16_t offset); 688 inline void bnezalc(Register rt, Label* L) { 689 bnezalc(rt, shifted_branch_offset(L)); 690 } 691 void bnec(Register rs, Register rt, int16_t offset); 692 inline void bnec(Register rs, Register rt, Label* L) { 693 bnec(rs, rt, shifted_branch_offset(L)); 694 } 695 void bnezc(Register rt, int32_t offset); 696 inline void bnezc(Register rt, Label* L) { 697 bnezc(rt, shifted_branch_offset21(L)); 698 } 699 void bne(Register rs, Register rt, int16_t offset); 700 inline void bne(Register rs, Register rt, Label* L) { 701 bne(rs, rt, shifted_branch_offset(L)); 702 } 703 void bovc(Register rs, Register rt, int16_t offset); 704 inline void bovc(Register rs, Register rt, Label* L) { 705 bovc(rs, rt, shifted_branch_offset(L)); 706 } 707 void bnvc(Register rs, Register rt, int16_t offset); 708 inline void bnvc(Register rs, Register rt, Label* L) { 709 bnvc(rs, rt, shifted_branch_offset(L)); 710 } 711 712 // Never use the int16_t b(l)cond version with a branch offset 713 // instead of using the Label* version. 714 715 // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits. 716 void j(int64_t target); 717 void jal(int64_t target); 718 void j(Label* target); 719 void jal(Label* target); 720 void jalr(Register rs, Register rd = ra); 721 void jr(Register target); 722 void jic(Register rt, int16_t offset); 723 void jialc(Register rt, int16_t offset); 724 725 726 // -------Data-processing-instructions--------- 727 728 // Arithmetic. 729 void addu(Register rd, Register rs, Register rt); 730 void subu(Register rd, Register rs, Register rt); 731 732 void div(Register rs, Register rt); 733 void divu(Register rs, Register rt); 734 void ddiv(Register rs, Register rt); 735 void ddivu(Register rs, Register rt); 736 void div(Register rd, Register rs, Register rt); 737 void divu(Register rd, Register rs, Register rt); 738 void ddiv(Register rd, Register rs, Register rt); 739 void ddivu(Register rd, Register rs, Register rt); 740 void mod(Register rd, Register rs, Register rt); 741 void modu(Register rd, Register rs, Register rt); 742 void dmod(Register rd, Register rs, Register rt); 743 void dmodu(Register rd, Register rs, Register rt); 744 745 void mul(Register rd, Register rs, Register rt); 746 void muh(Register rd, Register rs, Register rt); 747 void mulu(Register rd, Register rs, Register rt); 748 void muhu(Register rd, Register rs, Register rt); 749 void mult(Register rs, Register rt); 750 void multu(Register rs, Register rt); 751 void dmul(Register rd, Register rs, Register rt); 752 void dmuh(Register rd, Register rs, Register rt); 753 void dmulu(Register rd, Register rs, Register rt); 754 void dmuhu(Register rd, Register rs, Register rt); 755 void daddu(Register rd, Register rs, Register rt); 756 void dsubu(Register rd, Register rs, Register rt); 757 void dmult(Register rs, Register rt); 758 void dmultu(Register rs, Register rt); 759 760 void addiu(Register rd, Register rs, int32_t j); 761 void daddiu(Register rd, Register rs, int32_t j); 762 763 // Logical. 764 void and_(Register rd, Register rs, Register rt); 765 void or_(Register rd, Register rs, Register rt); 766 void xor_(Register rd, Register rs, Register rt); 767 void nor(Register rd, Register rs, Register rt); 768 769 void andi(Register rd, Register rs, int32_t j); 770 void ori(Register rd, Register rs, int32_t j); 771 void xori(Register rd, Register rs, int32_t j); 772 void lui(Register rd, int32_t j); 773 void aui(Register rt, Register rs, int32_t j); 774 void daui(Register rt, Register rs, int32_t j); 775 void dahi(Register rs, int32_t j); 776 void dati(Register rs, int32_t j); 777 778 // Shifts. 779 // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop 780 // and may cause problems in normal code. coming_from_nop makes sure this 781 // doesn't happen. 782 void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false); 783 void sllv(Register rd, Register rt, Register rs); 784 void srl(Register rd, Register rt, uint16_t sa); 785 void srlv(Register rd, Register rt, Register rs); 786 void sra(Register rt, Register rd, uint16_t sa); 787 void srav(Register rt, Register rd, Register rs); 788 void rotr(Register rd, Register rt, uint16_t sa); 789 void rotrv(Register rd, Register rt, Register rs); 790 void dsll(Register rd, Register rt, uint16_t sa); 791 void dsllv(Register rd, Register rt, Register rs); 792 void dsrl(Register rd, Register rt, uint16_t sa); 793 void dsrlv(Register rd, Register rt, Register rs); 794 void drotr(Register rd, Register rt, uint16_t sa); 795 void drotr32(Register rd, Register rt, uint16_t sa); 796 void drotrv(Register rd, Register rt, Register rs); 797 void dsra(Register rt, Register rd, uint16_t sa); 798 void dsrav(Register rd, Register rt, Register rs); 799 void dsll32(Register rt, Register rd, uint16_t sa); 800 void dsrl32(Register rt, Register rd, uint16_t sa); 801 void dsra32(Register rt, Register rd, uint16_t sa); 802 803 // ------------Memory-instructions------------- 804 805 void lb(Register rd, const MemOperand& rs); 806 void lbu(Register rd, const MemOperand& rs); 807 void lh(Register rd, const MemOperand& rs); 808 void lhu(Register rd, const MemOperand& rs); 809 void lw(Register rd, const MemOperand& rs); 810 void lwu(Register rd, const MemOperand& rs); 811 void lwl(Register rd, const MemOperand& rs); 812 void lwr(Register rd, const MemOperand& rs); 813 void sb(Register rd, const MemOperand& rs); 814 void sh(Register rd, const MemOperand& rs); 815 void sw(Register rd, const MemOperand& rs); 816 void swl(Register rd, const MemOperand& rs); 817 void swr(Register rd, const MemOperand& rs); 818 void ldl(Register rd, const MemOperand& rs); 819 void ldr(Register rd, const MemOperand& rs); 820 void sdl(Register rd, const MemOperand& rs); 821 void sdr(Register rd, const MemOperand& rs); 822 void ld(Register rd, const MemOperand& rs); 823 void sd(Register rd, const MemOperand& rs); 824 825 826 // ---------PC-Relative-instructions----------- 827 828 void addiupc(Register rs, int32_t imm19); 829 void lwpc(Register rs, int32_t offset19); 830 void lwupc(Register rs, int32_t offset19); 831 void ldpc(Register rs, int32_t offset18); 832 void auipc(Register rs, int16_t imm16); 833 void aluipc(Register rs, int16_t imm16); 834 835 836 // ----------------Prefetch-------------------- 837 838 void pref(int32_t hint, const MemOperand& rs); 839 840 841 // -------------Misc-instructions-------------- 842 843 // Break / Trap instructions. 844 void break_(uint32_t code, bool break_as_stop = false); 845 void stop(const char* msg, uint32_t code = kMaxStopCode); 846 void tge(Register rs, Register rt, uint16_t code); 847 void tgeu(Register rs, Register rt, uint16_t code); 848 void tlt(Register rs, Register rt, uint16_t code); 849 void tltu(Register rs, Register rt, uint16_t code); 850 void teq(Register rs, Register rt, uint16_t code); 851 void tne(Register rs, Register rt, uint16_t code); 852 853 // Memory barrier instruction. 854 void sync(); 855 856 // Move from HI/LO register. 857 void mfhi(Register rd); 858 void mflo(Register rd); 859 860 // Set on less than. 861 void slt(Register rd, Register rs, Register rt); 862 void sltu(Register rd, Register rs, Register rt); 863 void slti(Register rd, Register rs, int32_t j); 864 void sltiu(Register rd, Register rs, int32_t j); 865 866 // Conditional move. 867 void movz(Register rd, Register rs, Register rt); 868 void movn(Register rd, Register rs, Register rt); 869 void movt(Register rd, Register rs, uint16_t cc = 0); 870 void movf(Register rd, Register rs, uint16_t cc = 0); 871 872 void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 873 void sel_s(FPURegister fd, FPURegister fs, FPURegister ft); 874 void sel_d(FPURegister fd, FPURegister fs, FPURegister ft); 875 void seleqz(Register rd, Register rs, Register rt); 876 void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs, 877 FPURegister ft); 878 void selnez(Register rs, Register rt, Register rd); 879 void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs, 880 FPURegister ft); 881 void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft); 882 void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft); 883 void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft); 884 void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft); 885 886 void movz_s(FPURegister fd, FPURegister fs, Register rt); 887 void movz_d(FPURegister fd, FPURegister fs, Register rt); 888 void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0); 889 void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0); 890 void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0); 891 void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0); 892 void movn_s(FPURegister fd, FPURegister fs, Register rt); 893 void movn_d(FPURegister fd, FPURegister fs, Register rt); 894 // Bit twiddling. 895 void clz(Register rd, Register rs); 896 void dclz(Register rd, Register rs); 897 void ins_(Register rt, Register rs, uint16_t pos, uint16_t size); 898 void ext_(Register rt, Register rs, uint16_t pos, uint16_t size); 899 void dext_(Register rt, Register rs, uint16_t pos, uint16_t size); 900 void dextm(Register rt, Register rs, uint16_t pos, uint16_t size); 901 void dextu(Register rt, Register rs, uint16_t pos, uint16_t size); 902 void dins_(Register rt, Register rs, uint16_t pos, uint16_t size); 903 void bitswap(Register rd, Register rt); 904 void dbitswap(Register rd, Register rt); 905 void align(Register rd, Register rs, Register rt, uint8_t bp); 906 void dalign(Register rd, Register rs, Register rt, uint8_t bp); 907 908 void wsbh(Register rd, Register rt); 909 void dsbh(Register rd, Register rt); 910 void dshd(Register rd, Register rt); 911 void seh(Register rd, Register rt); 912 void seb(Register rd, Register rt); 913 914 // --------Coprocessor-instructions---------------- 915 916 // Load, store, and move. 917 void lwc1(FPURegister fd, const MemOperand& src); 918 void ldc1(FPURegister fd, const MemOperand& src); 919 920 void swc1(FPURegister fs, const MemOperand& dst); 921 void sdc1(FPURegister fs, const MemOperand& dst); 922 923 void mtc1(Register rt, FPURegister fs); 924 void mthc1(Register rt, FPURegister fs); 925 void dmtc1(Register rt, FPURegister fs); 926 927 void mfc1(Register rt, FPURegister fs); 928 void mfhc1(Register rt, FPURegister fs); 929 void dmfc1(Register rt, FPURegister fs); 930 931 void ctc1(Register rt, FPUControlRegister fs); 932 void cfc1(Register rt, FPUControlRegister fs); 933 934 // Arithmetic. 935 void add_s(FPURegister fd, FPURegister fs, FPURegister ft); 936 void add_d(FPURegister fd, FPURegister fs, FPURegister ft); 937 void sub_s(FPURegister fd, FPURegister fs, FPURegister ft); 938 void sub_d(FPURegister fd, FPURegister fs, FPURegister ft); 939 void mul_s(FPURegister fd, FPURegister fs, FPURegister ft); 940 void mul_d(FPURegister fd, FPURegister fs, FPURegister ft); 941 void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); 942 void div_s(FPURegister fd, FPURegister fs, FPURegister ft); 943 void div_d(FPURegister fd, FPURegister fs, FPURegister ft); 944 void abs_s(FPURegister fd, FPURegister fs); 945 void abs_d(FPURegister fd, FPURegister fs); 946 void mov_d(FPURegister fd, FPURegister fs); 947 void mov_s(FPURegister fd, FPURegister fs); 948 void neg_s(FPURegister fd, FPURegister fs); 949 void neg_d(FPURegister fd, FPURegister fs); 950 void sqrt_s(FPURegister fd, FPURegister fs); 951 void sqrt_d(FPURegister fd, FPURegister fs); 952 void rsqrt_s(FPURegister fd, FPURegister fs); 953 void rsqrt_d(FPURegister fd, FPURegister fs); 954 void recip_d(FPURegister fd, FPURegister fs); 955 void recip_s(FPURegister fd, FPURegister fs); 956 957 // Conversion. 958 void cvt_w_s(FPURegister fd, FPURegister fs); 959 void cvt_w_d(FPURegister fd, FPURegister fs); 960 void trunc_w_s(FPURegister fd, FPURegister fs); 961 void trunc_w_d(FPURegister fd, FPURegister fs); 962 void round_w_s(FPURegister fd, FPURegister fs); 963 void round_w_d(FPURegister fd, FPURegister fs); 964 void floor_w_s(FPURegister fd, FPURegister fs); 965 void floor_w_d(FPURegister fd, FPURegister fs); 966 void ceil_w_s(FPURegister fd, FPURegister fs); 967 void ceil_w_d(FPURegister fd, FPURegister fs); 968 void rint_s(FPURegister fd, FPURegister fs); 969 void rint_d(FPURegister fd, FPURegister fs); 970 void rint(SecondaryField fmt, FPURegister fd, FPURegister fs); 971 972 973 void cvt_l_s(FPURegister fd, FPURegister fs); 974 void cvt_l_d(FPURegister fd, FPURegister fs); 975 void trunc_l_s(FPURegister fd, FPURegister fs); 976 void trunc_l_d(FPURegister fd, FPURegister fs); 977 void round_l_s(FPURegister fd, FPURegister fs); 978 void round_l_d(FPURegister fd, FPURegister fs); 979 void floor_l_s(FPURegister fd, FPURegister fs); 980 void floor_l_d(FPURegister fd, FPURegister fs); 981 void ceil_l_s(FPURegister fd, FPURegister fs); 982 void ceil_l_d(FPURegister fd, FPURegister fs); 983 984 void class_s(FPURegister fd, FPURegister fs); 985 void class_d(FPURegister fd, FPURegister fs); 986 987 void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 988 void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 989 void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 990 void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 991 void min_s(FPURegister fd, FPURegister fs, FPURegister ft); 992 void min_d(FPURegister fd, FPURegister fs, FPURegister ft); 993 void max_s(FPURegister fd, FPURegister fs, FPURegister ft); 994 void max_d(FPURegister fd, FPURegister fs, FPURegister ft); 995 void mina_s(FPURegister fd, FPURegister fs, FPURegister ft); 996 void mina_d(FPURegister fd, FPURegister fs, FPURegister ft); 997 void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft); 998 void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft); 999 1000 void cvt_s_w(FPURegister fd, FPURegister fs); 1001 void cvt_s_l(FPURegister fd, FPURegister fs); 1002 void cvt_s_d(FPURegister fd, FPURegister fs); 1003 1004 void cvt_d_w(FPURegister fd, FPURegister fs); 1005 void cvt_d_l(FPURegister fd, FPURegister fs); 1006 void cvt_d_s(FPURegister fd, FPURegister fs); 1007 1008 // Conditions and branches for MIPSr6. 1009 void cmp(FPUCondition cond, SecondaryField fmt, 1010 FPURegister fd, FPURegister ft, FPURegister fs); 1011 void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft); 1012 void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft); 1013 1014 void bc1eqz(int16_t offset, FPURegister ft); 1015 inline void bc1eqz(Label* L, FPURegister ft) { 1016 bc1eqz(shifted_branch_offset(L), ft); 1017 } 1018 void bc1nez(int16_t offset, FPURegister ft); 1019 inline void bc1nez(Label* L, FPURegister ft) { 1020 bc1nez(shifted_branch_offset(L), ft); 1021 } 1022 1023 // Conditions and branches for non MIPSr6. 1024 void c(FPUCondition cond, SecondaryField fmt, 1025 FPURegister ft, FPURegister fs, uint16_t cc = 0); 1026 void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0); 1027 void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0); 1028 1029 void bc1f(int16_t offset, uint16_t cc = 0); 1030 inline void bc1f(Label* L, uint16_t cc = 0) { 1031 bc1f(shifted_branch_offset(L), cc); 1032 } 1033 void bc1t(int16_t offset, uint16_t cc = 0); 1034 inline void bc1t(Label* L, uint16_t cc = 0) { 1035 bc1t(shifted_branch_offset(L), cc); 1036 } 1037 void fcmp(FPURegister src1, const double src2, FPUCondition cond); 1038 1039 // Check the code size generated from label to here. 1040 int SizeOfCodeGeneratedSince(Label* label) { 1041 return pc_offset() - label->pos(); 1042 } 1043 1044 // Check the number of instructions generated from label to here. 1045 int InstructionsGeneratedSince(Label* label) { 1046 return SizeOfCodeGeneratedSince(label) / kInstrSize; 1047 } 1048 1049 // Class for scoping postponing the trampoline pool generation. 1050 class BlockTrampolinePoolScope { 1051 public: 1052 explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) { 1053 assem_->StartBlockTrampolinePool(); 1054 } 1055 ~BlockTrampolinePoolScope() { 1056 assem_->EndBlockTrampolinePool(); 1057 } 1058 1059 private: 1060 Assembler* assem_; 1061 1062 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope); 1063 }; 1064 1065 // Class for postponing the assembly buffer growth. Typically used for 1066 // sequences of instructions that must be emitted as a unit, before 1067 // buffer growth (and relocation) can occur. 1068 // This blocking scope is not nestable. 1069 class BlockGrowBufferScope { 1070 public: 1071 explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) { 1072 assem_->StartBlockGrowBuffer(); 1073 } 1074 ~BlockGrowBufferScope() { 1075 assem_->EndBlockGrowBuffer(); 1076 } 1077 1078 private: 1079 Assembler* assem_; 1080 1081 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope); 1082 }; 1083 1084 // Debugging. 1085 1086 // Mark generator continuation. 1087 void RecordGeneratorContinuation(); 1088 1089 // Mark address of a debug break slot. 1090 void RecordDebugBreakSlot(RelocInfo::Mode mode); 1091 1092 // Record the AST id of the CallIC being compiled, so that it can be placed 1093 // in the relocation information. 1094 void SetRecordedAstId(TypeFeedbackId ast_id) { 1095 DCHECK(recorded_ast_id_.IsNone()); 1096 recorded_ast_id_ = ast_id; 1097 } 1098 1099 TypeFeedbackId RecordedAstId() { 1100 DCHECK(!recorded_ast_id_.IsNone()); 1101 return recorded_ast_id_; 1102 } 1103 1104 void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); } 1105 1106 // Record a comment relocation entry that can be used by a disassembler. 1107 // Use --code-comments to enable. 1108 void RecordComment(const char* msg); 1109 1110 // Record a deoptimization reason that can be used by a log or cpu profiler. 1111 // Use --trace-deopt to enable. 1112 void RecordDeoptReason(const int reason, int raw_position, int id); 1113 1114 static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc, 1115 intptr_t pc_delta); 1116 1117 // Writes a single byte or word of data in the code stream. Used for 1118 // inline tables, e.g., jump-tables. 1119 void db(uint8_t data); 1120 void dd(uint32_t data); 1121 void dq(uint64_t data); 1122 void dp(uintptr_t data) { dq(data); } 1123 void dd(Label* label); 1124 1125 AssemblerPositionsRecorder* positions_recorder() { 1126 return &positions_recorder_; 1127 } 1128 1129 // Postpone the generation of the trampoline pool for the specified number of 1130 // instructions. 1131 void BlockTrampolinePoolFor(int instructions); 1132 1133 // Check if there is less than kGap bytes available in the buffer. 1134 // If this is the case, we need to grow the buffer before emitting 1135 // an instruction or relocation information. 1136 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } 1137 1138 // Get the number of bytes available in the buffer. 1139 inline intptr_t available_space() const { 1140 return reloc_info_writer.pos() - pc_; 1141 } 1142 1143 // Read/patch instructions. 1144 static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); } 1145 static void instr_at_put(byte* pc, Instr instr) { 1146 *reinterpret_cast<Instr*>(pc) = instr; 1147 } 1148 Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); } 1149 void instr_at_put(int pos, Instr instr) { 1150 *reinterpret_cast<Instr*>(buffer_ + pos) = instr; 1151 } 1152 1153 // Check if an instruction is a branch of some kind. 1154 static bool IsBranch(Instr instr); 1155 static bool IsBc(Instr instr); 1156 static bool IsBzc(Instr instr); 1157 1158 static bool IsBeq(Instr instr); 1159 static bool IsBne(Instr instr); 1160 static bool IsBeqzc(Instr instr); 1161 static bool IsBnezc(Instr instr); 1162 static bool IsBeqc(Instr instr); 1163 static bool IsBnec(Instr instr); 1164 1165 1166 static bool IsJump(Instr instr); 1167 static bool IsJ(Instr instr); 1168 static bool IsLui(Instr instr); 1169 static bool IsOri(Instr instr); 1170 1171 static bool IsJal(Instr instr); 1172 static bool IsJr(Instr instr); 1173 static bool IsJalr(Instr instr); 1174 1175 static bool IsNop(Instr instr, unsigned int type); 1176 static bool IsPop(Instr instr); 1177 static bool IsPush(Instr instr); 1178 static bool IsLwRegFpOffset(Instr instr); 1179 static bool IsSwRegFpOffset(Instr instr); 1180 static bool IsLwRegFpNegOffset(Instr instr); 1181 static bool IsSwRegFpNegOffset(Instr instr); 1182 1183 static Register GetRtReg(Instr instr); 1184 static Register GetRsReg(Instr instr); 1185 static Register GetRdReg(Instr instr); 1186 1187 static uint32_t GetRt(Instr instr); 1188 static uint32_t GetRtField(Instr instr); 1189 static uint32_t GetRs(Instr instr); 1190 static uint32_t GetRsField(Instr instr); 1191 static uint32_t GetRd(Instr instr); 1192 static uint32_t GetRdField(Instr instr); 1193 static uint32_t GetSa(Instr instr); 1194 static uint32_t GetSaField(Instr instr); 1195 static uint32_t GetOpcodeField(Instr instr); 1196 static uint32_t GetFunction(Instr instr); 1197 static uint32_t GetFunctionField(Instr instr); 1198 static uint32_t GetImmediate16(Instr instr); 1199 static uint32_t GetLabelConst(Instr instr); 1200 1201 static int32_t GetBranchOffset(Instr instr); 1202 static bool IsLw(Instr instr); 1203 static int16_t GetLwOffset(Instr instr); 1204 static Instr SetLwOffset(Instr instr, int16_t offset); 1205 1206 static bool IsSw(Instr instr); 1207 static Instr SetSwOffset(Instr instr, int16_t offset); 1208 static bool IsAddImmediate(Instr instr); 1209 static Instr SetAddImmediateOffset(Instr instr, int16_t offset); 1210 1211 static bool IsAndImmediate(Instr instr); 1212 static bool IsEmittedConstant(Instr instr); 1213 1214 void CheckTrampolinePool(); 1215 1216 void PatchConstantPoolAccessInstruction(int pc_offset, int offset, 1217 ConstantPoolEntry::Access access, 1218 ConstantPoolEntry::Type type) { 1219 // No embedded constant pool support. 1220 UNREACHABLE(); 1221 } 1222 1223 bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; } 1224 1225 inline int UnboundLabelsCount() { return unbound_labels_count_; } 1226 1227 protected: 1228 // Load Scaled Address instructions. 1229 void lsa(Register rd, Register rt, Register rs, uint8_t sa); 1230 void dlsa(Register rd, Register rt, Register rs, uint8_t sa); 1231 1232 // Helpers. 1233 void LoadRegPlusOffsetToAt(const MemOperand& src); 1234 1235 // Relocation for a type-recording IC has the AST id added to it. This 1236 // member variable is a way to pass the information from the call site to 1237 // the relocation info. 1238 TypeFeedbackId recorded_ast_id_; 1239 1240 inline static void set_target_internal_reference_encoded_at(Address pc, 1241 Address target); 1242 1243 int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; } 1244 1245 // Decode branch instruction at pos and return branch target pos. 1246 int target_at(int pos, bool is_internal); 1247 1248 // Patch branch instruction at pos to branch to given branch target pos. 1249 void target_at_put(int pos, int target_pos, bool is_internal); 1250 1251 // Say if we need to relocate with this mode. 1252 bool MustUseReg(RelocInfo::Mode rmode); 1253 1254 // Record reloc info for current pc_. 1255 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); 1256 1257 // Block the emission of the trampoline pool before pc_offset. 1258 void BlockTrampolinePoolBefore(int pc_offset) { 1259 if (no_trampoline_pool_before_ < pc_offset) 1260 no_trampoline_pool_before_ = pc_offset; 1261 } 1262 1263 void StartBlockTrampolinePool() { 1264 trampoline_pool_blocked_nesting_++; 1265 } 1266 1267 void EndBlockTrampolinePool() { 1268 trampoline_pool_blocked_nesting_--; 1269 } 1270 1271 bool is_trampoline_pool_blocked() const { 1272 return trampoline_pool_blocked_nesting_ > 0; 1273 } 1274 1275 bool has_exception() const { 1276 return internal_trampoline_exception_; 1277 } 1278 1279 void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi); 1280 1281 bool is_trampoline_emitted() const { 1282 return trampoline_emitted_; 1283 } 1284 1285 // Temporarily block automatic assembly buffer growth. 1286 void StartBlockGrowBuffer() { 1287 DCHECK(!block_buffer_growth_); 1288 block_buffer_growth_ = true; 1289 } 1290 1291 void EndBlockGrowBuffer() { 1292 DCHECK(block_buffer_growth_); 1293 block_buffer_growth_ = false; 1294 } 1295 1296 bool is_buffer_growth_blocked() const { 1297 return block_buffer_growth_; 1298 } 1299 1300 void EmitForbiddenSlotInstruction() { 1301 if (IsPrevInstrCompactBranch()) { 1302 nop(); 1303 } 1304 } 1305 1306 inline void CheckTrampolinePoolQuick(int extra_instructions = 0); 1307 1308 private: 1309 // Buffer size and constant pool distance are checked together at regular 1310 // intervals of kBufferCheckInterval emitted bytes. 1311 static const int kBufferCheckInterval = 1*KB/2; 1312 1313 // Code generation. 1314 // The relocation writer's position is at least kGap bytes below the end of 1315 // the generated instructions. This is so that multi-instruction sequences do 1316 // not have to check for overflow. The same is true for writes of large 1317 // relocation info entries. 1318 static const int kGap = 32; 1319 1320 1321 // Repeated checking whether the trampoline pool should be emitted is rather 1322 // expensive. By default we only check again once a number of instructions 1323 // has been generated. 1324 static const int kCheckConstIntervalInst = 32; 1325 static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize; 1326 1327 int next_buffer_check_; // pc offset of next buffer check. 1328 1329 // Emission of the trampoline pool may be blocked in some code sequences. 1330 int trampoline_pool_blocked_nesting_; // Block emission if this is not zero. 1331 int no_trampoline_pool_before_; // Block emission before this pc offset. 1332 1333 // Keep track of the last emitted pool to guarantee a maximal distance. 1334 int last_trampoline_pool_end_; // pc offset of the end of the last pool. 1335 1336 // Automatic growth of the assembly buffer may be blocked for some sequences. 1337 bool block_buffer_growth_; // Block growth when true. 1338 1339 // Relocation information generation. 1340 // Each relocation is encoded as a variable size value. 1341 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize; 1342 RelocInfoWriter reloc_info_writer; 1343 1344 // The bound position, before this we cannot do instruction elimination. 1345 int last_bound_pos_; 1346 1347 // Readable constants for compact branch handling in emit() 1348 enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true }; 1349 1350 // Code emission. 1351 inline void CheckBuffer(); 1352 void GrowBuffer(); 1353 inline void emit(Instr x, 1354 CompactBranchType is_compact_branch = CompactBranchType::NO); 1355 inline void emit(uint64_t x); 1356 inline void CheckForEmitInForbiddenSlot(); 1357 template <typename T> 1358 inline void EmitHelper(T x); 1359 inline void EmitHelper(Instr x, CompactBranchType is_compact_branch); 1360 1361 // Instruction generation. 1362 // We have 3 different kind of encoding layout on MIPS. 1363 // However due to many different types of objects encoded in the same fields 1364 // we have quite a few aliases for each mode. 1365 // Using the same structure to refer to Register and FPURegister would spare a 1366 // few aliases, but mixing both does not look clean to me. 1367 // Anyway we could surely implement this differently. 1368 1369 void GenInstrRegister(Opcode opcode, 1370 Register rs, 1371 Register rt, 1372 Register rd, 1373 uint16_t sa = 0, 1374 SecondaryField func = NULLSF); 1375 1376 void GenInstrRegister(Opcode opcode, 1377 Register rs, 1378 Register rt, 1379 uint16_t msb, 1380 uint16_t lsb, 1381 SecondaryField func); 1382 1383 void GenInstrRegister(Opcode opcode, 1384 SecondaryField fmt, 1385 FPURegister ft, 1386 FPURegister fs, 1387 FPURegister fd, 1388 SecondaryField func = NULLSF); 1389 1390 void GenInstrRegister(Opcode opcode, 1391 FPURegister fr, 1392 FPURegister ft, 1393 FPURegister fs, 1394 FPURegister fd, 1395 SecondaryField func = NULLSF); 1396 1397 void GenInstrRegister(Opcode opcode, 1398 SecondaryField fmt, 1399 Register rt, 1400 FPURegister fs, 1401 FPURegister fd, 1402 SecondaryField func = NULLSF); 1403 1404 void GenInstrRegister(Opcode opcode, 1405 SecondaryField fmt, 1406 Register rt, 1407 FPUControlRegister fs, 1408 SecondaryField func = NULLSF); 1409 1410 1411 void GenInstrImmediate( 1412 Opcode opcode, Register rs, Register rt, int32_t j, 1413 CompactBranchType is_compact_branch = CompactBranchType::NO); 1414 void GenInstrImmediate( 1415 Opcode opcode, Register rs, SecondaryField SF, int32_t j, 1416 CompactBranchType is_compact_branch = CompactBranchType::NO); 1417 void GenInstrImmediate( 1418 Opcode opcode, Register r1, FPURegister r2, int32_t j, 1419 CompactBranchType is_compact_branch = CompactBranchType::NO); 1420 void GenInstrImmediate( 1421 Opcode opcode, Register rs, int32_t offset21, 1422 CompactBranchType is_compact_branch = CompactBranchType::NO); 1423 void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21); 1424 void GenInstrImmediate( 1425 Opcode opcode, int32_t offset26, 1426 CompactBranchType is_compact_branch = CompactBranchType::NO); 1427 1428 void GenInstrJump(Opcode opcode, 1429 uint32_t address); 1430 1431 // Labels. 1432 void print(Label* L); 1433 void bind_to(Label* L, int pos); 1434 void next(Label* L, bool is_internal); 1435 1436 // One trampoline consists of: 1437 // - space for trampoline slots, 1438 // - space for labels. 1439 // 1440 // Space for trampoline slots is equal to slot_count * 2 * kInstrSize. 1441 // Space for trampoline slots preceeds space for labels. Each label is of one 1442 // instruction size, so total amount for labels is equal to 1443 // label_count * kInstrSize. 1444 class Trampoline { 1445 public: 1446 Trampoline() { 1447 start_ = 0; 1448 next_slot_ = 0; 1449 free_slot_count_ = 0; 1450 end_ = 0; 1451 } 1452 Trampoline(int start, int slot_count) { 1453 start_ = start; 1454 next_slot_ = start; 1455 free_slot_count_ = slot_count; 1456 end_ = start + slot_count * kTrampolineSlotsSize; 1457 } 1458 int start() { 1459 return start_; 1460 } 1461 int end() { 1462 return end_; 1463 } 1464 int take_slot() { 1465 int trampoline_slot = kInvalidSlotPos; 1466 if (free_slot_count_ <= 0) { 1467 // We have run out of space on trampolines. 1468 // Make sure we fail in debug mode, so we become aware of each case 1469 // when this happens. 1470 DCHECK(0); 1471 // Internal exception will be caught. 1472 } else { 1473 trampoline_slot = next_slot_; 1474 free_slot_count_--; 1475 next_slot_ += kTrampolineSlotsSize; 1476 } 1477 return trampoline_slot; 1478 } 1479 1480 private: 1481 int start_; 1482 int end_; 1483 int next_slot_; 1484 int free_slot_count_; 1485 }; 1486 1487 int32_t get_trampoline_entry(int32_t pos); 1488 int unbound_labels_count_; 1489 // After trampoline is emitted, long branches are used in generated code for 1490 // the forward branches whose target offsets could be beyond reach of branch 1491 // instruction. We use this information to trigger different mode of 1492 // branch instruction generation, where we use jump instructions rather 1493 // than regular branch instructions. 1494 bool trampoline_emitted_; 1495 static const int kTrampolineSlotsSize = 2 * kInstrSize; 1496 static const int kMaxBranchOffset = (1 << (18 - 1)) - 1; 1497 static const int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1; 1498 static const int kInvalidSlotPos = -1; 1499 1500 // Internal reference positions, required for unbounded internal reference 1501 // labels. 1502 std::set<int64_t> internal_reference_positions_; 1503 1504 void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; } 1505 void ClearCompactBranchState() { prev_instr_compact_branch_ = false; } 1506 bool prev_instr_compact_branch_ = false; 1507 1508 Trampoline trampoline_; 1509 bool internal_trampoline_exception_; 1510 1511 friend class RegExpMacroAssemblerMIPS; 1512 friend class RelocInfo; 1513 friend class CodePatcher; 1514 friend class BlockTrampolinePoolScope; 1515 1516 AssemblerPositionsRecorder positions_recorder_; 1517 friend class AssemblerPositionsRecorder; 1518 friend class EnsureSpace; 1519}; 1520 1521 1522class EnsureSpace BASE_EMBEDDED { 1523 public: 1524 explicit EnsureSpace(Assembler* assembler) { 1525 assembler->CheckBuffer(); 1526 } 1527}; 1528 1529} // namespace internal 1530} // namespace v8 1531 1532#endif // V8_ARM_ASSEMBLER_MIPS_H_ 1533