1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_REGEXP_JSREGEXP_H_
6#define V8_REGEXP_JSREGEXP_H_
7
8#include "src/allocation.h"
9#include "src/assembler.h"
10#include "src/regexp/regexp-ast.h"
11#include "src/regexp/regexp-macro-assembler.h"
12
13namespace v8 {
14namespace internal {
15
16class NodeVisitor;
17class RegExpCompiler;
18class RegExpMacroAssembler;
19class RegExpNode;
20class RegExpTree;
21class BoyerMooreLookahead;
22
23class RegExpImpl {
24 public:
25  // Whether V8 is compiled with native regexp support or not.
26  static bool UsesNativeRegExp() {
27#ifdef V8_INTERPRETED_REGEXP
28    return false;
29#else
30    return true;
31#endif
32  }
33
34  // Returns a string representation of a regular expression.
35  // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
36  // This function calls the garbage collector if necessary.
37  static Handle<String> ToString(Handle<Object> value);
38
39  // Parses the RegExp pattern and prepares the JSRegExp object with
40  // generic data and choice of implementation - as well as what
41  // the implementation wants to store in the data field.
42  // Returns false if compilation fails.
43  MUST_USE_RESULT static MaybeHandle<Object> Compile(Handle<JSRegExp> re,
44                                                     Handle<String> pattern,
45                                                     JSRegExp::Flags flags);
46
47  // See ECMA-262 section 15.10.6.2.
48  // This function calls the garbage collector if necessary.
49  MUST_USE_RESULT static MaybeHandle<Object> Exec(
50      Handle<JSRegExp> regexp,
51      Handle<String> subject,
52      int index,
53      Handle<JSArray> lastMatchInfo);
54
55  // Prepares a JSRegExp object with Irregexp-specific data.
56  static void IrregexpInitialize(Handle<JSRegExp> re,
57                                 Handle<String> pattern,
58                                 JSRegExp::Flags flags,
59                                 int capture_register_count);
60
61
62  static void AtomCompile(Handle<JSRegExp> re,
63                          Handle<String> pattern,
64                          JSRegExp::Flags flags,
65                          Handle<String> match_pattern);
66
67
68  static int AtomExecRaw(Handle<JSRegExp> regexp,
69                         Handle<String> subject,
70                         int index,
71                         int32_t* output,
72                         int output_size);
73
74
75  static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
76                                 Handle<String> subject,
77                                 int index,
78                                 Handle<JSArray> lastMatchInfo);
79
80  enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
81
82  // Prepare a RegExp for being executed one or more times (using
83  // IrregexpExecOnce) on the subject.
84  // This ensures that the regexp is compiled for the subject, and that
85  // the subject is flat.
86  // Returns the number of integer spaces required by IrregexpExecOnce
87  // as its "registers" argument.  If the regexp cannot be compiled,
88  // an exception is set as pending, and this function returns negative.
89  static int IrregexpPrepare(Handle<JSRegExp> regexp,
90                             Handle<String> subject);
91
92  // Execute a regular expression on the subject, starting from index.
93  // If matching succeeds, return the number of matches.  This can be larger
94  // than one in the case of global regular expressions.
95  // The captures and subcaptures are stored into the registers vector.
96  // If matching fails, returns RE_FAILURE.
97  // If execution fails, sets a pending exception and returns RE_EXCEPTION.
98  static int IrregexpExecRaw(Handle<JSRegExp> regexp,
99                             Handle<String> subject,
100                             int index,
101                             int32_t* output,
102                             int output_size);
103
104  // Execute an Irregexp bytecode pattern.
105  // On a successful match, the result is a JSArray containing
106  // captured positions.  On a failure, the result is the null value.
107  // Returns an empty handle in case of an exception.
108  MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec(
109      Handle<JSRegExp> regexp,
110      Handle<String> subject,
111      int index,
112      Handle<JSArray> lastMatchInfo);
113
114  // Set last match info.  If match is NULL, then setting captures is omitted.
115  static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info,
116                                          Handle<String> subject,
117                                          int capture_count,
118                                          int32_t* match);
119
120
121  class GlobalCache {
122   public:
123    GlobalCache(Handle<JSRegExp> regexp,
124                Handle<String> subject,
125                Isolate* isolate);
126
127    INLINE(~GlobalCache());
128
129    // Fetch the next entry in the cache for global regexp match results.
130    // This does not set the last match info.  Upon failure, NULL is returned.
131    // The cause can be checked with Result().  The previous
132    // result is still in available in memory when a failure happens.
133    INLINE(int32_t* FetchNext());
134
135    INLINE(int32_t* LastSuccessfulMatch());
136
137    INLINE(bool HasException()) { return num_matches_ < 0; }
138
139   private:
140    int AdvanceZeroLength(int last_index);
141
142    int num_matches_;
143    int max_matches_;
144    int current_match_index_;
145    int registers_per_match_;
146    // Pointer to the last set of captures.
147    int32_t* register_array_;
148    int register_array_size_;
149    Handle<JSRegExp> regexp_;
150    Handle<String> subject_;
151  };
152
153
154  // Array index in the lastMatchInfo array.
155  static const int kLastCaptureCount = 0;
156  static const int kLastSubject = 1;
157  static const int kLastInput = 2;
158  static const int kFirstCapture = 3;
159  static const int kLastMatchOverhead = 3;
160
161  // Direct offset into the lastMatchInfo array.
162  static const int kLastCaptureCountOffset =
163      FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
164  static const int kLastSubjectOffset =
165      FixedArray::kHeaderSize + kLastSubject * kPointerSize;
166  static const int kLastInputOffset =
167      FixedArray::kHeaderSize + kLastInput * kPointerSize;
168  static const int kFirstCaptureOffset =
169      FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
170
171  // Used to access the lastMatchInfo array.
172  static int GetCapture(FixedArray* array, int index) {
173    return Smi::cast(array->get(index + kFirstCapture))->value();
174  }
175
176  static void SetLastCaptureCount(FixedArray* array, int to) {
177    array->set(kLastCaptureCount, Smi::FromInt(to));
178  }
179
180  static void SetLastSubject(FixedArray* array, String* to) {
181    array->set(kLastSubject, to);
182  }
183
184  static void SetLastInput(FixedArray* array, String* to) {
185    array->set(kLastInput, to);
186  }
187
188  static void SetCapture(FixedArray* array, int index, int to) {
189    array->set(index + kFirstCapture, Smi::FromInt(to));
190  }
191
192  static int GetLastCaptureCount(FixedArray* array) {
193    return Smi::cast(array->get(kLastCaptureCount))->value();
194  }
195
196  // For acting on the JSRegExp data FixedArray.
197  static int IrregexpMaxRegisterCount(FixedArray* re);
198  static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
199  static void SetIrregexpCaptureNameMap(FixedArray* re,
200                                        Handle<FixedArray> value);
201  static int IrregexpNumberOfCaptures(FixedArray* re);
202  static int IrregexpNumberOfRegisters(FixedArray* re);
203  static ByteArray* IrregexpByteCode(FixedArray* re, bool is_one_byte);
204  static Code* IrregexpNativeCode(FixedArray* re, bool is_one_byte);
205
206  // Limit the space regexps take up on the heap.  In order to limit this we
207  // would like to keep track of the amount of regexp code on the heap.  This
208  // is not tracked, however.  As a conservative approximation we track the
209  // total regexp code compiled including code that has subsequently been freed
210  // and the total executable memory at any point.
211  static const int kRegExpExecutableMemoryLimit = 16 * MB;
212  static const int kRegExpCompiledLimit = 1 * MB;
213  static const int kRegExpTooLargeToOptimize = 20 * KB;
214
215 private:
216  static bool CompileIrregexp(Handle<JSRegExp> re,
217                              Handle<String> sample_subject, bool is_one_byte);
218  static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re,
219                                            Handle<String> sample_subject,
220                                            bool is_one_byte);
221};
222
223
224// Represents the location of one element relative to the intersection of
225// two sets. Corresponds to the four areas of a Venn diagram.
226enum ElementInSetsRelation {
227  kInsideNone = 0,
228  kInsideFirst = 1,
229  kInsideSecond = 2,
230  kInsideBoth = 3
231};
232
233
234// A set of unsigned integers that behaves especially well on small
235// integers (< 32).  May do zone-allocation.
236class OutSet: public ZoneObject {
237 public:
238  OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
239  OutSet* Extend(unsigned value, Zone* zone);
240  bool Get(unsigned value) const;
241  static const unsigned kFirstLimit = 32;
242
243 private:
244  // Destructively set a value in this set.  In most cases you want
245  // to use Extend instead to ensure that only one instance exists
246  // that contains the same values.
247  void Set(unsigned value, Zone* zone);
248
249  // The successors are a list of sets that contain the same values
250  // as this set and the one more value that is not present in this
251  // set.
252  ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
253
254  OutSet(uint32_t first, ZoneList<unsigned>* remaining)
255      : first_(first), remaining_(remaining), successors_(NULL) { }
256  uint32_t first_;
257  ZoneList<unsigned>* remaining_;
258  ZoneList<OutSet*>* successors_;
259  friend class Trace;
260};
261
262
263// A mapping from integers, specified as ranges, to a set of integers.
264// Used for mapping character ranges to choices.
265class DispatchTable : public ZoneObject {
266 public:
267  explicit DispatchTable(Zone* zone) : tree_(zone) { }
268
269  class Entry {
270   public:
271    Entry() : from_(0), to_(0), out_set_(NULL) { }
272    Entry(uc32 from, uc32 to, OutSet* out_set)
273        : from_(from), to_(to), out_set_(out_set) {
274      DCHECK(from <= to);
275    }
276    uc32 from() { return from_; }
277    uc32 to() { return to_; }
278    void set_to(uc32 value) { to_ = value; }
279    void AddValue(int value, Zone* zone) {
280      out_set_ = out_set_->Extend(value, zone);
281    }
282    OutSet* out_set() { return out_set_; }
283   private:
284    uc32 from_;
285    uc32 to_;
286    OutSet* out_set_;
287  };
288
289  class Config {
290   public:
291    typedef uc32 Key;
292    typedef Entry Value;
293    static const uc32 kNoKey;
294    static const Entry NoValue() { return Value(); }
295    static inline int Compare(uc32 a, uc32 b) {
296      if (a == b)
297        return 0;
298      else if (a < b)
299        return -1;
300      else
301        return 1;
302    }
303  };
304
305  void AddRange(CharacterRange range, int value, Zone* zone);
306  OutSet* Get(uc32 value);
307  void Dump();
308
309  template <typename Callback>
310  void ForEach(Callback* callback) {
311    return tree()->ForEach(callback);
312  }
313
314 private:
315  // There can't be a static empty set since it allocates its
316  // successors in a zone and caches them.
317  OutSet* empty() { return &empty_; }
318  OutSet empty_;
319  ZoneSplayTree<Config>* tree() { return &tree_; }
320  ZoneSplayTree<Config> tree_;
321};
322
323
324// Categorizes character ranges into BMP, non-BMP, lead, and trail surrogates.
325class UnicodeRangeSplitter {
326 public:
327  UnicodeRangeSplitter(Zone* zone, ZoneList<CharacterRange>* base);
328  void Call(uc32 from, DispatchTable::Entry entry);
329
330  ZoneList<CharacterRange>* bmp() { return bmp_; }
331  ZoneList<CharacterRange>* lead_surrogates() { return lead_surrogates_; }
332  ZoneList<CharacterRange>* trail_surrogates() { return trail_surrogates_; }
333  ZoneList<CharacterRange>* non_bmp() const { return non_bmp_; }
334
335 private:
336  static const int kBase = 0;
337  // Separate ranges into
338  static const int kBmpCodePoints = 1;
339  static const int kLeadSurrogates = 2;
340  static const int kTrailSurrogates = 3;
341  static const int kNonBmpCodePoints = 4;
342
343  Zone* zone_;
344  DispatchTable table_;
345  ZoneList<CharacterRange>* bmp_;
346  ZoneList<CharacterRange>* lead_surrogates_;
347  ZoneList<CharacterRange>* trail_surrogates_;
348  ZoneList<CharacterRange>* non_bmp_;
349};
350
351
352#define FOR_EACH_NODE_TYPE(VISIT)                                    \
353  VISIT(End)                                                         \
354  VISIT(Action)                                                      \
355  VISIT(Choice)                                                      \
356  VISIT(BackReference)                                               \
357  VISIT(Assertion)                                                   \
358  VISIT(Text)
359
360
361class Trace;
362struct PreloadState;
363class GreedyLoopState;
364class AlternativeGenerationList;
365
366struct NodeInfo {
367  NodeInfo()
368      : being_analyzed(false),
369        been_analyzed(false),
370        follows_word_interest(false),
371        follows_newline_interest(false),
372        follows_start_interest(false),
373        at_end(false),
374        visited(false),
375        replacement_calculated(false) { }
376
377  // Returns true if the interests and assumptions of this node
378  // matches the given one.
379  bool Matches(NodeInfo* that) {
380    return (at_end == that->at_end) &&
381           (follows_word_interest == that->follows_word_interest) &&
382           (follows_newline_interest == that->follows_newline_interest) &&
383           (follows_start_interest == that->follows_start_interest);
384  }
385
386  // Updates the interests of this node given the interests of the
387  // node preceding it.
388  void AddFromPreceding(NodeInfo* that) {
389    at_end |= that->at_end;
390    follows_word_interest |= that->follows_word_interest;
391    follows_newline_interest |= that->follows_newline_interest;
392    follows_start_interest |= that->follows_start_interest;
393  }
394
395  bool HasLookbehind() {
396    return follows_word_interest ||
397           follows_newline_interest ||
398           follows_start_interest;
399  }
400
401  // Sets the interests of this node to include the interests of the
402  // following node.
403  void AddFromFollowing(NodeInfo* that) {
404    follows_word_interest |= that->follows_word_interest;
405    follows_newline_interest |= that->follows_newline_interest;
406    follows_start_interest |= that->follows_start_interest;
407  }
408
409  void ResetCompilationState() {
410    being_analyzed = false;
411    been_analyzed = false;
412  }
413
414  bool being_analyzed: 1;
415  bool been_analyzed: 1;
416
417  // These bits are set of this node has to know what the preceding
418  // character was.
419  bool follows_word_interest: 1;
420  bool follows_newline_interest: 1;
421  bool follows_start_interest: 1;
422
423  bool at_end: 1;
424  bool visited: 1;
425  bool replacement_calculated: 1;
426};
427
428
429// Details of a quick mask-compare check that can look ahead in the
430// input stream.
431class QuickCheckDetails {
432 public:
433  QuickCheckDetails()
434      : characters_(0),
435        mask_(0),
436        value_(0),
437        cannot_match_(false) { }
438  explicit QuickCheckDetails(int characters)
439      : characters_(characters),
440        mask_(0),
441        value_(0),
442        cannot_match_(false) { }
443  bool Rationalize(bool one_byte);
444  // Merge in the information from another branch of an alternation.
445  void Merge(QuickCheckDetails* other, int from_index);
446  // Advance the current position by some amount.
447  void Advance(int by, bool one_byte);
448  void Clear();
449  bool cannot_match() { return cannot_match_; }
450  void set_cannot_match() { cannot_match_ = true; }
451  struct Position {
452    Position() : mask(0), value(0), determines_perfectly(false) { }
453    uc16 mask;
454    uc16 value;
455    bool determines_perfectly;
456  };
457  int characters() { return characters_; }
458  void set_characters(int characters) { characters_ = characters; }
459  Position* positions(int index) {
460    DCHECK(index >= 0);
461    DCHECK(index < characters_);
462    return positions_ + index;
463  }
464  uint32_t mask() { return mask_; }
465  uint32_t value() { return value_; }
466
467 private:
468  // How many characters do we have quick check information from.  This is
469  // the same for all branches of a choice node.
470  int characters_;
471  Position positions_[4];
472  // These values are the condensate of the above array after Rationalize().
473  uint32_t mask_;
474  uint32_t value_;
475  // If set to true, there is no way this quick check can match at all.
476  // E.g., if it requires to be at the start of the input, and isn't.
477  bool cannot_match_;
478};
479
480
481extern int kUninitializedRegExpNodePlaceHolder;
482
483
484class RegExpNode: public ZoneObject {
485 public:
486  explicit RegExpNode(Zone* zone)
487      : replacement_(NULL), on_work_list_(false), trace_count_(0), zone_(zone) {
488    bm_info_[0] = bm_info_[1] = NULL;
489  }
490  virtual ~RegExpNode();
491  virtual void Accept(NodeVisitor* visitor) = 0;
492  // Generates a goto to this node or actually generates the code at this point.
493  virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
494  // How many characters must this node consume at a minimum in order to
495  // succeed.  If we have found at least 'still_to_find' characters that
496  // must be consumed there is no need to ask any following nodes whether
497  // they are sure to eat any more characters.  The not_at_start argument is
498  // used to indicate that we know we are not at the start of the input.  In
499  // this case anchored branches will always fail and can be ignored when
500  // determining how many characters are consumed on success.
501  virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
502  // Emits some quick code that checks whether the preloaded characters match.
503  // Falls through on certain failure, jumps to the label on possible success.
504  // If the node cannot make a quick check it does nothing and returns false.
505  bool EmitQuickCheck(RegExpCompiler* compiler,
506                      Trace* bounds_check_trace,
507                      Trace* trace,
508                      bool preload_has_checked_bounds,
509                      Label* on_possible_success,
510                      QuickCheckDetails* details_return,
511                      bool fall_through_on_failure);
512  // For a given number of characters this returns a mask and a value.  The
513  // next n characters are anded with the mask and compared with the value.
514  // A comparison failure indicates the node cannot match the next n characters.
515  // A comparison success indicates the node may match.
516  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
517                                    RegExpCompiler* compiler,
518                                    int characters_filled_in,
519                                    bool not_at_start) = 0;
520  static const int kNodeIsTooComplexForGreedyLoops = kMinInt;
521  virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
522  // Only returns the successor for a text node of length 1 that matches any
523  // character and that has no guards on it.
524  virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
525      RegExpCompiler* compiler) {
526    return NULL;
527  }
528
529  // Collects information on the possible code units (mod 128) that can match if
530  // we look forward.  This is used for a Boyer-Moore-like string searching
531  // implementation.  TODO(erikcorry):  This should share more code with
532  // EatsAtLeast, GetQuickCheckDetails.  The budget argument is used to limit
533  // the number of nodes we are willing to look at in order to create this data.
534  static const int kRecursionBudget = 200;
535  bool KeepRecursing(RegExpCompiler* compiler);
536  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
537                            BoyerMooreLookahead* bm, bool not_at_start) {
538    UNREACHABLE();
539  }
540
541  // If we know that the input is one-byte then there are some nodes that can
542  // never match.  This method returns a node that can be substituted for
543  // itself, or NULL if the node can never match.
544  virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) {
545    return this;
546  }
547  // Helper for FilterOneByte.
548  RegExpNode* replacement() {
549    DCHECK(info()->replacement_calculated);
550    return replacement_;
551  }
552  RegExpNode* set_replacement(RegExpNode* replacement) {
553    info()->replacement_calculated = true;
554    replacement_ =  replacement;
555    return replacement;  // For convenience.
556  }
557
558  // We want to avoid recalculating the lookahead info, so we store it on the
559  // node.  Only info that is for this node is stored.  We can tell that the
560  // info is for this node when offset == 0, so the information is calculated
561  // relative to this node.
562  void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
563    if (offset == 0) set_bm_info(not_at_start, bm);
564  }
565
566  Label* label() { return &label_; }
567  // If non-generic code is generated for a node (i.e. the node is not at the
568  // start of the trace) then it cannot be reused.  This variable sets a limit
569  // on how often we allow that to happen before we insist on starting a new
570  // trace and generating generic code for a node that can be reused by flushing
571  // the deferred actions in the current trace and generating a goto.
572  static const int kMaxCopiesCodeGenerated = 10;
573
574  bool on_work_list() { return on_work_list_; }
575  void set_on_work_list(bool value) { on_work_list_ = value; }
576
577  NodeInfo* info() { return &info_; }
578
579  BoyerMooreLookahead* bm_info(bool not_at_start) {
580    return bm_info_[not_at_start ? 1 : 0];
581  }
582
583  Zone* zone() const { return zone_; }
584
585 protected:
586  enum LimitResult { DONE, CONTINUE };
587  RegExpNode* replacement_;
588
589  LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
590
591  void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
592    bm_info_[not_at_start ? 1 : 0] = bm;
593  }
594
595 private:
596  static const int kFirstCharBudget = 10;
597  Label label_;
598  bool on_work_list_;
599  NodeInfo info_;
600  // This variable keeps track of how many times code has been generated for
601  // this node (in different traces).  We don't keep track of where the
602  // generated code is located unless the code is generated at the start of
603  // a trace, in which case it is generic and can be reused by flushing the
604  // deferred operations in the current trace and generating a goto.
605  int trace_count_;
606  BoyerMooreLookahead* bm_info_[2];
607
608  Zone* zone_;
609};
610
611
612class SeqRegExpNode: public RegExpNode {
613 public:
614  explicit SeqRegExpNode(RegExpNode* on_success)
615      : RegExpNode(on_success->zone()), on_success_(on_success) { }
616  RegExpNode* on_success() { return on_success_; }
617  void set_on_success(RegExpNode* node) { on_success_ = node; }
618  virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
619  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
620                            BoyerMooreLookahead* bm, bool not_at_start) {
621    on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
622    if (offset == 0) set_bm_info(not_at_start, bm);
623  }
624
625 protected:
626  RegExpNode* FilterSuccessor(int depth, bool ignore_case);
627
628 private:
629  RegExpNode* on_success_;
630};
631
632
633class ActionNode: public SeqRegExpNode {
634 public:
635  enum ActionType {
636    SET_REGISTER,
637    INCREMENT_REGISTER,
638    STORE_POSITION,
639    BEGIN_SUBMATCH,
640    POSITIVE_SUBMATCH_SUCCESS,
641    EMPTY_MATCH_CHECK,
642    CLEAR_CAPTURES
643  };
644  static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
645  static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
646  static ActionNode* StorePosition(int reg,
647                                   bool is_capture,
648                                   RegExpNode* on_success);
649  static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
650  static ActionNode* BeginSubmatch(int stack_pointer_reg,
651                                   int position_reg,
652                                   RegExpNode* on_success);
653  static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
654                                             int restore_reg,
655                                             int clear_capture_count,
656                                             int clear_capture_from,
657                                             RegExpNode* on_success);
658  static ActionNode* EmptyMatchCheck(int start_register,
659                                     int repetition_register,
660                                     int repetition_limit,
661                                     RegExpNode* on_success);
662  virtual void Accept(NodeVisitor* visitor);
663  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
664  virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
665  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
666                                    RegExpCompiler* compiler,
667                                    int filled_in,
668                                    bool not_at_start) {
669    return on_success()->GetQuickCheckDetails(
670        details, compiler, filled_in, not_at_start);
671  }
672  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
673                            BoyerMooreLookahead* bm, bool not_at_start);
674  ActionType action_type() { return action_type_; }
675  // TODO(erikcorry): We should allow some action nodes in greedy loops.
676  virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
677
678 private:
679  union {
680    struct {
681      int reg;
682      int value;
683    } u_store_register;
684    struct {
685      int reg;
686    } u_increment_register;
687    struct {
688      int reg;
689      bool is_capture;
690    } u_position_register;
691    struct {
692      int stack_pointer_register;
693      int current_position_register;
694      int clear_register_count;
695      int clear_register_from;
696    } u_submatch;
697    struct {
698      int start_register;
699      int repetition_register;
700      int repetition_limit;
701    } u_empty_match_check;
702    struct {
703      int range_from;
704      int range_to;
705    } u_clear_captures;
706  } data_;
707  ActionNode(ActionType action_type, RegExpNode* on_success)
708      : SeqRegExpNode(on_success),
709        action_type_(action_type) { }
710  ActionType action_type_;
711  friend class DotPrinter;
712};
713
714
715class TextNode: public SeqRegExpNode {
716 public:
717  TextNode(ZoneList<TextElement>* elms, bool read_backward,
718           RegExpNode* on_success)
719      : SeqRegExpNode(on_success), elms_(elms), read_backward_(read_backward) {}
720  TextNode(RegExpCharacterClass* that, bool read_backward,
721           RegExpNode* on_success)
722      : SeqRegExpNode(on_success),
723        elms_(new (zone()) ZoneList<TextElement>(1, zone())),
724        read_backward_(read_backward) {
725    elms_->Add(TextElement::CharClass(that), zone());
726  }
727  // Create TextNode for a single character class for the given ranges.
728  static TextNode* CreateForCharacterRanges(Zone* zone,
729                                            ZoneList<CharacterRange>* ranges,
730                                            bool read_backward,
731                                            RegExpNode* on_success);
732  // Create TextNode for a surrogate pair with a range given for the
733  // lead and the trail surrogate each.
734  static TextNode* CreateForSurrogatePair(Zone* zone, CharacterRange lead,
735                                          CharacterRange trail,
736                                          bool read_backward,
737                                          RegExpNode* on_success);
738  virtual void Accept(NodeVisitor* visitor);
739  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
740  virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
741  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
742                                    RegExpCompiler* compiler,
743                                    int characters_filled_in,
744                                    bool not_at_start);
745  ZoneList<TextElement>* elements() { return elms_; }
746  bool read_backward() { return read_backward_; }
747  void MakeCaseIndependent(Isolate* isolate, bool is_one_byte);
748  virtual int GreedyLoopTextLength();
749  virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
750      RegExpCompiler* compiler);
751  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
752                            BoyerMooreLookahead* bm, bool not_at_start);
753  void CalculateOffsets();
754  virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
755
756 private:
757  enum TextEmitPassType {
758    NON_LATIN1_MATCH,            // Check for characters that can't match.
759    SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
760    NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
761    CASE_CHARACTER_MATCH,        // Case-independent single character check.
762    CHARACTER_CLASS_MATCH        // Character class.
763  };
764  static bool SkipPass(int pass, bool ignore_case);
765  static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
766  static const int kLastPass = CHARACTER_CLASS_MATCH;
767  void TextEmitPass(RegExpCompiler* compiler,
768                    TextEmitPassType pass,
769                    bool preloaded,
770                    Trace* trace,
771                    bool first_element_checked,
772                    int* checked_up_to);
773  int Length();
774  ZoneList<TextElement>* elms_;
775  bool read_backward_;
776};
777
778
779class AssertionNode: public SeqRegExpNode {
780 public:
781  enum AssertionType {
782    AT_END,
783    AT_START,
784    AT_BOUNDARY,
785    AT_NON_BOUNDARY,
786    AFTER_NEWLINE
787  };
788  static AssertionNode* AtEnd(RegExpNode* on_success) {
789    return new(on_success->zone()) AssertionNode(AT_END, on_success);
790  }
791  static AssertionNode* AtStart(RegExpNode* on_success) {
792    return new(on_success->zone()) AssertionNode(AT_START, on_success);
793  }
794  static AssertionNode* AtBoundary(RegExpNode* on_success) {
795    return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
796  }
797  static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
798    return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
799  }
800  static AssertionNode* AfterNewline(RegExpNode* on_success) {
801    return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
802  }
803  virtual void Accept(NodeVisitor* visitor);
804  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
805  virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
806  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
807                                    RegExpCompiler* compiler,
808                                    int filled_in,
809                                    bool not_at_start);
810  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
811                            BoyerMooreLookahead* bm, bool not_at_start);
812  AssertionType assertion_type() { return assertion_type_; }
813
814 private:
815  void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
816  enum IfPrevious { kIsNonWord, kIsWord };
817  void BacktrackIfPrevious(RegExpCompiler* compiler,
818                           Trace* trace,
819                           IfPrevious backtrack_if_previous);
820  AssertionNode(AssertionType t, RegExpNode* on_success)
821      : SeqRegExpNode(on_success), assertion_type_(t) { }
822  AssertionType assertion_type_;
823};
824
825
826class BackReferenceNode: public SeqRegExpNode {
827 public:
828  BackReferenceNode(int start_reg, int end_reg, bool read_backward,
829                    RegExpNode* on_success)
830      : SeqRegExpNode(on_success),
831        start_reg_(start_reg),
832        end_reg_(end_reg),
833        read_backward_(read_backward) {}
834  virtual void Accept(NodeVisitor* visitor);
835  int start_register() { return start_reg_; }
836  int end_register() { return end_reg_; }
837  bool read_backward() { return read_backward_; }
838  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
839  virtual int EatsAtLeast(int still_to_find,
840                          int recursion_depth,
841                          bool not_at_start);
842  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
843                                    RegExpCompiler* compiler,
844                                    int characters_filled_in,
845                                    bool not_at_start) {
846    return;
847  }
848  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
849                            BoyerMooreLookahead* bm, bool not_at_start);
850
851 private:
852  int start_reg_;
853  int end_reg_;
854  bool read_backward_;
855};
856
857
858class EndNode: public RegExpNode {
859 public:
860  enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
861  EndNode(Action action, Zone* zone) : RegExpNode(zone), action_(action) {}
862  virtual void Accept(NodeVisitor* visitor);
863  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
864  virtual int EatsAtLeast(int still_to_find,
865                          int recursion_depth,
866                          bool not_at_start) { return 0; }
867  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
868                                    RegExpCompiler* compiler,
869                                    int characters_filled_in,
870                                    bool not_at_start) {
871    // Returning 0 from EatsAtLeast should ensure we never get here.
872    UNREACHABLE();
873  }
874  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
875                            BoyerMooreLookahead* bm, bool not_at_start) {
876    // Returning 0 from EatsAtLeast should ensure we never get here.
877    UNREACHABLE();
878  }
879
880 private:
881  Action action_;
882};
883
884
885class NegativeSubmatchSuccess: public EndNode {
886 public:
887  NegativeSubmatchSuccess(int stack_pointer_reg,
888                          int position_reg,
889                          int clear_capture_count,
890                          int clear_capture_start,
891                          Zone* zone)
892      : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
893        stack_pointer_register_(stack_pointer_reg),
894        current_position_register_(position_reg),
895        clear_capture_count_(clear_capture_count),
896        clear_capture_start_(clear_capture_start) { }
897  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
898
899 private:
900  int stack_pointer_register_;
901  int current_position_register_;
902  int clear_capture_count_;
903  int clear_capture_start_;
904};
905
906
907class Guard: public ZoneObject {
908 public:
909  enum Relation { LT, GEQ };
910  Guard(int reg, Relation op, int value)
911      : reg_(reg),
912        op_(op),
913        value_(value) { }
914  int reg() { return reg_; }
915  Relation op() { return op_; }
916  int value() { return value_; }
917
918 private:
919  int reg_;
920  Relation op_;
921  int value_;
922};
923
924
925class GuardedAlternative {
926 public:
927  explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
928  void AddGuard(Guard* guard, Zone* zone);
929  RegExpNode* node() { return node_; }
930  void set_node(RegExpNode* node) { node_ = node; }
931  ZoneList<Guard*>* guards() { return guards_; }
932
933 private:
934  RegExpNode* node_;
935  ZoneList<Guard*>* guards_;
936};
937
938
939class AlternativeGeneration;
940
941
942class ChoiceNode: public RegExpNode {
943 public:
944  explicit ChoiceNode(int expected_size, Zone* zone)
945      : RegExpNode(zone),
946        alternatives_(new(zone)
947                      ZoneList<GuardedAlternative>(expected_size, zone)),
948        table_(NULL),
949        not_at_start_(false),
950        being_calculated_(false) { }
951  virtual void Accept(NodeVisitor* visitor);
952  void AddAlternative(GuardedAlternative node) {
953    alternatives()->Add(node, zone());
954  }
955  ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
956  DispatchTable* GetTable(bool ignore_case);
957  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
958  virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
959  int EatsAtLeastHelper(int still_to_find,
960                        int budget,
961                        RegExpNode* ignore_this_node,
962                        bool not_at_start);
963  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
964                                    RegExpCompiler* compiler,
965                                    int characters_filled_in,
966                                    bool not_at_start);
967  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
968                            BoyerMooreLookahead* bm, bool not_at_start);
969
970  bool being_calculated() { return being_calculated_; }
971  bool not_at_start() { return not_at_start_; }
972  void set_not_at_start() { not_at_start_ = true; }
973  void set_being_calculated(bool b) { being_calculated_ = b; }
974  virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
975    return true;
976  }
977  virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
978  virtual bool read_backward() { return false; }
979
980 protected:
981  int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
982  ZoneList<GuardedAlternative>* alternatives_;
983
984 private:
985  friend class DispatchTableConstructor;
986  friend class Analysis;
987  void GenerateGuard(RegExpMacroAssembler* macro_assembler,
988                     Guard* guard,
989                     Trace* trace);
990  int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
991  void EmitOutOfLineContinuation(RegExpCompiler* compiler,
992                                 Trace* trace,
993                                 GuardedAlternative alternative,
994                                 AlternativeGeneration* alt_gen,
995                                 int preload_characters,
996                                 bool next_expects_preload);
997  void SetUpPreLoad(RegExpCompiler* compiler,
998                    Trace* current_trace,
999                    PreloadState* preloads);
1000  void AssertGuardsMentionRegisters(Trace* trace);
1001  int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace);
1002  Trace* EmitGreedyLoop(RegExpCompiler* compiler,
1003                        Trace* trace,
1004                        AlternativeGenerationList* alt_gens,
1005                        PreloadState* preloads,
1006                        GreedyLoopState* greedy_loop_state,
1007                        int text_length);
1008  void EmitChoices(RegExpCompiler* compiler,
1009                   AlternativeGenerationList* alt_gens,
1010                   int first_choice,
1011                   Trace* trace,
1012                   PreloadState* preloads);
1013  DispatchTable* table_;
1014  // If true, this node is never checked at the start of the input.
1015  // Allows a new trace to start with at_start() set to false.
1016  bool not_at_start_;
1017  bool being_calculated_;
1018};
1019
1020
1021class NegativeLookaroundChoiceNode : public ChoiceNode {
1022 public:
1023  explicit NegativeLookaroundChoiceNode(GuardedAlternative this_must_fail,
1024                                        GuardedAlternative then_do_this,
1025                                        Zone* zone)
1026      : ChoiceNode(2, zone) {
1027    AddAlternative(this_must_fail);
1028    AddAlternative(then_do_this);
1029  }
1030  virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
1031  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1032                                    RegExpCompiler* compiler,
1033                                    int characters_filled_in,
1034                                    bool not_at_start);
1035  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
1036                            BoyerMooreLookahead* bm, bool not_at_start) {
1037    alternatives_->at(1).node()->FillInBMInfo(isolate, offset, budget - 1, bm,
1038                                              not_at_start);
1039    if (offset == 0) set_bm_info(not_at_start, bm);
1040  }
1041  // For a negative lookahead we don't emit the quick check for the
1042  // alternative that is expected to fail.  This is because quick check code
1043  // starts by loading enough characters for the alternative that takes fewest
1044  // characters, but on a negative lookahead the negative branch did not take
1045  // part in that calculation (EatsAtLeast) so the assumptions don't hold.
1046  virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
1047    return !is_first;
1048  }
1049  virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
1050};
1051
1052
1053class LoopChoiceNode: public ChoiceNode {
1054 public:
1055  LoopChoiceNode(bool body_can_be_zero_length, bool read_backward, Zone* zone)
1056      : ChoiceNode(2, zone),
1057        loop_node_(NULL),
1058        continue_node_(NULL),
1059        body_can_be_zero_length_(body_can_be_zero_length),
1060        read_backward_(read_backward) {}
1061  void AddLoopAlternative(GuardedAlternative alt);
1062  void AddContinueAlternative(GuardedAlternative alt);
1063  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1064  virtual int EatsAtLeast(int still_to_find,  int budget, bool not_at_start);
1065  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1066                                    RegExpCompiler* compiler,
1067                                    int characters_filled_in,
1068                                    bool not_at_start);
1069  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
1070                            BoyerMooreLookahead* bm, bool not_at_start);
1071  RegExpNode* loop_node() { return loop_node_; }
1072  RegExpNode* continue_node() { return continue_node_; }
1073  bool body_can_be_zero_length() { return body_can_be_zero_length_; }
1074  virtual bool read_backward() { return read_backward_; }
1075  virtual void Accept(NodeVisitor* visitor);
1076  virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
1077
1078 private:
1079  // AddAlternative is made private for loop nodes because alternatives
1080  // should not be added freely, we need to keep track of which node
1081  // goes back to the node itself.
1082  void AddAlternative(GuardedAlternative node) {
1083    ChoiceNode::AddAlternative(node);
1084  }
1085
1086  RegExpNode* loop_node_;
1087  RegExpNode* continue_node_;
1088  bool body_can_be_zero_length_;
1089  bool read_backward_;
1090};
1091
1092
1093// Improve the speed that we scan for an initial point where a non-anchored
1094// regexp can match by using a Boyer-Moore-like table. This is done by
1095// identifying non-greedy non-capturing loops in the nodes that eat any
1096// character one at a time.  For example in the middle of the regexp
1097// /foo[\s\S]*?bar/ we find such a loop.  There is also such a loop implicitly
1098// inserted at the start of any non-anchored regexp.
1099//
1100// When we have found such a loop we look ahead in the nodes to find the set of
1101// characters that can come at given distances. For example for the regexp
1102// /.?foo/ we know that there are at least 3 characters ahead of us, and the
1103// sets of characters that can occur are [any, [f, o], [o]]. We find a range in
1104// the lookahead info where the set of characters is reasonably constrained. In
1105// our example this is from index 1 to 2 (0 is not constrained). We can now
1106// look 3 characters ahead and if we don't find one of [f, o] (the union of
1107// [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
1108//
1109// For Unicode input strings we do the same, but modulo 128.
1110//
1111// We also look at the first string fed to the regexp and use that to get a hint
1112// of the character frequencies in the inputs. This affects the assessment of
1113// whether the set of characters is 'reasonably constrained'.
1114//
1115// We also have another lookahead mechanism (called quick check in the code),
1116// which uses a wide load of multiple characters followed by a mask and compare
1117// to determine whether a match is possible at this point.
1118enum ContainedInLattice {
1119  kNotYet = 0,
1120  kLatticeIn = 1,
1121  kLatticeOut = 2,
1122  kLatticeUnknown = 3  // Can also mean both in and out.
1123};
1124
1125
1126inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
1127  return static_cast<ContainedInLattice>(a | b);
1128}
1129
1130
1131ContainedInLattice AddRange(ContainedInLattice a,
1132                            const int* ranges,
1133                            int ranges_size,
1134                            Interval new_range);
1135
1136
1137class BoyerMoorePositionInfo : public ZoneObject {
1138 public:
1139  explicit BoyerMoorePositionInfo(Zone* zone)
1140      : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
1141        map_count_(0),
1142        w_(kNotYet),
1143        s_(kNotYet),
1144        d_(kNotYet),
1145        surrogate_(kNotYet) {
1146     for (int i = 0; i < kMapSize; i++) {
1147       map_->Add(false, zone);
1148     }
1149  }
1150
1151  bool& at(int i) { return map_->at(i); }
1152
1153  static const int kMapSize = 128;
1154  static const int kMask = kMapSize - 1;
1155
1156  int map_count() const { return map_count_; }
1157
1158  void Set(int character);
1159  void SetInterval(const Interval& interval);
1160  void SetAll();
1161  bool is_non_word() { return w_ == kLatticeOut; }
1162  bool is_word() { return w_ == kLatticeIn; }
1163
1164 private:
1165  ZoneList<bool>* map_;
1166  int map_count_;  // Number of set bits in the map.
1167  ContainedInLattice w_;  // The \w character class.
1168  ContainedInLattice s_;  // The \s character class.
1169  ContainedInLattice d_;  // The \d character class.
1170  ContainedInLattice surrogate_;  // Surrogate UTF-16 code units.
1171};
1172
1173
1174class BoyerMooreLookahead : public ZoneObject {
1175 public:
1176  BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
1177
1178  int length() { return length_; }
1179  int max_char() { return max_char_; }
1180  RegExpCompiler* compiler() { return compiler_; }
1181
1182  int Count(int map_number) {
1183    return bitmaps_->at(map_number)->map_count();
1184  }
1185
1186  BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
1187
1188  void Set(int map_number, int character) {
1189    if (character > max_char_) return;
1190    BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
1191    info->Set(character);
1192  }
1193
1194  void SetInterval(int map_number, const Interval& interval) {
1195    if (interval.from() > max_char_) return;
1196    BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
1197    if (interval.to() > max_char_) {
1198      info->SetInterval(Interval(interval.from(), max_char_));
1199    } else {
1200      info->SetInterval(interval);
1201    }
1202  }
1203
1204  void SetAll(int map_number) {
1205    bitmaps_->at(map_number)->SetAll();
1206  }
1207
1208  void SetRest(int from_map) {
1209    for (int i = from_map; i < length_; i++) SetAll(i);
1210  }
1211  void EmitSkipInstructions(RegExpMacroAssembler* masm);
1212
1213 private:
1214  // This is the value obtained by EatsAtLeast.  If we do not have at least this
1215  // many characters left in the sample string then the match is bound to fail.
1216  // Therefore it is OK to read a character this far ahead of the current match
1217  // point.
1218  int length_;
1219  RegExpCompiler* compiler_;
1220  // 0xff for Latin1, 0xffff for UTF-16.
1221  int max_char_;
1222  ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
1223
1224  int GetSkipTable(int min_lookahead,
1225                   int max_lookahead,
1226                   Handle<ByteArray> boolean_skip_table);
1227  bool FindWorthwhileInterval(int* from, int* to);
1228  int FindBestInterval(
1229    int max_number_of_chars, int old_biggest_points, int* from, int* to);
1230};
1231
1232
1233// There are many ways to generate code for a node.  This class encapsulates
1234// the current way we should be generating.  In other words it encapsulates
1235// the current state of the code generator.  The effect of this is that we
1236// generate code for paths that the matcher can take through the regular
1237// expression.  A given node in the regexp can be code-generated several times
1238// as it can be part of several traces.  For example for the regexp:
1239// /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
1240// of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
1241// to match foo is generated only once (the traces have a common prefix).  The
1242// code to store the capture is deferred and generated (twice) after the places
1243// where baz has been matched.
1244class Trace {
1245 public:
1246  // A value for a property that is either known to be true, know to be false,
1247  // or not known.
1248  enum TriBool {
1249    UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
1250  };
1251
1252  class DeferredAction {
1253   public:
1254    DeferredAction(ActionNode::ActionType action_type, int reg)
1255        : action_type_(action_type), reg_(reg), next_(NULL) { }
1256    DeferredAction* next() { return next_; }
1257    bool Mentions(int reg);
1258    int reg() { return reg_; }
1259    ActionNode::ActionType action_type() { return action_type_; }
1260   private:
1261    ActionNode::ActionType action_type_;
1262    int reg_;
1263    DeferredAction* next_;
1264    friend class Trace;
1265  };
1266
1267  class DeferredCapture : public DeferredAction {
1268   public:
1269    DeferredCapture(int reg, bool is_capture, Trace* trace)
1270        : DeferredAction(ActionNode::STORE_POSITION, reg),
1271          cp_offset_(trace->cp_offset()),
1272          is_capture_(is_capture) { }
1273    int cp_offset() { return cp_offset_; }
1274    bool is_capture() { return is_capture_; }
1275   private:
1276    int cp_offset_;
1277    bool is_capture_;
1278    void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
1279  };
1280
1281  class DeferredSetRegister : public DeferredAction {
1282   public:
1283    DeferredSetRegister(int reg, int value)
1284        : DeferredAction(ActionNode::SET_REGISTER, reg),
1285          value_(value) { }
1286    int value() { return value_; }
1287   private:
1288    int value_;
1289  };
1290
1291  class DeferredClearCaptures : public DeferredAction {
1292   public:
1293    explicit DeferredClearCaptures(Interval range)
1294        : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1295          range_(range) { }
1296    Interval range() { return range_; }
1297   private:
1298    Interval range_;
1299  };
1300
1301  class DeferredIncrementRegister : public DeferredAction {
1302   public:
1303    explicit DeferredIncrementRegister(int reg)
1304        : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1305  };
1306
1307  Trace()
1308      : cp_offset_(0),
1309        actions_(NULL),
1310        backtrack_(NULL),
1311        stop_node_(NULL),
1312        loop_label_(NULL),
1313        characters_preloaded_(0),
1314        bound_checked_up_to_(0),
1315        flush_budget_(100),
1316        at_start_(UNKNOWN) { }
1317
1318  // End the trace.  This involves flushing the deferred actions in the trace
1319  // and pushing a backtrack location onto the backtrack stack.  Once this is
1320  // done we can start a new trace or go to one that has already been
1321  // generated.
1322  void Flush(RegExpCompiler* compiler, RegExpNode* successor);
1323  int cp_offset() { return cp_offset_; }
1324  DeferredAction* actions() { return actions_; }
1325  // A trivial trace is one that has no deferred actions or other state that
1326  // affects the assumptions used when generating code.  There is no recorded
1327  // backtrack location in a trivial trace, so with a trivial trace we will
1328  // generate code that, on a failure to match, gets the backtrack location
1329  // from the backtrack stack rather than using a direct jump instruction.  We
1330  // always start code generation with a trivial trace and non-trivial traces
1331  // are created as we emit code for nodes or add to the list of deferred
1332  // actions in the trace.  The location of the code generated for a node using
1333  // a trivial trace is recorded in a label in the node so that gotos can be
1334  // generated to that code.
1335  bool is_trivial() {
1336    return backtrack_ == NULL &&
1337           actions_ == NULL &&
1338           cp_offset_ == 0 &&
1339           characters_preloaded_ == 0 &&
1340           bound_checked_up_to_ == 0 &&
1341           quick_check_performed_.characters() == 0 &&
1342           at_start_ == UNKNOWN;
1343  }
1344  TriBool at_start() { return at_start_; }
1345  void set_at_start(TriBool at_start) { at_start_ = at_start; }
1346  Label* backtrack() { return backtrack_; }
1347  Label* loop_label() { return loop_label_; }
1348  RegExpNode* stop_node() { return stop_node_; }
1349  int characters_preloaded() { return characters_preloaded_; }
1350  int bound_checked_up_to() { return bound_checked_up_to_; }
1351  int flush_budget() { return flush_budget_; }
1352  QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1353  bool mentions_reg(int reg);
1354  // Returns true if a deferred position store exists to the specified
1355  // register and stores the offset in the out-parameter.  Otherwise
1356  // returns false.
1357  bool GetStoredPosition(int reg, int* cp_offset);
1358  // These set methods and AdvanceCurrentPositionInTrace should be used only on
1359  // new traces - the intention is that traces are immutable after creation.
1360  void add_action(DeferredAction* new_action) {
1361    DCHECK(new_action->next_ == NULL);
1362    new_action->next_ = actions_;
1363    actions_ = new_action;
1364  }
1365  void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
1366  void set_stop_node(RegExpNode* node) { stop_node_ = node; }
1367  void set_loop_label(Label* label) { loop_label_ = label; }
1368  void set_characters_preloaded(int count) { characters_preloaded_ = count; }
1369  void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
1370  void set_flush_budget(int to) { flush_budget_ = to; }
1371  void set_quick_check_performed(QuickCheckDetails* d) {
1372    quick_check_performed_ = *d;
1373  }
1374  void InvalidateCurrentCharacter();
1375  void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
1376
1377 private:
1378  int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
1379  void PerformDeferredActions(RegExpMacroAssembler* macro,
1380                              int max_register,
1381                              const OutSet& affected_registers,
1382                              OutSet* registers_to_pop,
1383                              OutSet* registers_to_clear,
1384                              Zone* zone);
1385  void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1386                                int max_register,
1387                                const OutSet& registers_to_pop,
1388                                const OutSet& registers_to_clear);
1389  int cp_offset_;
1390  DeferredAction* actions_;
1391  Label* backtrack_;
1392  RegExpNode* stop_node_;
1393  Label* loop_label_;
1394  int characters_preloaded_;
1395  int bound_checked_up_to_;
1396  QuickCheckDetails quick_check_performed_;
1397  int flush_budget_;
1398  TriBool at_start_;
1399};
1400
1401
1402class GreedyLoopState {
1403 public:
1404  explicit GreedyLoopState(bool not_at_start);
1405
1406  Label* label() { return &label_; }
1407  Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
1408
1409 private:
1410  Label label_;
1411  Trace counter_backtrack_trace_;
1412};
1413
1414
1415struct PreloadState {
1416  static const int kEatsAtLeastNotYetInitialized = -1;
1417  bool preload_is_current_;
1418  bool preload_has_checked_bounds_;
1419  int preload_characters_;
1420  int eats_at_least_;
1421  void init() {
1422    eats_at_least_ = kEatsAtLeastNotYetInitialized;
1423  }
1424};
1425
1426
1427class NodeVisitor {
1428 public:
1429  virtual ~NodeVisitor() { }
1430#define DECLARE_VISIT(Type)                                          \
1431  virtual void Visit##Type(Type##Node* that) = 0;
1432FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1433#undef DECLARE_VISIT
1434  virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1435};
1436
1437
1438// Node visitor used to add the start set of the alternatives to the
1439// dispatch table of a choice node.
1440class DispatchTableConstructor: public NodeVisitor {
1441 public:
1442  DispatchTableConstructor(DispatchTable* table, bool ignore_case,
1443                           Zone* zone)
1444      : table_(table),
1445        choice_index_(-1),
1446        ignore_case_(ignore_case),
1447        zone_(zone) { }
1448
1449  void BuildTable(ChoiceNode* node);
1450
1451  void AddRange(CharacterRange range) {
1452    table()->AddRange(range, choice_index_, zone_);
1453  }
1454
1455  void AddInverse(ZoneList<CharacterRange>* ranges);
1456
1457#define DECLARE_VISIT(Type)                                          \
1458  virtual void Visit##Type(Type##Node* that);
1459FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1460#undef DECLARE_VISIT
1461
1462  DispatchTable* table() { return table_; }
1463  void set_choice_index(int value) { choice_index_ = value; }
1464
1465 protected:
1466  DispatchTable* table_;
1467  int choice_index_;
1468  bool ignore_case_;
1469  Zone* zone_;
1470};
1471
1472
1473// Assertion propagation moves information about assertions such as
1474// \b to the affected nodes.  For instance, in /.\b./ information must
1475// be propagated to the first '.' that whatever follows needs to know
1476// if it matched a word or a non-word, and to the second '.' that it
1477// has to check if it succeeds a word or non-word.  In this case the
1478// result will be something like:
1479//
1480//   +-------+        +------------+
1481//   |   .   |        |      .     |
1482//   +-------+  --->  +------------+
1483//   | word? |        | check word |
1484//   +-------+        +------------+
1485class Analysis: public NodeVisitor {
1486 public:
1487  Analysis(Isolate* isolate, JSRegExp::Flags flags, bool is_one_byte)
1488      : isolate_(isolate),
1489        flags_(flags),
1490        is_one_byte_(is_one_byte),
1491        error_message_(NULL) {}
1492  void EnsureAnalyzed(RegExpNode* node);
1493
1494#define DECLARE_VISIT(Type)                                          \
1495  virtual void Visit##Type(Type##Node* that);
1496FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1497#undef DECLARE_VISIT
1498  virtual void VisitLoopChoice(LoopChoiceNode* that);
1499
1500  bool has_failed() { return error_message_ != NULL; }
1501  const char* error_message() {
1502    DCHECK(error_message_ != NULL);
1503    return error_message_;
1504  }
1505  void fail(const char* error_message) {
1506    error_message_ = error_message;
1507  }
1508
1509  Isolate* isolate() const { return isolate_; }
1510
1511  bool ignore_case() const { return (flags_ & JSRegExp::kIgnoreCase) != 0; }
1512  bool unicode() const { return (flags_ & JSRegExp::kUnicode) != 0; }
1513
1514 private:
1515  Isolate* isolate_;
1516  JSRegExp::Flags flags_;
1517  bool is_one_byte_;
1518  const char* error_message_;
1519
1520  DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1521};
1522
1523
1524struct RegExpCompileData {
1525  RegExpCompileData()
1526    : tree(NULL),
1527      node(NULL),
1528      simple(true),
1529      contains_anchor(false),
1530      capture_count(0) { }
1531  RegExpTree* tree;
1532  RegExpNode* node;
1533  bool simple;
1534  bool contains_anchor;
1535  Handle<FixedArray> capture_name_map;
1536  Handle<String> error;
1537  int capture_count;
1538};
1539
1540
1541class RegExpEngine: public AllStatic {
1542 public:
1543  struct CompilationResult {
1544    CompilationResult(Isolate* isolate, const char* error_message)
1545        : error_message(error_message),
1546          code(isolate->heap()->the_hole_value()),
1547          num_registers(0) {}
1548    CompilationResult(Object* code, int registers)
1549        : error_message(NULL), code(code), num_registers(registers) {}
1550    const char* error_message;
1551    Object* code;
1552    int num_registers;
1553  };
1554
1555  static CompilationResult Compile(Isolate* isolate, Zone* zone,
1556                                   RegExpCompileData* input,
1557                                   JSRegExp::Flags flags,
1558                                   Handle<String> pattern,
1559                                   Handle<String> sample_subject,
1560                                   bool is_one_byte);
1561
1562  static bool TooMuchRegExpCode(Handle<String> pattern);
1563
1564  static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1565};
1566
1567
1568class RegExpResultsCache : public AllStatic {
1569 public:
1570  enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS };
1571
1572  // Attempt to retrieve a cached result.  On failure, 0 is returned as a Smi.
1573  // On success, the returned result is guaranteed to be a COW-array.
1574  static Object* Lookup(Heap* heap, String* key_string, Object* key_pattern,
1575                        FixedArray** last_match_out, ResultsCacheType type);
1576  // Attempt to add value_array to the cache specified by type.  On success,
1577  // value_array is turned into a COW-array.
1578  static void Enter(Isolate* isolate, Handle<String> key_string,
1579                    Handle<Object> key_pattern, Handle<FixedArray> value_array,
1580                    Handle<FixedArray> last_match_cache, ResultsCacheType type);
1581  static void Clear(FixedArray* cache);
1582  static const int kRegExpResultsCacheSize = 0x100;
1583
1584 private:
1585  static const int kArrayEntriesPerCacheEntry = 4;
1586  static const int kStringOffset = 0;
1587  static const int kPatternOffset = 1;
1588  static const int kArrayOffset = 2;
1589  static const int kLastMatchOffset = 3;
1590};
1591
1592}  // namespace internal
1593}  // namespace v8
1594
1595#endif  // V8_REGEXP_JSREGEXP_H_
1596