1//--------------------------------------------------------------------*/
2//--- Massif: a heap profiling tool.                     ms_main.c ---*/
3//--------------------------------------------------------------------*/
4
5/*
6   This file is part of Massif, a Valgrind tool for profiling memory
7   usage of programs.
8
9   Copyright (C) 2003-2015 Nicholas Nethercote
10      njn@valgrind.org
11
12   This program is free software; you can redistribute it and/or
13   modify it under the terms of the GNU General Public License as
14   published by the Free Software Foundation; either version 2 of the
15   License, or (at your option) any later version.
16
17   This program is distributed in the hope that it will be useful, but
18   WITHOUT ANY WARRANTY; without even the implied warranty of
19   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20   General Public License for more details.
21
22   You should have received a copy of the GNU General Public License
23   along with this program; if not, write to the Free Software
24   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
25   02111-1307, USA.
26
27   The GNU General Public License is contained in the file COPYING.
28*/
29
30//---------------------------------------------------------------------------
31// XXX:
32//---------------------------------------------------------------------------
33// Todo -- nice, but less critical:
34// - do a graph-drawing test
35// - make file format more generic.  Obstacles:
36//   - unit prefixes are not generic
37//   - preset column widths for stats are not generic
38//   - preset column headers are not generic
39//   - "Massif arguments:" line is not generic
40// - do snapshots on some specific client requests
41//     - "show me the extra allocations since the last snapshot"
42//     - "start/stop logging" (eg. quickly skip boring bits)
43// - Add ability to draw multiple graphs, eg. heap-only, stack-only, total.
44//   Give each graph a title.  (try to do it generically!)
45// - make --show-below-main=no work
46// - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)'
47//   don't work in a .valgrindrc file or in $VALGRIND_OPTS.
48//   m_commandline.c:add_args_from_string() needs to respect single quotes.
49// - With --stack=yes, want to add a stack trace for detailed snapshots so
50//   it's clear where/why the peak is occurring. (Mattieu Castet)  Also,
51//   possibly useful even with --stack=no? (Andi Yin)
52//
53// Performance:
54// - To run the benchmarks:
55//
56//     perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif
57//     time valgrind --tool=massif --depth=100 konqueror
58//
59//   The other benchmarks don't do much allocation, and so give similar speeds
60//   to Nulgrind.
61//
62//   Timing results on 'nevermore' (njn's machine) as of r7013:
63//
64//     heap      0.53s  ma:12.4s (23.5x, -----)
65//     tinycc    0.46s  ma: 4.9s (10.7x, -----)
66//     many-xpts 0.08s  ma: 2.0s (25.0x, -----)
67//     konqueror 29.6s real  0:21.0s user
68//
69//   [Introduction of --time-unit=i as the default slowed things down by
70//   roughly 0--20%.]
71//
72// - get_XCon accounts for about 9% of konqueror startup time.  Try
73//   keeping XPt children sorted by 'ip' and use binary search in get_XCon.
74//   Requires factoring out binary search code from various places into a
75//   VG_(bsearch) function.
76//
77// Todo -- low priority:
78// - In each XPt, record both bytes and the number of allocations, and
79//   possibly the global number of allocations.
80// - (Andy Lin) Give a stack trace on detailed snapshots?
81// - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger
82//   than a certain size!  Because: "linux's malloc allows to set a
83//   MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will
84//   be handled directly by the kernel, and are guaranteed to be returned to
85//   the system when freed. So we needed to profile only blocks below this
86//   limit."
87//
88// File format working notes:
89
90#if 0
91desc: --heap-admin=foo
92cmd: date
93time_unit: ms
94#-----------
95snapshot=0
96#-----------
97time=0
98mem_heap_B=0
99mem_heap_admin_B=0
100mem_stacks_B=0
101heap_tree=empty
102#-----------
103snapshot=1
104#-----------
105time=353
106mem_heap_B=5
107mem_heap_admin_B=0
108mem_stacks_B=0
109heap_tree=detailed
110n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
111 n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
112  n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so)
113   n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so)
114    n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so)
115     n1: 5 0x8049821: (within /bin/date)
116      n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so)
117
118
119n_events: n  time(ms)  total(B)    useful-heap(B)  admin-heap(B)  stacks(B)
120t_events: B
121n 0 0 0 0 0
122n 0 0 0 0 0
123t1: 5 <string...>
124 t1: 6 <string...>
125
126Ideas:
127- each snapshot specifies an x-axis value and one or more y-axis values.
128- can display the y-axis values separately if you like
129- can completely separate connection between snapshots and trees.
130
131Challenges:
132- how to specify and scale/abbreviate units on axes?
133- how to combine multiple values into the y-axis?
134
135--------------------------------------------------------------------------------Command:            date
136Massif arguments:   --heap-admin=foo
137ms_print arguments: massif.out
138--------------------------------------------------------------------------------
139    KB
1406.472^                                                       :#
141     |                                                       :#  ::  .    .
142     ...
143     |                                     ::@  :@    :@ :@:::#  ::  :    ::::
144   0 +-----------------------------------@---@---@-----@--@---#-------------->ms     0                                                                     713
145
146Number of snapshots: 50
147 Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)]
148--------------------------------------------------------------------------------  n       time(ms)         total(B)   useful-heap(B) admin-heap(B)    stacks(B)
149--------------------------------------------------------------------------------  0              0                0                0             0            0
150  1            345                5                5             0            0
151  2            353                5                5             0            0
152100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
153->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
154#endif
155
156//---------------------------------------------------------------------------
157
158#include "pub_tool_basics.h"
159#include "pub_tool_vki.h"
160#include "pub_tool_aspacemgr.h"
161#include "pub_tool_debuginfo.h"
162#include "pub_tool_hashtable.h"
163#include "pub_tool_libcbase.h"
164#include "pub_tool_libcassert.h"
165#include "pub_tool_libcfile.h"
166#include "pub_tool_libcprint.h"
167#include "pub_tool_libcproc.h"
168#include "pub_tool_machine.h"
169#include "pub_tool_mallocfree.h"
170#include "pub_tool_options.h"
171#include "pub_tool_replacemalloc.h"
172#include "pub_tool_stacktrace.h"
173#include "pub_tool_threadstate.h"
174#include "pub_tool_tooliface.h"
175#include "pub_tool_xarray.h"
176#include "pub_tool_clientstate.h"
177#include "pub_tool_gdbserver.h"
178
179#include "pub_tool_clreq.h"           // For {MALLOC,FREE}LIKE_BLOCK
180
181//------------------------------------------------------------*/
182//--- Overview of operation                                ---*/
183//------------------------------------------------------------*/
184
185// The size of the stacks and heap is tracked.  The heap is tracked in a lot
186// of detail, enough to tell how many bytes each line of code is responsible
187// for, more or less.  The main data structure is a tree representing the
188// call tree beneath all the allocation functions like malloc().
189// (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at
190// the page level, and each page is treated much like a heap block.  We use
191// "heap" throughout below to cover this case because the concepts are all the
192// same.)
193//
194// "Snapshots" are recordings of the memory usage.  There are two basic
195// kinds:
196// - Normal:  these record the current time, total memory size, total heap
197//   size, heap admin size and stack size.
198// - Detailed: these record those things in a normal snapshot, plus a very
199//   detailed XTree (see below) indicating how the heap is structured.
200//
201// Snapshots are taken every so often.  There are two storage classes of
202// snapshots:
203// - Temporary:  Massif does a temporary snapshot every so often.  The idea
204//   is to always have a certain number of temporary snapshots around.  So
205//   we take them frequently to begin with, but decreasingly often as the
206//   program continues to run.  Also, we remove some old ones after a while.
207//   Overall it's a kind of exponential decay thing.  Most of these are
208//   normal snapshots, a small fraction are detailed snapshots.
209// - Permanent:  Massif takes a permanent (detailed) snapshot in some
210//   circumstances.  They are:
211//   - Peak snapshot:  When the memory usage peak is reached, it takes a
212//     snapshot.  It keeps this, unless the peak is subsequently exceeded,
213//     in which case it will overwrite the peak snapshot.
214//   - User-requested snapshots:  These are done in response to client
215//     requests.  They are always kept.
216
217// Used for printing things when clo_verbosity > 1.
218#define VERB(verb, format, args...) \
219   if (VG_(clo_verbosity) > verb) { \
220      VG_(dmsg)("Massif: " format, ##args); \
221   }
222
223//------------------------------------------------------------//
224//--- Statistics                                           ---//
225//------------------------------------------------------------//
226
227// Konqueror startup, to give an idea of the numbers involved with a biggish
228// program, with default depth:
229//
230//  depth=3                   depth=40
231//  - 310,000 allocations
232//  - 300,000 frees
233//  -  15,000 XPts            800,000 XPts
234//  -   1,800 top-XPts
235
236static UInt n_heap_allocs           = 0;
237static UInt n_heap_reallocs         = 0;
238static UInt n_heap_frees            = 0;
239static UInt n_ignored_heap_allocs   = 0;
240static UInt n_ignored_heap_frees    = 0;
241static UInt n_ignored_heap_reallocs = 0;
242static UInt n_stack_allocs          = 0;
243static UInt n_stack_frees           = 0;
244static UInt n_xpts                  = 0;
245static UInt n_xpt_init_expansions   = 0;
246static UInt n_xpt_later_expansions  = 0;
247static UInt n_sxpt_allocs           = 0;
248static UInt n_sxpt_frees            = 0;
249static UInt n_skipped_snapshots     = 0;
250static UInt n_real_snapshots        = 0;
251static UInt n_detailed_snapshots    = 0;
252static UInt n_peak_snapshots        = 0;
253static UInt n_cullings              = 0;
254static UInt n_XCon_redos            = 0;
255
256//------------------------------------------------------------//
257//--- Globals                                              ---//
258//------------------------------------------------------------//
259
260// Number of guest instructions executed so far.  Only used with
261// --time-unit=i.
262static Long guest_instrs_executed = 0;
263
264static SizeT heap_szB       = 0; // Live heap size
265static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes
266static SizeT stacks_szB     = 0; // Live stacks size
267
268// This is the total size from the current peak snapshot, or 0 if no peak
269// snapshot has been taken yet.
270static SizeT peak_snapshot_total_szB = 0;
271
272// Incremented every time memory is allocated/deallocated, by the
273// allocated/deallocated amount;  includes heap, heap-admin and stack
274// memory.  An alternative to milliseconds as a unit of program "time".
275static ULong total_allocs_deallocs_szB = 0;
276
277// When running with --heap=yes --pages-as-heap=no, we don't start taking
278// snapshots until the first basic block is executed, rather than doing it in
279// ms_post_clo_init (which is the obvious spot), for two reasons.
280// - It lets us ignore stack events prior to that, because they're not
281//   really proper ones and just would screw things up.
282// - Because there's still some core initialisation to do, and so there
283//   would be an artificial time gap between the first and second snapshots.
284//
285// When running with --heap=yes --pages-as-heap=yes, snapshots start much
286// earlier due to new_mem_startup so this isn't relevant.
287//
288static Bool have_started_executing_code = False;
289
290//------------------------------------------------------------//
291//--- Alloc fns                                            ---//
292//------------------------------------------------------------//
293
294static XArray* alloc_fns;
295static XArray* ignore_fns;
296
297static void init_alloc_fns(void)
298{
299   // Create the list, and add the default elements.
300   alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1",
301                                       VG_(free), sizeof(HChar*));
302   #define DO(x)  { const HChar* s = x; VG_(addToXA)(alloc_fns, &s); }
303
304   // Ordered roughly according to (presumed) frequency.
305   // Nb: The C++ "operator new*" ones are overloadable.  We include them
306   // always anyway, because even if they're overloaded, it would be a
307   // prodigiously stupid overloading that caused them to not allocate
308   // memory.
309   //
310   // XXX: because we don't look at the first stack entry (unless it's a
311   // custom allocation) there's not much point to having all these alloc
312   // functions here -- they should never appear anywhere (I think?) other
313   // than the top stack entry.  The only exceptions are those that in
314   // vg_replace_malloc.c are partly or fully implemented in terms of another
315   // alloc function: realloc (which uses malloc);  valloc,
316   // malloc_zone_valloc, posix_memalign and memalign_common (which use
317   // memalign).
318   //
319   DO("malloc"                                              );
320   DO("__builtin_new"                                       );
321   DO("operator new(unsigned)"                              );
322   DO("operator new(unsigned long)"                         );
323   DO("__builtin_vec_new"                                   );
324   DO("operator new[](unsigned)"                            );
325   DO("operator new[](unsigned long)"                       );
326   DO("calloc"                                              );
327   DO("realloc"                                             );
328   DO("memalign"                                            );
329   DO("posix_memalign"                                      );
330   DO("valloc"                                              );
331   DO("operator new(unsigned, std::nothrow_t const&)"       );
332   DO("operator new[](unsigned, std::nothrow_t const&)"     );
333   DO("operator new(unsigned long, std::nothrow_t const&)"  );
334   DO("operator new[](unsigned long, std::nothrow_t const&)");
335#if defined(VGO_darwin)
336   DO("malloc_zone_malloc"                                  );
337   DO("malloc_zone_calloc"                                  );
338   DO("malloc_zone_realloc"                                 );
339   DO("malloc_zone_memalign"                                );
340   DO("malloc_zone_valloc"                                  );
341#endif
342}
343
344static void init_ignore_fns(void)
345{
346   // Create the (empty) list.
347   ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1",
348                                        VG_(free), sizeof(HChar*));
349}
350
351// Determines if the named function is a member of the XArray.
352static Bool is_member_fn(const XArray* fns, const HChar* fnname)
353{
354   HChar** fn_ptr;
355   Int i;
356
357   // Nb: It's a linear search through the list, because we're comparing
358   // strings rather than pointers to strings.
359   // Nb: This gets called a lot.  It was an OSet, but they're quite slow to
360   // iterate through so it wasn't a good choice.
361   for (i = 0; i < VG_(sizeXA)(fns); i++) {
362      fn_ptr = VG_(indexXA)(fns, i);
363      if (VG_STREQ(fnname, *fn_ptr))
364         return True;
365   }
366   return False;
367}
368
369
370//------------------------------------------------------------//
371//--- Command line args                                    ---//
372//------------------------------------------------------------//
373
374#define MAX_DEPTH       200
375
376typedef enum { TimeI, TimeMS, TimeB } TimeUnit;
377
378static const HChar* TimeUnit_to_string(TimeUnit time_unit)
379{
380   switch (time_unit) {
381   case TimeI:  return "i";
382   case TimeMS: return "ms";
383   case TimeB:  return "B";
384   default:     tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit");
385   }
386}
387
388static Bool   clo_heap            = True;
389   // clo_heap_admin is deliberately a word-sized type.  At one point it was
390   // a UInt, but this caused problems on 64-bit machines when it was
391   // multiplied by a small negative number and then promoted to a
392   // word-sized type -- it ended up with a value of 4.2 billion.  Sigh.
393static SSizeT clo_heap_admin      = 8;
394static Bool   clo_pages_as_heap   = False;
395static Bool   clo_stacks          = False;
396static Int    clo_depth           = 30;
397static double clo_threshold       = 1.0;  // percentage
398static double clo_peak_inaccuracy = 1.0;  // percentage
399static Int    clo_time_unit       = TimeI;
400static Int    clo_detailed_freq   = 10;
401static Int    clo_max_snapshots   = 100;
402static const HChar* clo_massif_out_file = "massif.out.%p";
403
404static XArray* args_for_massif;
405
406static Bool ms_process_cmd_line_option(const HChar* arg)
407{
408   const HChar* tmp_str;
409
410   // Remember the arg for later use.
411   VG_(addToXA)(args_for_massif, &arg);
412
413        if VG_BOOL_CLO(arg, "--heap",           clo_heap)   {}
414   else if VG_BINT_CLO(arg, "--heap-admin",     clo_heap_admin, 0, 1024) {}
415
416   else if VG_BOOL_CLO(arg, "--stacks",         clo_stacks) {}
417
418   else if VG_BOOL_CLO(arg, "--pages-as-heap",  clo_pages_as_heap) {}
419
420   else if VG_BINT_CLO(arg, "--depth",          clo_depth, 1, MAX_DEPTH) {}
421
422   else if VG_STR_CLO(arg, "--alloc-fn",        tmp_str) {
423      VG_(addToXA)(alloc_fns, &tmp_str);
424   }
425   else if VG_STR_CLO(arg, "--ignore-fn",       tmp_str) {
426      VG_(addToXA)(ignore_fns, &tmp_str);
427   }
428
429   else if VG_DBL_CLO(arg, "--threshold",  clo_threshold) {
430      if (clo_threshold < 0 || clo_threshold > 100) {
431         VG_(fmsg_bad_option)(arg,
432            "--threshold must be between 0.0 and 100.0\n");
433      }
434   }
435
436   else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {}
437
438   else if VG_XACT_CLO(arg, "--time-unit=i",    clo_time_unit, TimeI)  {}
439   else if VG_XACT_CLO(arg, "--time-unit=ms",   clo_time_unit, TimeMS) {}
440   else if VG_XACT_CLO(arg, "--time-unit=B",    clo_time_unit, TimeB)  {}
441
442   else if VG_BINT_CLO(arg, "--detailed-freq",  clo_detailed_freq, 1, 1000000) {}
443
444   else if VG_BINT_CLO(arg, "--max-snapshots",  clo_max_snapshots, 10, 1000) {}
445
446   else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {}
447
448   else
449      return VG_(replacement_malloc_process_cmd_line_option)(arg);
450
451   return True;
452}
453
454static void ms_print_usage(void)
455{
456   VG_(printf)(
457"    --heap=no|yes             profile heap blocks [yes]\n"
458"    --heap-admin=<size>       average admin bytes per heap block;\n"
459"                               ignored if --heap=no [8]\n"
460"    --stacks=no|yes           profile stack(s) [no]\n"
461"    --pages-as-heap=no|yes    profile memory at the page level [no]\n"
462"    --depth=<number>          depth of contexts [30]\n"
463"    --alloc-fn=<name>         specify <name> as an alloc function [empty]\n"
464"    --ignore-fn=<name>        ignore heap allocations within <name> [empty]\n"
465"    --threshold=<m.n>         significance threshold, as a percentage [1.0]\n"
466"    --peak-inaccuracy=<m.n>   maximum peak inaccuracy, as a percentage [1.0]\n"
467"    --time-unit=i|ms|B        time unit: instructions executed, milliseconds\n"
468"                              or heap bytes alloc'd/dealloc'd [i]\n"
469"    --detailed-freq=<N>       every Nth snapshot should be detailed [10]\n"
470"    --max-snapshots=<N>       maximum number of snapshots recorded [100]\n"
471"    --massif-out-file=<file>  output file name [massif.out.%%p]\n"
472   );
473}
474
475static void ms_print_debug_usage(void)
476{
477   VG_(printf)(
478"    (none)\n"
479   );
480}
481
482
483//------------------------------------------------------------//
484//--- XPts, XTrees and XCons                               ---//
485//------------------------------------------------------------//
486
487// An XPt represents an "execution point", ie. a code address.  Each XPt is
488// part of a tree of XPts (an "execution tree", or "XTree").  The details of
489// the heap are represented by a single XTree.
490//
491// The root of the tree is 'alloc_xpt', which represents all allocation
492// functions, eg:
493// - malloc/calloc/realloc/memalign/new/new[];
494// - user-specified allocation functions (using --alloc-fn);
495// - custom allocation (MALLOCLIKE) points
496// It's a bit of a fake XPt (ie. its 'ip' is zero), and is only used because
497// it makes the code simpler.
498//
499// Any child of 'alloc_xpt' is called a "top-XPt".  The XPts at the bottom
500// of an XTree (leaf nodes) are "bottom-XPTs".
501//
502// Each path from a top-XPt to a bottom-XPt through an XTree gives an
503// execution context ("XCon"), ie. a stack trace.  (And sub-paths represent
504// stack sub-traces.)  The number of XCons in an XTree is equal to the
505// number of bottom-XPTs in that XTree.
506//
507//      alloc_xpt       XTrees are bi-directional.
508//        | ^
509//        v |
510//     > parent <       Example: if child1() calls parent() and child2()
511//    /    |     \      also calls parent(), and parent() calls malloc(),
512//   |    / \     |     the XTree will look like this.
513//   |   v   v    |
514//  child1   child2
515//
516// (Note that malformed stack traces can lead to difficulties.  See the
517// comment at the bottom of get_XCon.)
518//
519// XTrees and XPts are mirrored by SXTrees and SXPts, where the 'S' is short
520// for "saved".  When the XTree is duplicated for a snapshot, we duplicate
521// it as an SXTree, which is similar but omits some things it does not need,
522// and aggregates up insignificant nodes.  This is important as an SXTree is
523// typically much smaller than an XTree.
524
525// XXX: make XPt and SXPt extensible arrays, to avoid having to do two
526// allocations per Pt.
527
528typedef struct _XPt XPt;
529struct _XPt {
530   Addr  ip;              // code address
531
532   // Bottom-XPts: space for the precise context.
533   // Other XPts:  space of all the descendent bottom-XPts.
534   // Nb: this value goes up and down as the program executes.
535   SizeT szB;
536
537   XPt*  parent;           // pointer to parent XPt
538
539   // Children.
540   // n_children and max_children are 32-bit integers.  16-bit integers
541   // are too small -- a very big program might have more than 65536
542   // allocation points (ie. top-XPts) -- Konqueror starting up has 1800.
543   UInt  n_children;       // number of children
544   UInt  max_children;     // capacity of children array
545   XPt** children;         // pointers to children XPts
546};
547
548typedef
549   enum {
550      SigSXPt,
551      InsigSXPt
552   }
553   SXPtTag;
554
555typedef struct _SXPt SXPt;
556struct _SXPt {
557   SXPtTag tag;
558   SizeT szB;              // memory size for the node, be it Sig or Insig
559   union {
560      // An SXPt representing a single significant code location.  Much like
561      // an XPt, minus the fields that aren't necessary.
562      struct {
563         Addr   ip;
564         UInt   n_children;
565         SXPt** children;
566      }
567      Sig;
568
569      // An SXPt representing one or more code locations, all below the
570      // significance threshold.
571      struct {
572         Int   n_xpts;     // number of aggregated XPts
573      }
574      Insig;
575   };
576};
577
578// Fake XPt representing all allocation functions like malloc().  Acts as
579// parent node to all top-XPts.
580static XPt* alloc_xpt;
581
582static XPt* new_XPt(Addr ip, XPt* parent)
583{
584   // XPts are never freed, so we can use VG_(perm_malloc) to allocate them.
585   // Note that we cannot use VG_(perm_malloc) for the 'children' array, because
586   // that needs to be resizable.
587   XPt* xpt    = VG_(perm_malloc)(sizeof(XPt), vg_alignof(XPt));
588   xpt->ip     = ip;
589   xpt->szB    = 0;
590   xpt->parent = parent;
591
592   // We don't initially allocate any space for children.  We let that
593   // happen on demand.  Many XPts (ie. all the bottom-XPts) don't have any
594   // children anyway.
595   xpt->n_children   = 0;
596   xpt->max_children = 0;
597   xpt->children     = NULL;
598
599   // Update statistics
600   n_xpts++;
601
602   return xpt;
603}
604
605static void add_child_xpt(XPt* parent, XPt* child)
606{
607   // Expand 'children' if necessary.
608   tl_assert(parent->n_children <= parent->max_children);
609   if (parent->n_children == parent->max_children) {
610      if (0 == parent->max_children) {
611         parent->max_children = 4;
612         parent->children = VG_(malloc)( "ms.main.acx.1",
613                                         parent->max_children * sizeof(XPt*) );
614         n_xpt_init_expansions++;
615      } else {
616         parent->max_children *= 2;    // Double size
617         parent->children = VG_(realloc)( "ms.main.acx.2",
618                                          parent->children,
619                                          parent->max_children * sizeof(XPt*) );
620         n_xpt_later_expansions++;
621      }
622   }
623
624   // Insert new child XPt in parent's children list.
625   parent->children[ parent->n_children++ ] = child;
626}
627
628// Reverse comparison for a reverse sort -- biggest to smallest.
629static Int SXPt_revcmp_szB(const void* n1, const void* n2)
630{
631   const SXPt* sxpt1 = *(const SXPt *const *)n1;
632   const SXPt* sxpt2 = *(const SXPt *const *)n2;
633   return ( sxpt1->szB < sxpt2->szB ?  1
634          : sxpt1->szB > sxpt2->szB ? -1
635          :                            0);
636}
637
638//------------------------------------------------------------//
639//--- XTree Operations                                     ---//
640//------------------------------------------------------------//
641
642// Duplicates an XTree as an SXTree.
643static SXPt* dup_XTree(XPt* xpt, SizeT total_szB)
644{
645   Int  i, n_sig_children, n_insig_children, n_child_sxpts;
646   SizeT sig_child_threshold_szB;
647   SXPt* sxpt;
648
649   // Number of XPt children  Action for SXPT
650   // ------------------      ---------------
651   // 0 sig, 0 insig          alloc 0 children
652   // N sig, 0 insig          alloc N children, dup all
653   // N sig, M insig          alloc N+1, dup first N, aggregate remaining M
654   // 0 sig, M insig          alloc 1, aggregate M
655
656   // Work out how big a child must be to be significant.  If the current
657   // total_szB is zero, then we set it to 1, which means everything will be
658   // judged insignificant -- this is sensible, as there's no point showing
659   // any detail for this case.  Unless they used --threshold=0, in which
660   // case we show them everything because that's what they asked for.
661   //
662   // Nb: We do this once now, rather than once per child, because if we do
663   // that the cost of all the divisions adds up to something significant.
664   if (0 == total_szB && 0 != clo_threshold) {
665      sig_child_threshold_szB = 1;
666   } else {
667      sig_child_threshold_szB = (SizeT)((total_szB * clo_threshold) / 100);
668   }
669
670   // How many children are significant?  And do we need an aggregate SXPt?
671   n_sig_children = 0;
672   for (i = 0; i < xpt->n_children; i++) {
673      if (xpt->children[i]->szB >= sig_child_threshold_szB) {
674         n_sig_children++;
675      }
676   }
677   n_insig_children = xpt->n_children - n_sig_children;
678   n_child_sxpts = n_sig_children + ( n_insig_children > 0 ? 1 : 0 );
679
680   // Duplicate the XPt.
681   sxpt                 = VG_(malloc)("ms.main.dX.1", sizeof(SXPt));
682   n_sxpt_allocs++;
683   sxpt->tag            = SigSXPt;
684   sxpt->szB            = xpt->szB;
685   sxpt->Sig.ip         = xpt->ip;
686   sxpt->Sig.n_children = n_child_sxpts;
687
688   // Create the SXPt's children.
689   if (n_child_sxpts > 0) {
690      Int j;
691      SizeT sig_children_szB = 0, insig_children_szB = 0;
692      sxpt->Sig.children = VG_(malloc)("ms.main.dX.2",
693                                       n_child_sxpts * sizeof(SXPt*));
694
695      // Duplicate the significant children.  (Nb: sig_children_szB +
696      // insig_children_szB doesn't necessarily equal xpt->szB.)
697      j = 0;
698      for (i = 0; i < xpt->n_children; i++) {
699         if (xpt->children[i]->szB >= sig_child_threshold_szB) {
700            sxpt->Sig.children[j++] = dup_XTree(xpt->children[i], total_szB);
701            sig_children_szB   += xpt->children[i]->szB;
702         } else {
703            insig_children_szB += xpt->children[i]->szB;
704         }
705      }
706
707      // Create the SXPt for the insignificant children, if any, and put it
708      // in the last child entry.
709      if (n_insig_children > 0) {
710         // Nb: We 'n_sxpt_allocs' here because creating an Insig SXPt
711         // doesn't involve a call to dup_XTree().
712         SXPt* insig_sxpt = VG_(malloc)("ms.main.dX.3", sizeof(SXPt));
713         n_sxpt_allocs++;
714         insig_sxpt->tag = InsigSXPt;
715         insig_sxpt->szB = insig_children_szB;
716         insig_sxpt->Insig.n_xpts = n_insig_children;
717         sxpt->Sig.children[n_sig_children] = insig_sxpt;
718      }
719   } else {
720      sxpt->Sig.children = NULL;
721   }
722
723   return sxpt;
724}
725
726static void free_SXTree(SXPt* sxpt)
727{
728   Int  i;
729   tl_assert(sxpt != NULL);
730
731   switch (sxpt->tag) {
732    case SigSXPt:
733      // Free all children SXPts, then the children array.
734      for (i = 0; i < sxpt->Sig.n_children; i++) {
735         free_SXTree(sxpt->Sig.children[i]);
736         sxpt->Sig.children[i] = NULL;
737      }
738      VG_(free)(sxpt->Sig.children);  sxpt->Sig.children = NULL;
739      break;
740
741    case InsigSXPt:
742      break;
743
744    default: tl_assert2(0, "free_SXTree: unknown SXPt tag");
745   }
746
747   // Free the SXPt itself.
748   VG_(free)(sxpt);     sxpt = NULL;
749   n_sxpt_frees++;
750}
751
752// Sanity checking:  we periodically check the heap XTree with
753// ms_expensive_sanity_check.
754static void sanity_check_XTree(XPt* xpt, XPt* parent)
755{
756   tl_assert(xpt != NULL);
757
758   // Check back-pointer.
759   tl_assert2(xpt->parent == parent,
760      "xpt->parent = %p, parent = %p\n", xpt->parent, parent);
761
762   // Check children counts look sane.
763   tl_assert(xpt->n_children <= xpt->max_children);
764
765   // Unfortunately, xpt's size is not necessarily equal to the sum of xpt's
766   // children's sizes.  See comment at the bottom of get_XCon.
767}
768
769// Sanity checking:  we check SXTrees (which are in snapshots) after
770// snapshots are created, before they are deleted, and before they are
771// printed.
772static void sanity_check_SXTree(SXPt* sxpt)
773{
774   Int i;
775
776   tl_assert(sxpt != NULL);
777
778   // Check the sum of any children szBs equals the SXPt's szB.  Check the
779   // children at the same time.
780   switch (sxpt->tag) {
781    case SigSXPt: {
782      if (sxpt->Sig.n_children > 0) {
783         for (i = 0; i < sxpt->Sig.n_children; i++) {
784            sanity_check_SXTree(sxpt->Sig.children[i]);
785         }
786      }
787      break;
788    }
789    case InsigSXPt:
790      break;         // do nothing
791
792    default: tl_assert2(0, "sanity_check_SXTree: unknown SXPt tag");
793   }
794}
795
796
797//------------------------------------------------------------//
798//--- XCon Operations                                      ---//
799//------------------------------------------------------------//
800
801// This is the limit on the number of removed alloc-fns that can be in a
802// single XCon.
803#define MAX_OVERESTIMATE   50
804#define MAX_IPS            (MAX_DEPTH + MAX_OVERESTIMATE)
805
806// Determine if the given IP belongs to a function that should be ignored.
807static Bool fn_should_be_ignored(Addr ip)
808{
809   const HChar *buf;
810   return
811      ( VG_(get_fnname)(ip, &buf) && is_member_fn(ignore_fns, buf)
812      ? True : False );
813}
814
815// Get the stack trace for an XCon, filtering out uninteresting entries:
816// alloc-fns and entries above alloc-fns, and entries below main-or-below-main.
817//   Eg:       alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c
818//   becomes:  a / b / main
819// Nb: it's possible to end up with an empty trace, eg. if 'main' is marked
820// as an alloc-fn.  This is ok.
821static
822Int get_IPs( ThreadId tid, Bool exclude_first_entry, Addr ips[])
823{
824   Int n_ips, i, n_alloc_fns_removed;
825   Int overestimate;
826   Bool redo;
827
828   // We ask for a few more IPs than clo_depth suggests we need.  Then we
829   // remove every entry that is an alloc-fn.  Depending on the
830   // circumstances, we may need to redo it all, asking for more IPs.
831   // Details:
832   // - If the original stack trace is smaller than asked-for, redo=False
833   // - Else if after filtering we have >= clo_depth IPs,      redo=False
834   // - Else redo=True
835   // In other words, to redo, we'd have to get a stack trace as big as we
836   // asked for and remove more than 'overestimate' alloc-fns.
837
838   // Main loop.
839   redo = True;      // Assume this to begin with.
840   for (overestimate = 3; redo; overestimate += 6) {
841      // This should never happen -- would require MAX_OVERESTIMATE
842      // alloc-fns to be removed from the stack trace.
843      if (overestimate > MAX_OVERESTIMATE)
844         VG_(tool_panic)("get_IPs: ips[] too small, inc. MAX_OVERESTIMATE?");
845
846      // Ask for more IPs than clo_depth suggests we need.
847      n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate,
848                                   NULL/*array to dump SP values in*/,
849                                   NULL/*array to dump FP values in*/,
850                                   0/*first_ip_delta*/ );
851      tl_assert(n_ips > 0);
852
853      // If the original stack trace is smaller than asked-for, redo=False.
854      if (n_ips < clo_depth + overestimate) { redo = False; }
855
856      // Filter out alloc fns.  If requested, we automatically remove the
857      // first entry (which presumably will be something like malloc or
858      // __builtin_new that we're sure to filter out) without looking at it,
859      // because VG_(get_fnname) is expensive.
860      n_alloc_fns_removed = ( exclude_first_entry ? 1 : 0 );
861      for (i = n_alloc_fns_removed; i < n_ips; i++) {
862         const HChar *buf;
863         if (VG_(get_fnname)(ips[i], &buf)) {
864            if (is_member_fn(alloc_fns, buf)) {
865               n_alloc_fns_removed++;
866            } else {
867               break;
868            }
869         }
870      }
871      // Remove the alloc fns by shuffling the rest down over them.
872      n_ips -= n_alloc_fns_removed;
873      for (i = 0; i < n_ips; i++) {
874         ips[i] = ips[i + n_alloc_fns_removed];
875      }
876
877      // If after filtering we have >= clo_depth IPs, redo=False
878      if (n_ips >= clo_depth) {
879         redo = False;
880         n_ips = clo_depth;      // Ignore any IPs below --depth.
881      }
882
883      if (redo) {
884         n_XCon_redos++;
885      }
886   }
887   return n_ips;
888}
889
890// Gets an XCon and puts it in the tree.  Returns the XCon's bottom-XPt.
891// Unless the allocation should be ignored, in which case we return NULL.
892static XPt* get_XCon( ThreadId tid, Bool exclude_first_entry )
893{
894   static Addr ips[MAX_IPS];
895   Int i;
896   XPt* xpt = alloc_xpt;
897
898   // After this call, the IPs we want are in ips[0]..ips[n_ips-1].
899   Int n_ips = get_IPs(tid, exclude_first_entry, ips);
900
901   // Should we ignore this allocation?  (Nb: n_ips can be zero, eg. if
902   // 'main' is marked as an alloc-fn.)
903   if (n_ips > 0 && fn_should_be_ignored(ips[0])) {
904      return NULL;
905   }
906
907   // Now do the search/insertion of the XCon.
908   for (i = 0; i < n_ips; i++) {
909      Addr ip = ips[i];
910      Int ch;
911      // Look for IP in xpt's children.
912      // Linear search, ugh -- about 10% of time for konqueror startup tried
913      // caching last result, only hit about 4% for konqueror.
914      // Nb:  this search hits about 98% of the time for konqueror
915      for (ch = 0; True; ch++) {
916         if (ch == xpt->n_children) {
917            // IP not found in the children.
918            // Create and add new child XPt, then stop.
919            XPt* new_child_xpt = new_XPt(ip, xpt);
920            add_child_xpt(xpt, new_child_xpt);
921            xpt = new_child_xpt;
922            break;
923
924         } else if (ip == xpt->children[ch]->ip) {
925            // Found the IP in the children, stop.
926            xpt = xpt->children[ch];
927            break;
928         }
929      }
930   }
931
932   // [Note: several comments refer to this comment.  Do not delete it
933   // without updating them.]
934   //
935   // A complication... If all stack traces were well-formed, then the
936   // returned xpt would always be a bottom-XPt.  As a consequence, an XPt's
937   // size would always be equal to the sum of its children's sizes, which
938   // is an excellent sanity check.
939   //
940   // Unfortunately, stack traces occasionally are malformed, ie. truncated.
941   // This allows a stack trace to be a sub-trace of another, eg. a/b/c is a
942   // sub-trace of a/b/c/d.  So we can't assume this xpt is a bottom-XPt;
943   // nor can we do sanity check an XPt's size against its children's sizes.
944   // This is annoying, but must be dealt with.  (Older versions of Massif
945   // had this assertion in, and it was reported to fail by real users a
946   // couple of times.)  Even more annoyingly, I can't come up with a simple
947   // test case that exhibit such a malformed stack trace, so I can't
948   // regression test it.  Sigh.
949   //
950   // However, we can print a warning, so that if it happens (unexpectedly)
951   // in existing regression tests we'll know.  Also, it warns users that
952   // the output snapshots may not add up the way they might expect.
953   //
954   //tl_assert(0 == xpt->n_children); // Must be bottom-XPt
955   if (0 != xpt->n_children) {
956      static Int n_moans = 0;
957      if (n_moans < 3) {
958         VG_(umsg)(
959            "Warning: Malformed stack trace detected.  In Massif's output,\n");
960         VG_(umsg)(
961            "         the size of an entry's child entries may not sum up\n");
962         VG_(umsg)(
963            "         to the entry's size as they normally do.\n");
964         n_moans++;
965         if (3 == n_moans)
966            VG_(umsg)(
967            "         (And Massif now won't warn about this again.)\n");
968      }
969   }
970   return xpt;
971}
972
973// Update 'szB' of every XPt in the XCon, by percolating upwards.
974static void update_XCon(XPt* xpt, SSizeT space_delta)
975{
976   tl_assert(clo_heap);
977   tl_assert(NULL != xpt);
978
979   if (0 == space_delta)
980      return;
981
982   while (xpt != alloc_xpt) {
983      if (space_delta < 0) tl_assert(xpt->szB >= -space_delta);
984      xpt->szB += space_delta;
985      xpt = xpt->parent;
986   }
987   if (space_delta < 0) tl_assert(alloc_xpt->szB >= -space_delta);
988   alloc_xpt->szB += space_delta;
989}
990
991
992//------------------------------------------------------------//
993//--- Snapshots                                            ---//
994//------------------------------------------------------------//
995
996// Snapshots are done in a way so that we always have a reasonable number of
997// them.  We start by taking them quickly.  Once we hit our limit, we cull
998// some (eg. half), and start taking them more slowly.  Once we hit the
999// limit again, we again cull and then take them even more slowly, and so
1000// on.
1001
1002// Time is measured either in i or ms or bytes, depending on the --time-unit
1003// option.  It's a Long because it can exceed 32-bits reasonably easily, and
1004// because we need to allow negative values to represent unset times.
1005typedef Long Time;
1006
1007#define UNUSED_SNAPSHOT_TIME  -333  // A conspicuous negative number.
1008
1009typedef
1010   enum {
1011      Normal = 77,
1012      Peak,
1013      Unused
1014   }
1015   SnapshotKind;
1016
1017typedef
1018   struct {
1019      SnapshotKind kind;
1020      Time  time;
1021      SizeT heap_szB;
1022      SizeT heap_extra_szB;// Heap slop + admin bytes.
1023      SizeT stacks_szB;
1024      SXPt* alloc_sxpt;    // Heap XTree root, if a detailed snapshot,
1025   }                       // otherwise NULL.
1026   Snapshot;
1027
1028static UInt      next_snapshot_i = 0;  // Index of where next snapshot will go.
1029static Snapshot* snapshots;            // Array of snapshots.
1030
1031static Bool is_snapshot_in_use(Snapshot* snapshot)
1032{
1033   if (Unused == snapshot->kind) {
1034      // If snapshot is unused, check all the fields are unset.
1035      tl_assert(snapshot->time           == UNUSED_SNAPSHOT_TIME);
1036      tl_assert(snapshot->heap_extra_szB == 0);
1037      tl_assert(snapshot->heap_szB       == 0);
1038      tl_assert(snapshot->stacks_szB     == 0);
1039      tl_assert(snapshot->alloc_sxpt     == NULL);
1040      return False;
1041   } else {
1042      tl_assert(snapshot->time           != UNUSED_SNAPSHOT_TIME);
1043      return True;
1044   }
1045}
1046
1047static Bool is_detailed_snapshot(Snapshot* snapshot)
1048{
1049   return (snapshot->alloc_sxpt ? True : False);
1050}
1051
1052static Bool is_uncullable_snapshot(Snapshot* snapshot)
1053{
1054   return &snapshots[0] == snapshot                   // First snapshot
1055       || &snapshots[next_snapshot_i-1] == snapshot   // Last snapshot
1056       || snapshot->kind == Peak;                     // Peak snapshot
1057}
1058
1059static void sanity_check_snapshot(Snapshot* snapshot)
1060{
1061   if (snapshot->alloc_sxpt) {
1062      sanity_check_SXTree(snapshot->alloc_sxpt);
1063   }
1064}
1065
1066// All the used entries should look used, all the unused ones should be clear.
1067static void sanity_check_snapshots_array(void)
1068{
1069   Int i;
1070   for (i = 0; i < next_snapshot_i; i++) {
1071      tl_assert( is_snapshot_in_use( & snapshots[i] ));
1072   }
1073   for (    ; i < clo_max_snapshots; i++) {
1074      tl_assert(!is_snapshot_in_use( & snapshots[i] ));
1075   }
1076}
1077
1078// This zeroes all the fields in the snapshot, but does not free the heap
1079// XTree if present.  It also does a sanity check unless asked not to;  we
1080// can't sanity check at startup when clearing the initial snapshots because
1081// they're full of junk.
1082static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check)
1083{
1084   if (do_sanity_check) sanity_check_snapshot(snapshot);
1085   snapshot->kind           = Unused;
1086   snapshot->time           = UNUSED_SNAPSHOT_TIME;
1087   snapshot->heap_extra_szB = 0;
1088   snapshot->heap_szB       = 0;
1089   snapshot->stacks_szB     = 0;
1090   snapshot->alloc_sxpt     = NULL;
1091}
1092
1093// This zeroes all the fields in the snapshot, and frees the heap XTree if
1094// present.
1095static void delete_snapshot(Snapshot* snapshot)
1096{
1097   // Nb: if there's an XTree, we free it after calling clear_snapshot,
1098   // because clear_snapshot does a sanity check which includes checking the
1099   // XTree.
1100   SXPt* tmp_sxpt = snapshot->alloc_sxpt;
1101   clear_snapshot(snapshot, /*do_sanity_check*/True);
1102   if (tmp_sxpt) {
1103      free_SXTree(tmp_sxpt);
1104   }
1105}
1106
1107static void VERB_snapshot(Int verbosity, const HChar* prefix, Int i)
1108{
1109   Snapshot* snapshot = &snapshots[i];
1110   const HChar* suffix;
1111   switch (snapshot->kind) {
1112   case Peak:   suffix = "p";                                            break;
1113   case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break;
1114   case Unused: suffix = "u";                                            break;
1115   default:
1116      tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind);
1117   }
1118   VERB(verbosity, "%s S%s%3d (t:%lld, hp:%lu, ex:%lu, st:%lu)\n",
1119      prefix, suffix, i,
1120      snapshot->time,
1121      snapshot->heap_szB,
1122      snapshot->heap_extra_szB,
1123      snapshot->stacks_szB
1124   );
1125}
1126
1127// Cull half the snapshots;  we choose those that represent the smallest
1128// time-spans, because that gives us the most even distribution of snapshots
1129// over time.  (It's possible to lose interesting spikes, however.)
1130//
1131// Algorithm for N snapshots:  We find the snapshot representing the smallest
1132// timeframe, and remove it.  We repeat this until (N/2) snapshots are gone.
1133// We have to do this one snapshot at a time, rather than finding the (N/2)
1134// smallest snapshots in one hit, because when a snapshot is removed, its
1135// neighbours immediately cover greater timespans.  So it's O(N^2), but N is
1136// small, and it's not done very often.
1137//
1138// Once we're done, we return the new smallest interval between snapshots.
1139// That becomes our minimum time interval.
1140static UInt cull_snapshots(void)
1141{
1142   Int  i, jp, j, jn, min_timespan_i;
1143   Int  n_deleted = 0;
1144   Time min_timespan;
1145
1146   n_cullings++;
1147
1148   // Sets j to the index of the first not-yet-removed snapshot at or after i
1149   #define FIND_SNAPSHOT(i, j) \
1150      for (j = i; \
1151           j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \
1152           j++) { }
1153
1154   VERB(2, "Culling...\n");
1155
1156   // First we remove enough snapshots by clearing them in-place.  Once
1157   // that's done, we can slide the remaining ones down.
1158   for (i = 0; i < clo_max_snapshots/2; i++) {
1159      // Find the snapshot representing the smallest timespan.  The timespan
1160      // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between
1161      // snapshot A and B.  We don't consider the first and last snapshots for
1162      // removal.
1163      Snapshot* min_snapshot;
1164      Int min_j;
1165
1166      // Initial triple: (prev, curr, next) == (jp, j, jn)
1167      // Initial min_timespan is the first one.
1168      jp = 0;
1169      FIND_SNAPSHOT(1,   j);
1170      FIND_SNAPSHOT(j+1, jn);
1171      min_timespan = 0x7fffffffffffffffLL;
1172      min_j        = -1;
1173      while (jn < clo_max_snapshots) {
1174         Time timespan = snapshots[jn].time - snapshots[jp].time;
1175         tl_assert(timespan >= 0);
1176         // Nb: We never cull the peak snapshot.
1177         if (Peak != snapshots[j].kind && timespan < min_timespan) {
1178            min_timespan = timespan;
1179            min_j        = j;
1180         }
1181         // Move on to next triple
1182         jp = j;
1183         j  = jn;
1184         FIND_SNAPSHOT(jn+1, jn);
1185      }
1186      // We've found the least important snapshot, now delete it.  First
1187      // print it if necessary.
1188      tl_assert(-1 != min_j);    // Check we found a minimum.
1189      min_snapshot = & snapshots[ min_j ];
1190      if (VG_(clo_verbosity) > 1) {
1191         HChar buf[64];   // large enough
1192         VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan);
1193         VERB_snapshot(2, buf, min_j);
1194      }
1195      delete_snapshot(min_snapshot);
1196      n_deleted++;
1197   }
1198
1199   // Slide down the remaining snapshots over the removed ones.  First set i
1200   // to point to the first empty slot, and j to the first full slot after
1201   // i.  Then slide everything down.
1202   for (i = 0;  is_snapshot_in_use( &snapshots[i] ); i++) { }
1203   for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { }
1204   for (  ; j < clo_max_snapshots; j++) {
1205      if (is_snapshot_in_use( &snapshots[j] )) {
1206         snapshots[i++] = snapshots[j];
1207         clear_snapshot(&snapshots[j], /*do_sanity_check*/True);
1208      }
1209   }
1210   next_snapshot_i = i;
1211
1212   // Check snapshots array looks ok after changes.
1213   sanity_check_snapshots_array();
1214
1215   // Find the minimum timespan remaining;  that will be our new minimum
1216   // time interval.  Note that above we were finding timespans by measuring
1217   // two intervals around a snapshot that was under consideration for
1218   // deletion.  Here we only measure single intervals because all the
1219   // deletions have occurred.
1220   //
1221   // But we have to be careful -- some snapshots (eg. snapshot 0, and the
1222   // peak snapshot) are uncullable.  If two uncullable snapshots end up
1223   // next to each other, they'll never be culled (assuming the peak doesn't
1224   // change), and the time gap between them will not change.  However, the
1225   // time between the remaining cullable snapshots will grow ever larger.
1226   // This means that the min_timespan found will always be that between the
1227   // two uncullable snapshots, and it will be much smaller than it should
1228   // be.  To avoid this problem, when computing the minimum timespan, we
1229   // ignore any timespans between two uncullable snapshots.
1230   tl_assert(next_snapshot_i > 1);
1231   min_timespan = 0x7fffffffffffffffLL;
1232   min_timespan_i = -1;
1233   for (i = 1; i < next_snapshot_i; i++) {
1234      if (is_uncullable_snapshot(&snapshots[i]) &&
1235          is_uncullable_snapshot(&snapshots[i-1]))
1236      {
1237         VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i);
1238      } else {
1239         Time timespan = snapshots[i].time - snapshots[i-1].time;
1240         tl_assert(timespan >= 0);
1241         if (timespan < min_timespan) {
1242            min_timespan = timespan;
1243            min_timespan_i = i;
1244         }
1245      }
1246   }
1247   tl_assert(-1 != min_timespan_i);    // Check we found a minimum.
1248
1249   // Print remaining snapshots, if necessary.
1250   if (VG_(clo_verbosity) > 1) {
1251      VERB(2, "Finished culling (%3d of %3d deleted)\n",
1252         n_deleted, clo_max_snapshots);
1253      for (i = 0; i < next_snapshot_i; i++) {
1254         VERB_snapshot(2, "  post-cull", i);
1255      }
1256      VERB(2, "New time interval = %lld (between snapshots %d and %d)\n",
1257         min_timespan, min_timespan_i-1, min_timespan_i);
1258   }
1259
1260   return min_timespan;
1261}
1262
1263static Time get_time(void)
1264{
1265   // Get current time, in whatever time unit we're using.
1266   if (clo_time_unit == TimeI) {
1267      return guest_instrs_executed;
1268   } else if (clo_time_unit == TimeMS) {
1269      // Some stuff happens between the millisecond timer being initialised
1270      // to zero and us taking our first snapshot.  We determine that time
1271      // gap so we can subtract it from all subsequent times so that our
1272      // first snapshot is considered to be at t = 0ms.  Unfortunately, a
1273      // bunch of symbols get read after the first snapshot is taken but
1274      // before the second one (which is triggered by the first allocation),
1275      // so when the time-unit is 'ms' we always have a big gap between the
1276      // first two snapshots.  But at least users won't have to wonder why
1277      // the first snapshot isn't at t=0.
1278      static Bool is_first_get_time = True;
1279      static Time start_time_ms;
1280      if (is_first_get_time) {
1281         start_time_ms = VG_(read_millisecond_timer)();
1282         is_first_get_time = False;
1283         return 0;
1284      } else {
1285         return VG_(read_millisecond_timer)() - start_time_ms;
1286      }
1287   } else if (clo_time_unit == TimeB) {
1288      return total_allocs_deallocs_szB;
1289   } else {
1290      tl_assert2(0, "bad --time-unit value");
1291   }
1292}
1293
1294// Take a snapshot, and only that -- decisions on whether to take a
1295// snapshot, or what kind of snapshot, are made elsewhere.
1296// Nb: we call the arg "my_time" because "time" shadows a global declaration
1297// in /usr/include/time.h on Darwin.
1298static void
1299take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time,
1300              Bool is_detailed)
1301{
1302   tl_assert(!is_snapshot_in_use(snapshot));
1303   if (!clo_pages_as_heap) {
1304      tl_assert(have_started_executing_code);
1305   }
1306
1307   // Heap and heap admin.
1308   if (clo_heap) {
1309      snapshot->heap_szB = heap_szB;
1310      if (is_detailed) {
1311         SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
1312         snapshot->alloc_sxpt = dup_XTree(alloc_xpt, total_szB);
1313         tl_assert(           alloc_xpt->szB == heap_szB);
1314         tl_assert(snapshot->alloc_sxpt->szB == heap_szB);
1315      }
1316      snapshot->heap_extra_szB = heap_extra_szB;
1317   }
1318
1319   // Stack(s).
1320   if (clo_stacks) {
1321      snapshot->stacks_szB = stacks_szB;
1322   }
1323
1324   // Rest of snapshot.
1325   snapshot->kind = kind;
1326   snapshot->time = my_time;
1327   sanity_check_snapshot(snapshot);
1328
1329   // Update stats.
1330   if (Peak == kind) n_peak_snapshots++;
1331   if (is_detailed)  n_detailed_snapshots++;
1332   n_real_snapshots++;
1333}
1334
1335
1336// Take a snapshot, if it's time, or if we've hit a peak.
1337static void
1338maybe_take_snapshot(SnapshotKind kind, const HChar* what)
1339{
1340   // 'min_time_interval' is the minimum time interval between snapshots.
1341   // If we try to take a snapshot and less than this much time has passed,
1342   // we don't take it.  It gets larger as the program runs longer.  It's
1343   // initialised to zero so that we begin by taking snapshots as quickly as
1344   // possible.
1345   static Time min_time_interval = 0;
1346   // Zero allows startup snapshot.
1347   static Time earliest_possible_time_of_next_snapshot = 0;
1348   static Int  n_snapshots_since_last_detailed         = 0;
1349   static Int  n_skipped_snapshots_since_last_snapshot = 0;
1350
1351   Snapshot* snapshot;
1352   Bool      is_detailed;
1353   // Nb: we call this variable "my_time" because "time" shadows a global
1354   // declaration in /usr/include/time.h on Darwin.
1355   Time      my_time = get_time();
1356
1357   switch (kind) {
1358    case Normal:
1359      // Only do a snapshot if it's time.
1360      if (my_time < earliest_possible_time_of_next_snapshot) {
1361         n_skipped_snapshots++;
1362         n_skipped_snapshots_since_last_snapshot++;
1363         return;
1364      }
1365      is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed);
1366      break;
1367
1368    case Peak: {
1369      // Because we're about to do a deallocation, we're coming down from a
1370      // local peak.  If it is (a) actually a global peak, and (b) a certain
1371      // amount bigger than the previous peak, then we take a peak snapshot.
1372      // By not taking a snapshot for every peak, we save a lot of effort --
1373      // because many peaks remain peak only for a short time.
1374      SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
1375      SizeT excess_szB_for_new_peak =
1376         (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100);
1377      if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) {
1378         return;
1379      }
1380      is_detailed = True;
1381      break;
1382    }
1383
1384    default:
1385      tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind");
1386   }
1387
1388   // Take the snapshot.
1389   snapshot = & snapshots[next_snapshot_i];
1390   take_snapshot(snapshot, kind, my_time, is_detailed);
1391
1392   // Record if it was detailed.
1393   if (is_detailed) {
1394      n_snapshots_since_last_detailed = 0;
1395   } else {
1396      n_snapshots_since_last_detailed++;
1397   }
1398
1399   // Update peak data, if it's a Peak snapshot.
1400   if (Peak == kind) {
1401      Int i, number_of_peaks_snapshots_found = 0;
1402
1403      // Sanity check the size, then update our recorded peak.
1404      SizeT snapshot_total_szB =
1405         snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
1406      tl_assert2(snapshot_total_szB > peak_snapshot_total_szB,
1407         "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB);
1408      peak_snapshot_total_szB = snapshot_total_szB;
1409
1410      // Find the old peak snapshot, if it exists, and mark it as normal.
1411      for (i = 0; i < next_snapshot_i; i++) {
1412         if (Peak == snapshots[i].kind) {
1413            snapshots[i].kind = Normal;
1414            number_of_peaks_snapshots_found++;
1415         }
1416      }
1417      tl_assert(number_of_peaks_snapshots_found <= 1);
1418   }
1419
1420   // Finish up verbosity and stats stuff.
1421   if (n_skipped_snapshots_since_last_snapshot > 0) {
1422      VERB(2, "  (skipped %d snapshot%s)\n",
1423         n_skipped_snapshots_since_last_snapshot,
1424         ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") );
1425   }
1426   VERB_snapshot(2, what, next_snapshot_i);
1427   n_skipped_snapshots_since_last_snapshot = 0;
1428
1429   // Cull the entries, if our snapshot table is full.
1430   next_snapshot_i++;
1431   if (clo_max_snapshots == next_snapshot_i) {
1432      min_time_interval = cull_snapshots();
1433   }
1434
1435   // Work out the earliest time when the next snapshot can happen.
1436   earliest_possible_time_of_next_snapshot = my_time + min_time_interval;
1437}
1438
1439
1440//------------------------------------------------------------//
1441//--- Sanity checking                                      ---//
1442//------------------------------------------------------------//
1443
1444static Bool ms_cheap_sanity_check ( void )
1445{
1446   return True;   // Nothing useful we can cheaply check.
1447}
1448
1449static Bool ms_expensive_sanity_check ( void )
1450{
1451   sanity_check_XTree(alloc_xpt, /*parent*/NULL);
1452   sanity_check_snapshots_array();
1453   return True;
1454}
1455
1456
1457//------------------------------------------------------------//
1458//--- Heap management                                      ---//
1459//------------------------------------------------------------//
1460
1461// Metadata for heap blocks.  Each one contains a pointer to a bottom-XPt,
1462// which is a foothold into the XCon at which it was allocated.  From
1463// HP_Chunks, XPt 'space' fields are incremented (at allocation) and
1464// decremented (at deallocation).
1465//
1466// Nb: first two fields must match core's VgHashNode.
1467typedef
1468   struct _HP_Chunk {
1469      struct _HP_Chunk* next;
1470      Addr              data;       // Ptr to actual block
1471      SizeT             req_szB;    // Size requested
1472      SizeT             slop_szB;   // Extra bytes given above those requested
1473      XPt*              where;      // Where allocated; bottom-XPt
1474   }
1475   HP_Chunk;
1476
1477static VgHashTable *malloc_list  = NULL;   // HP_Chunks
1478
1479static void update_alloc_stats(SSizeT szB_delta)
1480{
1481   // Update total_allocs_deallocs_szB.
1482   if (szB_delta < 0) szB_delta = -szB_delta;
1483   total_allocs_deallocs_szB += szB_delta;
1484}
1485
1486static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta)
1487{
1488   if (heap_szB_delta < 0)
1489      tl_assert(heap_szB >= -heap_szB_delta);
1490   if (heap_extra_szB_delta < 0)
1491      tl_assert(heap_extra_szB >= -heap_extra_szB_delta);
1492
1493   heap_extra_szB += heap_extra_szB_delta;
1494   heap_szB       += heap_szB_delta;
1495
1496   update_alloc_stats(heap_szB_delta + heap_extra_szB_delta);
1497}
1498
1499static
1500void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB,
1501                    Bool exclude_first_entry, Bool maybe_snapshot )
1502{
1503   // Make new HP_Chunk node, add to malloc_list
1504   HP_Chunk* hc = VG_(malloc)("ms.main.rb.1", sizeof(HP_Chunk));
1505   hc->req_szB  = req_szB;
1506   hc->slop_szB = slop_szB;
1507   hc->data     = (Addr)p;
1508   hc->where    = NULL;
1509   VG_(HT_add_node)(malloc_list, hc);
1510
1511   if (clo_heap) {
1512      VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB);
1513
1514      hc->where = get_XCon( tid, exclude_first_entry );
1515
1516      if (hc->where) {
1517         // Update statistics.
1518         n_heap_allocs++;
1519
1520         // Update heap stats.
1521         update_heap_stats(req_szB, clo_heap_admin + slop_szB);
1522
1523         // Update XTree.
1524         update_XCon(hc->where, req_szB);
1525
1526         // Maybe take a snapshot.
1527         if (maybe_snapshot) {
1528            maybe_take_snapshot(Normal, "  alloc");
1529         }
1530
1531      } else {
1532         // Ignored allocation.
1533         n_ignored_heap_allocs++;
1534
1535         VERB(3, "(ignored)\n");
1536      }
1537
1538      VERB(3, ">>>\n");
1539   }
1540
1541   return p;
1542}
1543
1544static __inline__
1545void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB,
1546                               Bool is_zeroed )
1547{
1548   SizeT actual_szB, slop_szB;
1549   void* p;
1550
1551   if ((SSizeT)req_szB < 0) return NULL;
1552
1553   // Allocate and zero if necessary.
1554   p = VG_(cli_malloc)( req_alignB, req_szB );
1555   if (!p) {
1556      return NULL;
1557   }
1558   if (is_zeroed) VG_(memset)(p, 0, req_szB);
1559   actual_szB = VG_(cli_malloc_usable_size)(p);
1560   tl_assert(actual_szB >= req_szB);
1561   slop_szB = actual_szB - req_szB;
1562
1563   // Record block.
1564   record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True,
1565                /*maybe_snapshot*/True);
1566
1567   return p;
1568}
1569
1570static __inline__
1571void unrecord_block ( void* p, Bool maybe_snapshot )
1572{
1573   // Remove HP_Chunk from malloc_list
1574   HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p);
1575   if (NULL == hc) {
1576      return;   // must have been a bogus free()
1577   }
1578
1579   if (clo_heap) {
1580      VERB(3, "<<< unrecord_block\n");
1581
1582      if (hc->where) {
1583         // Update statistics.
1584         n_heap_frees++;
1585
1586         // Maybe take a peak snapshot, since it's a deallocation.
1587         if (maybe_snapshot) {
1588            maybe_take_snapshot(Peak, "de-PEAK");
1589         }
1590
1591         // Update heap stats.
1592         update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB);
1593
1594         // Update XTree.
1595         update_XCon(hc->where, -hc->req_szB);
1596
1597         // Maybe take a snapshot.
1598         if (maybe_snapshot) {
1599            maybe_take_snapshot(Normal, "dealloc");
1600         }
1601
1602      } else {
1603         n_ignored_heap_frees++;
1604
1605         VERB(3, "(ignored)\n");
1606      }
1607
1608      VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB);
1609   }
1610
1611   // Actually free the chunk, and the heap block (if necessary)
1612   VG_(free)( hc );  hc = NULL;
1613}
1614
1615// Nb: --ignore-fn is tricky for realloc.  If the block's original alloc was
1616// ignored, but the realloc is not requested to be ignored, and we are
1617// shrinking the block, then we have to ignore the realloc -- otherwise we
1618// could end up with negative heap sizes.  This isn't a danger if we are
1619// growing such a block, but for consistency (it also simplifies things) we
1620// ignore such reallocs as well.
1621static __inline__
1622void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB )
1623{
1624   HP_Chunk* hc;
1625   void*     p_new;
1626   SizeT     old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB;
1627   XPt      *old_where, *new_where;
1628   Bool      is_ignored = False;
1629
1630   // Remove the old block
1631   hc = VG_(HT_remove)(malloc_list, (UWord)p_old);
1632   if (hc == NULL) {
1633      return NULL;   // must have been a bogus realloc()
1634   }
1635
1636   old_req_szB  = hc->req_szB;
1637   old_slop_szB = hc->slop_szB;
1638
1639   tl_assert(!clo_pages_as_heap);  // Shouldn't be here if --pages-as-heap=yes.
1640   if (clo_heap) {
1641      VERB(3, "<<< realloc_block (%lu)\n", new_req_szB);
1642
1643      if (hc->where) {
1644         // Update statistics.
1645         n_heap_reallocs++;
1646
1647         // Maybe take a peak snapshot, if it's (effectively) a deallocation.
1648         if (new_req_szB < old_req_szB) {
1649            maybe_take_snapshot(Peak, "re-PEAK");
1650         }
1651      } else {
1652         // The original malloc was ignored, so we have to ignore the
1653         // realloc as well.
1654         is_ignored = True;
1655      }
1656   }
1657
1658   // Actually do the allocation, if necessary.
1659   if (new_req_szB <= old_req_szB + old_slop_szB) {
1660      // New size is smaller or same;  block not moved.
1661      p_new = p_old;
1662      new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB);
1663
1664   } else {
1665      // New size is bigger;  make new block, copy shared contents, free old.
1666      p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB);
1667      if (!p_new) {
1668         // Nb: if realloc fails, NULL is returned but the old block is not
1669         // touched.  What an awful function.
1670         return NULL;
1671      }
1672      VG_(memcpy)(p_new, p_old, old_req_szB + old_slop_szB);
1673      VG_(cli_free)(p_old);
1674      new_actual_szB = VG_(cli_malloc_usable_size)(p_new);
1675      tl_assert(new_actual_szB >= new_req_szB);
1676      new_slop_szB = new_actual_szB - new_req_szB;
1677   }
1678
1679   if (p_new) {
1680      // Update HP_Chunk.
1681      hc->data     = (Addr)p_new;
1682      hc->req_szB  = new_req_szB;
1683      hc->slop_szB = new_slop_szB;
1684      old_where    = hc->where;
1685      hc->where    = NULL;
1686
1687      // Update XTree.
1688      if (clo_heap) {
1689         new_where = get_XCon( tid, /*exclude_first_entry*/True);
1690         if (!is_ignored && new_where) {
1691            hc->where = new_where;
1692            update_XCon(old_where, -old_req_szB);
1693            update_XCon(new_where,  new_req_szB);
1694         } else {
1695            // The realloc itself is ignored.
1696            is_ignored = True;
1697
1698            // Update statistics.
1699            n_ignored_heap_reallocs++;
1700         }
1701      }
1702   }
1703
1704   // Now insert the new hc (with a possibly new 'data' field) into
1705   // malloc_list.  If this realloc() did not increase the memory size, we
1706   // will have removed and then re-added hc unnecessarily.  But that's ok
1707   // because shrinking a block with realloc() is (presumably) much rarer
1708   // than growing it, and this way simplifies the growing case.
1709   VG_(HT_add_node)(malloc_list, hc);
1710
1711   if (clo_heap) {
1712      if (!is_ignored) {
1713         // Update heap stats.
1714         update_heap_stats(new_req_szB - old_req_szB,
1715                          new_slop_szB - old_slop_szB);
1716
1717         // Maybe take a snapshot.
1718         maybe_take_snapshot(Normal, "realloc");
1719      } else {
1720
1721         VERB(3, "(ignored)\n");
1722      }
1723
1724      VERB(3, ">>> (%ld, %ld)\n",
1725           (SSizeT)(new_req_szB - old_req_szB),
1726           (SSizeT)(new_slop_szB - old_slop_szB));
1727   }
1728
1729   return p_new;
1730}
1731
1732
1733//------------------------------------------------------------//
1734//--- malloc() et al replacement wrappers                  ---//
1735//------------------------------------------------------------//
1736
1737static void* ms_malloc ( ThreadId tid, SizeT szB )
1738{
1739   return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1740}
1741
1742static void* ms___builtin_new ( ThreadId tid, SizeT szB )
1743{
1744   return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1745}
1746
1747static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB )
1748{
1749   return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1750}
1751
1752static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB )
1753{
1754   return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True );
1755}
1756
1757static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB )
1758{
1759   return alloc_and_record_block( tid, szB, alignB, False );
1760}
1761
1762static void ms_free ( ThreadId tid __attribute__((unused)), void* p )
1763{
1764   unrecord_block(p, /*maybe_snapshot*/True);
1765   VG_(cli_free)(p);
1766}
1767
1768static void ms___builtin_delete ( ThreadId tid, void* p )
1769{
1770   unrecord_block(p, /*maybe_snapshot*/True);
1771   VG_(cli_free)(p);
1772}
1773
1774static void ms___builtin_vec_delete ( ThreadId tid, void* p )
1775{
1776   unrecord_block(p, /*maybe_snapshot*/True);
1777   VG_(cli_free)(p);
1778}
1779
1780static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB )
1781{
1782   return realloc_block(tid, p_old, new_szB);
1783}
1784
1785static SizeT ms_malloc_usable_size ( ThreadId tid, void* p )
1786{
1787   HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p );
1788
1789   return ( hc ? hc->req_szB + hc->slop_szB : 0 );
1790}
1791
1792//------------------------------------------------------------//
1793//--- Page handling                                        ---//
1794//------------------------------------------------------------//
1795
1796static
1797void ms_record_page_mem ( Addr a, SizeT len )
1798{
1799   ThreadId tid = VG_(get_running_tid)();
1800   Addr end;
1801   tl_assert(VG_IS_PAGE_ALIGNED(len));
1802   tl_assert(len >= VKI_PAGE_SIZE);
1803   // Record the first N-1 pages as blocks, but don't do any snapshots.
1804   for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1805      record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1806                    /*exclude_first_entry*/False, /*maybe_snapshot*/False );
1807   }
1808   // Record the last page as a block, and maybe do a snapshot afterwards.
1809   record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1810                 /*exclude_first_entry*/False, /*maybe_snapshot*/True );
1811}
1812
1813static
1814void ms_unrecord_page_mem( Addr a, SizeT len )
1815{
1816   Addr end;
1817   tl_assert(VG_IS_PAGE_ALIGNED(len));
1818   tl_assert(len >= VKI_PAGE_SIZE);
1819   for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1820      unrecord_block((void*)a, /*maybe_snapshot*/False);
1821   }
1822   unrecord_block((void*)a, /*maybe_snapshot*/True);
1823}
1824
1825//------------------------------------------------------------//
1826
1827static
1828void ms_new_mem_mmap ( Addr a, SizeT len,
1829                       Bool rr, Bool ww, Bool xx, ULong di_handle )
1830{
1831   tl_assert(VG_IS_PAGE_ALIGNED(len));
1832   ms_record_page_mem(a, len);
1833}
1834
1835static
1836void ms_new_mem_startup( Addr a, SizeT len,
1837                         Bool rr, Bool ww, Bool xx, ULong di_handle )
1838{
1839   // startup maps are always be page-sized, except the trampoline page is
1840   // marked by the core as only being the size of the trampoline itself,
1841   // which is something like 57 bytes.  Round it up to page size.
1842   len = VG_PGROUNDUP(len);
1843   ms_record_page_mem(a, len);
1844}
1845
1846static
1847void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid )
1848{
1849   // brk limit is not necessarily aligned on a page boundary.
1850   // If new memory being brk-ed implies to allocate a new page,
1851   // then call ms_record_page_mem with page aligned parameters
1852   // otherwise just ignore.
1853   Addr old_bottom_page = VG_PGROUNDDN(a - 1);
1854   Addr new_top_page = VG_PGROUNDDN(a + len - 1);
1855   if (old_bottom_page != new_top_page)
1856      ms_record_page_mem(VG_PGROUNDDN(a),
1857                         (new_top_page - old_bottom_page));
1858}
1859
1860static
1861void ms_copy_mem_remap( Addr from, Addr to, SizeT len)
1862{
1863   tl_assert(VG_IS_PAGE_ALIGNED(len));
1864   ms_unrecord_page_mem(from, len);
1865   ms_record_page_mem(to, len);
1866}
1867
1868static
1869void ms_die_mem_munmap( Addr a, SizeT len )
1870{
1871   tl_assert(VG_IS_PAGE_ALIGNED(len));
1872   ms_unrecord_page_mem(a, len);
1873}
1874
1875static
1876void ms_die_mem_brk( Addr a, SizeT len )
1877{
1878   // Call ms_unrecord_page_mem only if one or more pages are de-allocated.
1879   // See ms_new_mem_brk for more details.
1880   Addr new_bottom_page = VG_PGROUNDDN(a - 1);
1881   Addr old_top_page = VG_PGROUNDDN(a + len - 1);
1882   if (old_top_page != new_bottom_page)
1883      ms_unrecord_page_mem(VG_PGROUNDDN(a),
1884                           (old_top_page - new_bottom_page));
1885
1886}
1887
1888//------------------------------------------------------------//
1889//--- Stacks                                               ---//
1890//------------------------------------------------------------//
1891
1892// We really want the inlining to occur...
1893#define INLINE    inline __attribute__((always_inline))
1894
1895static void update_stack_stats(SSizeT stack_szB_delta)
1896{
1897   if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta);
1898   stacks_szB += stack_szB_delta;
1899
1900   update_alloc_stats(stack_szB_delta);
1901}
1902
1903static INLINE void new_mem_stack_2(SizeT len, const HChar* what)
1904{
1905   if (have_started_executing_code) {
1906      VERB(3, "<<< new_mem_stack (%lu)\n", len);
1907      n_stack_allocs++;
1908      update_stack_stats(len);
1909      maybe_take_snapshot(Normal, what);
1910      VERB(3, ">>>\n");
1911   }
1912}
1913
1914static INLINE void die_mem_stack_2(SizeT len, const HChar* what)
1915{
1916   if (have_started_executing_code) {
1917      VERB(3, "<<< die_mem_stack (-%lu)\n", len);
1918      n_stack_frees++;
1919      maybe_take_snapshot(Peak,   "stkPEAK");
1920      update_stack_stats(-len);
1921      maybe_take_snapshot(Normal, what);
1922      VERB(3, ">>>\n");
1923   }
1924}
1925
1926static void new_mem_stack(Addr a, SizeT len)
1927{
1928   new_mem_stack_2(len, "stk-new");
1929}
1930
1931static void die_mem_stack(Addr a, SizeT len)
1932{
1933   die_mem_stack_2(len, "stk-die");
1934}
1935
1936static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid)
1937{
1938   new_mem_stack_2(len, "sig-new");
1939}
1940
1941static void die_mem_stack_signal(Addr a, SizeT len)
1942{
1943   die_mem_stack_2(len, "sig-die");
1944}
1945
1946
1947//------------------------------------------------------------//
1948//--- Client Requests                                      ---//
1949//------------------------------------------------------------//
1950
1951static void print_monitor_help ( void )
1952{
1953   VG_(gdb_printf) ("\n");
1954   VG_(gdb_printf) ("massif monitor commands:\n");
1955   VG_(gdb_printf) ("  snapshot [<filename>]\n");
1956   VG_(gdb_printf) ("  detailed_snapshot [<filename>]\n");
1957   VG_(gdb_printf) ("      takes a snapshot (or a detailed snapshot)\n");
1958   VG_(gdb_printf) ("      and saves it in <filename>\n");
1959   VG_(gdb_printf) ("             default <filename> is massif.vgdb.out\n");
1960   VG_(gdb_printf) ("  all_snapshots [<filename>]\n");
1961   VG_(gdb_printf) ("      saves all snapshot(s) taken so far in <filename>\n");
1962   VG_(gdb_printf) ("             default <filename> is massif.vgdb.out\n");
1963   VG_(gdb_printf) ("\n");
1964}
1965
1966
1967/* Forward declaration.
1968   return True if request recognised, False otherwise */
1969static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req);
1970static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret )
1971{
1972   switch (argv[0]) {
1973   case VG_USERREQ__MALLOCLIKE_BLOCK: {
1974      void* p   = (void*)argv[1];
1975      SizeT szB =        argv[2];
1976      record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False,
1977                    /*maybe_snapshot*/True );
1978      *ret = 0;
1979      return True;
1980   }
1981   case VG_USERREQ__RESIZEINPLACE_BLOCK: {
1982      void* p        = (void*)argv[1];
1983      SizeT newSizeB =       argv[3];
1984
1985      unrecord_block(p, /*maybe_snapshot*/True);
1986      record_block(tid, p, newSizeB, /*slop_szB*/0,
1987                   /*exclude_first_entry*/False, /*maybe_snapshot*/True);
1988      return True;
1989   }
1990   case VG_USERREQ__FREELIKE_BLOCK: {
1991      void* p = (void*)argv[1];
1992      unrecord_block(p, /*maybe_snapshot*/True);
1993      *ret = 0;
1994      return True;
1995   }
1996   case VG_USERREQ__GDB_MONITOR_COMMAND: {
1997     Bool handled = handle_gdb_monitor_command (tid, (HChar*)argv[1]);
1998     if (handled)
1999       *ret = 1;
2000     else
2001       *ret = 0;
2002     return handled;
2003   }
2004
2005   default:
2006      *ret = 0;
2007      return False;
2008   }
2009}
2010
2011//------------------------------------------------------------//
2012//--- Instrumentation                                      ---//
2013//------------------------------------------------------------//
2014
2015static void add_counter_update(IRSB* sbOut, Int n)
2016{
2017   #if defined(VG_BIGENDIAN)
2018   # define END Iend_BE
2019   #elif defined(VG_LITTLEENDIAN)
2020   # define END Iend_LE
2021   #else
2022   # error "Unknown endianness"
2023   #endif
2024   // Add code to increment 'guest_instrs_executed' by 'n', like this:
2025   //   WrTmp(t1, Load64(&guest_instrs_executed))
2026   //   WrTmp(t2, Add64(RdTmp(t1), Const(n)))
2027   //   Store(&guest_instrs_executed, t2)
2028   IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64);
2029   IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64);
2030   IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed );
2031
2032   IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr));
2033   IRStmt* st2 =
2034      IRStmt_WrTmp(t2,
2035                   IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1),
2036                                           IRExpr_Const(IRConst_U64(n))));
2037   IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2));
2038
2039   addStmtToIRSB( sbOut, st1 );
2040   addStmtToIRSB( sbOut, st2 );
2041   addStmtToIRSB( sbOut, st3 );
2042}
2043
2044static IRSB* ms_instrument2( IRSB* sbIn )
2045{
2046   Int   i, n = 0;
2047   IRSB* sbOut;
2048
2049   // We increment the instruction count in two places:
2050   // - just before any Ist_Exit statements;
2051   // - just before the IRSB's end.
2052   // In the former case, we zero 'n' and then continue instrumenting.
2053
2054   sbOut = deepCopyIRSBExceptStmts(sbIn);
2055
2056   for (i = 0; i < sbIn->stmts_used; i++) {
2057      IRStmt* st = sbIn->stmts[i];
2058
2059      if (!st || st->tag == Ist_NoOp) continue;
2060
2061      if (st->tag == Ist_IMark) {
2062         n++;
2063      } else if (st->tag == Ist_Exit) {
2064         if (n > 0) {
2065            // Add an increment before the Exit statement, then reset 'n'.
2066            add_counter_update(sbOut, n);
2067            n = 0;
2068         }
2069      }
2070      addStmtToIRSB( sbOut, st );
2071   }
2072
2073   if (n > 0) {
2074      // Add an increment before the SB end.
2075      add_counter_update(sbOut, n);
2076   }
2077   return sbOut;
2078}
2079
2080static
2081IRSB* ms_instrument ( VgCallbackClosure* closure,
2082                      IRSB* sbIn,
2083                      const VexGuestLayout* layout,
2084                      const VexGuestExtents* vge,
2085                      const VexArchInfo* archinfo_host,
2086                      IRType gWordTy, IRType hWordTy )
2087{
2088   if (! have_started_executing_code) {
2089      // Do an initial sample to guarantee that we have at least one.
2090      // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure
2091      // 'maybe_take_snapshot's internal static variables are initialised.
2092      have_started_executing_code = True;
2093      maybe_take_snapshot(Normal, "startup");
2094   }
2095
2096   if      (clo_time_unit == TimeI)  { return ms_instrument2(sbIn); }
2097   else if (clo_time_unit == TimeMS) { return sbIn; }
2098   else if (clo_time_unit == TimeB)  { return sbIn; }
2099   else                              { tl_assert2(0, "bad --time-unit value"); }
2100}
2101
2102
2103//------------------------------------------------------------//
2104//--- Writing snapshots                                    ---//
2105//------------------------------------------------------------//
2106
2107#define FP(format, args...) ({ VG_(fprintf)(fp, format, ##args); })
2108
2109static void pp_snapshot_SXPt(VgFile *fp, SXPt* sxpt, Int depth,
2110                             HChar* depth_str, Int depth_str_len,
2111                             SizeT snapshot_heap_szB, SizeT snapshot_total_szB)
2112{
2113   Int   i, j, n_insig_children_sxpts;
2114   SXPt* child = NULL;
2115
2116   // Used for printing function names.  Is made static to keep it out
2117   // of the stack frame -- this function is recursive.  Obviously this
2118   // now means its contents are trashed across the recursive call.
2119   const HChar* ip_desc;
2120
2121   switch (sxpt->tag) {
2122    case SigSXPt:
2123      // Print the SXPt itself.
2124      if (0 == depth) {
2125         if (clo_heap) {
2126            ip_desc =
2127               ( clo_pages_as_heap
2128               ? "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc."
2129               : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc."
2130               );
2131         } else {
2132            // XXX: --alloc-fns?
2133
2134            // Nick thinks this case cannot happen. ip_desc would be
2135            // conceptually uninitialised here. Therefore:
2136            tl_assert2(0, "pp_snapshot_SXPt: unexpected");
2137         }
2138      } else {
2139         // If it's main-or-below-main, we (if appropriate) ignore everything
2140         // below it by pretending it has no children.
2141         if ( ! VG_(clo_show_below_main) ) {
2142            Vg_FnNameKind kind = VG_(get_fnname_kind_from_IP)(sxpt->Sig.ip);
2143            if (Vg_FnNameMain == kind || Vg_FnNameBelowMain == kind) {
2144               sxpt->Sig.n_children = 0;
2145            }
2146         }
2147
2148         // We need the -1 to get the line number right, But I'm not sure why.
2149         ip_desc = VG_(describe_IP)(sxpt->Sig.ip-1, NULL);
2150      }
2151
2152      // Do the non-ip_desc part first...
2153      FP("%sn%u: %lu ", depth_str, sxpt->Sig.n_children, sxpt->szB);
2154
2155      // For ip_descs beginning with "0xABCD...:" addresses, we first
2156      // measure the length of the "0xabcd: " address at the start of the
2157      // ip_desc.
2158      j = 0;
2159      if ('0' == ip_desc[0] && 'x' == ip_desc[1]) {
2160         j = 2;
2161         while (True) {
2162            if (ip_desc[j]) {
2163               if (':' == ip_desc[j]) break;
2164               j++;
2165            } else {
2166               tl_assert2(0, "ip_desc has unexpected form: %s\n", ip_desc);
2167            }
2168         }
2169      }
2170      // It used to be that ip_desc was truncated at the end.
2171      // But there does not seem to be a good reason for that. Besides,
2172      // the string was truncated at the right, which is less than ideal.
2173      // Truncation at the beginning of the string would have been preferable.
2174      // Think several nested namespaces in C++....
2175      // Anyhow, we spit out the full-length string now.
2176      FP("%s\n", ip_desc);
2177
2178      // Indent.
2179      tl_assert(depth+1 < depth_str_len-1);    // -1 for end NUL char
2180      depth_str[depth+0] = ' ';
2181      depth_str[depth+1] = '\0';
2182
2183      // Sort SXPt's children by szB (reverse order:  biggest to smallest).
2184      // Nb: we sort them here, rather than earlier (eg. in dup_XTree), for
2185      // two reasons.  First, if we do it during dup_XTree, it can get
2186      // expensive (eg. 15% of execution time for konqueror
2187      // startup/shutdown).  Second, this way we get the Insig SXPt (if one
2188      // is present) in its sorted position, not at the end.
2189      VG_(ssort)(sxpt->Sig.children, sxpt->Sig.n_children, sizeof(SXPt*),
2190                 SXPt_revcmp_szB);
2191
2192      // Print the SXPt's children.  They should already be in sorted order.
2193      n_insig_children_sxpts = 0;
2194      for (i = 0; i < sxpt->Sig.n_children; i++) {
2195         child = sxpt->Sig.children[i];
2196
2197         if (InsigSXPt == child->tag)
2198            n_insig_children_sxpts++;
2199
2200         // Ok, print the child.  NB: contents of ip_desc will be
2201         // trashed by this recursive call.  Doesn't matter currently,
2202         // but worth noting.
2203         pp_snapshot_SXPt(fp, child, depth+1, depth_str, depth_str_len,
2204            snapshot_heap_szB, snapshot_total_szB);
2205      }
2206
2207      // Unindent.
2208      depth_str[depth+0] = '\0';
2209      depth_str[depth+1] = '\0';
2210
2211      // There should be 0 or 1 Insig children SXPts.
2212      tl_assert(n_insig_children_sxpts <= 1);
2213      break;
2214
2215    case InsigSXPt: {
2216      const HChar* s = ( 1 == sxpt->Insig.n_xpts ? "," : "s, all" );
2217      FP("%sn0: %lu in %d place%s below massif's threshold (%.2f%%)\n",
2218         depth_str, sxpt->szB, sxpt->Insig.n_xpts, s, clo_threshold);
2219      break;
2220    }
2221
2222    default:
2223      tl_assert2(0, "pp_snapshot_SXPt: unrecognised SXPt tag");
2224   }
2225}
2226
2227static void pp_snapshot(VgFile *fp, Snapshot* snapshot, Int snapshot_n)
2228{
2229   sanity_check_snapshot(snapshot);
2230
2231   FP("#-----------\n");
2232   FP("snapshot=%d\n", snapshot_n);
2233   FP("#-----------\n");
2234   FP("time=%lld\n",            snapshot->time);
2235   FP("mem_heap_B=%lu\n",       snapshot->heap_szB);
2236   FP("mem_heap_extra_B=%lu\n", snapshot->heap_extra_szB);
2237   FP("mem_stacks_B=%lu\n",     snapshot->stacks_szB);
2238
2239   if (is_detailed_snapshot(snapshot)) {
2240      // Detailed snapshot -- print heap tree.
2241      Int   depth_str_len = clo_depth + 3;
2242      HChar* depth_str = VG_(malloc)("ms.main.pps.1",
2243                                     sizeof(HChar) * depth_str_len);
2244      SizeT snapshot_total_szB =
2245         snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
2246      depth_str[0] = '\0';   // Initialise depth_str to "".
2247
2248      FP("heap_tree=%s\n", ( Peak == snapshot->kind ? "peak" : "detailed" ));
2249      pp_snapshot_SXPt(fp, snapshot->alloc_sxpt, 0, depth_str,
2250                       depth_str_len, snapshot->heap_szB,
2251                       snapshot_total_szB);
2252
2253      VG_(free)(depth_str);
2254
2255   } else {
2256      FP("heap_tree=empty\n");
2257   }
2258}
2259
2260static void write_snapshots_to_file(const HChar* massif_out_file,
2261                                    Snapshot snapshots_array[],
2262                                    Int nr_elements)
2263{
2264   Int i;
2265   VgFile *fp;
2266
2267   fp = VG_(fopen)(massif_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY,
2268                                    VKI_S_IRUSR|VKI_S_IWUSR);
2269   if (fp == NULL) {
2270      // If the file can't be opened for whatever reason (conflict
2271      // between multiple cachegrinded processes?), give up now.
2272      VG_(umsg)("error: can't open output file '%s'\n", massif_out_file );
2273      VG_(umsg)("       ... so profiling results will be missing.\n");
2274      return;
2275   }
2276
2277   // Print massif-specific options that were used.
2278   // XXX: is it worth having a "desc:" line?  Could just call it "options:"
2279   // -- this file format isn't as generic as Cachegrind's, so the
2280   // implied genericity of "desc:" is bogus.
2281   FP("desc:");
2282   for (i = 0; i < VG_(sizeXA)(args_for_massif); i++) {
2283      HChar* arg = *(HChar**)VG_(indexXA)(args_for_massif, i);
2284      FP(" %s", arg);
2285   }
2286   if (0 == i) FP(" (none)");
2287   FP("\n");
2288
2289   // Print "cmd:" line.
2290   FP("cmd: ");
2291   FP("%s", VG_(args_the_exename));
2292   for (i = 0; i < VG_(sizeXA)( VG_(args_for_client) ); i++) {
2293      HChar* arg = * (HChar**) VG_(indexXA)( VG_(args_for_client), i );
2294      FP(" %s", arg);
2295   }
2296   FP("\n");
2297
2298   FP("time_unit: %s\n", TimeUnit_to_string(clo_time_unit));
2299
2300   for (i = 0; i < nr_elements; i++) {
2301      Snapshot* snapshot = & snapshots_array[i];
2302      pp_snapshot(fp, snapshot, i);     // Detailed snapshot!
2303   }
2304   VG_(fclose) (fp);
2305}
2306
2307static void write_snapshots_array_to_file(void)
2308{
2309   // Setup output filename.  Nb: it's important to do this now, ie. as late
2310   // as possible.  If we do it at start-up and the program forks and the
2311   // output file format string contains a %p (pid) specifier, both the
2312   // parent and child will incorrectly write to the same file;  this
2313   // happened in 3.3.0.
2314   HChar* massif_out_file =
2315      VG_(expand_file_name)("--massif-out-file", clo_massif_out_file);
2316   write_snapshots_to_file (massif_out_file, snapshots, next_snapshot_i);
2317   VG_(free)(massif_out_file);
2318}
2319
2320static void handle_snapshot_monitor_command (const HChar *filename,
2321                                             Bool detailed)
2322{
2323   Snapshot snapshot;
2324
2325   if (!clo_pages_as_heap && !have_started_executing_code) {
2326      // See comments of variable have_started_executing_code.
2327      VG_(gdb_printf)
2328         ("error: cannot take snapshot before execution has started\n");
2329      return;
2330   }
2331
2332   clear_snapshot(&snapshot, /* do_sanity_check */ False);
2333   take_snapshot(&snapshot, Normal, get_time(), detailed);
2334   write_snapshots_to_file ((filename == NULL) ?
2335                            "massif.vgdb.out" : filename,
2336                            &snapshot,
2337                            1);
2338   delete_snapshot(&snapshot);
2339}
2340
2341static void handle_all_snapshots_monitor_command (const HChar *filename)
2342{
2343   if (!clo_pages_as_heap && !have_started_executing_code) {
2344      // See comments of variable have_started_executing_code.
2345      VG_(gdb_printf)
2346         ("error: cannot take snapshot before execution has started\n");
2347      return;
2348   }
2349
2350   write_snapshots_to_file ((filename == NULL) ?
2351                            "massif.vgdb.out" : filename,
2352                            snapshots, next_snapshot_i);
2353}
2354
2355static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req)
2356{
2357   HChar* wcmd;
2358   HChar s[VG_(strlen(req)) + 1]; /* copy for strtok_r */
2359   HChar *ssaveptr;
2360
2361   VG_(strcpy) (s, req);
2362
2363   wcmd = VG_(strtok_r) (s, " ", &ssaveptr);
2364   switch (VG_(keyword_id) ("help snapshot detailed_snapshot all_snapshots",
2365                            wcmd, kwd_report_duplicated_matches)) {
2366   case -2: /* multiple matches */
2367      return True;
2368   case -1: /* not found */
2369      return False;
2370   case  0: /* help */
2371      print_monitor_help();
2372      return True;
2373   case  1: { /* snapshot */
2374      HChar* filename;
2375      filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
2376      handle_snapshot_monitor_command (filename, False /* detailed */);
2377      return True;
2378   }
2379   case  2: { /* detailed_snapshot */
2380      HChar* filename;
2381      filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
2382      handle_snapshot_monitor_command (filename, True /* detailed */);
2383      return True;
2384   }
2385   case  3: { /* all_snapshots */
2386      HChar* filename;
2387      filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
2388      handle_all_snapshots_monitor_command (filename);
2389      return True;
2390   }
2391   default:
2392      tl_assert(0);
2393      return False;
2394   }
2395}
2396
2397static void ms_print_stats (void)
2398{
2399#define STATS(format, args...) \
2400      VG_(dmsg)("Massif: " format, ##args)
2401
2402   STATS("heap allocs:           %u\n", n_heap_allocs);
2403   STATS("heap reallocs:         %u\n", n_heap_reallocs);
2404   STATS("heap frees:            %u\n", n_heap_frees);
2405   STATS("ignored heap allocs:   %u\n", n_ignored_heap_allocs);
2406   STATS("ignored heap frees:    %u\n", n_ignored_heap_frees);
2407   STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs);
2408   STATS("stack allocs:          %u\n", n_stack_allocs);
2409   STATS("stack frees:           %u\n", n_stack_frees);
2410   STATS("XPts:                  %u\n", n_xpts);
2411   STATS("top-XPts:              %u (%u%%)\n",
2412      alloc_xpt->n_children,
2413      ( n_xpts ? alloc_xpt->n_children * 100 / n_xpts : 0));
2414   STATS("XPt init expansions:   %u\n", n_xpt_init_expansions);
2415   STATS("XPt later expansions:  %u\n", n_xpt_later_expansions);
2416   STATS("SXPt allocs:           %u\n", n_sxpt_allocs);
2417   STATS("SXPt frees:            %u\n", n_sxpt_frees);
2418   STATS("skipped snapshots:     %u\n", n_skipped_snapshots);
2419   STATS("real snapshots:        %u\n", n_real_snapshots);
2420   STATS("detailed snapshots:    %u\n", n_detailed_snapshots);
2421   STATS("peak snapshots:        %u\n", n_peak_snapshots);
2422   STATS("cullings:              %u\n", n_cullings);
2423   STATS("XCon redos:            %u\n", n_XCon_redos);
2424#undef STATS
2425}
2426
2427//------------------------------------------------------------//
2428//--- Finalisation                                         ---//
2429//------------------------------------------------------------//
2430
2431static void ms_fini(Int exit_status)
2432{
2433   // Output.
2434   write_snapshots_array_to_file();
2435
2436   // Stats
2437   tl_assert(n_xpts > 0);  // always have alloc_xpt
2438
2439   if (VG_(clo_stats))
2440      ms_print_stats();
2441}
2442
2443
2444//------------------------------------------------------------//
2445//--- Initialisation                                       ---//
2446//------------------------------------------------------------//
2447
2448static void ms_post_clo_init(void)
2449{
2450   Int i;
2451   HChar* LD_PRELOAD_val;
2452   HChar* s;
2453   HChar* s2;
2454
2455   // Check options.
2456   if (clo_pages_as_heap) {
2457      if (clo_stacks) {
2458         VG_(fmsg_bad_option)("--pages-as-heap=yes",
2459            "Cannot be used together with --stacks=yes");
2460      }
2461   }
2462   if (!clo_heap) {
2463      clo_pages_as_heap = False;
2464   }
2465
2466   // If --pages-as-heap=yes we don't want malloc replacement to occur.  So we
2467   // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or
2468   // platform-equivalent).  We replace it entirely with spaces because then
2469   // the linker doesn't complain (it does complain if we just change the name
2470   // to a bogus file).  This is a bit of a hack, but LD_PRELOAD is setup well
2471   // before tool initialisation, so this seems the best way to do it.
2472   if (clo_pages_as_heap) {
2473      clo_heap_admin = 0;     // No heap admin on pages.
2474
2475      LD_PRELOAD_val = VG_(getenv)( VG_(LD_PRELOAD_var_name) );
2476      tl_assert(LD_PRELOAD_val);
2477
2478      // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity.
2479      s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core");
2480      tl_assert(s2);
2481
2482      // Now find the vgpreload_massif-$PLATFORM entry.
2483      s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif");
2484      tl_assert(s2);
2485
2486      // Blank out everything to the previous ':', which must be there because
2487      // of the preceding vgpreload_core-$PLATFORM entry.
2488      for (s = s2; *s != ':'; s--) {
2489         *s = ' ';
2490      }
2491
2492      // Blank out everything to the end of the entry, which will be '\0' if
2493      // LD_PRELOAD was empty before Valgrind started, or ':' otherwise.
2494      for (s = s2; *s != ':' && *s != '\0'; s++) {
2495         *s = ' ';
2496      }
2497   }
2498
2499   // Print alloc-fns and ignore-fns, if necessary.
2500   if (VG_(clo_verbosity) > 1) {
2501      VERB(1, "alloc-fns:\n");
2502      for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) {
2503         HChar** fn_ptr = VG_(indexXA)(alloc_fns, i);
2504         VERB(1, "  %s\n", *fn_ptr);
2505      }
2506
2507      VERB(1, "ignore-fns:\n");
2508      if (0 == VG_(sizeXA)(ignore_fns)) {
2509         VERB(1, "  <empty>\n");
2510      }
2511      for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) {
2512         HChar** fn_ptr = VG_(indexXA)(ignore_fns, i);
2513         VERB(1, "  %d: %s\n", i, *fn_ptr);
2514      }
2515   }
2516
2517   // Events to track.
2518   if (clo_stacks) {
2519      VG_(track_new_mem_stack)        ( new_mem_stack        );
2520      VG_(track_die_mem_stack)        ( die_mem_stack        );
2521      VG_(track_new_mem_stack_signal) ( new_mem_stack_signal );
2522      VG_(track_die_mem_stack_signal) ( die_mem_stack_signal );
2523   }
2524
2525   if (clo_pages_as_heap) {
2526      VG_(track_new_mem_startup) ( ms_new_mem_startup );
2527      VG_(track_new_mem_brk)     ( ms_new_mem_brk     );
2528      VG_(track_new_mem_mmap)    ( ms_new_mem_mmap    );
2529
2530      VG_(track_copy_mem_remap)  ( ms_copy_mem_remap  );
2531
2532      VG_(track_die_mem_brk)     ( ms_die_mem_brk     );
2533      VG_(track_die_mem_munmap)  ( ms_die_mem_munmap  );
2534   }
2535
2536   // Initialise snapshot array, and sanity-check it.
2537   snapshots = VG_(malloc)("ms.main.mpoci.1",
2538                           sizeof(Snapshot) * clo_max_snapshots);
2539   // We don't want to do snapshot sanity checks here, because they're
2540   // currently uninitialised.
2541   for (i = 0; i < clo_max_snapshots; i++) {
2542      clear_snapshot( & snapshots[i], /*do_sanity_check*/False );
2543   }
2544   sanity_check_snapshots_array();
2545}
2546
2547static void ms_pre_clo_init(void)
2548{
2549   VG_(details_name)            ("Massif");
2550   VG_(details_version)         (NULL);
2551   VG_(details_description)     ("a heap profiler");
2552   VG_(details_copyright_author)(
2553      "Copyright (C) 2003-2015, and GNU GPL'd, by Nicholas Nethercote");
2554   VG_(details_bug_reports_to)  (VG_BUGS_TO);
2555
2556   VG_(details_avg_translation_sizeB) ( 330 );
2557
2558   VG_(clo_vex_control).iropt_register_updates_default
2559      = VG_(clo_px_file_backed)
2560      = VexRegUpdSpAtMemAccess; // overridable by the user.
2561
2562   // Basic functions.
2563   VG_(basic_tool_funcs)          (ms_post_clo_init,
2564                                   ms_instrument,
2565                                   ms_fini);
2566
2567   // Needs.
2568   VG_(needs_libc_freeres)();
2569   VG_(needs_command_line_options)(ms_process_cmd_line_option,
2570                                   ms_print_usage,
2571                                   ms_print_debug_usage);
2572   VG_(needs_client_requests)     (ms_handle_client_request);
2573   VG_(needs_sanity_checks)       (ms_cheap_sanity_check,
2574                                   ms_expensive_sanity_check);
2575   VG_(needs_print_stats)         (ms_print_stats);
2576   VG_(needs_malloc_replacement)  (ms_malloc,
2577                                   ms___builtin_new,
2578                                   ms___builtin_vec_new,
2579                                   ms_memalign,
2580                                   ms_calloc,
2581                                   ms_free,
2582                                   ms___builtin_delete,
2583                                   ms___builtin_vec_delete,
2584                                   ms_realloc,
2585                                   ms_malloc_usable_size,
2586                                   0 );
2587
2588   // HP_Chunks.
2589   malloc_list = VG_(HT_construct)( "Massif's malloc list" );
2590
2591   // Dummy node at top of the context structure.
2592   alloc_xpt = new_XPt(/*ip*/0, /*parent*/NULL);
2593
2594   // Initialise alloc_fns and ignore_fns.
2595   init_alloc_fns();
2596   init_ignore_fns();
2597
2598   // Initialise args_for_massif.
2599   args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1",
2600                                VG_(free), sizeof(HChar*));
2601}
2602
2603VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init)
2604
2605//--------------------------------------------------------------------//
2606//--- end                                                          ---//
2607//--------------------------------------------------------------------//
2608