1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "class_linker.h"
18
19#include <algorithm>
20#include <deque>
21#include <iostream>
22#include <map>
23#include <memory>
24#include <queue>
25#include <string>
26#include <tuple>
27#include <unistd.h>
28#include <unordered_map>
29#include <utility>
30#include <vector>
31
32#include "android-base/stringprintf.h"
33
34#include "art_field-inl.h"
35#include "art_method-inl.h"
36#include "base/arena_allocator.h"
37#include "base/casts.h"
38#include "base/logging.h"
39#include "base/scoped_arena_containers.h"
40#include "base/scoped_flock.h"
41#include "base/stl_util.h"
42#include "base/systrace.h"
43#include "base/time_utils.h"
44#include "base/unix_file/fd_file.h"
45#include "base/value_object.h"
46#include "cha.h"
47#include "class_linker-inl.h"
48#include "class_table-inl.h"
49#include "compiler_callbacks.h"
50#include "debugger.h"
51#include "dex_file-inl.h"
52#include "entrypoints/entrypoint_utils.h"
53#include "entrypoints/runtime_asm_entrypoints.h"
54#include "experimental_flags.h"
55#include "gc_root-inl.h"
56#include "gc/accounting/card_table-inl.h"
57#include "gc/accounting/heap_bitmap-inl.h"
58#include "gc/heap.h"
59#include "gc/scoped_gc_critical_section.h"
60#include "gc/space/image_space.h"
61#include "gc/space/space-inl.h"
62#include "handle_scope-inl.h"
63#include "image-inl.h"
64#include "imt_conflict_table.h"
65#include "imtable-inl.h"
66#include "intern_table.h"
67#include "interpreter/interpreter.h"
68#include "java_vm_ext.h"
69#include "jit/jit.h"
70#include "jit/jit_code_cache.h"
71#include "jit/profile_compilation_info.h"
72#include "jni_internal.h"
73#include "leb128.h"
74#include "linear_alloc.h"
75#include "mirror/call_site.h"
76#include "mirror/class.h"
77#include "mirror/class-inl.h"
78#include "mirror/class_ext.h"
79#include "mirror/class_loader.h"
80#include "mirror/dex_cache.h"
81#include "mirror/dex_cache-inl.h"
82#include "mirror/emulated_stack_frame.h"
83#include "mirror/field.h"
84#include "mirror/iftable-inl.h"
85#include "mirror/method.h"
86#include "mirror/method_type.h"
87#include "mirror/method_handle_impl.h"
88#include "mirror/method_handles_lookup.h"
89#include "mirror/object-inl.h"
90#include "mirror/object_array-inl.h"
91#include "mirror/proxy.h"
92#include "mirror/reference-inl.h"
93#include "mirror/stack_trace_element.h"
94#include "mirror/string-inl.h"
95#include "native/dalvik_system_DexFile.h"
96#include "oat.h"
97#include "oat_file.h"
98#include "oat_file-inl.h"
99#include "oat_file_assistant.h"
100#include "oat_file_manager.h"
101#include "object_lock.h"
102#include "os.h"
103#include "runtime.h"
104#include "runtime_callbacks.h"
105#include "ScopedLocalRef.h"
106#include "scoped_thread_state_change-inl.h"
107#include "thread-inl.h"
108#include "thread_list.h"
109#include "trace.h"
110#include "utils.h"
111#include "utils/dex_cache_arrays_layout-inl.h"
112#include "verifier/method_verifier.h"
113#include "well_known_classes.h"
114
115namespace art {
116
117using android::base::StringPrintf;
118
119static constexpr bool kSanityCheckObjects = kIsDebugBuild;
120static constexpr bool kVerifyArtMethodDeclaringClasses = kIsDebugBuild;
121
122static void ThrowNoClassDefFoundError(const char* fmt, ...)
123    __attribute__((__format__(__printf__, 1, 2)))
124    REQUIRES_SHARED(Locks::mutator_lock_);
125static void ThrowNoClassDefFoundError(const char* fmt, ...) {
126  va_list args;
127  va_start(args, fmt);
128  Thread* self = Thread::Current();
129  self->ThrowNewExceptionV("Ljava/lang/NoClassDefFoundError;", fmt, args);
130  va_end(args);
131}
132
133static bool HasInitWithString(Thread* self, ClassLinker* class_linker, const char* descriptor)
134    REQUIRES_SHARED(Locks::mutator_lock_) {
135  ArtMethod* method = self->GetCurrentMethod(nullptr);
136  StackHandleScope<1> hs(self);
137  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(method != nullptr ?
138      method->GetDeclaringClass()->GetClassLoader() : nullptr));
139  ObjPtr<mirror::Class> exception_class = class_linker->FindClass(self, descriptor, class_loader);
140
141  if (exception_class == nullptr) {
142    // No exc class ~ no <init>-with-string.
143    CHECK(self->IsExceptionPending());
144    self->ClearException();
145    return false;
146  }
147
148  ArtMethod* exception_init_method = exception_class->FindDeclaredDirectMethod(
149      "<init>", "(Ljava/lang/String;)V", class_linker->GetImagePointerSize());
150  return exception_init_method != nullptr;
151}
152
153static mirror::Object* GetVerifyError(ObjPtr<mirror::Class> c)
154    REQUIRES_SHARED(Locks::mutator_lock_) {
155  ObjPtr<mirror::ClassExt> ext(c->GetExtData());
156  if (ext == nullptr) {
157    return nullptr;
158  } else {
159    return ext->GetVerifyError();
160  }
161}
162
163// Helper for ThrowEarlierClassFailure. Throws the stored error.
164static void HandleEarlierVerifyError(Thread* self,
165                                     ClassLinker* class_linker,
166                                     ObjPtr<mirror::Class> c)
167    REQUIRES_SHARED(Locks::mutator_lock_) {
168  ObjPtr<mirror::Object> obj = GetVerifyError(c);
169  DCHECK(obj != nullptr);
170  self->AssertNoPendingException();
171  if (obj->IsClass()) {
172    // Previous error has been stored as class. Create a new exception of that type.
173
174    // It's possible the exception doesn't have a <init>(String).
175    std::string temp;
176    const char* descriptor = obj->AsClass()->GetDescriptor(&temp);
177
178    if (HasInitWithString(self, class_linker, descriptor)) {
179      self->ThrowNewException(descriptor, c->PrettyDescriptor().c_str());
180    } else {
181      self->ThrowNewException(descriptor, nullptr);
182    }
183  } else {
184    // Previous error has been stored as an instance. Just rethrow.
185    ObjPtr<mirror::Class> throwable_class =
186        self->DecodeJObject(WellKnownClasses::java_lang_Throwable)->AsClass();
187    ObjPtr<mirror::Class> error_class = obj->GetClass();
188    CHECK(throwable_class->IsAssignableFrom(error_class));
189    self->SetException(obj->AsThrowable());
190  }
191  self->AssertPendingException();
192}
193
194void ClassLinker::ThrowEarlierClassFailure(ObjPtr<mirror::Class> c, bool wrap_in_no_class_def) {
195  // The class failed to initialize on a previous attempt, so we want to throw
196  // a NoClassDefFoundError (v2 2.17.5).  The exception to this rule is if we
197  // failed in verification, in which case v2 5.4.1 says we need to re-throw
198  // the previous error.
199  Runtime* const runtime = Runtime::Current();
200  if (!runtime->IsAotCompiler()) {  // Give info if this occurs at runtime.
201    std::string extra;
202    if (GetVerifyError(c) != nullptr) {
203      ObjPtr<mirror::Object> verify_error = GetVerifyError(c);
204      if (verify_error->IsClass()) {
205        extra = mirror::Class::PrettyDescriptor(verify_error->AsClass());
206      } else {
207        extra = verify_error->AsThrowable()->Dump();
208      }
209    }
210    LOG(INFO) << "Rejecting re-init on previously-failed class " << c->PrettyClass()
211              << ": " << extra;
212  }
213
214  CHECK(c->IsErroneous()) << c->PrettyClass() << " " << c->GetStatus();
215  Thread* self = Thread::Current();
216  if (runtime->IsAotCompiler()) {
217    // At compile time, accurate errors and NCDFE are disabled to speed compilation.
218    ObjPtr<mirror::Throwable> pre_allocated = runtime->GetPreAllocatedNoClassDefFoundError();
219    self->SetException(pre_allocated);
220  } else {
221    if (GetVerifyError(c) != nullptr) {
222      // Rethrow stored error.
223      HandleEarlierVerifyError(self, this, c);
224    }
225    // TODO This might be wrong if we hit an OOME while allocating the ClassExt. In that case we
226    // might have meant to go down the earlier if statement with the original error but it got
227    // swallowed by the OOM so we end up here.
228    if (GetVerifyError(c) == nullptr || wrap_in_no_class_def) {
229      // If there isn't a recorded earlier error, or this is a repeat throw from initialization,
230      // the top-level exception must be a NoClassDefFoundError. The potentially already pending
231      // exception will be a cause.
232      self->ThrowNewWrappedException("Ljava/lang/NoClassDefFoundError;",
233                                     c->PrettyDescriptor().c_str());
234    }
235  }
236}
237
238static void VlogClassInitializationFailure(Handle<mirror::Class> klass)
239    REQUIRES_SHARED(Locks::mutator_lock_) {
240  if (VLOG_IS_ON(class_linker)) {
241    std::string temp;
242    LOG(INFO) << "Failed to initialize class " << klass->GetDescriptor(&temp) << " from "
243              << klass->GetLocation() << "\n" << Thread::Current()->GetException()->Dump();
244  }
245}
246
247static void WrapExceptionInInitializer(Handle<mirror::Class> klass)
248    REQUIRES_SHARED(Locks::mutator_lock_) {
249  Thread* self = Thread::Current();
250  JNIEnv* env = self->GetJniEnv();
251
252  ScopedLocalRef<jthrowable> cause(env, env->ExceptionOccurred());
253  CHECK(cause.get() != nullptr);
254
255  // Boot classpath classes should not fail initialization. This is a sanity debug check. This
256  // cannot in general be guaranteed, but in all likelihood leads to breakage down the line.
257  if (klass->GetClassLoader() == nullptr && !Runtime::Current()->IsAotCompiler()) {
258    std::string tmp;
259    LOG(kIsDebugBuild ? FATAL : WARNING) << klass->GetDescriptor(&tmp) << " failed initialization";
260  }
261
262  env->ExceptionClear();
263  bool is_error = env->IsInstanceOf(cause.get(), WellKnownClasses::java_lang_Error);
264  env->Throw(cause.get());
265
266  // We only wrap non-Error exceptions; an Error can just be used as-is.
267  if (!is_error) {
268    self->ThrowNewWrappedException("Ljava/lang/ExceptionInInitializerError;", nullptr);
269  }
270  VlogClassInitializationFailure(klass);
271}
272
273// Gap between two fields in object layout.
274struct FieldGap {
275  uint32_t start_offset;  // The offset from the start of the object.
276  uint32_t size;  // The gap size of 1, 2, or 4 bytes.
277};
278struct FieldGapsComparator {
279  explicit FieldGapsComparator() {
280  }
281  bool operator() (const FieldGap& lhs, const FieldGap& rhs)
282      NO_THREAD_SAFETY_ANALYSIS {
283    // Sort by gap size, largest first. Secondary sort by starting offset.
284    // Note that the priority queue returns the largest element, so operator()
285    // should return true if lhs is less than rhs.
286    return lhs.size < rhs.size || (lhs.size == rhs.size && lhs.start_offset > rhs.start_offset);
287  }
288};
289typedef std::priority_queue<FieldGap, std::vector<FieldGap>, FieldGapsComparator> FieldGaps;
290
291// Adds largest aligned gaps to queue of gaps.
292static void AddFieldGap(uint32_t gap_start, uint32_t gap_end, FieldGaps* gaps) {
293  DCHECK(gaps != nullptr);
294
295  uint32_t current_offset = gap_start;
296  while (current_offset != gap_end) {
297    size_t remaining = gap_end - current_offset;
298    if (remaining >= sizeof(uint32_t) && IsAligned<4>(current_offset)) {
299      gaps->push(FieldGap {current_offset, sizeof(uint32_t)});
300      current_offset += sizeof(uint32_t);
301    } else if (remaining >= sizeof(uint16_t) && IsAligned<2>(current_offset)) {
302      gaps->push(FieldGap {current_offset, sizeof(uint16_t)});
303      current_offset += sizeof(uint16_t);
304    } else {
305      gaps->push(FieldGap {current_offset, sizeof(uint8_t)});
306      current_offset += sizeof(uint8_t);
307    }
308    DCHECK_LE(current_offset, gap_end) << "Overran gap";
309  }
310}
311// Shuffle fields forward, making use of gaps whenever possible.
312template<int n>
313static void ShuffleForward(size_t* current_field_idx,
314                           MemberOffset* field_offset,
315                           std::deque<ArtField*>* grouped_and_sorted_fields,
316                           FieldGaps* gaps)
317    REQUIRES_SHARED(Locks::mutator_lock_) {
318  DCHECK(current_field_idx != nullptr);
319  DCHECK(grouped_and_sorted_fields != nullptr);
320  DCHECK(gaps != nullptr);
321  DCHECK(field_offset != nullptr);
322
323  DCHECK(IsPowerOfTwo(n));
324  while (!grouped_and_sorted_fields->empty()) {
325    ArtField* field = grouped_and_sorted_fields->front();
326    Primitive::Type type = field->GetTypeAsPrimitiveType();
327    if (Primitive::ComponentSize(type) < n) {
328      break;
329    }
330    if (!IsAligned<n>(field_offset->Uint32Value())) {
331      MemberOffset old_offset = *field_offset;
332      *field_offset = MemberOffset(RoundUp(field_offset->Uint32Value(), n));
333      AddFieldGap(old_offset.Uint32Value(), field_offset->Uint32Value(), gaps);
334    }
335    CHECK(type != Primitive::kPrimNot) << field->PrettyField();  // should be primitive types
336    grouped_and_sorted_fields->pop_front();
337    if (!gaps->empty() && gaps->top().size >= n) {
338      FieldGap gap = gaps->top();
339      gaps->pop();
340      DCHECK_ALIGNED(gap.start_offset, n);
341      field->SetOffset(MemberOffset(gap.start_offset));
342      if (gap.size > n) {
343        AddFieldGap(gap.start_offset + n, gap.start_offset + gap.size, gaps);
344      }
345    } else {
346      DCHECK_ALIGNED(field_offset->Uint32Value(), n);
347      field->SetOffset(*field_offset);
348      *field_offset = MemberOffset(field_offset->Uint32Value() + n);
349    }
350    ++(*current_field_idx);
351  }
352}
353
354ClassLinker::ClassLinker(InternTable* intern_table)
355    : failed_dex_cache_class_lookups_(0),
356      class_roots_(nullptr),
357      array_iftable_(nullptr),
358      find_array_class_cache_next_victim_(0),
359      init_done_(false),
360      log_new_roots_(false),
361      intern_table_(intern_table),
362      quick_resolution_trampoline_(nullptr),
363      quick_imt_conflict_trampoline_(nullptr),
364      quick_generic_jni_trampoline_(nullptr),
365      quick_to_interpreter_bridge_trampoline_(nullptr),
366      image_pointer_size_(kRuntimePointerSize) {
367  CHECK(intern_table_ != nullptr);
368  static_assert(kFindArrayCacheSize == arraysize(find_array_class_cache_),
369                "Array cache size wrong.");
370  std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot<mirror::Class>(nullptr));
371}
372
373void ClassLinker::CheckSystemClass(Thread* self, Handle<mirror::Class> c1, const char* descriptor) {
374  ObjPtr<mirror::Class> c2 = FindSystemClass(self, descriptor);
375  if (c2 == nullptr) {
376    LOG(FATAL) << "Could not find class " << descriptor;
377    UNREACHABLE();
378  }
379  if (c1.Get() != c2) {
380    std::ostringstream os1, os2;
381    c1->DumpClass(os1, mirror::Class::kDumpClassFullDetail);
382    c2->DumpClass(os2, mirror::Class::kDumpClassFullDetail);
383    LOG(FATAL) << "InitWithoutImage: Class mismatch for " << descriptor
384               << ". This is most likely the result of a broken build. Make sure that "
385               << "libcore and art projects match.\n\n"
386               << os1.str() << "\n\n" << os2.str();
387    UNREACHABLE();
388  }
389}
390
391bool ClassLinker::InitWithoutImage(std::vector<std::unique_ptr<const DexFile>> boot_class_path,
392                                   std::string* error_msg) {
393  VLOG(startup) << "ClassLinker::Init";
394
395  Thread* const self = Thread::Current();
396  Runtime* const runtime = Runtime::Current();
397  gc::Heap* const heap = runtime->GetHeap();
398
399  CHECK(!heap->HasBootImageSpace()) << "Runtime has image. We should use it.";
400  CHECK(!init_done_);
401
402  // Use the pointer size from the runtime since we are probably creating the image.
403  image_pointer_size_ = InstructionSetPointerSize(runtime->GetInstructionSet());
404
405  // java_lang_Class comes first, it's needed for AllocClass
406  // The GC can't handle an object with a null class since we can't get the size of this object.
407  heap->IncrementDisableMovingGC(self);
408  StackHandleScope<64> hs(self);  // 64 is picked arbitrarily.
409  auto class_class_size = mirror::Class::ClassClassSize(image_pointer_size_);
410  Handle<mirror::Class> java_lang_Class(hs.NewHandle(down_cast<mirror::Class*>(
411      heap->AllocNonMovableObject<true>(self, nullptr, class_class_size, VoidFunctor()))));
412  CHECK(java_lang_Class != nullptr);
413  mirror::Class::SetClassClass(java_lang_Class.Get());
414  java_lang_Class->SetClass(java_lang_Class.Get());
415  if (kUseBakerReadBarrier) {
416    java_lang_Class->AssertReadBarrierState();
417  }
418  java_lang_Class->SetClassSize(class_class_size);
419  java_lang_Class->SetPrimitiveType(Primitive::kPrimNot);
420  heap->DecrementDisableMovingGC(self);
421  // AllocClass(ObjPtr<mirror::Class>) can now be used
422
423  // Class[] is used for reflection support.
424  auto class_array_class_size = mirror::ObjectArray<mirror::Class>::ClassSize(image_pointer_size_);
425  Handle<mirror::Class> class_array_class(hs.NewHandle(
426      AllocClass(self, java_lang_Class.Get(), class_array_class_size)));
427  class_array_class->SetComponentType(java_lang_Class.Get());
428
429  // java_lang_Object comes next so that object_array_class can be created.
430  Handle<mirror::Class> java_lang_Object(hs.NewHandle(
431      AllocClass(self, java_lang_Class.Get(), mirror::Object::ClassSize(image_pointer_size_))));
432  CHECK(java_lang_Object != nullptr);
433  // backfill Object as the super class of Class.
434  java_lang_Class->SetSuperClass(java_lang_Object.Get());
435  mirror::Class::SetStatus(java_lang_Object, mirror::Class::kStatusLoaded, self);
436
437  java_lang_Object->SetObjectSize(sizeof(mirror::Object));
438  // Allocate in non-movable so that it's possible to check if a JNI weak global ref has been
439  // cleared without triggering the read barrier and unintentionally mark the sentinel alive.
440  runtime->SetSentinel(heap->AllocNonMovableObject<true>(self,
441                                                         java_lang_Object.Get(),
442                                                         java_lang_Object->GetObjectSize(),
443                                                         VoidFunctor()));
444
445  // Object[] next to hold class roots.
446  Handle<mirror::Class> object_array_class(hs.NewHandle(
447      AllocClass(self, java_lang_Class.Get(),
448                 mirror::ObjectArray<mirror::Object>::ClassSize(image_pointer_size_))));
449  object_array_class->SetComponentType(java_lang_Object.Get());
450
451  // Setup the char (primitive) class to be used for char[].
452  Handle<mirror::Class> char_class(hs.NewHandle(
453      AllocClass(self, java_lang_Class.Get(),
454                 mirror::Class::PrimitiveClassSize(image_pointer_size_))));
455  // The primitive char class won't be initialized by
456  // InitializePrimitiveClass until line 459, but strings (and
457  // internal char arrays) will be allocated before that and the
458  // component size, which is computed from the primitive type, needs
459  // to be set here.
460  char_class->SetPrimitiveType(Primitive::kPrimChar);
461
462  // Setup the char[] class to be used for String.
463  Handle<mirror::Class> char_array_class(hs.NewHandle(
464      AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_))));
465  char_array_class->SetComponentType(char_class.Get());
466  mirror::CharArray::SetArrayClass(char_array_class.Get());
467
468  // Setup String.
469  Handle<mirror::Class> java_lang_String(hs.NewHandle(
470      AllocClass(self, java_lang_Class.Get(), mirror::String::ClassSize(image_pointer_size_))));
471  java_lang_String->SetStringClass();
472  mirror::String::SetClass(java_lang_String.Get());
473  mirror::Class::SetStatus(java_lang_String, mirror::Class::kStatusResolved, self);
474
475  // Setup java.lang.ref.Reference.
476  Handle<mirror::Class> java_lang_ref_Reference(hs.NewHandle(
477      AllocClass(self, java_lang_Class.Get(), mirror::Reference::ClassSize(image_pointer_size_))));
478  mirror::Reference::SetClass(java_lang_ref_Reference.Get());
479  java_lang_ref_Reference->SetObjectSize(mirror::Reference::InstanceSize());
480  mirror::Class::SetStatus(java_lang_ref_Reference, mirror::Class::kStatusResolved, self);
481
482  // Create storage for root classes, save away our work so far (requires descriptors).
483  class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>(
484      mirror::ObjectArray<mirror::Class>::Alloc(self, object_array_class.Get(),
485                                                kClassRootsMax));
486  CHECK(!class_roots_.IsNull());
487  SetClassRoot(kJavaLangClass, java_lang_Class.Get());
488  SetClassRoot(kJavaLangObject, java_lang_Object.Get());
489  SetClassRoot(kClassArrayClass, class_array_class.Get());
490  SetClassRoot(kObjectArrayClass, object_array_class.Get());
491  SetClassRoot(kCharArrayClass, char_array_class.Get());
492  SetClassRoot(kJavaLangString, java_lang_String.Get());
493  SetClassRoot(kJavaLangRefReference, java_lang_ref_Reference.Get());
494
495  // Fill in the empty iftable. Needs to be done after the kObjectArrayClass root is set.
496  java_lang_Object->SetIfTable(AllocIfTable(self, 0));
497
498  // Setup the primitive type classes.
499  SetClassRoot(kPrimitiveBoolean, CreatePrimitiveClass(self, Primitive::kPrimBoolean));
500  SetClassRoot(kPrimitiveByte, CreatePrimitiveClass(self, Primitive::kPrimByte));
501  SetClassRoot(kPrimitiveShort, CreatePrimitiveClass(self, Primitive::kPrimShort));
502  SetClassRoot(kPrimitiveInt, CreatePrimitiveClass(self, Primitive::kPrimInt));
503  SetClassRoot(kPrimitiveLong, CreatePrimitiveClass(self, Primitive::kPrimLong));
504  SetClassRoot(kPrimitiveFloat, CreatePrimitiveClass(self, Primitive::kPrimFloat));
505  SetClassRoot(kPrimitiveDouble, CreatePrimitiveClass(self, Primitive::kPrimDouble));
506  SetClassRoot(kPrimitiveVoid, CreatePrimitiveClass(self, Primitive::kPrimVoid));
507
508  // Create array interface entries to populate once we can load system classes.
509  array_iftable_ = GcRoot<mirror::IfTable>(AllocIfTable(self, 2));
510
511  // Create int array type for AllocDexCache (done in AppendToBootClassPath).
512  Handle<mirror::Class> int_array_class(hs.NewHandle(
513      AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_))));
514  int_array_class->SetComponentType(GetClassRoot(kPrimitiveInt));
515  mirror::IntArray::SetArrayClass(int_array_class.Get());
516  SetClassRoot(kIntArrayClass, int_array_class.Get());
517
518  // Create long array type for AllocDexCache (done in AppendToBootClassPath).
519  Handle<mirror::Class> long_array_class(hs.NewHandle(
520      AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_))));
521  long_array_class->SetComponentType(GetClassRoot(kPrimitiveLong));
522  mirror::LongArray::SetArrayClass(long_array_class.Get());
523  SetClassRoot(kLongArrayClass, long_array_class.Get());
524
525  // now that these are registered, we can use AllocClass() and AllocObjectArray
526
527  // Set up DexCache. This cannot be done later since AppendToBootClassPath calls AllocDexCache.
528  Handle<mirror::Class> java_lang_DexCache(hs.NewHandle(
529      AllocClass(self, java_lang_Class.Get(), mirror::DexCache::ClassSize(image_pointer_size_))));
530  SetClassRoot(kJavaLangDexCache, java_lang_DexCache.Get());
531  java_lang_DexCache->SetDexCacheClass();
532  java_lang_DexCache->SetObjectSize(mirror::DexCache::InstanceSize());
533  mirror::Class::SetStatus(java_lang_DexCache, mirror::Class::kStatusResolved, self);
534
535
536  // Setup dalvik.system.ClassExt
537  Handle<mirror::Class> dalvik_system_ClassExt(hs.NewHandle(
538      AllocClass(self, java_lang_Class.Get(), mirror::ClassExt::ClassSize(image_pointer_size_))));
539  SetClassRoot(kDalvikSystemClassExt, dalvik_system_ClassExt.Get());
540  mirror::ClassExt::SetClass(dalvik_system_ClassExt.Get());
541  mirror::Class::SetStatus(dalvik_system_ClassExt, mirror::Class::kStatusResolved, self);
542
543  // Set up array classes for string, field, method
544  Handle<mirror::Class> object_array_string(hs.NewHandle(
545      AllocClass(self, java_lang_Class.Get(),
546                 mirror::ObjectArray<mirror::String>::ClassSize(image_pointer_size_))));
547  object_array_string->SetComponentType(java_lang_String.Get());
548  SetClassRoot(kJavaLangStringArrayClass, object_array_string.Get());
549
550  LinearAlloc* linear_alloc = runtime->GetLinearAlloc();
551  // Create runtime resolution and imt conflict methods.
552  runtime->SetResolutionMethod(runtime->CreateResolutionMethod());
553  runtime->SetImtConflictMethod(runtime->CreateImtConflictMethod(linear_alloc));
554  runtime->SetImtUnimplementedMethod(runtime->CreateImtConflictMethod(linear_alloc));
555
556  // Setup boot_class_path_ and register class_path now that we can use AllocObjectArray to create
557  // DexCache instances. Needs to be after String, Field, Method arrays since AllocDexCache uses
558  // these roots.
559  if (boot_class_path.empty()) {
560    *error_msg = "Boot classpath is empty.";
561    return false;
562  }
563  for (auto& dex_file : boot_class_path) {
564    if (dex_file.get() == nullptr) {
565      *error_msg = "Null dex file.";
566      return false;
567    }
568    AppendToBootClassPath(self, *dex_file);
569    boot_dex_files_.push_back(std::move(dex_file));
570  }
571
572  // now we can use FindSystemClass
573
574  // run char class through InitializePrimitiveClass to finish init
575  InitializePrimitiveClass(char_class.Get(), Primitive::kPrimChar);
576  SetClassRoot(kPrimitiveChar, char_class.Get());  // needs descriptor
577
578  // Set up GenericJNI entrypoint. That is mainly a hack for common_compiler_test.h so that
579  // we do not need friend classes or a publicly exposed setter.
580  quick_generic_jni_trampoline_ = GetQuickGenericJniStub();
581  if (!runtime->IsAotCompiler()) {
582    // We need to set up the generic trampolines since we don't have an image.
583    quick_resolution_trampoline_ = GetQuickResolutionStub();
584    quick_imt_conflict_trampoline_ = GetQuickImtConflictStub();
585    quick_to_interpreter_bridge_trampoline_ = GetQuickToInterpreterBridge();
586  }
587
588  // Object, String, ClassExt and DexCache need to be rerun through FindSystemClass to finish init
589  mirror::Class::SetStatus(java_lang_Object, mirror::Class::kStatusNotReady, self);
590  CheckSystemClass(self, java_lang_Object, "Ljava/lang/Object;");
591  CHECK_EQ(java_lang_Object->GetObjectSize(), mirror::Object::InstanceSize());
592  mirror::Class::SetStatus(java_lang_String, mirror::Class::kStatusNotReady, self);
593  CheckSystemClass(self, java_lang_String, "Ljava/lang/String;");
594  mirror::Class::SetStatus(java_lang_DexCache, mirror::Class::kStatusNotReady, self);
595  CheckSystemClass(self, java_lang_DexCache, "Ljava/lang/DexCache;");
596  CHECK_EQ(java_lang_DexCache->GetObjectSize(), mirror::DexCache::InstanceSize());
597  mirror::Class::SetStatus(dalvik_system_ClassExt, mirror::Class::kStatusNotReady, self);
598  CheckSystemClass(self, dalvik_system_ClassExt, "Ldalvik/system/ClassExt;");
599  CHECK_EQ(dalvik_system_ClassExt->GetObjectSize(), mirror::ClassExt::InstanceSize());
600
601  // Setup the primitive array type classes - can't be done until Object has a vtable.
602  SetClassRoot(kBooleanArrayClass, FindSystemClass(self, "[Z"));
603  mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
604
605  SetClassRoot(kByteArrayClass, FindSystemClass(self, "[B"));
606  mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
607
608  CheckSystemClass(self, char_array_class, "[C");
609
610  SetClassRoot(kShortArrayClass, FindSystemClass(self, "[S"));
611  mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
612
613  CheckSystemClass(self, int_array_class, "[I");
614  CheckSystemClass(self, long_array_class, "[J");
615
616  SetClassRoot(kFloatArrayClass, FindSystemClass(self, "[F"));
617  mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
618
619  SetClassRoot(kDoubleArrayClass, FindSystemClass(self, "[D"));
620  mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
621
622  // Run Class through FindSystemClass. This initializes the dex_cache_ fields and register it
623  // in class_table_.
624  CheckSystemClass(self, java_lang_Class, "Ljava/lang/Class;");
625
626  CheckSystemClass(self, class_array_class, "[Ljava/lang/Class;");
627  CheckSystemClass(self, object_array_class, "[Ljava/lang/Object;");
628
629  // Setup the single, global copy of "iftable".
630  auto java_lang_Cloneable = hs.NewHandle(FindSystemClass(self, "Ljava/lang/Cloneable;"));
631  CHECK(java_lang_Cloneable != nullptr);
632  auto java_io_Serializable = hs.NewHandle(FindSystemClass(self, "Ljava/io/Serializable;"));
633  CHECK(java_io_Serializable != nullptr);
634  // We assume that Cloneable/Serializable don't have superinterfaces -- normally we'd have to
635  // crawl up and explicitly list all of the supers as well.
636  array_iftable_.Read()->SetInterface(0, java_lang_Cloneable.Get());
637  array_iftable_.Read()->SetInterface(1, java_io_Serializable.Get());
638
639  // Sanity check Class[] and Object[]'s interfaces. GetDirectInterface may cause thread
640  // suspension.
641  CHECK_EQ(java_lang_Cloneable.Get(),
642           mirror::Class::GetDirectInterface(self, class_array_class.Get(), 0));
643  CHECK_EQ(java_io_Serializable.Get(),
644           mirror::Class::GetDirectInterface(self, class_array_class.Get(), 1));
645  CHECK_EQ(java_lang_Cloneable.Get(),
646           mirror::Class::GetDirectInterface(self, object_array_class.Get(), 0));
647  CHECK_EQ(java_io_Serializable.Get(),
648           mirror::Class::GetDirectInterface(self, object_array_class.Get(), 1));
649
650  CHECK_EQ(object_array_string.Get(),
651           FindSystemClass(self, GetClassRootDescriptor(kJavaLangStringArrayClass)));
652
653  // End of special init trickery, all subsequent classes may be loaded via FindSystemClass.
654
655  // Create java.lang.reflect.Proxy root.
656  SetClassRoot(kJavaLangReflectProxy, FindSystemClass(self, "Ljava/lang/reflect/Proxy;"));
657
658  // Create java.lang.reflect.Field.class root.
659  auto* class_root = FindSystemClass(self, "Ljava/lang/reflect/Field;");
660  CHECK(class_root != nullptr);
661  SetClassRoot(kJavaLangReflectField, class_root);
662  mirror::Field::SetClass(class_root);
663
664  // Create java.lang.reflect.Field array root.
665  class_root = FindSystemClass(self, "[Ljava/lang/reflect/Field;");
666  CHECK(class_root != nullptr);
667  SetClassRoot(kJavaLangReflectFieldArrayClass, class_root);
668  mirror::Field::SetArrayClass(class_root);
669
670  // Create java.lang.reflect.Constructor.class root and array root.
671  class_root = FindSystemClass(self, "Ljava/lang/reflect/Constructor;");
672  CHECK(class_root != nullptr);
673  SetClassRoot(kJavaLangReflectConstructor, class_root);
674  mirror::Constructor::SetClass(class_root);
675  class_root = FindSystemClass(self, "[Ljava/lang/reflect/Constructor;");
676  CHECK(class_root != nullptr);
677  SetClassRoot(kJavaLangReflectConstructorArrayClass, class_root);
678  mirror::Constructor::SetArrayClass(class_root);
679
680  // Create java.lang.reflect.Method.class root and array root.
681  class_root = FindSystemClass(self, "Ljava/lang/reflect/Method;");
682  CHECK(class_root != nullptr);
683  SetClassRoot(kJavaLangReflectMethod, class_root);
684  mirror::Method::SetClass(class_root);
685  class_root = FindSystemClass(self, "[Ljava/lang/reflect/Method;");
686  CHECK(class_root != nullptr);
687  SetClassRoot(kJavaLangReflectMethodArrayClass, class_root);
688  mirror::Method::SetArrayClass(class_root);
689
690  // Create java.lang.invoke.MethodType.class root
691  class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodType;");
692  CHECK(class_root != nullptr);
693  SetClassRoot(kJavaLangInvokeMethodType, class_root);
694  mirror::MethodType::SetClass(class_root);
695
696  // Create java.lang.invoke.MethodHandleImpl.class root
697  class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodHandleImpl;");
698  CHECK(class_root != nullptr);
699  SetClassRoot(kJavaLangInvokeMethodHandleImpl, class_root);
700  mirror::MethodHandleImpl::SetClass(class_root);
701
702  // Create java.lang.invoke.MethodHandles.Lookup.class root
703  class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodHandles$Lookup;");
704  CHECK(class_root != nullptr);
705  SetClassRoot(kJavaLangInvokeMethodHandlesLookup, class_root);
706  mirror::MethodHandlesLookup::SetClass(class_root);
707
708  // Create java.lang.invoke.CallSite.class root
709  class_root = FindSystemClass(self, "Ljava/lang/invoke/CallSite;");
710  CHECK(class_root != nullptr);
711  SetClassRoot(kJavaLangInvokeCallSite, class_root);
712  mirror::CallSite::SetClass(class_root);
713
714  class_root = FindSystemClass(self, "Ldalvik/system/EmulatedStackFrame;");
715  CHECK(class_root != nullptr);
716  SetClassRoot(kDalvikSystemEmulatedStackFrame, class_root);
717  mirror::EmulatedStackFrame::SetClass(class_root);
718
719  // java.lang.ref classes need to be specially flagged, but otherwise are normal classes
720  // finish initializing Reference class
721  mirror::Class::SetStatus(java_lang_ref_Reference, mirror::Class::kStatusNotReady, self);
722  CheckSystemClass(self, java_lang_ref_Reference, "Ljava/lang/ref/Reference;");
723  CHECK_EQ(java_lang_ref_Reference->GetObjectSize(), mirror::Reference::InstanceSize());
724  CHECK_EQ(java_lang_ref_Reference->GetClassSize(),
725           mirror::Reference::ClassSize(image_pointer_size_));
726  class_root = FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;");
727  CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
728  class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagFinalizerReference);
729  class_root = FindSystemClass(self, "Ljava/lang/ref/PhantomReference;");
730  CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
731  class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagPhantomReference);
732  class_root = FindSystemClass(self, "Ljava/lang/ref/SoftReference;");
733  CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
734  class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagSoftReference);
735  class_root = FindSystemClass(self, "Ljava/lang/ref/WeakReference;");
736  CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
737  class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagWeakReference);
738
739  // Setup the ClassLoader, verifying the object_size_.
740  class_root = FindSystemClass(self, "Ljava/lang/ClassLoader;");
741  class_root->SetClassLoaderClass();
742  CHECK_EQ(class_root->GetObjectSize(), mirror::ClassLoader::InstanceSize());
743  SetClassRoot(kJavaLangClassLoader, class_root);
744
745  // Set up java.lang.Throwable, java.lang.ClassNotFoundException, and
746  // java.lang.StackTraceElement as a convenience.
747  SetClassRoot(kJavaLangThrowable, FindSystemClass(self, "Ljava/lang/Throwable;"));
748  mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable));
749  SetClassRoot(kJavaLangClassNotFoundException,
750               FindSystemClass(self, "Ljava/lang/ClassNotFoundException;"));
751  SetClassRoot(kJavaLangStackTraceElement, FindSystemClass(self, "Ljava/lang/StackTraceElement;"));
752  SetClassRoot(kJavaLangStackTraceElementArrayClass,
753               FindSystemClass(self, "[Ljava/lang/StackTraceElement;"));
754  mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
755
756  // Create conflict tables that depend on the class linker.
757  runtime->FixupConflictTables();
758
759  FinishInit(self);
760
761  VLOG(startup) << "ClassLinker::InitFromCompiler exiting";
762
763  return true;
764}
765
766void ClassLinker::FinishInit(Thread* self) {
767  VLOG(startup) << "ClassLinker::FinishInit entering";
768
769  // Let the heap know some key offsets into java.lang.ref instances
770  // Note: we hard code the field indexes here rather than using FindInstanceField
771  // as the types of the field can't be resolved prior to the runtime being
772  // fully initialized
773  StackHandleScope<2> hs(self);
774  Handle<mirror::Class> java_lang_ref_Reference = hs.NewHandle(GetClassRoot(kJavaLangRefReference));
775  Handle<mirror::Class> java_lang_ref_FinalizerReference =
776      hs.NewHandle(FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;"));
777
778  ArtField* pendingNext = java_lang_ref_Reference->GetInstanceField(0);
779  CHECK_STREQ(pendingNext->GetName(), "pendingNext");
780  CHECK_STREQ(pendingNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;");
781
782  ArtField* queue = java_lang_ref_Reference->GetInstanceField(1);
783  CHECK_STREQ(queue->GetName(), "queue");
784  CHECK_STREQ(queue->GetTypeDescriptor(), "Ljava/lang/ref/ReferenceQueue;");
785
786  ArtField* queueNext = java_lang_ref_Reference->GetInstanceField(2);
787  CHECK_STREQ(queueNext->GetName(), "queueNext");
788  CHECK_STREQ(queueNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;");
789
790  ArtField* referent = java_lang_ref_Reference->GetInstanceField(3);
791  CHECK_STREQ(referent->GetName(), "referent");
792  CHECK_STREQ(referent->GetTypeDescriptor(), "Ljava/lang/Object;");
793
794  ArtField* zombie = java_lang_ref_FinalizerReference->GetInstanceField(2);
795  CHECK_STREQ(zombie->GetName(), "zombie");
796  CHECK_STREQ(zombie->GetTypeDescriptor(), "Ljava/lang/Object;");
797
798  // ensure all class_roots_ are initialized
799  for (size_t i = 0; i < kClassRootsMax; i++) {
800    ClassRoot class_root = static_cast<ClassRoot>(i);
801    ObjPtr<mirror::Class> klass = GetClassRoot(class_root);
802    CHECK(klass != nullptr);
803    DCHECK(klass->IsArrayClass() || klass->IsPrimitive() || klass->GetDexCache() != nullptr);
804    // note SetClassRoot does additional validation.
805    // if possible add new checks there to catch errors early
806  }
807
808  CHECK(!array_iftable_.IsNull());
809
810  // disable the slow paths in FindClass and CreatePrimitiveClass now
811  // that Object, Class, and Object[] are setup
812  init_done_ = true;
813
814  VLOG(startup) << "ClassLinker::FinishInit exiting";
815}
816
817void ClassLinker::RunRootClinits() {
818  Thread* self = Thread::Current();
819  for (size_t i = 0; i < ClassLinker::kClassRootsMax; ++i) {
820    ObjPtr<mirror::Class> c = GetClassRoot(ClassRoot(i));
821    if (!c->IsArrayClass() && !c->IsPrimitive()) {
822      StackHandleScope<1> hs(self);
823      Handle<mirror::Class> h_class(hs.NewHandle(GetClassRoot(ClassRoot(i))));
824      EnsureInitialized(self, h_class, true, true);
825      self->AssertNoPendingException();
826    }
827  }
828}
829
830// Set image methods' entry point to interpreter.
831class SetInterpreterEntrypointArtMethodVisitor : public ArtMethodVisitor {
832 public:
833  explicit SetInterpreterEntrypointArtMethodVisitor(PointerSize image_pointer_size)
834    : image_pointer_size_(image_pointer_size) {}
835
836  void Visit(ArtMethod* method) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
837    if (kIsDebugBuild && !method->IsRuntimeMethod()) {
838      CHECK(method->GetDeclaringClass() != nullptr);
839    }
840    if (!method->IsNative() && !method->IsRuntimeMethod() && !method->IsResolutionMethod()) {
841      method->SetEntryPointFromQuickCompiledCodePtrSize(GetQuickToInterpreterBridge(),
842                                                        image_pointer_size_);
843    }
844  }
845
846 private:
847  const PointerSize image_pointer_size_;
848
849  DISALLOW_COPY_AND_ASSIGN(SetInterpreterEntrypointArtMethodVisitor);
850};
851
852struct TrampolineCheckData {
853  const void* quick_resolution_trampoline;
854  const void* quick_imt_conflict_trampoline;
855  const void* quick_generic_jni_trampoline;
856  const void* quick_to_interpreter_bridge_trampoline;
857  PointerSize pointer_size;
858  ArtMethod* m;
859  bool error;
860};
861
862static void CheckTrampolines(mirror::Object* obj, void* arg) NO_THREAD_SAFETY_ANALYSIS {
863  if (obj->IsClass()) {
864    ObjPtr<mirror::Class> klass = obj->AsClass();
865    TrampolineCheckData* d = reinterpret_cast<TrampolineCheckData*>(arg);
866    for (ArtMethod& m : klass->GetMethods(d->pointer_size)) {
867      const void* entrypoint = m.GetEntryPointFromQuickCompiledCodePtrSize(d->pointer_size);
868      if (entrypoint == d->quick_resolution_trampoline ||
869          entrypoint == d->quick_imt_conflict_trampoline ||
870          entrypoint == d->quick_generic_jni_trampoline ||
871          entrypoint == d->quick_to_interpreter_bridge_trampoline) {
872        d->m = &m;
873        d->error = true;
874        return;
875      }
876    }
877  }
878}
879
880bool ClassLinker::InitFromBootImage(std::string* error_msg) {
881  VLOG(startup) << __FUNCTION__ << " entering";
882  CHECK(!init_done_);
883
884  Runtime* const runtime = Runtime::Current();
885  Thread* const self = Thread::Current();
886  gc::Heap* const heap = runtime->GetHeap();
887  std::vector<gc::space::ImageSpace*> spaces = heap->GetBootImageSpaces();
888  CHECK(!spaces.empty());
889  uint32_t pointer_size_unchecked = spaces[0]->GetImageHeader().GetPointerSizeUnchecked();
890  if (!ValidPointerSize(pointer_size_unchecked)) {
891    *error_msg = StringPrintf("Invalid image pointer size: %u", pointer_size_unchecked);
892    return false;
893  }
894  image_pointer_size_ = spaces[0]->GetImageHeader().GetPointerSize();
895  if (!runtime->IsAotCompiler()) {
896    // Only the Aot compiler supports having an image with a different pointer size than the
897    // runtime. This happens on the host for compiling 32 bit tests since we use a 64 bit libart
898    // compiler. We may also use 32 bit dex2oat on a system with 64 bit apps.
899    if (image_pointer_size_ != kRuntimePointerSize) {
900      *error_msg = StringPrintf("Runtime must use current image pointer size: %zu vs %zu",
901                                static_cast<size_t>(image_pointer_size_),
902                                sizeof(void*));
903      return false;
904    }
905  }
906  std::vector<const OatFile*> oat_files =
907      runtime->GetOatFileManager().RegisterImageOatFiles(spaces);
908  DCHECK(!oat_files.empty());
909  const OatHeader& default_oat_header = oat_files[0]->GetOatHeader();
910  CHECK_EQ(default_oat_header.GetImageFileLocationOatDataBegin(), 0U);
911  const char* image_file_location = oat_files[0]->GetOatHeader().
912      GetStoreValueByKey(OatHeader::kImageLocationKey);
913  CHECK(image_file_location == nullptr || *image_file_location == 0);
914  quick_resolution_trampoline_ = default_oat_header.GetQuickResolutionTrampoline();
915  quick_imt_conflict_trampoline_ = default_oat_header.GetQuickImtConflictTrampoline();
916  quick_generic_jni_trampoline_ = default_oat_header.GetQuickGenericJniTrampoline();
917  quick_to_interpreter_bridge_trampoline_ = default_oat_header.GetQuickToInterpreterBridge();
918  if (kIsDebugBuild) {
919    // Check that the other images use the same trampoline.
920    for (size_t i = 1; i < oat_files.size(); ++i) {
921      const OatHeader& ith_oat_header = oat_files[i]->GetOatHeader();
922      const void* ith_quick_resolution_trampoline =
923          ith_oat_header.GetQuickResolutionTrampoline();
924      const void* ith_quick_imt_conflict_trampoline =
925          ith_oat_header.GetQuickImtConflictTrampoline();
926      const void* ith_quick_generic_jni_trampoline =
927          ith_oat_header.GetQuickGenericJniTrampoline();
928      const void* ith_quick_to_interpreter_bridge_trampoline =
929          ith_oat_header.GetQuickToInterpreterBridge();
930      if (ith_quick_resolution_trampoline != quick_resolution_trampoline_ ||
931          ith_quick_imt_conflict_trampoline != quick_imt_conflict_trampoline_ ||
932          ith_quick_generic_jni_trampoline != quick_generic_jni_trampoline_ ||
933          ith_quick_to_interpreter_bridge_trampoline != quick_to_interpreter_bridge_trampoline_) {
934        // Make sure that all methods in this image do not contain those trampolines as
935        // entrypoints. Otherwise the class-linker won't be able to work with a single set.
936        TrampolineCheckData data;
937        data.error = false;
938        data.pointer_size = GetImagePointerSize();
939        data.quick_resolution_trampoline = ith_quick_resolution_trampoline;
940        data.quick_imt_conflict_trampoline = ith_quick_imt_conflict_trampoline;
941        data.quick_generic_jni_trampoline = ith_quick_generic_jni_trampoline;
942        data.quick_to_interpreter_bridge_trampoline = ith_quick_to_interpreter_bridge_trampoline;
943        ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
944        spaces[i]->GetLiveBitmap()->Walk(CheckTrampolines, &data);
945        if (data.error) {
946          ArtMethod* m = data.m;
947          LOG(ERROR) << "Found a broken ArtMethod: " << ArtMethod::PrettyMethod(m);
948          *error_msg = "Found an ArtMethod with a bad entrypoint";
949          return false;
950        }
951      }
952    }
953  }
954
955  class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>(
956      down_cast<mirror::ObjectArray<mirror::Class>*>(
957          spaces[0]->GetImageHeader().GetImageRoot(ImageHeader::kClassRoots)));
958  mirror::Class::SetClassClass(class_roots_.Read()->Get(kJavaLangClass));
959
960  // Special case of setting up the String class early so that we can test arbitrary objects
961  // as being Strings or not
962  mirror::String::SetClass(GetClassRoot(kJavaLangString));
963
964  ObjPtr<mirror::Class> java_lang_Object = GetClassRoot(kJavaLangObject);
965  java_lang_Object->SetObjectSize(sizeof(mirror::Object));
966  // Allocate in non-movable so that it's possible to check if a JNI weak global ref has been
967  // cleared without triggering the read barrier and unintentionally mark the sentinel alive.
968  runtime->SetSentinel(heap->AllocNonMovableObject<true>(
969      self, java_lang_Object, java_lang_Object->GetObjectSize(), VoidFunctor()));
970
971  // reinit array_iftable_ from any array class instance, they should be ==
972  array_iftable_ = GcRoot<mirror::IfTable>(GetClassRoot(kObjectArrayClass)->GetIfTable());
973  DCHECK_EQ(array_iftable_.Read(), GetClassRoot(kBooleanArrayClass)->GetIfTable());
974  // String class root was set above
975  mirror::Field::SetClass(GetClassRoot(kJavaLangReflectField));
976  mirror::Field::SetArrayClass(GetClassRoot(kJavaLangReflectFieldArrayClass));
977  mirror::Constructor::SetClass(GetClassRoot(kJavaLangReflectConstructor));
978  mirror::Constructor::SetArrayClass(GetClassRoot(kJavaLangReflectConstructorArrayClass));
979  mirror::Method::SetClass(GetClassRoot(kJavaLangReflectMethod));
980  mirror::Method::SetArrayClass(GetClassRoot(kJavaLangReflectMethodArrayClass));
981  mirror::MethodType::SetClass(GetClassRoot(kJavaLangInvokeMethodType));
982  mirror::MethodHandleImpl::SetClass(GetClassRoot(kJavaLangInvokeMethodHandleImpl));
983  mirror::MethodHandlesLookup::SetClass(GetClassRoot(kJavaLangInvokeMethodHandlesLookup));
984  mirror::CallSite::SetClass(GetClassRoot(kJavaLangInvokeCallSite));
985  mirror::Reference::SetClass(GetClassRoot(kJavaLangRefReference));
986  mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
987  mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
988  mirror::CharArray::SetArrayClass(GetClassRoot(kCharArrayClass));
989  mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
990  mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
991  mirror::IntArray::SetArrayClass(GetClassRoot(kIntArrayClass));
992  mirror::LongArray::SetArrayClass(GetClassRoot(kLongArrayClass));
993  mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
994  mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable));
995  mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
996  mirror::EmulatedStackFrame::SetClass(GetClassRoot(kDalvikSystemEmulatedStackFrame));
997  mirror::ClassExt::SetClass(GetClassRoot(kDalvikSystemClassExt));
998
999  for (gc::space::ImageSpace* image_space : spaces) {
1000    // Boot class loader, use a null handle.
1001    std::vector<std::unique_ptr<const DexFile>> dex_files;
1002    if (!AddImageSpace(image_space,
1003                       ScopedNullHandle<mirror::ClassLoader>(),
1004                       /*dex_elements*/nullptr,
1005                       /*dex_location*/nullptr,
1006                       /*out*/&dex_files,
1007                       error_msg)) {
1008      return false;
1009    }
1010    // Append opened dex files at the end.
1011    boot_dex_files_.insert(boot_dex_files_.end(),
1012                           std::make_move_iterator(dex_files.begin()),
1013                           std::make_move_iterator(dex_files.end()));
1014  }
1015  FinishInit(self);
1016
1017  VLOG(startup) << __FUNCTION__ << " exiting";
1018  return true;
1019}
1020
1021bool ClassLinker::IsBootClassLoader(ScopedObjectAccessAlreadyRunnable& soa,
1022                                    ObjPtr<mirror::ClassLoader> class_loader) {
1023  return class_loader == nullptr ||
1024       soa.Decode<mirror::Class>(WellKnownClasses::java_lang_BootClassLoader) ==
1025           class_loader->GetClass();
1026}
1027
1028static bool GetDexPathListElementName(ObjPtr<mirror::Object> element,
1029                                      ObjPtr<mirror::String>* out_name)
1030    REQUIRES_SHARED(Locks::mutator_lock_) {
1031  ArtField* const dex_file_field =
1032      jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile);
1033  ArtField* const dex_file_name_field =
1034      jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_fileName);
1035  DCHECK(dex_file_field != nullptr);
1036  DCHECK(dex_file_name_field != nullptr);
1037  DCHECK(element != nullptr);
1038  CHECK_EQ(dex_file_field->GetDeclaringClass(), element->GetClass()) << element->PrettyTypeOf();
1039  ObjPtr<mirror::Object> dex_file = dex_file_field->GetObject(element);
1040  if (dex_file == nullptr) {
1041    // Null dex file means it was probably a jar with no dex files, return a null string.
1042    *out_name = nullptr;
1043    return true;
1044  }
1045  ObjPtr<mirror::Object> name_object = dex_file_name_field->GetObject(dex_file);
1046  if (name_object != nullptr) {
1047    *out_name = name_object->AsString();
1048    return true;
1049  }
1050  return false;
1051}
1052
1053static bool FlattenPathClassLoader(ObjPtr<mirror::ClassLoader> class_loader,
1054                                   std::list<ObjPtr<mirror::String>>* out_dex_file_names,
1055                                   std::string* error_msg)
1056    REQUIRES_SHARED(Locks::mutator_lock_) {
1057  DCHECK(out_dex_file_names != nullptr);
1058  DCHECK(error_msg != nullptr);
1059  ScopedObjectAccessUnchecked soa(Thread::Current());
1060  ArtField* const dex_path_list_field =
1061      jni::DecodeArtField(WellKnownClasses::dalvik_system_BaseDexClassLoader_pathList);
1062  ArtField* const dex_elements_field =
1063      jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList_dexElements);
1064  CHECK(dex_path_list_field != nullptr);
1065  CHECK(dex_elements_field != nullptr);
1066  while (!ClassLinker::IsBootClassLoader(soa, class_loader)) {
1067    if (soa.Decode<mirror::Class>(WellKnownClasses::dalvik_system_PathClassLoader) !=
1068        class_loader->GetClass()) {
1069      *error_msg = StringPrintf("Unknown class loader type %s",
1070                                class_loader->PrettyTypeOf().c_str());
1071      // Unsupported class loader.
1072      return false;
1073    }
1074    ObjPtr<mirror::Object> dex_path_list = dex_path_list_field->GetObject(class_loader);
1075    if (dex_path_list != nullptr) {
1076      // DexPathList has an array dexElements of Elements[] which each contain a dex file.
1077      ObjPtr<mirror::Object> dex_elements_obj = dex_elements_field->GetObject(dex_path_list);
1078      // Loop through each dalvik.system.DexPathList$Element's dalvik.system.DexFile and look
1079      // at the mCookie which is a DexFile vector.
1080      if (dex_elements_obj != nullptr) {
1081        ObjPtr<mirror::ObjectArray<mirror::Object>> dex_elements =
1082            dex_elements_obj->AsObjectArray<mirror::Object>();
1083        // Reverse order since we insert the parent at the front.
1084        for (int32_t i = dex_elements->GetLength() - 1; i >= 0; --i) {
1085          ObjPtr<mirror::Object> element = dex_elements->GetWithoutChecks(i);
1086          if (element == nullptr) {
1087            *error_msg = StringPrintf("Null dex element at index %d", i);
1088            return false;
1089          }
1090          ObjPtr<mirror::String> name;
1091          if (!GetDexPathListElementName(element, &name)) {
1092            *error_msg = StringPrintf("Invalid dex path list element at index %d", i);
1093            return false;
1094          }
1095          if (name != nullptr) {
1096            out_dex_file_names->push_front(name.Ptr());
1097          }
1098        }
1099      }
1100    }
1101    class_loader = class_loader->GetParent();
1102  }
1103  return true;
1104}
1105
1106class FixupArtMethodArrayVisitor : public ArtMethodVisitor {
1107 public:
1108  explicit FixupArtMethodArrayVisitor(const ImageHeader& header) : header_(header) {}
1109
1110  virtual void Visit(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
1111    const bool is_copied = method->IsCopied();
1112    ArtMethod** resolved_methods = method->GetDexCacheResolvedMethods(kRuntimePointerSize);
1113    if (resolved_methods != nullptr) {
1114      bool in_image_space = false;
1115      if (kIsDebugBuild || is_copied) {
1116        in_image_space = header_.GetImageSection(ImageHeader::kSectionDexCacheArrays).Contains(
1117              reinterpret_cast<const uint8_t*>(resolved_methods) - header_.GetImageBegin());
1118      }
1119      // Must be in image space for non-miranda method.
1120      DCHECK(is_copied || in_image_space)
1121          << resolved_methods << " is not in image starting at "
1122          << reinterpret_cast<void*>(header_.GetImageBegin());
1123      if (!is_copied || in_image_space) {
1124        method->SetDexCacheResolvedMethods(method->GetDexCache()->GetResolvedMethods(),
1125                                           kRuntimePointerSize);
1126      }
1127    }
1128  }
1129
1130 private:
1131  const ImageHeader& header_;
1132};
1133
1134class VerifyClassInTableArtMethodVisitor : public ArtMethodVisitor {
1135 public:
1136  explicit VerifyClassInTableArtMethodVisitor(ClassTable* table) : table_(table) {}
1137
1138  virtual void Visit(ArtMethod* method)
1139      REQUIRES_SHARED(Locks::mutator_lock_, Locks::classlinker_classes_lock_) {
1140    ObjPtr<mirror::Class> klass = method->GetDeclaringClass();
1141    if (klass != nullptr && !Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
1142      CHECK_EQ(table_->LookupByDescriptor(klass), klass) << mirror::Class::PrettyClass(klass);
1143    }
1144  }
1145
1146 private:
1147  ClassTable* const table_;
1148};
1149
1150class VerifyDirectInterfacesInTableClassVisitor {
1151 public:
1152  explicit VerifyDirectInterfacesInTableClassVisitor(ObjPtr<mirror::ClassLoader> class_loader)
1153      : class_loader_(class_loader), self_(Thread::Current()) { }
1154
1155  bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) {
1156    if (!klass->IsPrimitive() && klass->GetClassLoader() == class_loader_) {
1157      classes_.push_back(klass);
1158    }
1159    return true;
1160  }
1161
1162  void Check() const REQUIRES_SHARED(Locks::mutator_lock_) {
1163    for (ObjPtr<mirror::Class> klass : classes_) {
1164      for (uint32_t i = 0, num = klass->NumDirectInterfaces(); i != num; ++i) {
1165        CHECK(klass->GetDirectInterface(self_, klass, i) != nullptr)
1166            << klass->PrettyDescriptor() << " iface #" << i;
1167      }
1168    }
1169  }
1170
1171 private:
1172  ObjPtr<mirror::ClassLoader> class_loader_;
1173  Thread* self_;
1174  std::vector<ObjPtr<mirror::Class>> classes_;
1175};
1176
1177class VerifyDeclaringClassVisitor : public ArtMethodVisitor {
1178 public:
1179  VerifyDeclaringClassVisitor() REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
1180      : live_bitmap_(Runtime::Current()->GetHeap()->GetLiveBitmap()) {}
1181
1182  virtual void Visit(ArtMethod* method)
1183      REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1184    ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked();
1185    if (klass != nullptr) {
1186      CHECK(live_bitmap_->Test(klass.Ptr())) << "Image method has unmarked declaring class";
1187    }
1188  }
1189
1190 private:
1191  gc::accounting::HeapBitmap* const live_bitmap_;
1192};
1193
1194// Copies data from one array to another array at the same position
1195// if pred returns false. If there is a page of continuous data in
1196// the src array for which pred consistently returns true then
1197// corresponding page in the dst array will not be touched.
1198// This should reduce number of allocated physical pages.
1199template <class T, class NullPred>
1200static void CopyNonNull(const T* src, size_t count, T* dst, const NullPred& pred) {
1201  for (size_t i = 0; i < count; ++i) {
1202    if (!pred(src[i])) {
1203      dst[i] = src[i];
1204    }
1205  }
1206}
1207
1208template <typename T>
1209static void CopyDexCachePairs(const std::atomic<mirror::DexCachePair<T>>* src,
1210                              size_t count,
1211                              std::atomic<mirror::DexCachePair<T>>* dst) {
1212  DCHECK_NE(count, 0u);
1213  DCHECK(!src[0].load(std::memory_order_relaxed).object.IsNull() ||
1214         src[0].load(std::memory_order_relaxed).index != 0u);
1215  for (size_t i = 0; i < count; ++i) {
1216    DCHECK_EQ(dst[i].load(std::memory_order_relaxed).index, 0u);
1217    DCHECK(dst[i].load(std::memory_order_relaxed).object.IsNull());
1218    mirror::DexCachePair<T> source = src[i].load(std::memory_order_relaxed);
1219    if (source.index != 0u || !source.object.IsNull()) {
1220      dst[i].store(source, std::memory_order_relaxed);
1221    }
1222  }
1223}
1224
1225bool ClassLinker::UpdateAppImageClassLoadersAndDexCaches(
1226    gc::space::ImageSpace* space,
1227    Handle<mirror::ClassLoader> class_loader,
1228    Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches,
1229    ClassTable::ClassSet* new_class_set,
1230    bool* out_forward_dex_cache_array,
1231    std::string* out_error_msg) {
1232  DCHECK(out_forward_dex_cache_array != nullptr);
1233  DCHECK(out_error_msg != nullptr);
1234  Thread* const self = Thread::Current();
1235  gc::Heap* const heap = Runtime::Current()->GetHeap();
1236  const ImageHeader& header = space->GetImageHeader();
1237  {
1238    // Add image classes into the class table for the class loader, and fixup the dex caches and
1239    // class loader fields.
1240    WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1241    // Dex cache array fixup is all or nothing, we must reject app images that have mixed since we
1242    // rely on clobering the dex cache arrays in the image to forward to bss.
1243    size_t num_dex_caches_with_bss_arrays = 0;
1244    const size_t num_dex_caches = dex_caches->GetLength();
1245    for (size_t i = 0; i < num_dex_caches; i++) {
1246      ObjPtr<mirror::DexCache> const dex_cache = dex_caches->Get(i);
1247      const DexFile* const dex_file = dex_cache->GetDexFile();
1248      const OatFile::OatDexFile* oat_dex_file = dex_file->GetOatDexFile();
1249      if (oat_dex_file != nullptr && oat_dex_file->GetDexCacheArrays() != nullptr) {
1250        ++num_dex_caches_with_bss_arrays;
1251      }
1252    }
1253    *out_forward_dex_cache_array = num_dex_caches_with_bss_arrays != 0;
1254    if (*out_forward_dex_cache_array) {
1255      if (num_dex_caches_with_bss_arrays != num_dex_caches) {
1256        // Reject application image since we cannot forward only some of the dex cache arrays.
1257        // TODO: We could get around this by having a dedicated forwarding slot. It should be an
1258        // uncommon case.
1259        *out_error_msg = StringPrintf("Dex caches in bss does not match total: %zu vs %zu",
1260                                      num_dex_caches_with_bss_arrays,
1261                                      num_dex_caches);
1262        return false;
1263      }
1264    }
1265    // Only add the classes to the class loader after the points where we can return false.
1266    for (size_t i = 0; i < num_dex_caches; i++) {
1267      ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
1268      const DexFile* const dex_file = dex_cache->GetDexFile();
1269      const OatFile::OatDexFile* oat_dex_file = dex_file->GetOatDexFile();
1270      if (oat_dex_file != nullptr && oat_dex_file->GetDexCacheArrays() != nullptr) {
1271        // If the oat file expects the dex cache arrays to be in the BSS, then allocate there and
1272        // copy over the arrays.
1273        DCHECK(dex_file != nullptr);
1274        size_t num_strings = mirror::DexCache::kDexCacheStringCacheSize;
1275        if (dex_file->NumStringIds() < num_strings) {
1276          num_strings = dex_file->NumStringIds();
1277        }
1278        size_t num_types = mirror::DexCache::kDexCacheTypeCacheSize;
1279        if (dex_file->NumTypeIds() < num_types) {
1280          num_types = dex_file->NumTypeIds();
1281        }
1282        const size_t num_methods = dex_file->NumMethodIds();
1283        size_t num_fields = mirror::DexCache::kDexCacheFieldCacheSize;
1284        if (dex_file->NumFieldIds() < num_fields) {
1285          num_fields = dex_file->NumFieldIds();
1286        }
1287        size_t num_method_types = mirror::DexCache::kDexCacheMethodTypeCacheSize;
1288        if (dex_file->NumProtoIds() < num_method_types) {
1289          num_method_types = dex_file->NumProtoIds();
1290        }
1291        const size_t num_call_sites = dex_file->NumCallSiteIds();
1292        CHECK_EQ(num_strings, dex_cache->NumStrings());
1293        CHECK_EQ(num_types, dex_cache->NumResolvedTypes());
1294        CHECK_EQ(num_methods, dex_cache->NumResolvedMethods());
1295        CHECK_EQ(num_fields, dex_cache->NumResolvedFields());
1296        CHECK_EQ(num_method_types, dex_cache->NumResolvedMethodTypes());
1297        CHECK_EQ(num_call_sites, dex_cache->NumResolvedCallSites());
1298        DexCacheArraysLayout layout(image_pointer_size_, dex_file);
1299        uint8_t* const raw_arrays = oat_dex_file->GetDexCacheArrays();
1300        if (num_strings != 0u) {
1301          mirror::StringDexCacheType* const image_resolved_strings = dex_cache->GetStrings();
1302          mirror::StringDexCacheType* const strings =
1303              reinterpret_cast<mirror::StringDexCacheType*>(raw_arrays + layout.StringsOffset());
1304          CopyDexCachePairs(image_resolved_strings, num_strings, strings);
1305          dex_cache->SetStrings(strings);
1306        }
1307        if (num_types != 0u) {
1308          mirror::TypeDexCacheType* const image_resolved_types = dex_cache->GetResolvedTypes();
1309          mirror::TypeDexCacheType* const types =
1310              reinterpret_cast<mirror::TypeDexCacheType*>(raw_arrays + layout.TypesOffset());
1311          CopyDexCachePairs(image_resolved_types, num_types, types);
1312          dex_cache->SetResolvedTypes(types);
1313        }
1314        if (num_methods != 0u) {
1315          ArtMethod** const methods = reinterpret_cast<ArtMethod**>(
1316              raw_arrays + layout.MethodsOffset());
1317          ArtMethod** const image_resolved_methods = dex_cache->GetResolvedMethods();
1318          for (size_t j = 0; kIsDebugBuild && j < num_methods; ++j) {
1319            DCHECK(methods[j] == nullptr);
1320          }
1321          CopyNonNull(image_resolved_methods,
1322                      num_methods,
1323                      methods,
1324                      [] (const ArtMethod* method) {
1325                          return method == nullptr;
1326                      });
1327          dex_cache->SetResolvedMethods(methods);
1328        }
1329        if (num_fields != 0u) {
1330          mirror::FieldDexCacheType* const image_resolved_fields = dex_cache->GetResolvedFields();
1331          mirror::FieldDexCacheType* const fields =
1332              reinterpret_cast<mirror::FieldDexCacheType*>(raw_arrays + layout.FieldsOffset());
1333          for (size_t j = 0; j < num_fields; ++j) {
1334            DCHECK_EQ(mirror::DexCache::GetNativePairPtrSize(fields, j, image_pointer_size_).index,
1335                      0u);
1336            DCHECK(mirror::DexCache::GetNativePairPtrSize(fields, j, image_pointer_size_).object ==
1337                   nullptr);
1338            mirror::DexCache::SetNativePairPtrSize(
1339                fields,
1340                j,
1341                mirror::DexCache::GetNativePairPtrSize(image_resolved_fields,
1342                                                       j,
1343                                                       image_pointer_size_),
1344                image_pointer_size_);
1345          }
1346          dex_cache->SetResolvedFields(fields);
1347        }
1348        if (num_method_types != 0u) {
1349          // NOTE: We currently (Sep 2016) do not resolve any method types at
1350          // compile time, but plan to in the future. This code exists for the
1351          // sake of completeness.
1352          mirror::MethodTypeDexCacheType* const image_resolved_method_types =
1353              dex_cache->GetResolvedMethodTypes();
1354          mirror::MethodTypeDexCacheType* const method_types =
1355              reinterpret_cast<mirror::MethodTypeDexCacheType*>(
1356                  raw_arrays + layout.MethodTypesOffset());
1357          CopyDexCachePairs(image_resolved_method_types, num_method_types, method_types);
1358          dex_cache->SetResolvedMethodTypes(method_types);
1359        }
1360        if (num_call_sites != 0u) {
1361          GcRoot<mirror::CallSite>* const image_resolved_call_sites =
1362              dex_cache->GetResolvedCallSites();
1363          GcRoot<mirror::CallSite>* const call_sites =
1364              reinterpret_cast<GcRoot<mirror::CallSite>*>(raw_arrays + layout.CallSitesOffset());
1365          for (size_t j = 0; kIsDebugBuild && j < num_call_sites; ++j) {
1366            DCHECK(call_sites[j].IsNull());
1367          }
1368          CopyNonNull(image_resolved_call_sites,
1369                      num_call_sites,
1370                      call_sites,
1371                      [](const GcRoot<mirror::CallSite>& elem) {
1372                          return elem.IsNull();
1373                      });
1374          dex_cache->SetResolvedCallSites(call_sites);
1375        }
1376      }
1377      {
1378        WriterMutexLock mu2(self, *Locks::dex_lock_);
1379        // Make sure to do this after we update the arrays since we store the resolved types array
1380        // in DexCacheData in RegisterDexFileLocked. We need the array pointer to be the one in the
1381        // BSS.
1382        CHECK(!FindDexCacheDataLocked(*dex_file).IsValid());
1383        RegisterDexFileLocked(*dex_file, dex_cache, class_loader.Get());
1384      }
1385      if (kIsDebugBuild) {
1386        CHECK(new_class_set != nullptr);
1387        mirror::TypeDexCacheType* const types = dex_cache->GetResolvedTypes();
1388        const size_t num_types = dex_cache->NumResolvedTypes();
1389        for (size_t j = 0; j != num_types; ++j) {
1390          // The image space is not yet added to the heap, avoid read barriers.
1391          ObjPtr<mirror::Class> klass = types[j].load(std::memory_order_relaxed).object.Read();
1392          if (space->HasAddress(klass.Ptr())) {
1393            DCHECK(!klass->IsErroneous()) << klass->GetStatus();
1394            auto it = new_class_set->Find(ClassTable::TableSlot(klass));
1395            DCHECK(it != new_class_set->end());
1396            DCHECK_EQ(it->Read(), klass);
1397            ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
1398            if (super_class != nullptr && !heap->ObjectIsInBootImageSpace(super_class)) {
1399              auto it2 = new_class_set->Find(ClassTable::TableSlot(super_class));
1400              DCHECK(it2 != new_class_set->end());
1401              DCHECK_EQ(it2->Read(), super_class);
1402            }
1403            for (ArtMethod& m : klass->GetDirectMethods(kRuntimePointerSize)) {
1404              const void* code = m.GetEntryPointFromQuickCompiledCode();
1405              const void* oat_code = m.IsInvokable() ? GetQuickOatCodeFor(&m) : code;
1406              if (!IsQuickResolutionStub(code) &&
1407                  !IsQuickGenericJniStub(code) &&
1408                  !IsQuickToInterpreterBridge(code) &&
1409                  !m.IsNative()) {
1410                DCHECK_EQ(code, oat_code) << m.PrettyMethod();
1411              }
1412            }
1413            for (ArtMethod& m : klass->GetVirtualMethods(kRuntimePointerSize)) {
1414              const void* code = m.GetEntryPointFromQuickCompiledCode();
1415              const void* oat_code = m.IsInvokable() ? GetQuickOatCodeFor(&m) : code;
1416              if (!IsQuickResolutionStub(code) &&
1417                  !IsQuickGenericJniStub(code) &&
1418                  !IsQuickToInterpreterBridge(code) &&
1419                  !m.IsNative()) {
1420                DCHECK_EQ(code, oat_code) << m.PrettyMethod();
1421              }
1422            }
1423          }
1424        }
1425      }
1426    }
1427  }
1428  if (*out_forward_dex_cache_array) {
1429    ScopedTrace timing("Fixup ArtMethod dex cache arrays");
1430    FixupArtMethodArrayVisitor visitor(header);
1431    header.VisitPackedArtMethods(&visitor, space->Begin(), kRuntimePointerSize);
1432    Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader.Get());
1433  }
1434  if (kVerifyArtMethodDeclaringClasses) {
1435    ScopedTrace timing("Verify declaring classes");
1436    ReaderMutexLock rmu(self, *Locks::heap_bitmap_lock_);
1437    VerifyDeclaringClassVisitor visitor;
1438    header.VisitPackedArtMethods(&visitor, space->Begin(), kRuntimePointerSize);
1439  }
1440  return true;
1441}
1442
1443// Update the class loader. Should only be used on classes in the image space.
1444class UpdateClassLoaderVisitor {
1445 public:
1446  UpdateClassLoaderVisitor(gc::space::ImageSpace* space, ObjPtr<mirror::ClassLoader> class_loader)
1447      : space_(space),
1448        class_loader_(class_loader) {}
1449
1450  bool operator()(ObjPtr<mirror::Class> klass) const REQUIRES_SHARED(Locks::mutator_lock_) {
1451    // Do not update class loader for boot image classes where the app image
1452    // class loader is only the initiating loader but not the defining loader.
1453    if (klass->GetClassLoader() != nullptr) {
1454      klass->SetClassLoader(class_loader_);
1455    }
1456    return true;
1457  }
1458
1459  gc::space::ImageSpace* const space_;
1460  ObjPtr<mirror::ClassLoader> const class_loader_;
1461};
1462
1463static std::unique_ptr<const DexFile> OpenOatDexFile(const OatFile* oat_file,
1464                                                     const char* location,
1465                                                     std::string* error_msg)
1466    REQUIRES_SHARED(Locks::mutator_lock_) {
1467  DCHECK(error_msg != nullptr);
1468  std::unique_ptr<const DexFile> dex_file;
1469  const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(location, nullptr, error_msg);
1470  if (oat_dex_file == nullptr) {
1471    return std::unique_ptr<const DexFile>();
1472  }
1473  std::string inner_error_msg;
1474  dex_file = oat_dex_file->OpenDexFile(&inner_error_msg);
1475  if (dex_file == nullptr) {
1476    *error_msg = StringPrintf("Failed to open dex file %s from within oat file %s error '%s'",
1477                              location,
1478                              oat_file->GetLocation().c_str(),
1479                              inner_error_msg.c_str());
1480    return std::unique_ptr<const DexFile>();
1481  }
1482
1483  if (dex_file->GetLocationChecksum() != oat_dex_file->GetDexFileLocationChecksum()) {
1484    *error_msg = StringPrintf("Checksums do not match for %s: %x vs %x",
1485                              location,
1486                              dex_file->GetLocationChecksum(),
1487                              oat_dex_file->GetDexFileLocationChecksum());
1488    return std::unique_ptr<const DexFile>();
1489  }
1490  return dex_file;
1491}
1492
1493bool ClassLinker::OpenImageDexFiles(gc::space::ImageSpace* space,
1494                                    std::vector<std::unique_ptr<const DexFile>>* out_dex_files,
1495                                    std::string* error_msg) {
1496  ScopedAssertNoThreadSuspension nts(__FUNCTION__);
1497  const ImageHeader& header = space->GetImageHeader();
1498  ObjPtr<mirror::Object> dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches);
1499  DCHECK(dex_caches_object != nullptr);
1500  mirror::ObjectArray<mirror::DexCache>* dex_caches =
1501      dex_caches_object->AsObjectArray<mirror::DexCache>();
1502  const OatFile* oat_file = space->GetOatFile();
1503  for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
1504    ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
1505    std::string dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8());
1506    std::unique_ptr<const DexFile> dex_file = OpenOatDexFile(oat_file,
1507                                                             dex_file_location.c_str(),
1508                                                             error_msg);
1509    if (dex_file == nullptr) {
1510      return false;
1511    }
1512    dex_cache->SetDexFile(dex_file.get());
1513    out_dex_files->push_back(std::move(dex_file));
1514  }
1515  return true;
1516}
1517
1518// Helper class for ArtMethod checks when adding an image. Keeps all required functionality
1519// together and caches some intermediate results.
1520class ImageSanityChecks FINAL {
1521 public:
1522  static void CheckObjects(gc::Heap* heap, ClassLinker* class_linker)
1523      REQUIRES_SHARED(Locks::mutator_lock_) {
1524    ImageSanityChecks isc(heap, class_linker);
1525    heap->VisitObjects(ImageSanityChecks::SanityCheckObjectsCallback, &isc);
1526  }
1527
1528  static void CheckPointerArray(gc::Heap* heap,
1529                                ClassLinker* class_linker,
1530                                ArtMethod** arr,
1531                                size_t size)
1532      REQUIRES_SHARED(Locks::mutator_lock_) {
1533    ImageSanityChecks isc(heap, class_linker);
1534    isc.SanityCheckArtMethodPointerArray(arr, size);
1535  }
1536
1537  static void SanityCheckObjectsCallback(mirror::Object* obj, void* arg)
1538      REQUIRES_SHARED(Locks::mutator_lock_) {
1539    DCHECK(obj != nullptr);
1540    CHECK(obj->GetClass() != nullptr) << "Null class in object " << obj;
1541    CHECK(obj->GetClass()->GetClass() != nullptr) << "Null class class " << obj;
1542    if (obj->IsClass()) {
1543      ImageSanityChecks* isc = reinterpret_cast<ImageSanityChecks*>(arg);
1544
1545      auto klass = obj->AsClass();
1546      for (ArtField& field : klass->GetIFields()) {
1547        CHECK_EQ(field.GetDeclaringClass(), klass);
1548      }
1549      for (ArtField& field : klass->GetSFields()) {
1550        CHECK_EQ(field.GetDeclaringClass(), klass);
1551      }
1552      const auto pointer_size = isc->pointer_size_;
1553      for (auto& m : klass->GetMethods(pointer_size)) {
1554        isc->SanityCheckArtMethod(&m, klass);
1555      }
1556      auto* vtable = klass->GetVTable();
1557      if (vtable != nullptr) {
1558        isc->SanityCheckArtMethodPointerArray(vtable, nullptr);
1559      }
1560      if (klass->ShouldHaveImt()) {
1561        ImTable* imt = klass->GetImt(pointer_size);
1562        for (size_t i = 0; i < ImTable::kSize; ++i) {
1563          isc->SanityCheckArtMethod(imt->Get(i, pointer_size), nullptr);
1564        }
1565      }
1566      if (klass->ShouldHaveEmbeddedVTable()) {
1567        for (int32_t i = 0; i < klass->GetEmbeddedVTableLength(); ++i) {
1568          isc->SanityCheckArtMethod(klass->GetEmbeddedVTableEntry(i, pointer_size), nullptr);
1569        }
1570      }
1571      mirror::IfTable* iftable = klass->GetIfTable();
1572      for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
1573        if (iftable->GetMethodArrayCount(i) > 0) {
1574          isc->SanityCheckArtMethodPointerArray(iftable->GetMethodArray(i), nullptr);
1575        }
1576      }
1577    }
1578  }
1579
1580 private:
1581  ImageSanityChecks(gc::Heap* heap, ClassLinker* class_linker)
1582     :  spaces_(heap->GetBootImageSpaces()),
1583        pointer_size_(class_linker->GetImagePointerSize()) {
1584    space_begin_.reserve(spaces_.size());
1585    method_sections_.reserve(spaces_.size());
1586    runtime_method_sections_.reserve(spaces_.size());
1587    for (gc::space::ImageSpace* space : spaces_) {
1588      space_begin_.push_back(space->Begin());
1589      auto& header = space->GetImageHeader();
1590      method_sections_.push_back(&header.GetMethodsSection());
1591      runtime_method_sections_.push_back(&header.GetRuntimeMethodsSection());
1592    }
1593  }
1594
1595  void SanityCheckArtMethod(ArtMethod* m, ObjPtr<mirror::Class> expected_class)
1596      REQUIRES_SHARED(Locks::mutator_lock_) {
1597    if (m->IsRuntimeMethod()) {
1598      ObjPtr<mirror::Class> declaring_class = m->GetDeclaringClassUnchecked();
1599      CHECK(declaring_class == nullptr) << declaring_class << " " << m->PrettyMethod();
1600    } else if (m->IsCopied()) {
1601      CHECK(m->GetDeclaringClass() != nullptr) << m->PrettyMethod();
1602    } else if (expected_class != nullptr) {
1603      CHECK_EQ(m->GetDeclaringClassUnchecked(), expected_class) << m->PrettyMethod();
1604    }
1605    if (!spaces_.empty()) {
1606      bool contains = false;
1607      for (size_t i = 0; !contains && i != space_begin_.size(); ++i) {
1608        const size_t offset = reinterpret_cast<uint8_t*>(m) - space_begin_[i];
1609        contains = method_sections_[i]->Contains(offset) ||
1610            runtime_method_sections_[i]->Contains(offset);
1611      }
1612      CHECK(contains) << m << " not found";
1613    }
1614  }
1615
1616  void SanityCheckArtMethodPointerArray(ObjPtr<mirror::PointerArray> arr,
1617                                        ObjPtr<mirror::Class> expected_class)
1618      REQUIRES_SHARED(Locks::mutator_lock_) {
1619    CHECK(arr != nullptr);
1620    for (int32_t j = 0; j < arr->GetLength(); ++j) {
1621      auto* method = arr->GetElementPtrSize<ArtMethod*>(j, pointer_size_);
1622      // expected_class == null means we are a dex cache.
1623      if (expected_class != nullptr) {
1624        CHECK(method != nullptr);
1625      }
1626      if (method != nullptr) {
1627        SanityCheckArtMethod(method, expected_class);
1628      }
1629    }
1630  }
1631
1632  void SanityCheckArtMethodPointerArray(ArtMethod** arr, size_t size)
1633      REQUIRES_SHARED(Locks::mutator_lock_) {
1634    CHECK_EQ(arr != nullptr, size != 0u);
1635    if (arr != nullptr) {
1636      bool contains = false;
1637      for (auto space : spaces_) {
1638        auto offset = reinterpret_cast<uint8_t*>(arr) - space->Begin();
1639        if (space->GetImageHeader().GetImageSection(
1640            ImageHeader::kSectionDexCacheArrays).Contains(offset)) {
1641          contains = true;
1642          break;
1643        }
1644      }
1645      CHECK(contains);
1646    }
1647    for (size_t j = 0; j < size; ++j) {
1648      ArtMethod* method = mirror::DexCache::GetElementPtrSize(arr, j, pointer_size_);
1649      // expected_class == null means we are a dex cache.
1650      if (method != nullptr) {
1651        SanityCheckArtMethod(method, nullptr);
1652      }
1653    }
1654  }
1655
1656  const std::vector<gc::space::ImageSpace*>& spaces_;
1657  const PointerSize pointer_size_;
1658
1659  // Cached sections from the spaces.
1660  std::vector<const uint8_t*> space_begin_;
1661  std::vector<const ImageSection*> method_sections_;
1662  std::vector<const ImageSection*> runtime_method_sections_;
1663};
1664
1665bool ClassLinker::AddImageSpace(
1666    gc::space::ImageSpace* space,
1667    Handle<mirror::ClassLoader> class_loader,
1668    jobjectArray dex_elements,
1669    const char* dex_location,
1670    std::vector<std::unique_ptr<const DexFile>>* out_dex_files,
1671    std::string* error_msg) {
1672  DCHECK(out_dex_files != nullptr);
1673  DCHECK(error_msg != nullptr);
1674  const uint64_t start_time = NanoTime();
1675  const bool app_image = class_loader != nullptr;
1676  const ImageHeader& header = space->GetImageHeader();
1677  ObjPtr<mirror::Object> dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches);
1678  DCHECK(dex_caches_object != nullptr);
1679  Runtime* const runtime = Runtime::Current();
1680  gc::Heap* const heap = runtime->GetHeap();
1681  Thread* const self = Thread::Current();
1682  // Check that the image is what we are expecting.
1683  if (image_pointer_size_ != space->GetImageHeader().GetPointerSize()) {
1684    *error_msg = StringPrintf("Application image pointer size does not match runtime: %zu vs %zu",
1685                              static_cast<size_t>(space->GetImageHeader().GetPointerSize()),
1686                              image_pointer_size_);
1687    return false;
1688  }
1689  size_t expected_image_roots = ImageHeader::NumberOfImageRoots(app_image);
1690  if (static_cast<size_t>(header.GetImageRoots()->GetLength()) != expected_image_roots) {
1691    *error_msg = StringPrintf("Expected %zu image roots but got %d",
1692                              expected_image_roots,
1693                              header.GetImageRoots()->GetLength());
1694    return false;
1695  }
1696  StackHandleScope<3> hs(self);
1697  Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches(
1698      hs.NewHandle(dex_caches_object->AsObjectArray<mirror::DexCache>()));
1699  Handle<mirror::ObjectArray<mirror::Class>> class_roots(hs.NewHandle(
1700      header.GetImageRoot(ImageHeader::kClassRoots)->AsObjectArray<mirror::Class>()));
1701  static_assert(ImageHeader::kClassLoader + 1u == ImageHeader::kImageRootsMax,
1702                "Class loader should be the last image root.");
1703  MutableHandle<mirror::ClassLoader> image_class_loader(hs.NewHandle(
1704      app_image ? header.GetImageRoot(ImageHeader::kClassLoader)->AsClassLoader() : nullptr));
1705  DCHECK(class_roots != nullptr);
1706  if (class_roots->GetLength() != static_cast<int32_t>(kClassRootsMax)) {
1707    *error_msg = StringPrintf("Expected %d class roots but got %d",
1708                              class_roots->GetLength(),
1709                              static_cast<int32_t>(kClassRootsMax));
1710    return false;
1711  }
1712  // Check against existing class roots to make sure they match the ones in the boot image.
1713  for (size_t i = 0; i < kClassRootsMax; i++) {
1714    if (class_roots->Get(i) != GetClassRoot(static_cast<ClassRoot>(i))) {
1715      *error_msg = "App image class roots must have pointer equality with runtime ones.";
1716      return false;
1717    }
1718  }
1719  const OatFile* oat_file = space->GetOatFile();
1720  if (oat_file->GetOatHeader().GetDexFileCount() !=
1721      static_cast<uint32_t>(dex_caches->GetLength())) {
1722    *error_msg = "Dex cache count and dex file count mismatch while trying to initialize from "
1723                 "image";
1724    return false;
1725  }
1726
1727  for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
1728    ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
1729    std::string dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8());
1730    // TODO: Only store qualified paths.
1731    // If non qualified, qualify it.
1732    if (dex_file_location.find('/') == std::string::npos) {
1733      std::string dex_location_path = dex_location;
1734      const size_t pos = dex_location_path.find_last_of('/');
1735      CHECK_NE(pos, std::string::npos);
1736      dex_location_path = dex_location_path.substr(0, pos + 1);  // Keep trailing '/'
1737      dex_file_location = dex_location_path + dex_file_location;
1738    }
1739    std::unique_ptr<const DexFile> dex_file = OpenOatDexFile(oat_file,
1740                                                             dex_file_location.c_str(),
1741                                                             error_msg);
1742    if (dex_file == nullptr) {
1743      return false;
1744    }
1745
1746    if (app_image) {
1747      // The current dex file field is bogus, overwrite it so that we can get the dex file in the
1748      // loop below.
1749      dex_cache->SetDexFile(dex_file.get());
1750      mirror::TypeDexCacheType* const types = dex_cache->GetResolvedTypes();
1751      for (int32_t j = 0, num_types = dex_cache->NumResolvedTypes(); j < num_types; j++) {
1752        ObjPtr<mirror::Class> klass = types[j].load(std::memory_order_relaxed).object.Read();
1753        if (klass != nullptr) {
1754          DCHECK(!klass->IsErroneous()) << klass->GetStatus();
1755        }
1756      }
1757    } else {
1758      if (kSanityCheckObjects) {
1759        ImageSanityChecks::CheckPointerArray(heap,
1760                                             this,
1761                                             dex_cache->GetResolvedMethods(),
1762                                             dex_cache->NumResolvedMethods());
1763      }
1764      // Register dex files, keep track of existing ones that are conflicts.
1765      AppendToBootClassPath(*dex_file.get(), dex_cache);
1766    }
1767    out_dex_files->push_back(std::move(dex_file));
1768  }
1769
1770  if (app_image) {
1771    ScopedObjectAccessUnchecked soa(Thread::Current());
1772    // Check that the class loader resolves the same way as the ones in the image.
1773    // Image class loader [A][B][C][image dex files]
1774    // Class loader = [???][dex_elements][image dex files]
1775    // Need to ensure that [???][dex_elements] == [A][B][C].
1776    // For each class loader, PathClassLoader, the laoder checks the parent first. Also the logic
1777    // for PathClassLoader does this by looping through the array of dex files. To ensure they
1778    // resolve the same way, simply flatten the hierarchy in the way the resolution order would be,
1779    // and check that the dex file names are the same.
1780    if (IsBootClassLoader(soa, image_class_loader.Get())) {
1781      *error_msg = "Unexpected BootClassLoader in app image";
1782      return false;
1783    }
1784    std::list<ObjPtr<mirror::String>> image_dex_file_names;
1785    std::string temp_error_msg;
1786    if (!FlattenPathClassLoader(image_class_loader.Get(), &image_dex_file_names, &temp_error_msg)) {
1787      *error_msg = StringPrintf("Failed to flatten image class loader hierarchy '%s'",
1788                                temp_error_msg.c_str());
1789      return false;
1790    }
1791    std::list<ObjPtr<mirror::String>> loader_dex_file_names;
1792    if (!FlattenPathClassLoader(class_loader.Get(), &loader_dex_file_names, &temp_error_msg)) {
1793      *error_msg = StringPrintf("Failed to flatten class loader hierarchy '%s'",
1794                                temp_error_msg.c_str());
1795      return false;
1796    }
1797    // Add the temporary dex path list elements at the end.
1798    auto elements = soa.Decode<mirror::ObjectArray<mirror::Object>>(dex_elements);
1799    for (size_t i = 0, num_elems = elements->GetLength(); i < num_elems; ++i) {
1800      ObjPtr<mirror::Object> element = elements->GetWithoutChecks(i);
1801      if (element != nullptr) {
1802        // If we are somewhere in the middle of the array, there may be nulls at the end.
1803        ObjPtr<mirror::String> name;
1804        if (GetDexPathListElementName(element, &name) && name != nullptr) {
1805          loader_dex_file_names.push_back(name);
1806        }
1807      }
1808    }
1809    // Ignore the number of image dex files since we are adding those to the class loader anyways.
1810    CHECK_GE(static_cast<size_t>(image_dex_file_names.size()),
1811             static_cast<size_t>(dex_caches->GetLength()));
1812    size_t image_count = image_dex_file_names.size() - dex_caches->GetLength();
1813    // Check that the dex file names match.
1814    bool equal = image_count == loader_dex_file_names.size();
1815    if (equal) {
1816      auto it1 = image_dex_file_names.begin();
1817      auto it2 = loader_dex_file_names.begin();
1818      for (size_t i = 0; equal && i < image_count; ++i, ++it1, ++it2) {
1819        equal = equal && (*it1)->Equals(*it2);
1820      }
1821    }
1822    if (!equal) {
1823      VLOG(image) << "Image dex files " << image_dex_file_names.size();
1824      for (ObjPtr<mirror::String> name : image_dex_file_names) {
1825        VLOG(image) << name->ToModifiedUtf8();
1826      }
1827      VLOG(image) << "Loader dex files " << loader_dex_file_names.size();
1828      for (ObjPtr<mirror::String> name : loader_dex_file_names) {
1829        VLOG(image) << name->ToModifiedUtf8();
1830      }
1831      *error_msg = "Rejecting application image due to class loader mismatch";
1832      // Ignore class loader mismatch for now since these would just use possibly incorrect
1833      // oat code anyways. The structural class check should be done in the parent.
1834    }
1835  }
1836
1837  if (kSanityCheckObjects) {
1838    for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
1839      auto* dex_cache = dex_caches->Get(i);
1840      for (size_t j = 0; j < dex_cache->NumResolvedFields(); ++j) {
1841        auto* field = dex_cache->GetResolvedField(j, image_pointer_size_);
1842        if (field != nullptr) {
1843          CHECK(field->GetDeclaringClass()->GetClass() != nullptr);
1844        }
1845      }
1846    }
1847    if (!app_image) {
1848      ImageSanityChecks::CheckObjects(heap, this);
1849    }
1850  }
1851
1852  // Set entry point to interpreter if in InterpretOnly mode.
1853  if (!runtime->IsAotCompiler() && runtime->GetInstrumentation()->InterpretOnly()) {
1854    SetInterpreterEntrypointArtMethodVisitor visitor(image_pointer_size_);
1855    header.VisitPackedArtMethods(&visitor, space->Begin(), image_pointer_size_);
1856  }
1857
1858  ClassTable* class_table = nullptr;
1859  {
1860    WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1861    class_table = InsertClassTableForClassLoader(class_loader.Get());
1862  }
1863  // If we have a class table section, read it and use it for verification in
1864  // UpdateAppImageClassLoadersAndDexCaches.
1865  ClassTable::ClassSet temp_set;
1866  const ImageSection& class_table_section = header.GetImageSection(ImageHeader::kSectionClassTable);
1867  const bool added_class_table = class_table_section.Size() > 0u;
1868  if (added_class_table) {
1869    const uint64_t start_time2 = NanoTime();
1870    size_t read_count = 0;
1871    temp_set = ClassTable::ClassSet(space->Begin() + class_table_section.Offset(),
1872                                    /*make copy*/false,
1873                                    &read_count);
1874    VLOG(image) << "Adding class table classes took " << PrettyDuration(NanoTime() - start_time2);
1875  }
1876  if (app_image) {
1877    bool forward_dex_cache_arrays = false;
1878    if (!UpdateAppImageClassLoadersAndDexCaches(space,
1879                                                class_loader,
1880                                                dex_caches,
1881                                                &temp_set,
1882                                                /*out*/&forward_dex_cache_arrays,
1883                                                /*out*/error_msg)) {
1884      return false;
1885    }
1886    // Update class loader and resolved strings. If added_class_table is false, the resolved
1887    // strings were forwarded UpdateAppImageClassLoadersAndDexCaches.
1888    UpdateClassLoaderVisitor visitor(space, class_loader.Get());
1889    for (const ClassTable::TableSlot& root : temp_set) {
1890      visitor(root.Read());
1891    }
1892    // forward_dex_cache_arrays is true iff we copied all of the dex cache arrays into the .bss.
1893    // In this case, madvise away the dex cache arrays section of the image to reduce RAM usage and
1894    // mark as PROT_NONE to catch any invalid accesses.
1895    if (forward_dex_cache_arrays) {
1896      const ImageSection& dex_cache_section = header.GetImageSection(
1897          ImageHeader::kSectionDexCacheArrays);
1898      uint8_t* section_begin = AlignUp(space->Begin() + dex_cache_section.Offset(), kPageSize);
1899      uint8_t* section_end = AlignDown(space->Begin() + dex_cache_section.End(), kPageSize);
1900      if (section_begin < section_end) {
1901        madvise(section_begin, section_end - section_begin, MADV_DONTNEED);
1902        mprotect(section_begin, section_end - section_begin, PROT_NONE);
1903        VLOG(image) << "Released and protected dex cache array image section from "
1904                    << reinterpret_cast<const void*>(section_begin) << "-"
1905                    << reinterpret_cast<const void*>(section_end);
1906      }
1907    }
1908  }
1909  if (!oat_file->GetBssGcRoots().empty()) {
1910    // Insert oat file to class table for visiting .bss GC roots.
1911    class_table->InsertOatFile(oat_file);
1912  }
1913  if (added_class_table) {
1914    WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1915    class_table->AddClassSet(std::move(temp_set));
1916  }
1917  if (kIsDebugBuild && app_image) {
1918    // This verification needs to happen after the classes have been added to the class loader.
1919    // Since it ensures classes are in the class table.
1920    VerifyClassInTableArtMethodVisitor visitor2(class_table);
1921    header.VisitPackedArtMethods(&visitor2, space->Begin(), kRuntimePointerSize);
1922    // Verify that all direct interfaces of classes in the class table are also resolved.
1923    VerifyDirectInterfacesInTableClassVisitor visitor(class_loader.Get());
1924    class_table->Visit(visitor);
1925    visitor.Check();
1926    // Check that all non-primitive classes in dex caches are also in the class table.
1927    for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
1928      ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
1929      mirror::TypeDexCacheType* const types = dex_cache->GetResolvedTypes();
1930      for (int32_t j = 0, num_types = dex_cache->NumResolvedTypes(); j < num_types; j++) {
1931        ObjPtr<mirror::Class> klass = types[j].load(std::memory_order_relaxed).object.Read();
1932        if (klass != nullptr && !klass->IsPrimitive()) {
1933          CHECK(class_table->Contains(klass)) << klass->PrettyDescriptor()
1934              << " " << dex_cache->GetDexFile()->GetLocation();
1935        }
1936      }
1937    }
1938  }
1939  VLOG(class_linker) << "Adding image space took " << PrettyDuration(NanoTime() - start_time);
1940  return true;
1941}
1942
1943bool ClassLinker::ClassInClassTable(ObjPtr<mirror::Class> klass) {
1944  ClassTable* const class_table = ClassTableForClassLoader(klass->GetClassLoader());
1945  return class_table != nullptr && class_table->Contains(klass);
1946}
1947
1948void ClassLinker::VisitClassRoots(RootVisitor* visitor, VisitRootFlags flags) {
1949  // Acquire tracing_enabled before locking class linker lock to prevent lock order violation. Since
1950  // enabling tracing requires the mutator lock, there are no race conditions here.
1951  const bool tracing_enabled = Trace::IsTracingEnabled();
1952  Thread* const self = Thread::Current();
1953  WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1954  if (kUseReadBarrier) {
1955    // We do not track new roots for CC.
1956    DCHECK_EQ(0, flags & (kVisitRootFlagNewRoots |
1957                          kVisitRootFlagClearRootLog |
1958                          kVisitRootFlagStartLoggingNewRoots |
1959                          kVisitRootFlagStopLoggingNewRoots));
1960  }
1961  if ((flags & kVisitRootFlagAllRoots) != 0) {
1962    // Argument for how root visiting deals with ArtField and ArtMethod roots.
1963    // There is 3 GC cases to handle:
1964    // Non moving concurrent:
1965    // This case is easy to handle since the reference members of ArtMethod and ArtFields are held
1966    // live by the class and class roots.
1967    //
1968    // Moving non-concurrent:
1969    // This case needs to call visit VisitNativeRoots in case the classes or dex cache arrays move.
1970    // To prevent missing roots, this case needs to ensure that there is no
1971    // suspend points between the point which we allocate ArtMethod arrays and place them in a
1972    // class which is in the class table.
1973    //
1974    // Moving concurrent:
1975    // Need to make sure to not copy ArtMethods without doing read barriers since the roots are
1976    // marked concurrently and we don't hold the classlinker_classes_lock_ when we do the copy.
1977    //
1978    // Use an unbuffered visitor since the class table uses a temporary GcRoot for holding decoded
1979    // ClassTable::TableSlot. The buffered root visiting would access a stale stack location for
1980    // these objects.
1981    UnbufferedRootVisitor root_visitor(visitor, RootInfo(kRootStickyClass));
1982    boot_class_table_.VisitRoots(root_visitor);
1983    // If tracing is enabled, then mark all the class loaders to prevent unloading.
1984    if ((flags & kVisitRootFlagClassLoader) != 0 || tracing_enabled) {
1985      for (const ClassLoaderData& data : class_loaders_) {
1986        GcRoot<mirror::Object> root(GcRoot<mirror::Object>(self->DecodeJObject(data.weak_root)));
1987        root.VisitRoot(visitor, RootInfo(kRootVMInternal));
1988      }
1989    }
1990  } else if (!kUseReadBarrier && (flags & kVisitRootFlagNewRoots) != 0) {
1991    for (auto& root : new_class_roots_) {
1992      ObjPtr<mirror::Class> old_ref = root.Read<kWithoutReadBarrier>();
1993      root.VisitRoot(visitor, RootInfo(kRootStickyClass));
1994      ObjPtr<mirror::Class> new_ref = root.Read<kWithoutReadBarrier>();
1995      // Concurrent moving GC marked new roots through the to-space invariant.
1996      CHECK_EQ(new_ref, old_ref);
1997    }
1998    for (const OatFile* oat_file : new_bss_roots_boot_oat_files_) {
1999      for (GcRoot<mirror::Object>& root : oat_file->GetBssGcRoots()) {
2000        ObjPtr<mirror::Object> old_ref = root.Read<kWithoutReadBarrier>();
2001        if (old_ref != nullptr) {
2002          DCHECK(old_ref->IsClass());
2003          root.VisitRoot(visitor, RootInfo(kRootStickyClass));
2004          ObjPtr<mirror::Object> new_ref = root.Read<kWithoutReadBarrier>();
2005          // Concurrent moving GC marked new roots through the to-space invariant.
2006          CHECK_EQ(new_ref, old_ref);
2007        }
2008      }
2009    }
2010  }
2011  if (!kUseReadBarrier && (flags & kVisitRootFlagClearRootLog) != 0) {
2012    new_class_roots_.clear();
2013    new_bss_roots_boot_oat_files_.clear();
2014  }
2015  if (!kUseReadBarrier && (flags & kVisitRootFlagStartLoggingNewRoots) != 0) {
2016    log_new_roots_ = true;
2017  } else if (!kUseReadBarrier && (flags & kVisitRootFlagStopLoggingNewRoots) != 0) {
2018    log_new_roots_ = false;
2019  }
2020  // We deliberately ignore the class roots in the image since we
2021  // handle image roots by using the MS/CMS rescanning of dirty cards.
2022}
2023
2024// Keep in sync with InitCallback. Anything we visit, we need to
2025// reinit references to when reinitializing a ClassLinker from a
2026// mapped image.
2027void ClassLinker::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
2028  class_roots_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2029  VisitClassRoots(visitor, flags);
2030  array_iftable_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2031  // Instead of visiting the find_array_class_cache_ drop it so that it doesn't prevent class
2032  // unloading if we are marking roots.
2033  DropFindArrayClassCache();
2034}
2035
2036class VisitClassLoaderClassesVisitor : public ClassLoaderVisitor {
2037 public:
2038  explicit VisitClassLoaderClassesVisitor(ClassVisitor* visitor)
2039      : visitor_(visitor),
2040        done_(false) {}
2041
2042  void Visit(ObjPtr<mirror::ClassLoader> class_loader)
2043      REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE {
2044    ClassTable* const class_table = class_loader->GetClassTable();
2045    if (!done_ && class_table != nullptr) {
2046      DefiningClassLoaderFilterVisitor visitor(class_loader, visitor_);
2047      if (!class_table->Visit(visitor)) {
2048        // If the visitor ClassTable returns false it means that we don't need to continue.
2049        done_ = true;
2050      }
2051    }
2052  }
2053
2054 private:
2055  // Class visitor that limits the class visits from a ClassTable to the classes with
2056  // the provided defining class loader. This filter is used to avoid multiple visits
2057  // of the same class which can be recorded for multiple initiating class loaders.
2058  class DefiningClassLoaderFilterVisitor : public ClassVisitor {
2059   public:
2060    DefiningClassLoaderFilterVisitor(ObjPtr<mirror::ClassLoader> defining_class_loader,
2061                                     ClassVisitor* visitor)
2062        : defining_class_loader_(defining_class_loader), visitor_(visitor) { }
2063
2064    bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
2065      if (klass->GetClassLoader() != defining_class_loader_) {
2066        return true;
2067      }
2068      return (*visitor_)(klass);
2069    }
2070
2071    ObjPtr<mirror::ClassLoader> const defining_class_loader_;
2072    ClassVisitor* const visitor_;
2073  };
2074
2075  ClassVisitor* const visitor_;
2076  // If done is true then we don't need to do any more visiting.
2077  bool done_;
2078};
2079
2080void ClassLinker::VisitClassesInternal(ClassVisitor* visitor) {
2081  if (boot_class_table_.Visit(*visitor)) {
2082    VisitClassLoaderClassesVisitor loader_visitor(visitor);
2083    VisitClassLoaders(&loader_visitor);
2084  }
2085}
2086
2087void ClassLinker::VisitClasses(ClassVisitor* visitor) {
2088  Thread* const self = Thread::Current();
2089  ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
2090  // Not safe to have thread suspension when we are holding a lock.
2091  if (self != nullptr) {
2092    ScopedAssertNoThreadSuspension nts(__FUNCTION__);
2093    VisitClassesInternal(visitor);
2094  } else {
2095    VisitClassesInternal(visitor);
2096  }
2097}
2098
2099class GetClassesInToVector : public ClassVisitor {
2100 public:
2101  bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE {
2102    classes_.push_back(klass);
2103    return true;
2104  }
2105  std::vector<ObjPtr<mirror::Class>> classes_;
2106};
2107
2108class GetClassInToObjectArray : public ClassVisitor {
2109 public:
2110  explicit GetClassInToObjectArray(mirror::ObjectArray<mirror::Class>* arr)
2111      : arr_(arr), index_(0) {}
2112
2113  bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
2114    ++index_;
2115    if (index_ <= arr_->GetLength()) {
2116      arr_->Set(index_ - 1, klass);
2117      return true;
2118    }
2119    return false;
2120  }
2121
2122  bool Succeeded() const REQUIRES_SHARED(Locks::mutator_lock_) {
2123    return index_ <= arr_->GetLength();
2124  }
2125
2126 private:
2127  mirror::ObjectArray<mirror::Class>* const arr_;
2128  int32_t index_;
2129};
2130
2131void ClassLinker::VisitClassesWithoutClassesLock(ClassVisitor* visitor) {
2132  // TODO: it may be possible to avoid secondary storage if we iterate over dex caches. The problem
2133  // is avoiding duplicates.
2134  if (!kMovingClasses) {
2135    ScopedAssertNoThreadSuspension nts(__FUNCTION__);
2136    GetClassesInToVector accumulator;
2137    VisitClasses(&accumulator);
2138    for (ObjPtr<mirror::Class> klass : accumulator.classes_) {
2139      if (!visitor->operator()(klass)) {
2140        return;
2141      }
2142    }
2143  } else {
2144    Thread* const self = Thread::Current();
2145    StackHandleScope<1> hs(self);
2146    auto classes = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr);
2147    // We size the array assuming classes won't be added to the class table during the visit.
2148    // If this assumption fails we iterate again.
2149    while (true) {
2150      size_t class_table_size;
2151      {
2152        ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
2153        // Add 100 in case new classes get loaded when we are filling in the object array.
2154        class_table_size = NumZygoteClasses() + NumNonZygoteClasses() + 100;
2155      }
2156      ObjPtr<mirror::Class> class_type = mirror::Class::GetJavaLangClass();
2157      ObjPtr<mirror::Class> array_of_class = FindArrayClass(self, &class_type);
2158      classes.Assign(
2159          mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, class_table_size));
2160      CHECK(classes != nullptr);  // OOME.
2161      GetClassInToObjectArray accumulator(classes.Get());
2162      VisitClasses(&accumulator);
2163      if (accumulator.Succeeded()) {
2164        break;
2165      }
2166    }
2167    for (int32_t i = 0; i < classes->GetLength(); ++i) {
2168      // If the class table shrank during creation of the clases array we expect null elements. If
2169      // the class table grew then the loop repeats. If classes are created after the loop has
2170      // finished then we don't visit.
2171      ObjPtr<mirror::Class> klass = classes->Get(i);
2172      if (klass != nullptr && !visitor->operator()(klass)) {
2173        return;
2174      }
2175    }
2176  }
2177}
2178
2179ClassLinker::~ClassLinker() {
2180  mirror::Class::ResetClass();
2181  mirror::Constructor::ResetClass();
2182  mirror::Field::ResetClass();
2183  mirror::Method::ResetClass();
2184  mirror::Reference::ResetClass();
2185  mirror::StackTraceElement::ResetClass();
2186  mirror::String::ResetClass();
2187  mirror::Throwable::ResetClass();
2188  mirror::BooleanArray::ResetArrayClass();
2189  mirror::ByteArray::ResetArrayClass();
2190  mirror::CharArray::ResetArrayClass();
2191  mirror::Constructor::ResetArrayClass();
2192  mirror::DoubleArray::ResetArrayClass();
2193  mirror::Field::ResetArrayClass();
2194  mirror::FloatArray::ResetArrayClass();
2195  mirror::Method::ResetArrayClass();
2196  mirror::IntArray::ResetArrayClass();
2197  mirror::LongArray::ResetArrayClass();
2198  mirror::ShortArray::ResetArrayClass();
2199  mirror::MethodType::ResetClass();
2200  mirror::MethodHandleImpl::ResetClass();
2201  mirror::MethodHandlesLookup::ResetClass();
2202  mirror::CallSite::ResetClass();
2203  mirror::EmulatedStackFrame::ResetClass();
2204  Thread* const self = Thread::Current();
2205  for (const ClassLoaderData& data : class_loaders_) {
2206    DeleteClassLoader(self, data);
2207  }
2208  class_loaders_.clear();
2209}
2210
2211void ClassLinker::DeleteClassLoader(Thread* self, const ClassLoaderData& data) {
2212  Runtime* const runtime = Runtime::Current();
2213  JavaVMExt* const vm = runtime->GetJavaVM();
2214  vm->DeleteWeakGlobalRef(self, data.weak_root);
2215  // Notify the JIT that we need to remove the methods and/or profiling info.
2216  if (runtime->GetJit() != nullptr) {
2217    jit::JitCodeCache* code_cache = runtime->GetJit()->GetCodeCache();
2218    if (code_cache != nullptr) {
2219      code_cache->RemoveMethodsIn(self, *data.allocator);
2220    }
2221  }
2222  delete data.allocator;
2223  delete data.class_table;
2224}
2225
2226mirror::PointerArray* ClassLinker::AllocPointerArray(Thread* self, size_t length) {
2227  return down_cast<mirror::PointerArray*>(
2228      image_pointer_size_ == PointerSize::k64
2229          ? static_cast<mirror::Array*>(mirror::LongArray::Alloc(self, length))
2230          : static_cast<mirror::Array*>(mirror::IntArray::Alloc(self, length)));
2231}
2232
2233mirror::DexCache* ClassLinker::AllocDexCache(ObjPtr<mirror::String>* out_location,
2234                                             Thread* self,
2235                                             const DexFile& dex_file) {
2236  StackHandleScope<1> hs(self);
2237  DCHECK(out_location != nullptr);
2238  auto dex_cache(hs.NewHandle(ObjPtr<mirror::DexCache>::DownCast(
2239      GetClassRoot(kJavaLangDexCache)->AllocObject(self))));
2240  if (dex_cache == nullptr) {
2241    self->AssertPendingOOMException();
2242    return nullptr;
2243  }
2244  ObjPtr<mirror::String> location = intern_table_->InternStrong(dex_file.GetLocation().c_str());
2245  if (location == nullptr) {
2246    self->AssertPendingOOMException();
2247    return nullptr;
2248  }
2249  *out_location = location;
2250  return dex_cache.Get();
2251}
2252
2253mirror::DexCache* ClassLinker::AllocAndInitializeDexCache(Thread* self,
2254                                                          const DexFile& dex_file,
2255                                                          LinearAlloc* linear_alloc) {
2256  ObjPtr<mirror::String> location = nullptr;
2257  ObjPtr<mirror::DexCache> dex_cache = AllocDexCache(&location, self, dex_file);
2258  if (dex_cache != nullptr) {
2259    WriterMutexLock mu(self, *Locks::dex_lock_);
2260    DCHECK(location != nullptr);
2261    mirror::DexCache::InitializeDexCache(self,
2262                                         dex_cache,
2263                                         location,
2264                                         &dex_file,
2265                                         linear_alloc,
2266                                         image_pointer_size_);
2267  }
2268  return dex_cache.Ptr();
2269}
2270
2271mirror::Class* ClassLinker::AllocClass(Thread* self,
2272                                       ObjPtr<mirror::Class> java_lang_Class,
2273                                       uint32_t class_size) {
2274  DCHECK_GE(class_size, sizeof(mirror::Class));
2275  gc::Heap* heap = Runtime::Current()->GetHeap();
2276  mirror::Class::InitializeClassVisitor visitor(class_size);
2277  ObjPtr<mirror::Object> k = kMovingClasses ?
2278      heap->AllocObject<true>(self, java_lang_Class, class_size, visitor) :
2279      heap->AllocNonMovableObject<true>(self, java_lang_Class, class_size, visitor);
2280  if (UNLIKELY(k == nullptr)) {
2281    self->AssertPendingOOMException();
2282    return nullptr;
2283  }
2284  return k->AsClass();
2285}
2286
2287mirror::Class* ClassLinker::AllocClass(Thread* self, uint32_t class_size) {
2288  return AllocClass(self, GetClassRoot(kJavaLangClass), class_size);
2289}
2290
2291mirror::ObjectArray<mirror::StackTraceElement>* ClassLinker::AllocStackTraceElementArray(
2292    Thread* self,
2293    size_t length) {
2294  return mirror::ObjectArray<mirror::StackTraceElement>::Alloc(
2295      self, GetClassRoot(kJavaLangStackTraceElementArrayClass), length);
2296}
2297
2298mirror::Class* ClassLinker::EnsureResolved(Thread* self,
2299                                           const char* descriptor,
2300                                           ObjPtr<mirror::Class> klass) {
2301  DCHECK(klass != nullptr);
2302  if (kIsDebugBuild) {
2303    StackHandleScope<1> hs(self);
2304    HandleWrapperObjPtr<mirror::Class> h = hs.NewHandleWrapper(&klass);
2305    Thread::PoisonObjectPointersIfDebug();
2306  }
2307
2308  // For temporary classes we must wait for them to be retired.
2309  if (init_done_ && klass->IsTemp()) {
2310    CHECK(!klass->IsResolved());
2311    if (klass->IsErroneousUnresolved()) {
2312      ThrowEarlierClassFailure(klass);
2313      return nullptr;
2314    }
2315    StackHandleScope<1> hs(self);
2316    Handle<mirror::Class> h_class(hs.NewHandle(klass));
2317    ObjectLock<mirror::Class> lock(self, h_class);
2318    // Loop and wait for the resolving thread to retire this class.
2319    while (!h_class->IsRetired() && !h_class->IsErroneousUnresolved()) {
2320      lock.WaitIgnoringInterrupts();
2321    }
2322    if (h_class->IsErroneousUnresolved()) {
2323      ThrowEarlierClassFailure(h_class.Get());
2324      return nullptr;
2325    }
2326    CHECK(h_class->IsRetired());
2327    // Get the updated class from class table.
2328    klass = LookupClass(self, descriptor, h_class.Get()->GetClassLoader());
2329  }
2330
2331  // Wait for the class if it has not already been linked.
2332  size_t index = 0;
2333  // Maximum number of yield iterations until we start sleeping.
2334  static const size_t kNumYieldIterations = 1000;
2335  // How long each sleep is in us.
2336  static const size_t kSleepDurationUS = 1000;  // 1 ms.
2337  while (!klass->IsResolved() && !klass->IsErroneousUnresolved()) {
2338    StackHandleScope<1> hs(self);
2339    HandleWrapperObjPtr<mirror::Class> h_class(hs.NewHandleWrapper(&klass));
2340    {
2341      ObjectTryLock<mirror::Class> lock(self, h_class);
2342      // Can not use a monitor wait here since it may block when returning and deadlock if another
2343      // thread has locked klass.
2344      if (lock.Acquired()) {
2345        // Check for circular dependencies between classes, the lock is required for SetStatus.
2346        if (!h_class->IsResolved() && h_class->GetClinitThreadId() == self->GetTid()) {
2347          ThrowClassCircularityError(h_class.Get());
2348          mirror::Class::SetStatus(h_class, mirror::Class::kStatusErrorUnresolved, self);
2349          return nullptr;
2350        }
2351      }
2352    }
2353    {
2354      // Handle wrapper deals with klass moving.
2355      ScopedThreadSuspension sts(self, kSuspended);
2356      if (index < kNumYieldIterations) {
2357        sched_yield();
2358      } else {
2359        usleep(kSleepDurationUS);
2360      }
2361    }
2362    ++index;
2363  }
2364
2365  if (klass->IsErroneousUnresolved()) {
2366    ThrowEarlierClassFailure(klass);
2367    return nullptr;
2368  }
2369  // Return the loaded class.  No exceptions should be pending.
2370  CHECK(klass->IsResolved()) << klass->PrettyClass();
2371  self->AssertNoPendingException();
2372  return klass.Ptr();
2373}
2374
2375typedef std::pair<const DexFile*, const DexFile::ClassDef*> ClassPathEntry;
2376
2377// Search a collection of DexFiles for a descriptor
2378ClassPathEntry FindInClassPath(const char* descriptor,
2379                               size_t hash, const std::vector<const DexFile*>& class_path) {
2380  for (const DexFile* dex_file : class_path) {
2381    const DexFile::ClassDef* dex_class_def = OatDexFile::FindClassDef(*dex_file, descriptor, hash);
2382    if (dex_class_def != nullptr) {
2383      return ClassPathEntry(dex_file, dex_class_def);
2384    }
2385  }
2386  return ClassPathEntry(nullptr, nullptr);
2387}
2388
2389bool ClassLinker::FindClassInBaseDexClassLoader(ScopedObjectAccessAlreadyRunnable& soa,
2390                                                Thread* self,
2391                                                const char* descriptor,
2392                                                size_t hash,
2393                                                Handle<mirror::ClassLoader> class_loader,
2394                                                ObjPtr<mirror::Class>* result) {
2395  // Termination case: boot class-loader.
2396  if (IsBootClassLoader(soa, class_loader.Get())) {
2397    // The boot class loader, search the boot class path.
2398    ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_);
2399    if (pair.second != nullptr) {
2400      ObjPtr<mirror::Class> klass = LookupClass(self, descriptor, hash, nullptr);
2401      if (klass != nullptr) {
2402        *result = EnsureResolved(self, descriptor, klass);
2403      } else {
2404        *result = DefineClass(self,
2405                              descriptor,
2406                              hash,
2407                              ScopedNullHandle<mirror::ClassLoader>(),
2408                              *pair.first,
2409                              *pair.second);
2410      }
2411      if (*result == nullptr) {
2412        CHECK(self->IsExceptionPending()) << descriptor;
2413        self->ClearException();
2414      }
2415    } else {
2416      *result = nullptr;
2417    }
2418    return true;
2419  }
2420
2421  // Unsupported class-loader?
2422  if (soa.Decode<mirror::Class>(WellKnownClasses::dalvik_system_PathClassLoader) !=
2423      class_loader->GetClass()) {
2424    // PathClassLoader is the most common case, so it's the one we check first. For secondary dex
2425    // files, we also check DexClassLoader here.
2426    if (soa.Decode<mirror::Class>(WellKnownClasses::dalvik_system_DexClassLoader) !=
2427        class_loader->GetClass()) {
2428      *result = nullptr;
2429      return false;
2430    }
2431  }
2432
2433  // Handles as RegisterDexFile may allocate dex caches (and cause thread suspension).
2434  StackHandleScope<4> hs(self);
2435  Handle<mirror::ClassLoader> h_parent(hs.NewHandle(class_loader->GetParent()));
2436  bool recursive_result = FindClassInBaseDexClassLoader(soa,
2437                                                        self,
2438                                                        descriptor,
2439                                                        hash,
2440                                                        h_parent,
2441                                                        result);
2442
2443  if (!recursive_result) {
2444    // Something wrong up the chain.
2445    return false;
2446  }
2447
2448  if (*result != nullptr) {
2449    // Found the class up the chain.
2450    return true;
2451  }
2452
2453  // Handle this step.
2454  // Handle as if this is the child PathClassLoader.
2455  // The class loader is a PathClassLoader which inherits from BaseDexClassLoader.
2456  // We need to get the DexPathList and loop through it.
2457  ArtField* const cookie_field =
2458      jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie);
2459  ArtField* const dex_file_field =
2460      jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile);
2461  ObjPtr<mirror::Object> dex_path_list =
2462      jni::DecodeArtField(WellKnownClasses::dalvik_system_BaseDexClassLoader_pathList)->
2463          GetObject(class_loader.Get());
2464  if (dex_path_list != nullptr && dex_file_field != nullptr && cookie_field != nullptr) {
2465    // DexPathList has an array dexElements of Elements[] which each contain a dex file.
2466    ObjPtr<mirror::Object> dex_elements_obj =
2467        jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList_dexElements)->
2468        GetObject(dex_path_list);
2469    // Loop through each dalvik.system.DexPathList$Element's dalvik.system.DexFile and look
2470    // at the mCookie which is a DexFile vector.
2471    if (dex_elements_obj != nullptr) {
2472      Handle<mirror::ObjectArray<mirror::Object>> dex_elements =
2473          hs.NewHandle(dex_elements_obj->AsObjectArray<mirror::Object>());
2474      for (int32_t i = 0; i < dex_elements->GetLength(); ++i) {
2475        ObjPtr<mirror::Object> element = dex_elements->GetWithoutChecks(i);
2476        if (element == nullptr) {
2477          // Should never happen, fall back to java code to throw a NPE.
2478          break;
2479        }
2480        ObjPtr<mirror::Object> dex_file = dex_file_field->GetObject(element);
2481        if (dex_file != nullptr) {
2482          ObjPtr<mirror::LongArray> long_array = cookie_field->GetObject(dex_file)->AsLongArray();
2483          if (long_array == nullptr) {
2484            // This should never happen so log a warning.
2485            LOG(WARNING) << "Null DexFile::mCookie for " << descriptor;
2486            break;
2487          }
2488          int32_t long_array_size = long_array->GetLength();
2489          // First element is the oat file.
2490          for (int32_t j = kDexFileIndexStart; j < long_array_size; ++j) {
2491            const DexFile* cp_dex_file = reinterpret_cast<const DexFile*>(static_cast<uintptr_t>(
2492                long_array->GetWithoutChecks(j)));
2493            const DexFile::ClassDef* dex_class_def =
2494                OatDexFile::FindClassDef(*cp_dex_file, descriptor, hash);
2495            if (dex_class_def != nullptr) {
2496              ObjPtr<mirror::Class> klass = DefineClass(self,
2497                                                 descriptor,
2498                                                 hash,
2499                                                 class_loader,
2500                                                 *cp_dex_file,
2501                                                 *dex_class_def);
2502              if (klass == nullptr) {
2503                CHECK(self->IsExceptionPending()) << descriptor;
2504                self->ClearException();
2505                // TODO: Is it really right to break here, and not check the other dex files?
2506                return true;
2507              }
2508              *result = klass;
2509              return true;
2510            }
2511          }
2512        }
2513      }
2514    }
2515    self->AssertNoPendingException();
2516  }
2517
2518  // Result is still null from the parent call, no need to set it again...
2519  return true;
2520}
2521
2522mirror::Class* ClassLinker::FindClass(Thread* self,
2523                                      const char* descriptor,
2524                                      Handle<mirror::ClassLoader> class_loader) {
2525  DCHECK_NE(*descriptor, '\0') << "descriptor is empty string";
2526  DCHECK(self != nullptr);
2527  self->AssertNoPendingException();
2528  self->PoisonObjectPointers();  // For DefineClass, CreateArrayClass, etc...
2529  if (descriptor[1] == '\0') {
2530    // only the descriptors of primitive types should be 1 character long, also avoid class lookup
2531    // for primitive classes that aren't backed by dex files.
2532    return FindPrimitiveClass(descriptor[0]);
2533  }
2534  const size_t hash = ComputeModifiedUtf8Hash(descriptor);
2535  // Find the class in the loaded classes table.
2536  ObjPtr<mirror::Class> klass = LookupClass(self, descriptor, hash, class_loader.Get());
2537  if (klass != nullptr) {
2538    return EnsureResolved(self, descriptor, klass);
2539  }
2540  // Class is not yet loaded.
2541  if (descriptor[0] != '[' && class_loader == nullptr) {
2542    // Non-array class and the boot class loader, search the boot class path.
2543    ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_);
2544    if (pair.second != nullptr) {
2545      return DefineClass(self,
2546                         descriptor,
2547                         hash,
2548                         ScopedNullHandle<mirror::ClassLoader>(),
2549                         *pair.first,
2550                         *pair.second);
2551    } else {
2552      // The boot class loader is searched ahead of the application class loader, failures are
2553      // expected and will be wrapped in a ClassNotFoundException. Use the pre-allocated error to
2554      // trigger the chaining with a proper stack trace.
2555      ObjPtr<mirror::Throwable> pre_allocated =
2556          Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
2557      self->SetException(pre_allocated);
2558      return nullptr;
2559    }
2560  }
2561  ObjPtr<mirror::Class> result_ptr;
2562  bool descriptor_equals;
2563  if (descriptor[0] == '[') {
2564    result_ptr = CreateArrayClass(self, descriptor, hash, class_loader);
2565    DCHECK_EQ(result_ptr == nullptr, self->IsExceptionPending());
2566    DCHECK(result_ptr == nullptr || result_ptr->DescriptorEquals(descriptor));
2567    descriptor_equals = true;
2568  } else {
2569    ScopedObjectAccessUnchecked soa(self);
2570    bool known_hierarchy =
2571        FindClassInBaseDexClassLoader(soa, self, descriptor, hash, class_loader, &result_ptr);
2572    if (result_ptr != nullptr) {
2573      // The chain was understood and we found the class. We still need to add the class to
2574      // the class table to protect from racy programs that can try and redefine the path list
2575      // which would change the Class<?> returned for subsequent evaluation of const-class.
2576      DCHECK(known_hierarchy);
2577      DCHECK(result_ptr->DescriptorEquals(descriptor));
2578      descriptor_equals = true;
2579    } else {
2580      // Either the chain wasn't understood or the class wasn't found.
2581      //
2582      // If the chain was understood but we did not find the class, let the Java-side
2583      // rediscover all this and throw the exception with the right stack trace. Note that
2584      // the Java-side could still succeed for racy programs if another thread is actively
2585      // modifying the class loader's path list.
2586
2587      if (!self->CanCallIntoJava()) {
2588        // Oops, we can't call into java so we can't run actual class-loader code.
2589        // This is true for e.g. for the compiler (jit or aot).
2590        ObjPtr<mirror::Throwable> pre_allocated =
2591            Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
2592        self->SetException(pre_allocated);
2593        return nullptr;
2594      }
2595
2596      // Inlined DescriptorToDot(descriptor) with extra validation.
2597      //
2598      // Throw NoClassDefFoundError early rather than potentially load a class only to fail
2599      // the DescriptorEquals() check below and give a confusing error message. For example,
2600      // when native code erroneously calls JNI GetFieldId() with signature "java/lang/String"
2601      // instead of "Ljava/lang/String;", the message below using the "dot" names would be
2602      // "class loader [...] returned class java.lang.String instead of java.lang.String".
2603      size_t descriptor_length = strlen(descriptor);
2604      if (UNLIKELY(descriptor[0] != 'L') ||
2605          UNLIKELY(descriptor[descriptor_length - 1] != ';') ||
2606          UNLIKELY(memchr(descriptor + 1, '.', descriptor_length - 2) != nullptr)) {
2607        ThrowNoClassDefFoundError("Invalid descriptor: %s.", descriptor);
2608        return nullptr;
2609      }
2610      std::string class_name_string(descriptor + 1, descriptor_length - 2);
2611      std::replace(class_name_string.begin(), class_name_string.end(), '/', '.');
2612
2613      ScopedLocalRef<jobject> class_loader_object(
2614          soa.Env(), soa.AddLocalReference<jobject>(class_loader.Get()));
2615      ScopedLocalRef<jobject> result(soa.Env(), nullptr);
2616      {
2617        ScopedThreadStateChange tsc(self, kNative);
2618        ScopedLocalRef<jobject> class_name_object(
2619            soa.Env(), soa.Env()->NewStringUTF(class_name_string.c_str()));
2620        if (class_name_object.get() == nullptr) {
2621          DCHECK(self->IsExceptionPending());  // OOME.
2622          return nullptr;
2623        }
2624        CHECK(class_loader_object.get() != nullptr);
2625        result.reset(soa.Env()->CallObjectMethod(class_loader_object.get(),
2626                                                 WellKnownClasses::java_lang_ClassLoader_loadClass,
2627                                                 class_name_object.get()));
2628      }
2629      if (result.get() == nullptr && !self->IsExceptionPending()) {
2630        // broken loader - throw NPE to be compatible with Dalvik
2631        ThrowNullPointerException(StringPrintf("ClassLoader.loadClass returned null for %s",
2632                                               class_name_string.c_str()).c_str());
2633        return nullptr;
2634      }
2635      result_ptr = soa.Decode<mirror::Class>(result.get());
2636      // Check the name of the returned class.
2637      descriptor_equals = (result_ptr != nullptr) && result_ptr->DescriptorEquals(descriptor);
2638    }
2639  }
2640
2641  if (self->IsExceptionPending()) {
2642    // If the ClassLoader threw or array class allocation failed, pass that exception up.
2643    // However, to comply with the RI behavior, first check if another thread succeeded.
2644    result_ptr = LookupClass(self, descriptor, hash, class_loader.Get());
2645    if (result_ptr != nullptr && !result_ptr->IsErroneous()) {
2646      self->ClearException();
2647      return EnsureResolved(self, descriptor, result_ptr);
2648    }
2649    return nullptr;
2650  }
2651
2652  // Try to insert the class to the class table, checking for mismatch.
2653  ObjPtr<mirror::Class> old;
2654  {
2655    WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
2656    ClassTable* const class_table = InsertClassTableForClassLoader(class_loader.Get());
2657    old = class_table->Lookup(descriptor, hash);
2658    if (old == nullptr) {
2659      old = result_ptr;  // For the comparison below, after releasing the lock.
2660      if (descriptor_equals) {
2661        class_table->InsertWithHash(result_ptr.Ptr(), hash);
2662        Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader.Get());
2663      }  // else throw below, after releasing the lock.
2664    }
2665  }
2666  if (UNLIKELY(old != result_ptr)) {
2667    // Return `old` (even if `!descriptor_equals`) to mimic the RI behavior for parallel
2668    // capable class loaders.  (All class loaders are considered parallel capable on Android.)
2669    mirror::Class* loader_class = class_loader->GetClass();
2670    const char* loader_class_name =
2671        loader_class->GetDexFile().StringByTypeIdx(loader_class->GetDexTypeIndex());
2672    LOG(WARNING) << "Initiating class loader of type " << DescriptorToDot(loader_class_name)
2673        << " is not well-behaved; it returned a different Class for racing loadClass(\""
2674        << DescriptorToDot(descriptor) << "\").";
2675    return EnsureResolved(self, descriptor, old);
2676  }
2677  if (UNLIKELY(!descriptor_equals)) {
2678    std::string result_storage;
2679    const char* result_name = result_ptr->GetDescriptor(&result_storage);
2680    std::string loader_storage;
2681    const char* loader_class_name = class_loader->GetClass()->GetDescriptor(&loader_storage);
2682    ThrowNoClassDefFoundError(
2683        "Initiating class loader of type %s returned class %s instead of %s.",
2684        DescriptorToDot(loader_class_name).c_str(),
2685        DescriptorToDot(result_name).c_str(),
2686        DescriptorToDot(descriptor).c_str());
2687    return nullptr;
2688  }
2689  // success, return mirror::Class*
2690  return result_ptr.Ptr();
2691}
2692
2693mirror::Class* ClassLinker::DefineClass(Thread* self,
2694                                        const char* descriptor,
2695                                        size_t hash,
2696                                        Handle<mirror::ClassLoader> class_loader,
2697                                        const DexFile& dex_file,
2698                                        const DexFile::ClassDef& dex_class_def) {
2699  StackHandleScope<3> hs(self);
2700  auto klass = hs.NewHandle<mirror::Class>(nullptr);
2701
2702  // Load the class from the dex file.
2703  if (UNLIKELY(!init_done_)) {
2704    // finish up init of hand crafted class_roots_
2705    if (strcmp(descriptor, "Ljava/lang/Object;") == 0) {
2706      klass.Assign(GetClassRoot(kJavaLangObject));
2707    } else if (strcmp(descriptor, "Ljava/lang/Class;") == 0) {
2708      klass.Assign(GetClassRoot(kJavaLangClass));
2709    } else if (strcmp(descriptor, "Ljava/lang/String;") == 0) {
2710      klass.Assign(GetClassRoot(kJavaLangString));
2711    } else if (strcmp(descriptor, "Ljava/lang/ref/Reference;") == 0) {
2712      klass.Assign(GetClassRoot(kJavaLangRefReference));
2713    } else if (strcmp(descriptor, "Ljava/lang/DexCache;") == 0) {
2714      klass.Assign(GetClassRoot(kJavaLangDexCache));
2715    } else if (strcmp(descriptor, "Ldalvik/system/ClassExt;") == 0) {
2716      klass.Assign(GetClassRoot(kDalvikSystemClassExt));
2717    }
2718  }
2719
2720  if (klass == nullptr) {
2721    // Allocate a class with the status of not ready.
2722    // Interface object should get the right size here. Regular class will
2723    // figure out the right size later and be replaced with one of the right
2724    // size when the class becomes resolved.
2725    klass.Assign(AllocClass(self, SizeOfClassWithoutEmbeddedTables(dex_file, dex_class_def)));
2726  }
2727  if (UNLIKELY(klass == nullptr)) {
2728    self->AssertPendingOOMException();
2729    return nullptr;
2730  }
2731  // Get the real dex file. This will return the input if there aren't any callbacks or they do
2732  // nothing.
2733  DexFile const* new_dex_file = nullptr;
2734  DexFile::ClassDef const* new_class_def = nullptr;
2735  // TODO We should ideally figure out some way to move this after we get a lock on the klass so it
2736  // will only be called once.
2737  Runtime::Current()->GetRuntimeCallbacks()->ClassPreDefine(descriptor,
2738                                                            klass,
2739                                                            class_loader,
2740                                                            dex_file,
2741                                                            dex_class_def,
2742                                                            &new_dex_file,
2743                                                            &new_class_def);
2744  // Check to see if an exception happened during runtime callbacks. Return if so.
2745  if (self->IsExceptionPending()) {
2746    return nullptr;
2747  }
2748  ObjPtr<mirror::DexCache> dex_cache = RegisterDexFile(*new_dex_file, class_loader.Get());
2749  if (dex_cache == nullptr) {
2750    self->AssertPendingException();
2751    return nullptr;
2752  }
2753  klass->SetDexCache(dex_cache);
2754  SetupClass(*new_dex_file, *new_class_def, klass, class_loader.Get());
2755
2756  // Mark the string class by setting its access flag.
2757  if (UNLIKELY(!init_done_)) {
2758    if (strcmp(descriptor, "Ljava/lang/String;") == 0) {
2759      klass->SetStringClass();
2760    }
2761  }
2762
2763  ObjectLock<mirror::Class> lock(self, klass);
2764  klass->SetClinitThreadId(self->GetTid());
2765  // Make sure we have a valid empty iftable even if there are errors.
2766  klass->SetIfTable(GetClassRoot(kJavaLangObject)->GetIfTable());
2767
2768  // Add the newly loaded class to the loaded classes table.
2769  ObjPtr<mirror::Class> existing = InsertClass(descriptor, klass.Get(), hash);
2770  if (existing != nullptr) {
2771    // We failed to insert because we raced with another thread. Calling EnsureResolved may cause
2772    // this thread to block.
2773    return EnsureResolved(self, descriptor, existing);
2774  }
2775
2776  // Load the fields and other things after we are inserted in the table. This is so that we don't
2777  // end up allocating unfree-able linear alloc resources and then lose the race condition. The
2778  // other reason is that the field roots are only visited from the class table. So we need to be
2779  // inserted before we allocate / fill in these fields.
2780  LoadClass(self, *new_dex_file, *new_class_def, klass);
2781  if (self->IsExceptionPending()) {
2782    VLOG(class_linker) << self->GetException()->Dump();
2783    // An exception occured during load, set status to erroneous while holding klass' lock in case
2784    // notification is necessary.
2785    if (!klass->IsErroneous()) {
2786      mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorUnresolved, self);
2787    }
2788    return nullptr;
2789  }
2790
2791  // Finish loading (if necessary) by finding parents
2792  CHECK(!klass->IsLoaded());
2793  if (!LoadSuperAndInterfaces(klass, *new_dex_file)) {
2794    // Loading failed.
2795    if (!klass->IsErroneous()) {
2796      mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorUnresolved, self);
2797    }
2798    return nullptr;
2799  }
2800  CHECK(klass->IsLoaded());
2801
2802  // At this point the class is loaded. Publish a ClassLoad event.
2803  // Note: this may be a temporary class. It is a listener's responsibility to handle this.
2804  Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(klass);
2805
2806  // Link the class (if necessary)
2807  CHECK(!klass->IsResolved());
2808  // TODO: Use fast jobjects?
2809  auto interfaces = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr);
2810
2811  MutableHandle<mirror::Class> h_new_class = hs.NewHandle<mirror::Class>(nullptr);
2812  if (!LinkClass(self, descriptor, klass, interfaces, &h_new_class)) {
2813    // Linking failed.
2814    if (!klass->IsErroneous()) {
2815      mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorUnresolved, self);
2816    }
2817    return nullptr;
2818  }
2819  self->AssertNoPendingException();
2820  CHECK(h_new_class != nullptr) << descriptor;
2821  CHECK(h_new_class->IsResolved() && !h_new_class->IsErroneousResolved()) << descriptor;
2822
2823  // Instrumentation may have updated entrypoints for all methods of all
2824  // classes. However it could not update methods of this class while we
2825  // were loading it. Now the class is resolved, we can update entrypoints
2826  // as required by instrumentation.
2827  if (Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()) {
2828    // We must be in the kRunnable state to prevent instrumentation from
2829    // suspending all threads to update entrypoints while we are doing it
2830    // for this class.
2831    DCHECK_EQ(self->GetState(), kRunnable);
2832    Runtime::Current()->GetInstrumentation()->InstallStubsForClass(h_new_class.Get());
2833  }
2834
2835  /*
2836   * We send CLASS_PREPARE events to the debugger from here.  The
2837   * definition of "preparation" is creating the static fields for a
2838   * class and initializing them to the standard default values, but not
2839   * executing any code (that comes later, during "initialization").
2840   *
2841   * We did the static preparation in LinkClass.
2842   *
2843   * The class has been prepared and resolved but possibly not yet verified
2844   * at this point.
2845   */
2846  Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(klass, h_new_class);
2847
2848  // Notify native debugger of the new class and its layout.
2849  jit::Jit::NewTypeLoadedIfUsingJit(h_new_class.Get());
2850
2851  return h_new_class.Get();
2852}
2853
2854uint32_t ClassLinker::SizeOfClassWithoutEmbeddedTables(const DexFile& dex_file,
2855                                                       const DexFile::ClassDef& dex_class_def) {
2856  const uint8_t* class_data = dex_file.GetClassData(dex_class_def);
2857  size_t num_ref = 0;
2858  size_t num_8 = 0;
2859  size_t num_16 = 0;
2860  size_t num_32 = 0;
2861  size_t num_64 = 0;
2862  if (class_data != nullptr) {
2863    // We allow duplicate definitions of the same field in a class_data_item
2864    // but ignore the repeated indexes here, b/21868015.
2865    uint32_t last_field_idx = DexFile::kDexNoIndex;
2866    for (ClassDataItemIterator it(dex_file, class_data); it.HasNextStaticField(); it.Next()) {
2867      uint32_t field_idx = it.GetMemberIndex();
2868      // Ordering enforced by DexFileVerifier.
2869      DCHECK(last_field_idx == DexFile::kDexNoIndex || last_field_idx <= field_idx);
2870      if (UNLIKELY(field_idx == last_field_idx)) {
2871        continue;
2872      }
2873      last_field_idx = field_idx;
2874      const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
2875      const char* descriptor = dex_file.GetFieldTypeDescriptor(field_id);
2876      char c = descriptor[0];
2877      switch (c) {
2878        case 'L':
2879        case '[':
2880          num_ref++;
2881          break;
2882        case 'J':
2883        case 'D':
2884          num_64++;
2885          break;
2886        case 'I':
2887        case 'F':
2888          num_32++;
2889          break;
2890        case 'S':
2891        case 'C':
2892          num_16++;
2893          break;
2894        case 'B':
2895        case 'Z':
2896          num_8++;
2897          break;
2898        default:
2899          LOG(FATAL) << "Unknown descriptor: " << c;
2900          UNREACHABLE();
2901      }
2902    }
2903  }
2904  return mirror::Class::ComputeClassSize(false,
2905                                         0,
2906                                         num_8,
2907                                         num_16,
2908                                         num_32,
2909                                         num_64,
2910                                         num_ref,
2911                                         image_pointer_size_);
2912}
2913
2914// Special case to get oat code without overwriting a trampoline.
2915const void* ClassLinker::GetQuickOatCodeFor(ArtMethod* method) {
2916  CHECK(method->IsInvokable()) << method->PrettyMethod();
2917  if (method->IsProxyMethod()) {
2918    return GetQuickProxyInvokeHandler();
2919  }
2920  auto* code = method->GetOatMethodQuickCode(GetImagePointerSize());
2921  if (code != nullptr) {
2922    return code;
2923  }
2924  if (method->IsNative()) {
2925    // No code and native? Use generic trampoline.
2926    return GetQuickGenericJniStub();
2927  }
2928  return GetQuickToInterpreterBridge();
2929}
2930
2931bool ClassLinker::ShouldUseInterpreterEntrypoint(ArtMethod* method, const void* quick_code) {
2932  if (UNLIKELY(method->IsNative() || method->IsProxyMethod())) {
2933    return false;
2934  }
2935
2936  if (quick_code == nullptr) {
2937    return true;
2938  }
2939
2940  Runtime* runtime = Runtime::Current();
2941  instrumentation::Instrumentation* instr = runtime->GetInstrumentation();
2942  if (instr->InterpretOnly()) {
2943    return true;
2944  }
2945
2946  if (runtime->GetClassLinker()->IsQuickToInterpreterBridge(quick_code)) {
2947    // Doing this check avoids doing compiled/interpreter transitions.
2948    return true;
2949  }
2950
2951  if (Dbg::IsForcedInterpreterNeededForCalling(Thread::Current(), method)) {
2952    // Force the use of interpreter when it is required by the debugger.
2953    return true;
2954  }
2955
2956  if (runtime->IsJavaDebuggable()) {
2957    // For simplicity, we ignore precompiled code and go to the interpreter
2958    // assuming we don't already have jitted code.
2959    // We could look at the oat file where `quick_code` is being defined,
2960    // and check whether it's been compiled debuggable, but we decided to
2961    // only rely on the JIT for debuggable apps.
2962    jit::Jit* jit = Runtime::Current()->GetJit();
2963    return (jit == nullptr) || !jit->GetCodeCache()->ContainsPc(quick_code);
2964  }
2965
2966  if (runtime->IsNativeDebuggable()) {
2967    DCHECK(runtime->UseJitCompilation() && runtime->GetJit()->JitAtFirstUse());
2968    // If we are doing native debugging, ignore application's AOT code,
2969    // since we want to JIT it (at first use) with extra stackmaps for native
2970    // debugging. We keep however all AOT code from the boot image,
2971    // since the JIT-at-first-use is blocking and would result in non-negligible
2972    // startup performance impact.
2973    return !runtime->GetHeap()->IsInBootImageOatFile(quick_code);
2974  }
2975
2976  return false;
2977}
2978
2979void ClassLinker::FixupStaticTrampolines(ObjPtr<mirror::Class> klass) {
2980  DCHECK(klass->IsInitialized()) << klass->PrettyDescriptor();
2981  if (klass->NumDirectMethods() == 0) {
2982    return;  // No direct methods => no static methods.
2983  }
2984  Runtime* runtime = Runtime::Current();
2985  if (!runtime->IsStarted()) {
2986    if (runtime->IsAotCompiler() || runtime->GetHeap()->HasBootImageSpace()) {
2987      return;  // OAT file unavailable.
2988    }
2989  }
2990
2991  const DexFile& dex_file = klass->GetDexFile();
2992  const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
2993  CHECK(dex_class_def != nullptr);
2994  const uint8_t* class_data = dex_file.GetClassData(*dex_class_def);
2995  // There should always be class data if there were direct methods.
2996  CHECK(class_data != nullptr) << klass->PrettyDescriptor();
2997  ClassDataItemIterator it(dex_file, class_data);
2998  // Skip fields
2999  while (it.HasNextStaticField()) {
3000    it.Next();
3001  }
3002  while (it.HasNextInstanceField()) {
3003    it.Next();
3004  }
3005  bool has_oat_class;
3006  OatFile::OatClass oat_class = OatFile::FindOatClass(dex_file,
3007                                                      klass->GetDexClassDefIndex(),
3008                                                      &has_oat_class);
3009  // Link the code of methods skipped by LinkCode.
3010  for (size_t method_index = 0; it.HasNextDirectMethod(); ++method_index, it.Next()) {
3011    ArtMethod* method = klass->GetDirectMethod(method_index, image_pointer_size_);
3012    if (!method->IsStatic()) {
3013      // Only update static methods.
3014      continue;
3015    }
3016    const void* quick_code = nullptr;
3017    if (has_oat_class) {
3018      OatFile::OatMethod oat_method = oat_class.GetOatMethod(method_index);
3019      quick_code = oat_method.GetQuickCode();
3020    }
3021    // Check whether the method is native, in which case it's generic JNI.
3022    if (quick_code == nullptr && method->IsNative()) {
3023      quick_code = GetQuickGenericJniStub();
3024    } else if (ShouldUseInterpreterEntrypoint(method, quick_code)) {
3025      // Use interpreter entry point.
3026      quick_code = GetQuickToInterpreterBridge();
3027    }
3028    runtime->GetInstrumentation()->UpdateMethodsCode(method, quick_code);
3029  }
3030  // Ignore virtual methods on the iterator.
3031}
3032
3033// Does anything needed to make sure that the compiler will not generate a direct invoke to this
3034// method. Should only be called on non-invokable methods.
3035inline void EnsureThrowsInvocationError(ClassLinker* class_linker, ArtMethod* method) {
3036  DCHECK(method != nullptr);
3037  DCHECK(!method->IsInvokable());
3038  method->SetEntryPointFromQuickCompiledCodePtrSize(
3039      class_linker->GetQuickToInterpreterBridgeTrampoline(),
3040      class_linker->GetImagePointerSize());
3041}
3042
3043static void LinkCode(ClassLinker* class_linker,
3044                     ArtMethod* method,
3045                     const OatFile::OatClass* oat_class,
3046                     uint32_t class_def_method_index) REQUIRES_SHARED(Locks::mutator_lock_) {
3047  Runtime* const runtime = Runtime::Current();
3048  if (runtime->IsAotCompiler()) {
3049    // The following code only applies to a non-compiler runtime.
3050    return;
3051  }
3052  // Method shouldn't have already been linked.
3053  DCHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr);
3054  if (oat_class != nullptr) {
3055    // Every kind of method should at least get an invoke stub from the oat_method.
3056    // non-abstract methods also get their code pointers.
3057    const OatFile::OatMethod oat_method = oat_class->GetOatMethod(class_def_method_index);
3058    oat_method.LinkMethod(method);
3059  }
3060
3061  // Install entry point from interpreter.
3062  const void* quick_code = method->GetEntryPointFromQuickCompiledCode();
3063  bool enter_interpreter = class_linker->ShouldUseInterpreterEntrypoint(method, quick_code);
3064
3065  if (!method->IsInvokable()) {
3066    EnsureThrowsInvocationError(class_linker, method);
3067    return;
3068  }
3069
3070  if (method->IsStatic() && !method->IsConstructor()) {
3071    // For static methods excluding the class initializer, install the trampoline.
3072    // It will be replaced by the proper entry point by ClassLinker::FixupStaticTrampolines
3073    // after initializing class (see ClassLinker::InitializeClass method).
3074    method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
3075  } else if (quick_code == nullptr && method->IsNative()) {
3076    method->SetEntryPointFromQuickCompiledCode(GetQuickGenericJniStub());
3077  } else if (enter_interpreter) {
3078    // Set entry point from compiled code if there's no code or in interpreter only mode.
3079    method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
3080  }
3081
3082  if (method->IsNative()) {
3083    // Unregistering restores the dlsym lookup stub.
3084    method->UnregisterNative();
3085
3086    if (enter_interpreter || quick_code == nullptr) {
3087      // We have a native method here without code. Then it should have either the generic JNI
3088      // trampoline as entrypoint (non-static), or the resolution trampoline (static).
3089      // TODO: this doesn't handle all the cases where trampolines may be installed.
3090      const void* entry_point = method->GetEntryPointFromQuickCompiledCode();
3091      DCHECK(class_linker->IsQuickGenericJniStub(entry_point) ||
3092             class_linker->IsQuickResolutionStub(entry_point));
3093    }
3094  }
3095}
3096
3097void ClassLinker::SetupClass(const DexFile& dex_file,
3098                             const DexFile::ClassDef& dex_class_def,
3099                             Handle<mirror::Class> klass,
3100                             ObjPtr<mirror::ClassLoader> class_loader) {
3101  CHECK(klass != nullptr);
3102  CHECK(klass->GetDexCache() != nullptr);
3103  CHECK_EQ(mirror::Class::kStatusNotReady, klass->GetStatus());
3104  const char* descriptor = dex_file.GetClassDescriptor(dex_class_def);
3105  CHECK(descriptor != nullptr);
3106
3107  klass->SetClass(GetClassRoot(kJavaLangClass));
3108  uint32_t access_flags = dex_class_def.GetJavaAccessFlags();
3109  CHECK_EQ(access_flags & ~kAccJavaFlagsMask, 0U);
3110  klass->SetAccessFlags(access_flags);
3111  klass->SetClassLoader(class_loader);
3112  DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot);
3113  mirror::Class::SetStatus(klass, mirror::Class::kStatusIdx, nullptr);
3114
3115  klass->SetDexClassDefIndex(dex_file.GetIndexForClassDef(dex_class_def));
3116  klass->SetDexTypeIndex(dex_class_def.class_idx_);
3117}
3118
3119void ClassLinker::LoadClass(Thread* self,
3120                            const DexFile& dex_file,
3121                            const DexFile::ClassDef& dex_class_def,
3122                            Handle<mirror::Class> klass) {
3123  const uint8_t* class_data = dex_file.GetClassData(dex_class_def);
3124  if (class_data == nullptr) {
3125    return;  // no fields or methods - for example a marker interface
3126  }
3127  LoadClassMembers(self, dex_file, class_data, klass);
3128}
3129
3130LengthPrefixedArray<ArtField>* ClassLinker::AllocArtFieldArray(Thread* self,
3131                                                               LinearAlloc* allocator,
3132                                                               size_t length) {
3133  if (length == 0) {
3134    return nullptr;
3135  }
3136  // If the ArtField alignment changes, review all uses of LengthPrefixedArray<ArtField>.
3137  static_assert(alignof(ArtField) == 4, "ArtField alignment is expected to be 4.");
3138  size_t storage_size = LengthPrefixedArray<ArtField>::ComputeSize(length);
3139  void* array_storage = allocator->Alloc(self, storage_size);
3140  auto* ret = new(array_storage) LengthPrefixedArray<ArtField>(length);
3141  CHECK(ret != nullptr);
3142  std::uninitialized_fill_n(&ret->At(0), length, ArtField());
3143  return ret;
3144}
3145
3146LengthPrefixedArray<ArtMethod>* ClassLinker::AllocArtMethodArray(Thread* self,
3147                                                                 LinearAlloc* allocator,
3148                                                                 size_t length) {
3149  if (length == 0) {
3150    return nullptr;
3151  }
3152  const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_);
3153  const size_t method_size = ArtMethod::Size(image_pointer_size_);
3154  const size_t storage_size =
3155      LengthPrefixedArray<ArtMethod>::ComputeSize(length, method_size, method_alignment);
3156  void* array_storage = allocator->Alloc(self, storage_size);
3157  auto* ret = new (array_storage) LengthPrefixedArray<ArtMethod>(length);
3158  CHECK(ret != nullptr);
3159  for (size_t i = 0; i < length; ++i) {
3160    new(reinterpret_cast<void*>(&ret->At(i, method_size, method_alignment))) ArtMethod;
3161  }
3162  return ret;
3163}
3164
3165LinearAlloc* ClassLinker::GetAllocatorForClassLoader(ObjPtr<mirror::ClassLoader> class_loader) {
3166  if (class_loader == nullptr) {
3167    return Runtime::Current()->GetLinearAlloc();
3168  }
3169  LinearAlloc* allocator = class_loader->GetAllocator();
3170  DCHECK(allocator != nullptr);
3171  return allocator;
3172}
3173
3174LinearAlloc* ClassLinker::GetOrCreateAllocatorForClassLoader(ObjPtr<mirror::ClassLoader> class_loader) {
3175  if (class_loader == nullptr) {
3176    return Runtime::Current()->GetLinearAlloc();
3177  }
3178  WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3179  LinearAlloc* allocator = class_loader->GetAllocator();
3180  if (allocator == nullptr) {
3181    RegisterClassLoader(class_loader);
3182    allocator = class_loader->GetAllocator();
3183    CHECK(allocator != nullptr);
3184  }
3185  return allocator;
3186}
3187
3188void ClassLinker::LoadClassMembers(Thread* self,
3189                                   const DexFile& dex_file,
3190                                   const uint8_t* class_data,
3191                                   Handle<mirror::Class> klass) {
3192  {
3193    // Note: We cannot have thread suspension until the field and method arrays are setup or else
3194    // Class::VisitFieldRoots may miss some fields or methods.
3195    ScopedAssertNoThreadSuspension nts(__FUNCTION__);
3196    // Load static fields.
3197    // We allow duplicate definitions of the same field in a class_data_item
3198    // but ignore the repeated indexes here, b/21868015.
3199    LinearAlloc* const allocator = GetAllocatorForClassLoader(klass->GetClassLoader());
3200    ClassDataItemIterator it(dex_file, class_data);
3201    LengthPrefixedArray<ArtField>* sfields = AllocArtFieldArray(self,
3202                                                                allocator,
3203                                                                it.NumStaticFields());
3204    size_t num_sfields = 0;
3205    uint32_t last_field_idx = 0u;
3206    for (; it.HasNextStaticField(); it.Next()) {
3207      uint32_t field_idx = it.GetMemberIndex();
3208      DCHECK_GE(field_idx, last_field_idx);  // Ordering enforced by DexFileVerifier.
3209      if (num_sfields == 0 || LIKELY(field_idx > last_field_idx)) {
3210        DCHECK_LT(num_sfields, it.NumStaticFields());
3211        LoadField(it, klass, &sfields->At(num_sfields));
3212        ++num_sfields;
3213        last_field_idx = field_idx;
3214      }
3215    }
3216
3217    // Load instance fields.
3218    LengthPrefixedArray<ArtField>* ifields = AllocArtFieldArray(self,
3219                                                                allocator,
3220                                                                it.NumInstanceFields());
3221    size_t num_ifields = 0u;
3222    last_field_idx = 0u;
3223    for (; it.HasNextInstanceField(); it.Next()) {
3224      uint32_t field_idx = it.GetMemberIndex();
3225      DCHECK_GE(field_idx, last_field_idx);  // Ordering enforced by DexFileVerifier.
3226      if (num_ifields == 0 || LIKELY(field_idx > last_field_idx)) {
3227        DCHECK_LT(num_ifields, it.NumInstanceFields());
3228        LoadField(it, klass, &ifields->At(num_ifields));
3229        ++num_ifields;
3230        last_field_idx = field_idx;
3231      }
3232    }
3233
3234    if (UNLIKELY(num_sfields != it.NumStaticFields()) ||
3235        UNLIKELY(num_ifields != it.NumInstanceFields())) {
3236      LOG(WARNING) << "Duplicate fields in class " << klass->PrettyDescriptor()
3237          << " (unique static fields: " << num_sfields << "/" << it.NumStaticFields()
3238          << ", unique instance fields: " << num_ifields << "/" << it.NumInstanceFields() << ")";
3239      // NOTE: Not shrinking the over-allocated sfields/ifields, just setting size.
3240      if (sfields != nullptr) {
3241        sfields->SetSize(num_sfields);
3242      }
3243      if (ifields != nullptr) {
3244        ifields->SetSize(num_ifields);
3245      }
3246    }
3247    // Set the field arrays.
3248    klass->SetSFieldsPtr(sfields);
3249    DCHECK_EQ(klass->NumStaticFields(), num_sfields);
3250    klass->SetIFieldsPtr(ifields);
3251    DCHECK_EQ(klass->NumInstanceFields(), num_ifields);
3252    // Load methods.
3253    bool has_oat_class = false;
3254    const OatFile::OatClass oat_class =
3255        (Runtime::Current()->IsStarted() && !Runtime::Current()->IsAotCompiler())
3256            ? OatFile::FindOatClass(dex_file, klass->GetDexClassDefIndex(), &has_oat_class)
3257            : OatFile::OatClass::Invalid();
3258    const OatFile::OatClass* oat_class_ptr = has_oat_class ? &oat_class : nullptr;
3259    klass->SetMethodsPtr(
3260        AllocArtMethodArray(self, allocator, it.NumDirectMethods() + it.NumVirtualMethods()),
3261        it.NumDirectMethods(),
3262        it.NumVirtualMethods());
3263    size_t class_def_method_index = 0;
3264    uint32_t last_dex_method_index = DexFile::kDexNoIndex;
3265    size_t last_class_def_method_index = 0;
3266    // TODO These should really use the iterators.
3267    for (size_t i = 0; it.HasNextDirectMethod(); i++, it.Next()) {
3268      ArtMethod* method = klass->GetDirectMethodUnchecked(i, image_pointer_size_);
3269      LoadMethod(dex_file, it, klass, method);
3270      LinkCode(this, method, oat_class_ptr, class_def_method_index);
3271      uint32_t it_method_index = it.GetMemberIndex();
3272      if (last_dex_method_index == it_method_index) {
3273        // duplicate case
3274        method->SetMethodIndex(last_class_def_method_index);
3275      } else {
3276        method->SetMethodIndex(class_def_method_index);
3277        last_dex_method_index = it_method_index;
3278        last_class_def_method_index = class_def_method_index;
3279      }
3280      class_def_method_index++;
3281    }
3282    for (size_t i = 0; it.HasNextVirtualMethod(); i++, it.Next()) {
3283      ArtMethod* method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_);
3284      LoadMethod(dex_file, it, klass, method);
3285      DCHECK_EQ(class_def_method_index, it.NumDirectMethods() + i);
3286      LinkCode(this, method, oat_class_ptr, class_def_method_index);
3287      class_def_method_index++;
3288    }
3289    DCHECK(!it.HasNext());
3290  }
3291  // Ensure that the card is marked so that remembered sets pick up native roots.
3292  Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(klass.Get());
3293  self->AllowThreadSuspension();
3294}
3295
3296void ClassLinker::LoadField(const ClassDataItemIterator& it,
3297                            Handle<mirror::Class> klass,
3298                            ArtField* dst) {
3299  const uint32_t field_idx = it.GetMemberIndex();
3300  dst->SetDexFieldIndex(field_idx);
3301  dst->SetDeclaringClass(klass.Get());
3302  dst->SetAccessFlags(it.GetFieldAccessFlags());
3303}
3304
3305void ClassLinker::LoadMethod(const DexFile& dex_file,
3306                             const ClassDataItemIterator& it,
3307                             Handle<mirror::Class> klass,
3308                             ArtMethod* dst) {
3309  uint32_t dex_method_idx = it.GetMemberIndex();
3310  const DexFile::MethodId& method_id = dex_file.GetMethodId(dex_method_idx);
3311  const char* method_name = dex_file.StringDataByIdx(method_id.name_idx_);
3312
3313  ScopedAssertNoThreadSuspension ants("LoadMethod");
3314  dst->SetDexMethodIndex(dex_method_idx);
3315  dst->SetDeclaringClass(klass.Get());
3316  dst->SetCodeItemOffset(it.GetMethodCodeItemOffset());
3317
3318  dst->SetDexCacheResolvedMethods(klass->GetDexCache()->GetResolvedMethods(), image_pointer_size_);
3319
3320  uint32_t access_flags = it.GetMethodAccessFlags();
3321
3322  if (UNLIKELY(strcmp("finalize", method_name) == 0)) {
3323    // Set finalizable flag on declaring class.
3324    if (strcmp("V", dex_file.GetShorty(method_id.proto_idx_)) == 0) {
3325      // Void return type.
3326      if (klass->GetClassLoader() != nullptr) {  // All non-boot finalizer methods are flagged.
3327        klass->SetFinalizable();
3328      } else {
3329        std::string temp;
3330        const char* klass_descriptor = klass->GetDescriptor(&temp);
3331        // The Enum class declares a "final" finalize() method to prevent subclasses from
3332        // introducing a finalizer. We don't want to set the finalizable flag for Enum or its
3333        // subclasses, so we exclude it here.
3334        // We also want to avoid setting the flag on Object, where we know that finalize() is
3335        // empty.
3336        if (strcmp(klass_descriptor, "Ljava/lang/Object;") != 0 &&
3337            strcmp(klass_descriptor, "Ljava/lang/Enum;") != 0) {
3338          klass->SetFinalizable();
3339        }
3340      }
3341    }
3342  } else if (method_name[0] == '<') {
3343    // Fix broken access flags for initializers. Bug 11157540.
3344    bool is_init = (strcmp("<init>", method_name) == 0);
3345    bool is_clinit = !is_init && (strcmp("<clinit>", method_name) == 0);
3346    if (UNLIKELY(!is_init && !is_clinit)) {
3347      LOG(WARNING) << "Unexpected '<' at start of method name " << method_name;
3348    } else {
3349      if (UNLIKELY((access_flags & kAccConstructor) == 0)) {
3350        LOG(WARNING) << method_name << " didn't have expected constructor access flag in class "
3351            << klass->PrettyDescriptor() << " in dex file " << dex_file.GetLocation();
3352        access_flags |= kAccConstructor;
3353      }
3354    }
3355  }
3356  dst->SetAccessFlags(access_flags);
3357}
3358
3359void ClassLinker::AppendToBootClassPath(Thread* self, const DexFile& dex_file) {
3360  ObjPtr<mirror::DexCache> dex_cache = AllocAndInitializeDexCache(
3361      self,
3362      dex_file,
3363      Runtime::Current()->GetLinearAlloc());
3364  CHECK(dex_cache != nullptr) << "Failed to allocate dex cache for " << dex_file.GetLocation();
3365  AppendToBootClassPath(dex_file, dex_cache);
3366}
3367
3368void ClassLinker::AppendToBootClassPath(const DexFile& dex_file,
3369                                        ObjPtr<mirror::DexCache> dex_cache) {
3370  CHECK(dex_cache != nullptr) << dex_file.GetLocation();
3371  boot_class_path_.push_back(&dex_file);
3372  RegisterBootClassPathDexFile(dex_file, dex_cache);
3373}
3374
3375void ClassLinker::RegisterDexFileLocked(const DexFile& dex_file,
3376                                        ObjPtr<mirror::DexCache> dex_cache,
3377                                        ObjPtr<mirror::ClassLoader> class_loader) {
3378  Thread* const self = Thread::Current();
3379  Locks::dex_lock_->AssertExclusiveHeld(self);
3380  CHECK(dex_cache != nullptr) << dex_file.GetLocation();
3381  // For app images, the dex cache location may be a suffix of the dex file location since the
3382  // dex file location is an absolute path.
3383  const std::string dex_cache_location = dex_cache->GetLocation()->ToModifiedUtf8();
3384  const size_t dex_cache_length = dex_cache_location.length();
3385  CHECK_GT(dex_cache_length, 0u) << dex_file.GetLocation();
3386  std::string dex_file_location = dex_file.GetLocation();
3387  CHECK_GE(dex_file_location.length(), dex_cache_length)
3388      << dex_cache_location << " " << dex_file.GetLocation();
3389  // Take suffix.
3390  const std::string dex_file_suffix = dex_file_location.substr(
3391      dex_file_location.length() - dex_cache_length,
3392      dex_cache_length);
3393  // Example dex_cache location is SettingsProvider.apk and
3394  // dex file location is /system/priv-app/SettingsProvider/SettingsProvider.apk
3395  CHECK_EQ(dex_cache_location, dex_file_suffix);
3396  // Clean up pass to remove null dex caches.
3397  // Null dex caches can occur due to class unloading and we are lazily removing null entries.
3398  JavaVMExt* const vm = self->GetJniEnv()->vm;
3399  for (auto it = dex_caches_.begin(); it != dex_caches_.end(); ) {
3400    DexCacheData data = *it;
3401    if (self->IsJWeakCleared(data.weak_root)) {
3402      vm->DeleteWeakGlobalRef(self, data.weak_root);
3403      it = dex_caches_.erase(it);
3404    } else {
3405      ++it;
3406    }
3407  }
3408  jweak dex_cache_jweak = vm->AddWeakGlobalRef(self, dex_cache);
3409  dex_cache->SetDexFile(&dex_file);
3410  DexCacheData data;
3411  data.weak_root = dex_cache_jweak;
3412  data.dex_file = dex_cache->GetDexFile();
3413  data.resolved_methods = dex_cache->GetResolvedMethods();
3414  data.class_table = ClassTableForClassLoader(class_loader);
3415  DCHECK(data.class_table != nullptr);
3416  dex_caches_.push_back(data);
3417}
3418
3419ObjPtr<mirror::DexCache> ClassLinker::DecodeDexCache(Thread* self, const DexCacheData& data) {
3420  return data.IsValid()
3421      ? ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root))
3422      : nullptr;
3423}
3424
3425ObjPtr<mirror::DexCache> ClassLinker::EnsureSameClassLoader(
3426    Thread* self,
3427    ObjPtr<mirror::DexCache> dex_cache,
3428    const DexCacheData& data,
3429    ObjPtr<mirror::ClassLoader> class_loader) {
3430  DCHECK_EQ(dex_cache->GetDexFile(), data.dex_file);
3431  if (data.class_table != ClassTableForClassLoader(class_loader)) {
3432    self->ThrowNewExceptionF("Ljava/lang/InternalError;",
3433                             "Attempt to register dex file %s with multiple class loaders",
3434                             data.dex_file->GetLocation().c_str());
3435    return nullptr;
3436  }
3437  return dex_cache;
3438}
3439
3440ObjPtr<mirror::DexCache> ClassLinker::RegisterDexFile(const DexFile& dex_file,
3441                                                      ObjPtr<mirror::ClassLoader> class_loader) {
3442  Thread* self = Thread::Current();
3443  DexCacheData old_data;
3444  {
3445    ReaderMutexLock mu(self, *Locks::dex_lock_);
3446    old_data = FindDexCacheDataLocked(dex_file);
3447  }
3448  ObjPtr<mirror::DexCache> old_dex_cache = DecodeDexCache(self, old_data);
3449  if (old_dex_cache != nullptr) {
3450    return EnsureSameClassLoader(self, old_dex_cache, old_data, class_loader);
3451  }
3452  LinearAlloc* const linear_alloc = GetOrCreateAllocatorForClassLoader(class_loader);
3453  DCHECK(linear_alloc != nullptr);
3454  ClassTable* table;
3455  {
3456    WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
3457    table = InsertClassTableForClassLoader(class_loader);
3458  }
3459  // Don't alloc while holding the lock, since allocation may need to
3460  // suspend all threads and another thread may need the dex_lock_ to
3461  // get to a suspend point.
3462  StackHandleScope<3> hs(self);
3463  Handle<mirror::ClassLoader> h_class_loader(hs.NewHandle(class_loader));
3464  ObjPtr<mirror::String> location;
3465  Handle<mirror::DexCache> h_dex_cache(hs.NewHandle(AllocDexCache(/*out*/&location,
3466                                                                  self,
3467                                                                  dex_file)));
3468  Handle<mirror::String> h_location(hs.NewHandle(location));
3469  {
3470    WriterMutexLock mu(self, *Locks::dex_lock_);
3471    old_data = FindDexCacheDataLocked(dex_file);
3472    old_dex_cache = DecodeDexCache(self, old_data);
3473    if (old_dex_cache == nullptr && h_dex_cache != nullptr) {
3474      // Do InitializeDexCache while holding dex lock to make sure two threads don't call it at the
3475      // same time with the same dex cache. Since the .bss is shared this can cause failing DCHECK
3476      // that the arrays are null.
3477      mirror::DexCache::InitializeDexCache(self,
3478                                           h_dex_cache.Get(),
3479                                           h_location.Get(),
3480                                           &dex_file,
3481                                           linear_alloc,
3482                                           image_pointer_size_);
3483      RegisterDexFileLocked(dex_file, h_dex_cache.Get(), h_class_loader.Get());
3484    }
3485  }
3486  if (old_dex_cache != nullptr) {
3487    // Another thread managed to initialize the dex cache faster, so use that DexCache.
3488    // If this thread encountered OOME, ignore it.
3489    DCHECK_EQ(h_dex_cache == nullptr, self->IsExceptionPending());
3490    self->ClearException();
3491    // We cannot call EnsureSameClassLoader() while holding the dex_lock_.
3492    return EnsureSameClassLoader(self, old_dex_cache, old_data, h_class_loader.Get());
3493  }
3494  if (h_dex_cache == nullptr) {
3495    self->AssertPendingOOMException();
3496    return nullptr;
3497  }
3498  table->InsertStrongRoot(h_dex_cache.Get());
3499  if (h_class_loader.Get() != nullptr) {
3500    // Since we added a strong root to the class table, do the write barrier as required for
3501    // remembered sets and generational GCs.
3502    Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(h_class_loader.Get());
3503  }
3504  return h_dex_cache.Get();
3505}
3506
3507void ClassLinker::RegisterBootClassPathDexFile(const DexFile& dex_file,
3508                                               ObjPtr<mirror::DexCache> dex_cache) {
3509  WriterMutexLock mu(Thread::Current(), *Locks::dex_lock_);
3510  RegisterDexFileLocked(dex_file, dex_cache, /* class_loader */ nullptr);
3511}
3512
3513bool ClassLinker::IsDexFileRegistered(Thread* self, const DexFile& dex_file) {
3514  ReaderMutexLock mu(self, *Locks::dex_lock_);
3515  return DecodeDexCache(self, FindDexCacheDataLocked(dex_file)) != nullptr;
3516}
3517
3518ObjPtr<mirror::DexCache> ClassLinker::FindDexCache(Thread* self, const DexFile& dex_file) {
3519  ReaderMutexLock mu(self, *Locks::dex_lock_);
3520  ObjPtr<mirror::DexCache> dex_cache = DecodeDexCache(self, FindDexCacheDataLocked(dex_file));
3521  if (dex_cache != nullptr) {
3522    return dex_cache;
3523  }
3524  // Failure, dump diagnostic and abort.
3525  for (const DexCacheData& data : dex_caches_) {
3526    if (DecodeDexCache(self, data) != nullptr) {
3527      LOG(FATAL_WITHOUT_ABORT) << "Registered dex file " << data.dex_file->GetLocation();
3528    }
3529  }
3530  LOG(FATAL) << "Failed to find DexCache for DexFile " << dex_file.GetLocation();
3531  UNREACHABLE();
3532}
3533
3534ClassTable* ClassLinker::FindClassTable(Thread* self, ObjPtr<mirror::DexCache> dex_cache) {
3535  const DexFile* dex_file = dex_cache->GetDexFile();
3536  DCHECK(dex_file != nullptr);
3537  ReaderMutexLock mu(self, *Locks::dex_lock_);
3538  // Search assuming unique-ness of dex file.
3539  for (const DexCacheData& data : dex_caches_) {
3540    // Avoid decoding (and read barriers) other unrelated dex caches.
3541    if (data.dex_file == dex_file) {
3542      ObjPtr<mirror::DexCache> registered_dex_cache = DecodeDexCache(self, data);
3543      if (registered_dex_cache != nullptr) {
3544        CHECK_EQ(registered_dex_cache, dex_cache) << dex_file->GetLocation();
3545        return data.class_table;
3546      }
3547    }
3548  }
3549  return nullptr;
3550}
3551
3552ClassLinker::DexCacheData ClassLinker::FindDexCacheDataLocked(const DexFile& dex_file) {
3553  // Search assuming unique-ness of dex file.
3554  for (const DexCacheData& data : dex_caches_) {
3555    // Avoid decoding (and read barriers) other unrelated dex caches.
3556    if (data.dex_file == &dex_file) {
3557      return data;
3558    }
3559  }
3560  return DexCacheData();
3561}
3562
3563void ClassLinker::FixupDexCaches(ArtMethod* resolution_method) {
3564  Thread* const self = Thread::Current();
3565  ReaderMutexLock mu(self, *Locks::dex_lock_);
3566  for (const DexCacheData& data : dex_caches_) {
3567    if (!self->IsJWeakCleared(data.weak_root)) {
3568      ObjPtr<mirror::DexCache> dex_cache = ObjPtr<mirror::DexCache>::DownCast(
3569          self->DecodeJObject(data.weak_root));
3570      if (dex_cache != nullptr) {
3571        dex_cache->Fixup(resolution_method, image_pointer_size_);
3572      }
3573    }
3574  }
3575}
3576
3577mirror::Class* ClassLinker::CreatePrimitiveClass(Thread* self, Primitive::Type type) {
3578  ObjPtr<mirror::Class> klass =
3579      AllocClass(self, mirror::Class::PrimitiveClassSize(image_pointer_size_));
3580  if (UNLIKELY(klass == nullptr)) {
3581    self->AssertPendingOOMException();
3582    return nullptr;
3583  }
3584  return InitializePrimitiveClass(klass, type);
3585}
3586
3587mirror::Class* ClassLinker::InitializePrimitiveClass(ObjPtr<mirror::Class> primitive_class,
3588                                                     Primitive::Type type) {
3589  CHECK(primitive_class != nullptr);
3590  // Must hold lock on object when initializing.
3591  Thread* self = Thread::Current();
3592  StackHandleScope<1> hs(self);
3593  Handle<mirror::Class> h_class(hs.NewHandle(primitive_class));
3594  ObjectLock<mirror::Class> lock(self, h_class);
3595  h_class->SetAccessFlags(kAccPublic | kAccFinal | kAccAbstract);
3596  h_class->SetPrimitiveType(type);
3597  h_class->SetIfTable(GetClassRoot(kJavaLangObject)->GetIfTable());
3598  mirror::Class::SetStatus(h_class, mirror::Class::kStatusInitialized, self);
3599  const char* descriptor = Primitive::Descriptor(type);
3600  ObjPtr<mirror::Class> existing = InsertClass(descriptor,
3601                                               h_class.Get(),
3602                                               ComputeModifiedUtf8Hash(descriptor));
3603  CHECK(existing == nullptr) << "InitPrimitiveClass(" << type << ") failed";
3604  return h_class.Get();
3605}
3606
3607// Create an array class (i.e. the class object for the array, not the
3608// array itself).  "descriptor" looks like "[C" or "[[[[B" or
3609// "[Ljava/lang/String;".
3610//
3611// If "descriptor" refers to an array of primitives, look up the
3612// primitive type's internally-generated class object.
3613//
3614// "class_loader" is the class loader of the class that's referring to
3615// us.  It's used to ensure that we're looking for the element type in
3616// the right context.  It does NOT become the class loader for the
3617// array class; that always comes from the base element class.
3618//
3619// Returns null with an exception raised on failure.
3620mirror::Class* ClassLinker::CreateArrayClass(Thread* self, const char* descriptor, size_t hash,
3621                                             Handle<mirror::ClassLoader> class_loader) {
3622  // Identify the underlying component type
3623  CHECK_EQ('[', descriptor[0]);
3624  StackHandleScope<2> hs(self);
3625  MutableHandle<mirror::Class> component_type(hs.NewHandle(FindClass(self, descriptor + 1,
3626                                                                     class_loader)));
3627  if (component_type == nullptr) {
3628    DCHECK(self->IsExceptionPending());
3629    // We need to accept erroneous classes as component types.
3630    const size_t component_hash = ComputeModifiedUtf8Hash(descriptor + 1);
3631    component_type.Assign(LookupClass(self, descriptor + 1, component_hash, class_loader.Get()));
3632    if (component_type == nullptr) {
3633      DCHECK(self->IsExceptionPending());
3634      return nullptr;
3635    } else {
3636      self->ClearException();
3637    }
3638  }
3639  if (UNLIKELY(component_type->IsPrimitiveVoid())) {
3640    ThrowNoClassDefFoundError("Attempt to create array of void primitive type");
3641    return nullptr;
3642  }
3643  // See if the component type is already loaded.  Array classes are
3644  // always associated with the class loader of their underlying
3645  // element type -- an array of Strings goes with the loader for
3646  // java/lang/String -- so we need to look for it there.  (The
3647  // caller should have checked for the existence of the class
3648  // before calling here, but they did so with *their* class loader,
3649  // not the component type's loader.)
3650  //
3651  // If we find it, the caller adds "loader" to the class' initiating
3652  // loader list, which should prevent us from going through this again.
3653  //
3654  // This call is unnecessary if "loader" and "component_type->GetClassLoader()"
3655  // are the same, because our caller (FindClass) just did the
3656  // lookup.  (Even if we get this wrong we still have correct behavior,
3657  // because we effectively do this lookup again when we add the new
3658  // class to the hash table --- necessary because of possible races with
3659  // other threads.)
3660  if (class_loader.Get() != component_type->GetClassLoader()) {
3661    ObjPtr<mirror::Class> new_class =
3662        LookupClass(self, descriptor, hash, component_type->GetClassLoader());
3663    if (new_class != nullptr) {
3664      return new_class.Ptr();
3665    }
3666  }
3667
3668  // Fill out the fields in the Class.
3669  //
3670  // It is possible to execute some methods against arrays, because
3671  // all arrays are subclasses of java_lang_Object_, so we need to set
3672  // up a vtable.  We can just point at the one in java_lang_Object_.
3673  //
3674  // Array classes are simple enough that we don't need to do a full
3675  // link step.
3676  auto new_class = hs.NewHandle<mirror::Class>(nullptr);
3677  if (UNLIKELY(!init_done_)) {
3678    // Classes that were hand created, ie not by FindSystemClass
3679    if (strcmp(descriptor, "[Ljava/lang/Class;") == 0) {
3680      new_class.Assign(GetClassRoot(kClassArrayClass));
3681    } else if (strcmp(descriptor, "[Ljava/lang/Object;") == 0) {
3682      new_class.Assign(GetClassRoot(kObjectArrayClass));
3683    } else if (strcmp(descriptor, GetClassRootDescriptor(kJavaLangStringArrayClass)) == 0) {
3684      new_class.Assign(GetClassRoot(kJavaLangStringArrayClass));
3685    } else if (strcmp(descriptor, "[C") == 0) {
3686      new_class.Assign(GetClassRoot(kCharArrayClass));
3687    } else if (strcmp(descriptor, "[I") == 0) {
3688      new_class.Assign(GetClassRoot(kIntArrayClass));
3689    } else if (strcmp(descriptor, "[J") == 0) {
3690      new_class.Assign(GetClassRoot(kLongArrayClass));
3691    }
3692  }
3693  if (new_class == nullptr) {
3694    new_class.Assign(AllocClass(self, mirror::Array::ClassSize(image_pointer_size_)));
3695    if (new_class == nullptr) {
3696      self->AssertPendingOOMException();
3697      return nullptr;
3698    }
3699    new_class->SetComponentType(component_type.Get());
3700  }
3701  ObjectLock<mirror::Class> lock(self, new_class);  // Must hold lock on object when initializing.
3702  DCHECK(new_class->GetComponentType() != nullptr);
3703  ObjPtr<mirror::Class> java_lang_Object = GetClassRoot(kJavaLangObject);
3704  new_class->SetSuperClass(java_lang_Object);
3705  new_class->SetVTable(java_lang_Object->GetVTable());
3706  new_class->SetPrimitiveType(Primitive::kPrimNot);
3707  new_class->SetClassLoader(component_type->GetClassLoader());
3708  if (component_type->IsPrimitive()) {
3709    new_class->SetClassFlags(mirror::kClassFlagNoReferenceFields);
3710  } else {
3711    new_class->SetClassFlags(mirror::kClassFlagObjectArray);
3712  }
3713  mirror::Class::SetStatus(new_class, mirror::Class::kStatusLoaded, self);
3714  new_class->PopulateEmbeddedVTable(image_pointer_size_);
3715  ImTable* object_imt = java_lang_Object->GetImt(image_pointer_size_);
3716  new_class->SetImt(object_imt, image_pointer_size_);
3717  mirror::Class::SetStatus(new_class, mirror::Class::kStatusInitialized, self);
3718  // don't need to set new_class->SetObjectSize(..)
3719  // because Object::SizeOf delegates to Array::SizeOf
3720
3721  // All arrays have java/lang/Cloneable and java/io/Serializable as
3722  // interfaces.  We need to set that up here, so that stuff like
3723  // "instanceof" works right.
3724  //
3725  // Note: The GC could run during the call to FindSystemClass,
3726  // so we need to make sure the class object is GC-valid while we're in
3727  // there.  Do this by clearing the interface list so the GC will just
3728  // think that the entries are null.
3729
3730
3731  // Use the single, global copies of "interfaces" and "iftable"
3732  // (remember not to free them for arrays).
3733  {
3734    ObjPtr<mirror::IfTable> array_iftable = array_iftable_.Read();
3735    CHECK(array_iftable != nullptr);
3736    new_class->SetIfTable(array_iftable);
3737  }
3738
3739  // Inherit access flags from the component type.
3740  int access_flags = new_class->GetComponentType()->GetAccessFlags();
3741  // Lose any implementation detail flags; in particular, arrays aren't finalizable.
3742  access_flags &= kAccJavaFlagsMask;
3743  // Arrays can't be used as a superclass or interface, so we want to add "abstract final"
3744  // and remove "interface".
3745  access_flags |= kAccAbstract | kAccFinal;
3746  access_flags &= ~kAccInterface;
3747
3748  new_class->SetAccessFlags(access_flags);
3749
3750  ObjPtr<mirror::Class> existing = InsertClass(descriptor, new_class.Get(), hash);
3751  if (existing == nullptr) {
3752    // We postpone ClassLoad and ClassPrepare events to this point in time to avoid
3753    // duplicate events in case of races. Array classes don't really follow dedicated
3754    // load and prepare, anyways.
3755    Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(new_class);
3756    Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(new_class, new_class);
3757
3758    jit::Jit::NewTypeLoadedIfUsingJit(new_class.Get());
3759    return new_class.Get();
3760  }
3761  // Another thread must have loaded the class after we
3762  // started but before we finished.  Abandon what we've
3763  // done.
3764  //
3765  // (Yes, this happens.)
3766
3767  return existing.Ptr();
3768}
3769
3770mirror::Class* ClassLinker::FindPrimitiveClass(char type) {
3771  switch (type) {
3772    case 'B':
3773      return GetClassRoot(kPrimitiveByte);
3774    case 'C':
3775      return GetClassRoot(kPrimitiveChar);
3776    case 'D':
3777      return GetClassRoot(kPrimitiveDouble);
3778    case 'F':
3779      return GetClassRoot(kPrimitiveFloat);
3780    case 'I':
3781      return GetClassRoot(kPrimitiveInt);
3782    case 'J':
3783      return GetClassRoot(kPrimitiveLong);
3784    case 'S':
3785      return GetClassRoot(kPrimitiveShort);
3786    case 'Z':
3787      return GetClassRoot(kPrimitiveBoolean);
3788    case 'V':
3789      return GetClassRoot(kPrimitiveVoid);
3790    default:
3791      break;
3792  }
3793  std::string printable_type(PrintableChar(type));
3794  ThrowNoClassDefFoundError("Not a primitive type: %s", printable_type.c_str());
3795  return nullptr;
3796}
3797
3798mirror::Class* ClassLinker::InsertClass(const char* descriptor, ObjPtr<mirror::Class> klass, size_t hash) {
3799  if (VLOG_IS_ON(class_linker)) {
3800    ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache();
3801    std::string source;
3802    if (dex_cache != nullptr) {
3803      source += " from ";
3804      source += dex_cache->GetLocation()->ToModifiedUtf8();
3805    }
3806    LOG(INFO) << "Loaded class " << descriptor << source;
3807  }
3808  {
3809    WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3810    ObjPtr<mirror::ClassLoader> const class_loader = klass->GetClassLoader();
3811    ClassTable* const class_table = InsertClassTableForClassLoader(class_loader);
3812    ObjPtr<mirror::Class> existing = class_table->Lookup(descriptor, hash);
3813    if (existing != nullptr) {
3814      return existing.Ptr();
3815    }
3816    VerifyObject(klass);
3817    class_table->InsertWithHash(klass, hash);
3818    if (class_loader != nullptr) {
3819      // This is necessary because we need to have the card dirtied for remembered sets.
3820      Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader);
3821    }
3822    if (log_new_roots_) {
3823      new_class_roots_.push_back(GcRoot<mirror::Class>(klass));
3824    }
3825  }
3826  if (kIsDebugBuild) {
3827    // Test that copied methods correctly can find their holder.
3828    for (ArtMethod& method : klass->GetCopiedMethods(image_pointer_size_)) {
3829      CHECK_EQ(GetHoldingClassOfCopiedMethod(&method), klass);
3830    }
3831  }
3832  return nullptr;
3833}
3834
3835void ClassLinker::WriteBarrierForBootOatFileBssRoots(const OatFile* oat_file) {
3836  WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3837  DCHECK(!oat_file->GetBssGcRoots().empty()) << oat_file->GetLocation();
3838  if (log_new_roots_ && !ContainsElement(new_bss_roots_boot_oat_files_, oat_file)) {
3839    new_bss_roots_boot_oat_files_.push_back(oat_file);
3840  }
3841}
3842
3843// TODO This should really be in mirror::Class.
3844void ClassLinker::UpdateClassMethods(ObjPtr<mirror::Class> klass,
3845                                     LengthPrefixedArray<ArtMethod>* new_methods) {
3846  klass->SetMethodsPtrUnchecked(new_methods,
3847                                klass->NumDirectMethods(),
3848                                klass->NumDeclaredVirtualMethods());
3849  // Need to mark the card so that the remembered sets and mod union tables get updated.
3850  Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(klass);
3851}
3852
3853mirror::Class* ClassLinker::LookupClass(Thread* self,
3854                                        const char* descriptor,
3855                                        size_t hash,
3856                                        ObjPtr<mirror::ClassLoader> class_loader) {
3857  ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
3858  ClassTable* const class_table = ClassTableForClassLoader(class_loader);
3859  if (class_table != nullptr) {
3860    ObjPtr<mirror::Class> result = class_table->Lookup(descriptor, hash);
3861    if (result != nullptr) {
3862      return result.Ptr();
3863    }
3864  }
3865  return nullptr;
3866}
3867
3868class MoveClassTableToPreZygoteVisitor : public ClassLoaderVisitor {
3869 public:
3870  explicit MoveClassTableToPreZygoteVisitor() {}
3871
3872  void Visit(ObjPtr<mirror::ClassLoader> class_loader)
3873      REQUIRES(Locks::classlinker_classes_lock_)
3874      REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE {
3875    ClassTable* const class_table = class_loader->GetClassTable();
3876    if (class_table != nullptr) {
3877      class_table->FreezeSnapshot();
3878    }
3879  }
3880};
3881
3882void ClassLinker::MoveClassTableToPreZygote() {
3883  WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3884  boot_class_table_.FreezeSnapshot();
3885  MoveClassTableToPreZygoteVisitor visitor;
3886  VisitClassLoaders(&visitor);
3887}
3888
3889// Look up classes by hash and descriptor and put all matching ones in the result array.
3890class LookupClassesVisitor : public ClassLoaderVisitor {
3891 public:
3892  LookupClassesVisitor(const char* descriptor,
3893                       size_t hash,
3894                       std::vector<ObjPtr<mirror::Class>>* result)
3895     : descriptor_(descriptor),
3896       hash_(hash),
3897       result_(result) {}
3898
3899  void Visit(ObjPtr<mirror::ClassLoader> class_loader)
3900      REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE {
3901    ClassTable* const class_table = class_loader->GetClassTable();
3902    ObjPtr<mirror::Class> klass = class_table->Lookup(descriptor_, hash_);
3903    // Add `klass` only if `class_loader` is its defining (not just initiating) class loader.
3904    if (klass != nullptr && klass->GetClassLoader() == class_loader) {
3905      result_->push_back(klass);
3906    }
3907  }
3908
3909 private:
3910  const char* const descriptor_;
3911  const size_t hash_;
3912  std::vector<ObjPtr<mirror::Class>>* const result_;
3913};
3914
3915void ClassLinker::LookupClasses(const char* descriptor,
3916                                std::vector<ObjPtr<mirror::Class>>& result) {
3917  result.clear();
3918  Thread* const self = Thread::Current();
3919  ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
3920  const size_t hash = ComputeModifiedUtf8Hash(descriptor);
3921  ObjPtr<mirror::Class> klass = boot_class_table_.Lookup(descriptor, hash);
3922  if (klass != nullptr) {
3923    DCHECK(klass->GetClassLoader() == nullptr);
3924    result.push_back(klass);
3925  }
3926  LookupClassesVisitor visitor(descriptor, hash, &result);
3927  VisitClassLoaders(&visitor);
3928}
3929
3930bool ClassLinker::AttemptSupertypeVerification(Thread* self,
3931                                               Handle<mirror::Class> klass,
3932                                               Handle<mirror::Class> supertype) {
3933  DCHECK(self != nullptr);
3934  DCHECK(klass != nullptr);
3935  DCHECK(supertype != nullptr);
3936
3937  if (!supertype->IsVerified() && !supertype->IsErroneous()) {
3938    VerifyClass(self, supertype);
3939  }
3940
3941  if (supertype->IsVerified() || supertype->ShouldVerifyAtRuntime()) {
3942    // The supertype is either verified, or we soft failed at AOT time.
3943    DCHECK(supertype->IsVerified() || Runtime::Current()->IsAotCompiler());
3944    return true;
3945  }
3946  // If we got this far then we have a hard failure.
3947  std::string error_msg =
3948      StringPrintf("Rejecting class %s that attempts to sub-type erroneous class %s",
3949                   klass->PrettyDescriptor().c_str(),
3950                   supertype->PrettyDescriptor().c_str());
3951  LOG(WARNING) << error_msg  << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8();
3952  StackHandleScope<1> hs(self);
3953  Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException()));
3954  if (cause != nullptr) {
3955    // Set during VerifyClass call (if at all).
3956    self->ClearException();
3957  }
3958  // Change into a verify error.
3959  ThrowVerifyError(klass.Get(), "%s", error_msg.c_str());
3960  if (cause != nullptr) {
3961    self->GetException()->SetCause(cause.Get());
3962  }
3963  ClassReference ref(klass->GetDexCache()->GetDexFile(), klass->GetDexClassDefIndex());
3964  if (Runtime::Current()->IsAotCompiler()) {
3965    Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
3966  }
3967  // Need to grab the lock to change status.
3968  ObjectLock<mirror::Class> super_lock(self, klass);
3969  mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self);
3970  return false;
3971}
3972
3973// Ensures that methods have the kAccSkipAccessChecks bit set. We use the
3974// kAccVerificationAttempted bit on the class access flags to determine whether this has been done
3975// before.
3976static void EnsureSkipAccessChecksMethods(Handle<mirror::Class> klass, PointerSize pointer_size)
3977    REQUIRES_SHARED(Locks::mutator_lock_) {
3978  if (!klass->WasVerificationAttempted()) {
3979    klass->SetSkipAccessChecksFlagOnAllMethods(pointer_size);
3980    klass->SetVerificationAttempted();
3981  }
3982}
3983
3984verifier::FailureKind ClassLinker::VerifyClass(
3985    Thread* self, Handle<mirror::Class> klass, verifier::HardFailLogMode log_level) {
3986  {
3987    // TODO: assert that the monitor on the Class is held
3988    ObjectLock<mirror::Class> lock(self, klass);
3989
3990    // Is somebody verifying this now?
3991    mirror::Class::Status old_status = klass->GetStatus();
3992    while (old_status == mirror::Class::kStatusVerifying ||
3993        old_status == mirror::Class::kStatusVerifyingAtRuntime) {
3994      lock.WaitIgnoringInterrupts();
3995      CHECK(klass->IsErroneous() || (klass->GetStatus() > old_status))
3996          << "Class '" << klass->PrettyClass()
3997          << "' performed an illegal verification state transition from " << old_status
3998          << " to " << klass->GetStatus();
3999      old_status = klass->GetStatus();
4000    }
4001
4002    // The class might already be erroneous, for example at compile time if we attempted to verify
4003    // this class as a parent to another.
4004    if (klass->IsErroneous()) {
4005      ThrowEarlierClassFailure(klass.Get());
4006      return verifier::FailureKind::kHardFailure;
4007    }
4008
4009    // Don't attempt to re-verify if already verified.
4010    if (klass->IsVerified()) {
4011      EnsureSkipAccessChecksMethods(klass, image_pointer_size_);
4012      return verifier::FailureKind::kNoFailure;
4013    }
4014
4015    // For AOT, don't attempt to re-verify if we have already found we should
4016    // verify at runtime.
4017    if (Runtime::Current()->IsAotCompiler() && klass->ShouldVerifyAtRuntime()) {
4018      return verifier::FailureKind::kSoftFailure;
4019    }
4020
4021    if (klass->GetStatus() == mirror::Class::kStatusResolved) {
4022      mirror::Class::SetStatus(klass, mirror::Class::kStatusVerifying, self);
4023    } else {
4024      CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime)
4025          << klass->PrettyClass();
4026      CHECK(!Runtime::Current()->IsAotCompiler());
4027      mirror::Class::SetStatus(klass, mirror::Class::kStatusVerifyingAtRuntime, self);
4028    }
4029
4030    // Skip verification if disabled.
4031    if (!Runtime::Current()->IsVerificationEnabled()) {
4032      mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self);
4033      EnsureSkipAccessChecksMethods(klass, image_pointer_size_);
4034      return verifier::FailureKind::kNoFailure;
4035    }
4036  }
4037
4038  // Verify super class.
4039  StackHandleScope<2> hs(self);
4040  MutableHandle<mirror::Class> supertype(hs.NewHandle(klass->GetSuperClass()));
4041  // If we have a superclass and we get a hard verification failure we can return immediately.
4042  if (supertype != nullptr && !AttemptSupertypeVerification(self, klass, supertype)) {
4043    CHECK(self->IsExceptionPending()) << "Verification error should be pending.";
4044    return verifier::FailureKind::kHardFailure;
4045  }
4046
4047  // Verify all default super-interfaces.
4048  //
4049  // (1) Don't bother if the superclass has already had a soft verification failure.
4050  //
4051  // (2) Interfaces shouldn't bother to do this recursive verification because they cannot cause
4052  //     recursive initialization by themselves. This is because when an interface is initialized
4053  //     directly it must not initialize its superinterfaces. We are allowed to verify regardless
4054  //     but choose not to for an optimization. If the interfaces is being verified due to a class
4055  //     initialization (which would need all the default interfaces to be verified) the class code
4056  //     will trigger the recursive verification anyway.
4057  if ((supertype == nullptr || supertype->IsVerified())  // See (1)
4058      && !klass->IsInterface()) {                              // See (2)
4059    int32_t iftable_count = klass->GetIfTableCount();
4060    MutableHandle<mirror::Class> iface(hs.NewHandle<mirror::Class>(nullptr));
4061    // Loop through all interfaces this class has defined. It doesn't matter the order.
4062    for (int32_t i = 0; i < iftable_count; i++) {
4063      iface.Assign(klass->GetIfTable()->GetInterface(i));
4064      DCHECK(iface != nullptr);
4065      // We only care if we have default interfaces and can skip if we are already verified...
4066      if (LIKELY(!iface->HasDefaultMethods() || iface->IsVerified())) {
4067        continue;
4068      } else if (UNLIKELY(!AttemptSupertypeVerification(self, klass, iface))) {
4069        // We had a hard failure while verifying this interface. Just return immediately.
4070        CHECK(self->IsExceptionPending()) << "Verification error should be pending.";
4071        return verifier::FailureKind::kHardFailure;
4072      } else if (UNLIKELY(!iface->IsVerified())) {
4073        // We softly failed to verify the iface. Stop checking and clean up.
4074        // Put the iface into the supertype handle so we know what caused us to fail.
4075        supertype.Assign(iface.Get());
4076        break;
4077      }
4078    }
4079  }
4080
4081  // At this point if verification failed, then supertype is the "first" supertype that failed
4082  // verification (without a specific order). If verification succeeded, then supertype is either
4083  // null or the original superclass of klass and is verified.
4084  DCHECK(supertype == nullptr ||
4085         supertype.Get() == klass->GetSuperClass() ||
4086         !supertype->IsVerified());
4087
4088  // Try to use verification information from the oat file, otherwise do runtime verification.
4089  const DexFile& dex_file = *klass->GetDexCache()->GetDexFile();
4090  mirror::Class::Status oat_file_class_status(mirror::Class::kStatusNotReady);
4091  bool preverified = VerifyClassUsingOatFile(dex_file, klass.Get(), oat_file_class_status);
4092  // If the oat file says the class had an error, re-run the verifier. That way we will get a
4093  // precise error message. To ensure a rerun, test:
4094  //     mirror::Class::IsErroneous(oat_file_class_status) => !preverified
4095  DCHECK(!mirror::Class::IsErroneous(oat_file_class_status) || !preverified);
4096
4097  std::string error_msg;
4098  verifier::FailureKind verifier_failure = verifier::FailureKind::kNoFailure;
4099  if (!preverified) {
4100    Runtime* runtime = Runtime::Current();
4101    verifier_failure = verifier::MethodVerifier::VerifyClass(self,
4102                                                             klass.Get(),
4103                                                             runtime->GetCompilerCallbacks(),
4104                                                             runtime->IsAotCompiler(),
4105                                                             log_level,
4106                                                             &error_msg);
4107  }
4108
4109  // Verification is done, grab the lock again.
4110  ObjectLock<mirror::Class> lock(self, klass);
4111
4112  if (preverified || verifier_failure != verifier::FailureKind::kHardFailure) {
4113    if (!preverified && verifier_failure != verifier::FailureKind::kNoFailure) {
4114      VLOG(class_linker) << "Soft verification failure in class "
4115                         << klass->PrettyDescriptor()
4116                         << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
4117                         << " because: " << error_msg;
4118    }
4119    self->AssertNoPendingException();
4120    // Make sure all classes referenced by catch blocks are resolved.
4121    ResolveClassExceptionHandlerTypes(klass);
4122    if (verifier_failure == verifier::FailureKind::kNoFailure) {
4123      // Even though there were no verifier failures we need to respect whether the super-class and
4124      // super-default-interfaces were verified or requiring runtime reverification.
4125      if (supertype == nullptr || supertype->IsVerified()) {
4126        mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self);
4127      } else {
4128        CHECK_EQ(supertype->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime);
4129        mirror::Class::SetStatus(klass, mirror::Class::kStatusRetryVerificationAtRuntime, self);
4130        // Pretend a soft failure occurred so that we don't consider the class verified below.
4131        verifier_failure = verifier::FailureKind::kSoftFailure;
4132      }
4133    } else {
4134      CHECK_EQ(verifier_failure, verifier::FailureKind::kSoftFailure);
4135      // Soft failures at compile time should be retried at runtime. Soft
4136      // failures at runtime will be handled by slow paths in the generated
4137      // code. Set status accordingly.
4138      if (Runtime::Current()->IsAotCompiler()) {
4139        mirror::Class::SetStatus(klass, mirror::Class::kStatusRetryVerificationAtRuntime, self);
4140      } else {
4141        mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self);
4142        // As this is a fake verified status, make sure the methods are _not_ marked
4143        // kAccSkipAccessChecks later.
4144        klass->SetVerificationAttempted();
4145      }
4146    }
4147  } else {
4148    VLOG(verifier) << "Verification failed on class " << klass->PrettyDescriptor()
4149                  << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
4150                  << " because: " << error_msg;
4151    self->AssertNoPendingException();
4152    ThrowVerifyError(klass.Get(), "%s", error_msg.c_str());
4153    mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self);
4154  }
4155  if (preverified || verifier_failure == verifier::FailureKind::kNoFailure) {
4156    // Class is verified so we don't need to do any access check on its methods.
4157    // Let the interpreter know it by setting the kAccSkipAccessChecks flag onto each
4158    // method.
4159    // Note: we're going here during compilation and at runtime. When we set the
4160    // kAccSkipAccessChecks flag when compiling image classes, the flag is recorded
4161    // in the image and is set when loading the image.
4162
4163    if (UNLIKELY(Runtime::Current()->IsVerificationSoftFail())) {
4164      // Never skip access checks if the verification soft fail is forced.
4165      // Mark the class as having a verification attempt to avoid re-running the verifier.
4166      klass->SetVerificationAttempted();
4167    } else {
4168      EnsureSkipAccessChecksMethods(klass, image_pointer_size_);
4169    }
4170  }
4171  return verifier_failure;
4172}
4173
4174bool ClassLinker::VerifyClassUsingOatFile(const DexFile& dex_file,
4175                                          ObjPtr<mirror::Class> klass,
4176                                          mirror::Class::Status& oat_file_class_status) {
4177  // If we're compiling, we can only verify the class using the oat file if
4178  // we are not compiling the image or if the class we're verifying is not part of
4179  // the app.  In other words, we will only check for preverification of bootclasspath
4180  // classes.
4181  if (Runtime::Current()->IsAotCompiler()) {
4182    // Are we compiling the bootclasspath?
4183    if (Runtime::Current()->GetCompilerCallbacks()->IsBootImage()) {
4184      return false;
4185    }
4186    // We are compiling an app (not the image).
4187
4188    // Is this an app class? (I.e. not a bootclasspath class)
4189    if (klass->GetClassLoader() != nullptr) {
4190      return false;
4191    }
4192  }
4193
4194  const OatFile::OatDexFile* oat_dex_file = dex_file.GetOatDexFile();
4195  // In case we run without an image there won't be a backing oat file.
4196  if (oat_dex_file == nullptr || oat_dex_file->GetOatFile() == nullptr) {
4197    return false;
4198  }
4199
4200  uint16_t class_def_index = klass->GetDexClassDefIndex();
4201  oat_file_class_status = oat_dex_file->GetOatClass(class_def_index).GetStatus();
4202  if (oat_file_class_status == mirror::Class::kStatusVerified ||
4203      oat_file_class_status == mirror::Class::kStatusInitialized) {
4204    return true;
4205  }
4206  // If we only verified a subset of the classes at compile time, we can end up with classes that
4207  // were resolved by the verifier.
4208  if (oat_file_class_status == mirror::Class::kStatusResolved) {
4209    return false;
4210  }
4211  if (oat_file_class_status == mirror::Class::kStatusRetryVerificationAtRuntime) {
4212    // Compile time verification failed with a soft error. Compile time verification can fail
4213    // because we have incomplete type information. Consider the following:
4214    // class ... {
4215    //   Foo x;
4216    //   .... () {
4217    //     if (...) {
4218    //       v1 gets assigned a type of resolved class Foo
4219    //     } else {
4220    //       v1 gets assigned a type of unresolved class Bar
4221    //     }
4222    //     iput x = v1
4223    // } }
4224    // when we merge v1 following the if-the-else it results in Conflict
4225    // (see verifier::RegType::Merge) as we can't know the type of Bar and we could possibly be
4226    // allowing an unsafe assignment to the field x in the iput (javac may have compiled this as
4227    // it knew Bar was a sub-class of Foo, but for us this may have been moved into a separate apk
4228    // at compile time).
4229    return false;
4230  }
4231  if (mirror::Class::IsErroneous(oat_file_class_status)) {
4232    // Compile time verification failed with a hard error. This is caused by invalid instructions
4233    // in the class. These errors are unrecoverable.
4234    return false;
4235  }
4236  if (oat_file_class_status == mirror::Class::kStatusNotReady) {
4237    // Status is uninitialized if we couldn't determine the status at compile time, for example,
4238    // not loading the class.
4239    // TODO: when the verifier doesn't rely on Class-es failing to resolve/load the type hierarchy
4240    // isn't a problem and this case shouldn't occur
4241    return false;
4242  }
4243  std::string temp;
4244  LOG(FATAL) << "Unexpected class status: " << oat_file_class_status
4245             << " " << dex_file.GetLocation() << " " << klass->PrettyClass() << " "
4246             << klass->GetDescriptor(&temp);
4247  UNREACHABLE();
4248}
4249
4250void ClassLinker::ResolveClassExceptionHandlerTypes(Handle<mirror::Class> klass) {
4251  for (ArtMethod& method : klass->GetMethods(image_pointer_size_)) {
4252    ResolveMethodExceptionHandlerTypes(&method);
4253  }
4254}
4255
4256void ClassLinker::ResolveMethodExceptionHandlerTypes(ArtMethod* method) {
4257  // similar to DexVerifier::ScanTryCatchBlocks and dex2oat's ResolveExceptionsForMethod.
4258  const DexFile::CodeItem* code_item =
4259      method->GetDexFile()->GetCodeItem(method->GetCodeItemOffset());
4260  if (code_item == nullptr) {
4261    return;  // native or abstract method
4262  }
4263  if (code_item->tries_size_ == 0) {
4264    return;  // nothing to process
4265  }
4266  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item, 0);
4267  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
4268  for (uint32_t idx = 0; idx < handlers_size; idx++) {
4269    CatchHandlerIterator iterator(handlers_ptr);
4270    for (; iterator.HasNext(); iterator.Next()) {
4271      // Ensure exception types are resolved so that they don't need resolution to be delivered,
4272      // unresolved exception types will be ignored by exception delivery
4273      if (iterator.GetHandlerTypeIndex().IsValid()) {
4274        ObjPtr<mirror::Class> exception_type = ResolveType(iterator.GetHandlerTypeIndex(), method);
4275        if (exception_type == nullptr) {
4276          DCHECK(Thread::Current()->IsExceptionPending());
4277          Thread::Current()->ClearException();
4278        }
4279      }
4280    }
4281    handlers_ptr = iterator.EndDataPointer();
4282  }
4283}
4284
4285mirror::Class* ClassLinker::CreateProxyClass(ScopedObjectAccessAlreadyRunnable& soa,
4286                                             jstring name,
4287                                             jobjectArray interfaces,
4288                                             jobject loader,
4289                                             jobjectArray methods,
4290                                             jobjectArray throws) {
4291  Thread* self = soa.Self();
4292  StackHandleScope<10> hs(self);
4293  MutableHandle<mirror::Class> temp_klass(hs.NewHandle(
4294      AllocClass(self, GetClassRoot(kJavaLangClass), sizeof(mirror::Class))));
4295  if (temp_klass == nullptr) {
4296    CHECK(self->IsExceptionPending());  // OOME.
4297    return nullptr;
4298  }
4299  DCHECK(temp_klass->GetClass() != nullptr);
4300  temp_klass->SetObjectSize(sizeof(mirror::Proxy));
4301  // Set the class access flags incl. VerificationAttempted, so we do not try to set the flag on
4302  // the methods.
4303  temp_klass->SetAccessFlags(kAccClassIsProxy | kAccPublic | kAccFinal | kAccVerificationAttempted);
4304  temp_klass->SetClassLoader(soa.Decode<mirror::ClassLoader>(loader));
4305  DCHECK_EQ(temp_klass->GetPrimitiveType(), Primitive::kPrimNot);
4306  temp_klass->SetName(soa.Decode<mirror::String>(name));
4307  temp_klass->SetDexCache(GetClassRoot(kJavaLangReflectProxy)->GetDexCache());
4308  // Object has an empty iftable, copy it for that reason.
4309  temp_klass->SetIfTable(GetClassRoot(kJavaLangObject)->GetIfTable());
4310  mirror::Class::SetStatus(temp_klass, mirror::Class::kStatusIdx, self);
4311  std::string descriptor(GetDescriptorForProxy(temp_klass.Get()));
4312  const size_t hash = ComputeModifiedUtf8Hash(descriptor.c_str());
4313
4314  // Needs to be before we insert the class so that the allocator field is set.
4315  LinearAlloc* const allocator = GetOrCreateAllocatorForClassLoader(temp_klass->GetClassLoader());
4316
4317  // Insert the class before loading the fields as the field roots
4318  // (ArtField::declaring_class_) are only visited from the class
4319  // table. There can't be any suspend points between inserting the
4320  // class and setting the field arrays below.
4321  ObjPtr<mirror::Class> existing = InsertClass(descriptor.c_str(), temp_klass.Get(), hash);
4322  CHECK(existing == nullptr);
4323
4324  // Instance fields are inherited, but we add a couple of static fields...
4325  const size_t num_fields = 2;
4326  LengthPrefixedArray<ArtField>* sfields = AllocArtFieldArray(self, allocator, num_fields);
4327  temp_klass->SetSFieldsPtr(sfields);
4328
4329  // 1. Create a static field 'interfaces' that holds the _declared_ interfaces implemented by
4330  // our proxy, so Class.getInterfaces doesn't return the flattened set.
4331  ArtField& interfaces_sfield = sfields->At(0);
4332  interfaces_sfield.SetDexFieldIndex(0);
4333  interfaces_sfield.SetDeclaringClass(temp_klass.Get());
4334  interfaces_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
4335
4336  // 2. Create a static field 'throws' that holds exceptions thrown by our methods.
4337  ArtField& throws_sfield = sfields->At(1);
4338  throws_sfield.SetDexFieldIndex(1);
4339  throws_sfield.SetDeclaringClass(temp_klass.Get());
4340  throws_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
4341
4342  // Proxies have 1 direct method, the constructor
4343  const size_t num_direct_methods = 1;
4344
4345  // They have as many virtual methods as the array
4346  auto h_methods = hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Method>>(methods));
4347  DCHECK_EQ(h_methods->GetClass(), mirror::Method::ArrayClass())
4348      << mirror::Class::PrettyClass(h_methods->GetClass());
4349  const size_t num_virtual_methods = h_methods->GetLength();
4350
4351  // Create the methods array.
4352  LengthPrefixedArray<ArtMethod>* proxy_class_methods = AllocArtMethodArray(
4353        self, allocator, num_direct_methods + num_virtual_methods);
4354  // Currently AllocArtMethodArray cannot return null, but the OOM logic is left there in case we
4355  // want to throw OOM in the future.
4356  if (UNLIKELY(proxy_class_methods == nullptr)) {
4357    self->AssertPendingOOMException();
4358    return nullptr;
4359  }
4360  temp_klass->SetMethodsPtr(proxy_class_methods, num_direct_methods, num_virtual_methods);
4361
4362  // Create the single direct method.
4363  CreateProxyConstructor(temp_klass, temp_klass->GetDirectMethodUnchecked(0, image_pointer_size_));
4364
4365  // Create virtual method using specified prototypes.
4366  // TODO These should really use the iterators.
4367  for (size_t i = 0; i < num_virtual_methods; ++i) {
4368    auto* virtual_method = temp_klass->GetVirtualMethodUnchecked(i, image_pointer_size_);
4369    auto* prototype = h_methods->Get(i)->GetArtMethod();
4370    CreateProxyMethod(temp_klass, prototype, virtual_method);
4371    DCHECK(virtual_method->GetDeclaringClass() != nullptr);
4372    DCHECK(prototype->GetDeclaringClass() != nullptr);
4373  }
4374
4375  // The super class is java.lang.reflect.Proxy
4376  temp_klass->SetSuperClass(GetClassRoot(kJavaLangReflectProxy));
4377  // Now effectively in the loaded state.
4378  mirror::Class::SetStatus(temp_klass, mirror::Class::kStatusLoaded, self);
4379  self->AssertNoPendingException();
4380
4381  // At this point the class is loaded. Publish a ClassLoad event.
4382  // Note: this may be a temporary class. It is a listener's responsibility to handle this.
4383  Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(temp_klass);
4384
4385  MutableHandle<mirror::Class> klass = hs.NewHandle<mirror::Class>(nullptr);
4386  {
4387    // Must hold lock on object when resolved.
4388    ObjectLock<mirror::Class> resolution_lock(self, temp_klass);
4389    // Link the fields and virtual methods, creating vtable and iftables.
4390    // The new class will replace the old one in the class table.
4391    Handle<mirror::ObjectArray<mirror::Class>> h_interfaces(
4392        hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Class>>(interfaces)));
4393    if (!LinkClass(self, descriptor.c_str(), temp_klass, h_interfaces, &klass)) {
4394      mirror::Class::SetStatus(temp_klass, mirror::Class::kStatusErrorUnresolved, self);
4395      return nullptr;
4396    }
4397  }
4398  CHECK(temp_klass->IsRetired());
4399  CHECK_NE(temp_klass.Get(), klass.Get());
4400
4401  CHECK_EQ(interfaces_sfield.GetDeclaringClass(), klass.Get());
4402  interfaces_sfield.SetObject<false>(
4403      klass.Get(),
4404      soa.Decode<mirror::ObjectArray<mirror::Class>>(interfaces));
4405  CHECK_EQ(throws_sfield.GetDeclaringClass(), klass.Get());
4406  throws_sfield.SetObject<false>(
4407      klass.Get(),
4408      soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class>>>(throws));
4409
4410  Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(temp_klass, klass);
4411
4412  {
4413    // Lock on klass is released. Lock new class object.
4414    ObjectLock<mirror::Class> initialization_lock(self, klass);
4415    mirror::Class::SetStatus(klass, mirror::Class::kStatusInitialized, self);
4416  }
4417
4418  // sanity checks
4419  if (kIsDebugBuild) {
4420    CHECK(klass->GetIFieldsPtr() == nullptr);
4421    CheckProxyConstructor(klass->GetDirectMethod(0, image_pointer_size_));
4422
4423    for (size_t i = 0; i < num_virtual_methods; ++i) {
4424      auto* virtual_method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_);
4425      auto* prototype = h_methods->Get(i++)->GetArtMethod();
4426      CheckProxyMethod(virtual_method, prototype);
4427    }
4428
4429    StackHandleScope<1> hs2(self);
4430    Handle<mirror::String> decoded_name = hs2.NewHandle(soa.Decode<mirror::String>(name));
4431    std::string interfaces_field_name(StringPrintf("java.lang.Class[] %s.interfaces",
4432                                                   decoded_name->ToModifiedUtf8().c_str()));
4433    CHECK_EQ(ArtField::PrettyField(klass->GetStaticField(0)), interfaces_field_name);
4434
4435    std::string throws_field_name(StringPrintf("java.lang.Class[][] %s.throws",
4436                                               decoded_name->ToModifiedUtf8().c_str()));
4437    CHECK_EQ(ArtField::PrettyField(klass->GetStaticField(1)), throws_field_name);
4438
4439    CHECK_EQ(klass.Get()->GetProxyInterfaces(),
4440             soa.Decode<mirror::ObjectArray<mirror::Class>>(interfaces));
4441    CHECK_EQ(klass.Get()->GetProxyThrows(),
4442             soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class>>>(throws));
4443  }
4444  return klass.Get();
4445}
4446
4447std::string ClassLinker::GetDescriptorForProxy(ObjPtr<mirror::Class> proxy_class) {
4448  DCHECK(proxy_class->IsProxyClass());
4449  ObjPtr<mirror::String> name = proxy_class->GetName();
4450  DCHECK(name != nullptr);
4451  return DotToDescriptor(name->ToModifiedUtf8().c_str());
4452}
4453
4454void ClassLinker::CreateProxyConstructor(Handle<mirror::Class> klass, ArtMethod* out) {
4455  // Create constructor for Proxy that must initialize the method.
4456  CHECK_EQ(GetClassRoot(kJavaLangReflectProxy)->NumDirectMethods(), 23u);
4457
4458  // Find the <init>(InvocationHandler)V method. The exact method offset varies depending
4459  // on which front-end compiler was used to build the libcore DEX files.
4460  ArtMethod* proxy_constructor = GetClassRoot(kJavaLangReflectProxy)->
4461      FindDeclaredDirectMethod("<init>",
4462                               "(Ljava/lang/reflect/InvocationHandler;)V",
4463                               image_pointer_size_);
4464  DCHECK(proxy_constructor != nullptr)
4465      << "Could not find <init> method in java.lang.reflect.Proxy";
4466
4467  // Ensure constructor is in dex cache so that we can use the dex cache to look up the overridden
4468  // constructor method.
4469  GetClassRoot(kJavaLangReflectProxy)->GetDexCache()->SetResolvedMethod(
4470      proxy_constructor->GetDexMethodIndex(), proxy_constructor, image_pointer_size_);
4471  // Clone the existing constructor of Proxy (our constructor would just invoke it so steal its
4472  // code_ too)
4473  DCHECK(out != nullptr);
4474  out->CopyFrom(proxy_constructor, image_pointer_size_);
4475  // Make this constructor public and fix the class to be our Proxy version
4476  out->SetAccessFlags((out->GetAccessFlags() & ~kAccProtected) | kAccPublic);
4477  out->SetDeclaringClass(klass.Get());
4478}
4479
4480void ClassLinker::CheckProxyConstructor(ArtMethod* constructor) const {
4481  CHECK(constructor->IsConstructor());
4482  auto* np = constructor->GetInterfaceMethodIfProxy(image_pointer_size_);
4483  CHECK_STREQ(np->GetName(), "<init>");
4484  CHECK_STREQ(np->GetSignature().ToString().c_str(), "(Ljava/lang/reflect/InvocationHandler;)V");
4485  DCHECK(constructor->IsPublic());
4486}
4487
4488void ClassLinker::CreateProxyMethod(Handle<mirror::Class> klass, ArtMethod* prototype,
4489                                    ArtMethod* out) {
4490  // Ensure prototype is in dex cache so that we can use the dex cache to look up the overridden
4491  // prototype method
4492  auto* dex_cache = prototype->GetDeclaringClass()->GetDexCache();
4493  // Avoid dirtying the dex cache unless we need to.
4494  if (dex_cache->GetResolvedMethod(prototype->GetDexMethodIndex(), image_pointer_size_) !=
4495      prototype) {
4496    dex_cache->SetResolvedMethod(
4497        prototype->GetDexMethodIndex(), prototype, image_pointer_size_);
4498  }
4499  // We steal everything from the prototype (such as DexCache, invoke stub, etc.) then specialize
4500  // as necessary
4501  DCHECK(out != nullptr);
4502  out->CopyFrom(prototype, image_pointer_size_);
4503
4504  // Set class to be the concrete proxy class.
4505  out->SetDeclaringClass(klass.Get());
4506  // Clear the abstract, default and conflict flags to ensure that defaults aren't picked in
4507  // preference to the invocation handler.
4508  const uint32_t kRemoveFlags = kAccAbstract | kAccDefault | kAccDefaultConflict;
4509  // Make the method final.
4510  const uint32_t kAddFlags = kAccFinal;
4511  out->SetAccessFlags((out->GetAccessFlags() & ~kRemoveFlags) | kAddFlags);
4512
4513  // Clear the dex_code_item_offset_. It needs to be 0 since proxy methods have no CodeItems but the
4514  // method they copy might (if it's a default method).
4515  out->SetCodeItemOffset(0);
4516
4517  // At runtime the method looks like a reference and argument saving method, clone the code
4518  // related parameters from this method.
4519  out->SetEntryPointFromQuickCompiledCode(GetQuickProxyInvokeHandler());
4520}
4521
4522void ClassLinker::CheckProxyMethod(ArtMethod* method, ArtMethod* prototype) const {
4523  // Basic sanity
4524  CHECK(!prototype->IsFinal());
4525  CHECK(method->IsFinal());
4526  CHECK(method->IsInvokable());
4527
4528  // The proxy method doesn't have its own dex cache or dex file and so it steals those of its
4529  // interface prototype. The exception to this are Constructors and the Class of the Proxy itself.
4530  CHECK(prototype->HasSameDexCacheResolvedMethods(method, image_pointer_size_));
4531  auto* np = method->GetInterfaceMethodIfProxy(image_pointer_size_);
4532  CHECK_EQ(prototype->GetDeclaringClass()->GetDexCache(), np->GetDexCache());
4533  CHECK_EQ(prototype->GetDexMethodIndex(), method->GetDexMethodIndex());
4534
4535  CHECK_STREQ(np->GetName(), prototype->GetName());
4536  CHECK_STREQ(np->GetShorty(), prototype->GetShorty());
4537  // More complex sanity - via dex cache
4538  CHECK_EQ(np->GetReturnType(true /* resolve */), prototype->GetReturnType(true /* resolve */));
4539}
4540
4541bool ClassLinker::CanWeInitializeClass(ObjPtr<mirror::Class> klass, bool can_init_statics,
4542                                       bool can_init_parents) {
4543  if (can_init_statics && can_init_parents) {
4544    return true;
4545  }
4546  if (!can_init_statics) {
4547    // Check if there's a class initializer.
4548    ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_);
4549    if (clinit != nullptr) {
4550      return false;
4551    }
4552    // Check if there are encoded static values needing initialization.
4553    if (klass->NumStaticFields() != 0) {
4554      const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
4555      DCHECK(dex_class_def != nullptr);
4556      if (dex_class_def->static_values_off_ != 0) {
4557        return false;
4558      }
4559    }
4560    // If we are a class we need to initialize all interfaces with default methods when we are
4561    // initialized. Check all of them.
4562    if (!klass->IsInterface()) {
4563      size_t num_interfaces = klass->GetIfTableCount();
4564      for (size_t i = 0; i < num_interfaces; i++) {
4565        ObjPtr<mirror::Class> iface = klass->GetIfTable()->GetInterface(i);
4566        if (iface->HasDefaultMethods() &&
4567            !CanWeInitializeClass(iface, can_init_statics, can_init_parents)) {
4568          return false;
4569        }
4570      }
4571    }
4572  }
4573  if (klass->IsInterface() || !klass->HasSuperClass()) {
4574    return true;
4575  }
4576  ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
4577  if (!can_init_parents && !super_class->IsInitialized()) {
4578    return false;
4579  }
4580  return CanWeInitializeClass(super_class, can_init_statics, can_init_parents);
4581}
4582
4583bool ClassLinker::InitializeClass(Thread* self, Handle<mirror::Class> klass,
4584                                  bool can_init_statics, bool can_init_parents) {
4585  // see JLS 3rd edition, 12.4.2 "Detailed Initialization Procedure" for the locking protocol
4586
4587  // Are we already initialized and therefore done?
4588  // Note: we differ from the JLS here as we don't do this under the lock, this is benign as
4589  // an initialized class will never change its state.
4590  if (klass->IsInitialized()) {
4591    return true;
4592  }
4593
4594  // Fast fail if initialization requires a full runtime. Not part of the JLS.
4595  if (!CanWeInitializeClass(klass.Get(), can_init_statics, can_init_parents)) {
4596    return false;
4597  }
4598
4599  self->AllowThreadSuspension();
4600  uint64_t t0;
4601  {
4602    ObjectLock<mirror::Class> lock(self, klass);
4603
4604    // Re-check under the lock in case another thread initialized ahead of us.
4605    if (klass->IsInitialized()) {
4606      return true;
4607    }
4608
4609    // Was the class already found to be erroneous? Done under the lock to match the JLS.
4610    if (klass->IsErroneous()) {
4611      ThrowEarlierClassFailure(klass.Get(), true);
4612      VlogClassInitializationFailure(klass);
4613      return false;
4614    }
4615
4616    CHECK(klass->IsResolved() && !klass->IsErroneousResolved())
4617        << klass->PrettyClass() << ": state=" << klass->GetStatus();
4618
4619    if (!klass->IsVerified()) {
4620      VerifyClass(self, klass);
4621      if (!klass->IsVerified()) {
4622        // We failed to verify, expect either the klass to be erroneous or verification failed at
4623        // compile time.
4624        if (klass->IsErroneous()) {
4625          // The class is erroneous. This may be a verifier error, or another thread attempted
4626          // verification and/or initialization and failed. We can distinguish those cases by
4627          // whether an exception is already pending.
4628          if (self->IsExceptionPending()) {
4629            // Check that it's a VerifyError.
4630            DCHECK_EQ("java.lang.Class<java.lang.VerifyError>",
4631                      mirror::Class::PrettyClass(self->GetException()->GetClass()));
4632          } else {
4633            // Check that another thread attempted initialization.
4634            DCHECK_NE(0, klass->GetClinitThreadId());
4635            DCHECK_NE(self->GetTid(), klass->GetClinitThreadId());
4636            // Need to rethrow the previous failure now.
4637            ThrowEarlierClassFailure(klass.Get(), true);
4638          }
4639          VlogClassInitializationFailure(klass);
4640        } else {
4641          CHECK(Runtime::Current()->IsAotCompiler());
4642          CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime);
4643        }
4644        return false;
4645      } else {
4646        self->AssertNoPendingException();
4647      }
4648
4649      // A separate thread could have moved us all the way to initialized. A "simple" example
4650      // involves a subclass of the current class being initialized at the same time (which
4651      // will implicitly initialize the superclass, if scheduled that way). b/28254258
4652      DCHECK(!klass->IsErroneous()) << klass->GetStatus();
4653      if (klass->IsInitialized()) {
4654        return true;
4655      }
4656    }
4657
4658    // If the class is kStatusInitializing, either this thread is
4659    // initializing higher up the stack or another thread has beat us
4660    // to initializing and we need to wait. Either way, this
4661    // invocation of InitializeClass will not be responsible for
4662    // running <clinit> and will return.
4663    if (klass->GetStatus() == mirror::Class::kStatusInitializing) {
4664      // Could have got an exception during verification.
4665      if (self->IsExceptionPending()) {
4666        VlogClassInitializationFailure(klass);
4667        return false;
4668      }
4669      // We caught somebody else in the act; was it us?
4670      if (klass->GetClinitThreadId() == self->GetTid()) {
4671        // Yes. That's fine. Return so we can continue initializing.
4672        return true;
4673      }
4674      // No. That's fine. Wait for another thread to finish initializing.
4675      return WaitForInitializeClass(klass, self, lock);
4676    }
4677
4678    if (!ValidateSuperClassDescriptors(klass)) {
4679      mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self);
4680      return false;
4681    }
4682    self->AllowThreadSuspension();
4683
4684    CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusVerified) << klass->PrettyClass()
4685        << " self.tid=" << self->GetTid() << " clinit.tid=" << klass->GetClinitThreadId();
4686
4687    // From here out other threads may observe that we're initializing and so changes of state
4688    // require the a notification.
4689    klass->SetClinitThreadId(self->GetTid());
4690    mirror::Class::SetStatus(klass, mirror::Class::kStatusInitializing, self);
4691
4692    t0 = NanoTime();
4693  }
4694
4695  // Initialize super classes, must be done while initializing for the JLS.
4696  if (!klass->IsInterface() && klass->HasSuperClass()) {
4697    ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
4698    if (!super_class->IsInitialized()) {
4699      CHECK(!super_class->IsInterface());
4700      CHECK(can_init_parents);
4701      StackHandleScope<1> hs(self);
4702      Handle<mirror::Class> handle_scope_super(hs.NewHandle(super_class));
4703      bool super_initialized = InitializeClass(self, handle_scope_super, can_init_statics, true);
4704      if (!super_initialized) {
4705        // The super class was verified ahead of entering initializing, we should only be here if
4706        // the super class became erroneous due to initialization.
4707        CHECK(handle_scope_super->IsErroneous() && self->IsExceptionPending())
4708            << "Super class initialization failed for "
4709            << handle_scope_super->PrettyDescriptor()
4710            << " that has unexpected status " << handle_scope_super->GetStatus()
4711            << "\nPending exception:\n"
4712            << (self->GetException() != nullptr ? self->GetException()->Dump() : "");
4713        ObjectLock<mirror::Class> lock(self, klass);
4714        // Initialization failed because the super-class is erroneous.
4715        mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self);
4716        return false;
4717      }
4718    }
4719  }
4720
4721  if (!klass->IsInterface()) {
4722    // Initialize interfaces with default methods for the JLS.
4723    size_t num_direct_interfaces = klass->NumDirectInterfaces();
4724    // Only setup the (expensive) handle scope if we actually need to.
4725    if (UNLIKELY(num_direct_interfaces > 0)) {
4726      StackHandleScope<1> hs_iface(self);
4727      MutableHandle<mirror::Class> handle_scope_iface(hs_iface.NewHandle<mirror::Class>(nullptr));
4728      for (size_t i = 0; i < num_direct_interfaces; i++) {
4729        handle_scope_iface.Assign(mirror::Class::GetDirectInterface(self, klass.Get(), i));
4730        CHECK(handle_scope_iface != nullptr) << klass->PrettyDescriptor() << " iface #" << i;
4731        CHECK(handle_scope_iface->IsInterface());
4732        if (handle_scope_iface->HasBeenRecursivelyInitialized()) {
4733          // We have already done this for this interface. Skip it.
4734          continue;
4735        }
4736        // We cannot just call initialize class directly because we need to ensure that ALL
4737        // interfaces with default methods are initialized. Non-default interface initialization
4738        // will not affect other non-default super-interfaces.
4739        bool iface_initialized = InitializeDefaultInterfaceRecursive(self,
4740                                                                     handle_scope_iface,
4741                                                                     can_init_statics,
4742                                                                     can_init_parents);
4743        if (!iface_initialized) {
4744          ObjectLock<mirror::Class> lock(self, klass);
4745          // Initialization failed because one of our interfaces with default methods is erroneous.
4746          mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self);
4747          return false;
4748        }
4749      }
4750    }
4751  }
4752
4753  const size_t num_static_fields = klass->NumStaticFields();
4754  if (num_static_fields > 0) {
4755    const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
4756    CHECK(dex_class_def != nullptr);
4757    const DexFile& dex_file = klass->GetDexFile();
4758    StackHandleScope<3> hs(self);
4759    Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
4760    Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
4761
4762    // Eagerly fill in static fields so that the we don't have to do as many expensive
4763    // Class::FindStaticField in ResolveField.
4764    for (size_t i = 0; i < num_static_fields; ++i) {
4765      ArtField* field = klass->GetStaticField(i);
4766      const uint32_t field_idx = field->GetDexFieldIndex();
4767      ArtField* resolved_field = dex_cache->GetResolvedField(field_idx, image_pointer_size_);
4768      if (resolved_field == nullptr) {
4769        dex_cache->SetResolvedField(field_idx, field, image_pointer_size_);
4770      } else {
4771        DCHECK_EQ(field, resolved_field);
4772      }
4773    }
4774
4775    annotations::RuntimeEncodedStaticFieldValueIterator value_it(dex_file,
4776                                                                 &dex_cache,
4777                                                                 &class_loader,
4778                                                                 this,
4779                                                                 *dex_class_def);
4780    const uint8_t* class_data = dex_file.GetClassData(*dex_class_def);
4781    ClassDataItemIterator field_it(dex_file, class_data);
4782    if (value_it.HasNext()) {
4783      DCHECK(field_it.HasNextStaticField());
4784      CHECK(can_init_statics);
4785      for ( ; value_it.HasNext(); value_it.Next(), field_it.Next()) {
4786        ArtField* field = ResolveField(
4787            dex_file, field_it.GetMemberIndex(), dex_cache, class_loader, true);
4788        if (Runtime::Current()->IsActiveTransaction()) {
4789          value_it.ReadValueToField<true>(field);
4790        } else {
4791          value_it.ReadValueToField<false>(field);
4792        }
4793        if (self->IsExceptionPending()) {
4794          break;
4795        }
4796        DCHECK(!value_it.HasNext() || field_it.HasNextStaticField());
4797      }
4798    }
4799  }
4800
4801
4802  if (!self->IsExceptionPending()) {
4803    ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_);
4804    if (clinit != nullptr) {
4805      CHECK(can_init_statics);
4806      JValue result;
4807      clinit->Invoke(self, nullptr, 0, &result, "V");
4808    }
4809  }
4810  self->AllowThreadSuspension();
4811  uint64_t t1 = NanoTime();
4812
4813  bool success = true;
4814  {
4815    ObjectLock<mirror::Class> lock(self, klass);
4816
4817    if (self->IsExceptionPending()) {
4818      WrapExceptionInInitializer(klass);
4819      mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self);
4820      success = false;
4821    } else if (Runtime::Current()->IsTransactionAborted()) {
4822      // The exception thrown when the transaction aborted has been caught and cleared
4823      // so we need to throw it again now.
4824      VLOG(compiler) << "Return from class initializer of "
4825                     << mirror::Class::PrettyDescriptor(klass.Get())
4826                     << " without exception while transaction was aborted: re-throw it now.";
4827      Runtime::Current()->ThrowTransactionAbortError(self);
4828      mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self);
4829      success = false;
4830    } else {
4831      RuntimeStats* global_stats = Runtime::Current()->GetStats();
4832      RuntimeStats* thread_stats = self->GetStats();
4833      ++global_stats->class_init_count;
4834      ++thread_stats->class_init_count;
4835      global_stats->class_init_time_ns += (t1 - t0);
4836      thread_stats->class_init_time_ns += (t1 - t0);
4837      // Set the class as initialized except if failed to initialize static fields.
4838      mirror::Class::SetStatus(klass, mirror::Class::kStatusInitialized, self);
4839      if (VLOG_IS_ON(class_linker)) {
4840        std::string temp;
4841        LOG(INFO) << "Initialized class " << klass->GetDescriptor(&temp) << " from " <<
4842            klass->GetLocation();
4843      }
4844      // Opportunistically set static method trampolines to their destination.
4845      FixupStaticTrampolines(klass.Get());
4846    }
4847  }
4848  return success;
4849}
4850
4851// We recursively run down the tree of interfaces. We need to do this in the order they are declared
4852// and perform the initialization only on those interfaces that contain default methods.
4853bool ClassLinker::InitializeDefaultInterfaceRecursive(Thread* self,
4854                                                      Handle<mirror::Class> iface,
4855                                                      bool can_init_statics,
4856                                                      bool can_init_parents) {
4857  CHECK(iface->IsInterface());
4858  size_t num_direct_ifaces = iface->NumDirectInterfaces();
4859  // Only create the (expensive) handle scope if we need it.
4860  if (UNLIKELY(num_direct_ifaces > 0)) {
4861    StackHandleScope<1> hs(self);
4862    MutableHandle<mirror::Class> handle_super_iface(hs.NewHandle<mirror::Class>(nullptr));
4863    // First we initialize all of iface's super-interfaces recursively.
4864    for (size_t i = 0; i < num_direct_ifaces; i++) {
4865      ObjPtr<mirror::Class> super_iface = mirror::Class::GetDirectInterface(self, iface.Get(), i);
4866      CHECK(super_iface != nullptr) << iface->PrettyDescriptor() << " iface #" << i;
4867      if (!super_iface->HasBeenRecursivelyInitialized()) {
4868        // Recursive step
4869        handle_super_iface.Assign(super_iface);
4870        if (!InitializeDefaultInterfaceRecursive(self,
4871                                                 handle_super_iface,
4872                                                 can_init_statics,
4873                                                 can_init_parents)) {
4874          return false;
4875        }
4876      }
4877    }
4878  }
4879
4880  bool result = true;
4881  // Then we initialize 'iface' if it has default methods. We do not need to (and in fact must not)
4882  // initialize if we don't have default methods.
4883  if (iface->HasDefaultMethods()) {
4884    result = EnsureInitialized(self, iface, can_init_statics, can_init_parents);
4885  }
4886
4887  // Mark that this interface has undergone recursive default interface initialization so we know we
4888  // can skip it on any later class initializations. We do this even if we are not a default
4889  // interface since we can still avoid the traversal. This is purely a performance optimization.
4890  if (result) {
4891    // TODO This should be done in a better way
4892    ObjectLock<mirror::Class> lock(self, iface);
4893    iface->SetRecursivelyInitialized();
4894  }
4895  return result;
4896}
4897
4898bool ClassLinker::WaitForInitializeClass(Handle<mirror::Class> klass,
4899                                         Thread* self,
4900                                         ObjectLock<mirror::Class>& lock)
4901    REQUIRES_SHARED(Locks::mutator_lock_) {
4902  while (true) {
4903    self->AssertNoPendingException();
4904    CHECK(!klass->IsInitialized());
4905    lock.WaitIgnoringInterrupts();
4906
4907    // When we wake up, repeat the test for init-in-progress.  If
4908    // there's an exception pending (only possible if
4909    // we were not using WaitIgnoringInterrupts), bail out.
4910    if (self->IsExceptionPending()) {
4911      WrapExceptionInInitializer(klass);
4912      mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self);
4913      return false;
4914    }
4915    // Spurious wakeup? Go back to waiting.
4916    if (klass->GetStatus() == mirror::Class::kStatusInitializing) {
4917      continue;
4918    }
4919    if (klass->GetStatus() == mirror::Class::kStatusVerified &&
4920        Runtime::Current()->IsAotCompiler()) {
4921      // Compile time initialization failed.
4922      return false;
4923    }
4924    if (klass->IsErroneous()) {
4925      // The caller wants an exception, but it was thrown in a
4926      // different thread.  Synthesize one here.
4927      ThrowNoClassDefFoundError("<clinit> failed for class %s; see exception in other thread",
4928                                klass->PrettyDescriptor().c_str());
4929      VlogClassInitializationFailure(klass);
4930      return false;
4931    }
4932    if (klass->IsInitialized()) {
4933      return true;
4934    }
4935    LOG(FATAL) << "Unexpected class status. " << klass->PrettyClass() << " is "
4936        << klass->GetStatus();
4937  }
4938  UNREACHABLE();
4939}
4940
4941static void ThrowSignatureCheckResolveReturnTypeException(Handle<mirror::Class> klass,
4942                                                          Handle<mirror::Class> super_klass,
4943                                                          ArtMethod* method,
4944                                                          ArtMethod* m)
4945    REQUIRES_SHARED(Locks::mutator_lock_) {
4946  DCHECK(Thread::Current()->IsExceptionPending());
4947  DCHECK(!m->IsProxyMethod());
4948  const DexFile* dex_file = m->GetDexFile();
4949  const DexFile::MethodId& method_id = dex_file->GetMethodId(m->GetDexMethodIndex());
4950  const DexFile::ProtoId& proto_id = dex_file->GetMethodPrototype(method_id);
4951  dex::TypeIndex return_type_idx = proto_id.return_type_idx_;
4952  std::string return_type = dex_file->PrettyType(return_type_idx);
4953  std::string class_loader = mirror::Object::PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader());
4954  ThrowWrappedLinkageError(klass.Get(),
4955                           "While checking class %s method %s signature against %s %s: "
4956                           "Failed to resolve return type %s with %s",
4957                           mirror::Class::PrettyDescriptor(klass.Get()).c_str(),
4958                           ArtMethod::PrettyMethod(method).c_str(),
4959                           super_klass->IsInterface() ? "interface" : "superclass",
4960                           mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(),
4961                           return_type.c_str(), class_loader.c_str());
4962}
4963
4964static void ThrowSignatureCheckResolveArgException(Handle<mirror::Class> klass,
4965                                                   Handle<mirror::Class> super_klass,
4966                                                   ArtMethod* method,
4967                                                   ArtMethod* m,
4968                                                   uint32_t index,
4969                                                   dex::TypeIndex arg_type_idx)
4970    REQUIRES_SHARED(Locks::mutator_lock_) {
4971  DCHECK(Thread::Current()->IsExceptionPending());
4972  DCHECK(!m->IsProxyMethod());
4973  const DexFile* dex_file = m->GetDexFile();
4974  std::string arg_type = dex_file->PrettyType(arg_type_idx);
4975  std::string class_loader = mirror::Object::PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader());
4976  ThrowWrappedLinkageError(klass.Get(),
4977                           "While checking class %s method %s signature against %s %s: "
4978                           "Failed to resolve arg %u type %s with %s",
4979                           mirror::Class::PrettyDescriptor(klass.Get()).c_str(),
4980                           ArtMethod::PrettyMethod(method).c_str(),
4981                           super_klass->IsInterface() ? "interface" : "superclass",
4982                           mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(),
4983                           index, arg_type.c_str(), class_loader.c_str());
4984}
4985
4986static void ThrowSignatureMismatch(Handle<mirror::Class> klass,
4987                                   Handle<mirror::Class> super_klass,
4988                                   ArtMethod* method,
4989                                   const std::string& error_msg)
4990    REQUIRES_SHARED(Locks::mutator_lock_) {
4991  ThrowLinkageError(klass.Get(),
4992                    "Class %s method %s resolves differently in %s %s: %s",
4993                    mirror::Class::PrettyDescriptor(klass.Get()).c_str(),
4994                    ArtMethod::PrettyMethod(method).c_str(),
4995                    super_klass->IsInterface() ? "interface" : "superclass",
4996                    mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(),
4997                    error_msg.c_str());
4998}
4999
5000static bool HasSameSignatureWithDifferentClassLoaders(Thread* self,
5001                                                      Handle<mirror::Class> klass,
5002                                                      Handle<mirror::Class> super_klass,
5003                                                      ArtMethod* method1,
5004                                                      ArtMethod* method2)
5005    REQUIRES_SHARED(Locks::mutator_lock_) {
5006  {
5007    StackHandleScope<1> hs(self);
5008    Handle<mirror::Class> return_type(hs.NewHandle(method1->GetReturnType(true /* resolve */)));
5009    if (UNLIKELY(return_type == nullptr)) {
5010      ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method1);
5011      return false;
5012    }
5013    ObjPtr<mirror::Class> other_return_type = method2->GetReturnType(true /* resolve */);
5014    if (UNLIKELY(other_return_type == nullptr)) {
5015      ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method2);
5016      return false;
5017    }
5018    if (UNLIKELY(other_return_type != return_type.Get())) {
5019      ThrowSignatureMismatch(klass, super_klass, method1,
5020                             StringPrintf("Return types mismatch: %s(%p) vs %s(%p)",
5021                                          return_type->PrettyClassAndClassLoader().c_str(),
5022                                          return_type.Get(),
5023                                          other_return_type->PrettyClassAndClassLoader().c_str(),
5024                                          other_return_type.Ptr()));
5025      return false;
5026    }
5027  }
5028  const DexFile::TypeList* types1 = method1->GetParameterTypeList();
5029  const DexFile::TypeList* types2 = method2->GetParameterTypeList();
5030  if (types1 == nullptr) {
5031    if (types2 != nullptr && types2->Size() != 0) {
5032      ThrowSignatureMismatch(klass, super_klass, method1,
5033                             StringPrintf("Type list mismatch with %s",
5034                                          method2->PrettyMethod(true).c_str()));
5035      return false;
5036    }
5037    return true;
5038  } else if (UNLIKELY(types2 == nullptr)) {
5039    if (types1->Size() != 0) {
5040      ThrowSignatureMismatch(klass, super_klass, method1,
5041                             StringPrintf("Type list mismatch with %s",
5042                                          method2->PrettyMethod(true).c_str()));
5043      return false;
5044    }
5045    return true;
5046  }
5047  uint32_t num_types = types1->Size();
5048  if (UNLIKELY(num_types != types2->Size())) {
5049    ThrowSignatureMismatch(klass, super_klass, method1,
5050                           StringPrintf("Type list mismatch with %s",
5051                                        method2->PrettyMethod(true).c_str()));
5052    return false;
5053  }
5054  for (uint32_t i = 0; i < num_types; ++i) {
5055    StackHandleScope<1> hs(self);
5056    dex::TypeIndex param_type_idx = types1->GetTypeItem(i).type_idx_;
5057    Handle<mirror::Class> param_type(hs.NewHandle(
5058        method1->GetClassFromTypeIndex(param_type_idx, true /* resolve */)));
5059    if (UNLIKELY(param_type == nullptr)) {
5060      ThrowSignatureCheckResolveArgException(klass, super_klass, method1,
5061                                             method1, i, param_type_idx);
5062      return false;
5063    }
5064    dex::TypeIndex other_param_type_idx = types2->GetTypeItem(i).type_idx_;
5065    ObjPtr<mirror::Class> other_param_type =
5066        method2->GetClassFromTypeIndex(other_param_type_idx, true /* resolve */);
5067    if (UNLIKELY(other_param_type == nullptr)) {
5068      ThrowSignatureCheckResolveArgException(klass, super_klass, method1,
5069                                             method2, i, other_param_type_idx);
5070      return false;
5071    }
5072    if (UNLIKELY(param_type.Get() != other_param_type)) {
5073      ThrowSignatureMismatch(klass, super_klass, method1,
5074                             StringPrintf("Parameter %u type mismatch: %s(%p) vs %s(%p)",
5075                                          i,
5076                                          param_type->PrettyClassAndClassLoader().c_str(),
5077                                          param_type.Get(),
5078                                          other_param_type->PrettyClassAndClassLoader().c_str(),
5079                                          other_param_type.Ptr()));
5080      return false;
5081    }
5082  }
5083  return true;
5084}
5085
5086
5087bool ClassLinker::ValidateSuperClassDescriptors(Handle<mirror::Class> klass) {
5088  if (klass->IsInterface()) {
5089    return true;
5090  }
5091  // Begin with the methods local to the superclass.
5092  Thread* self = Thread::Current();
5093  StackHandleScope<1> hs(self);
5094  MutableHandle<mirror::Class> super_klass(hs.NewHandle<mirror::Class>(nullptr));
5095  if (klass->HasSuperClass() &&
5096      klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) {
5097    super_klass.Assign(klass->GetSuperClass());
5098    for (int i = klass->GetSuperClass()->GetVTableLength() - 1; i >= 0; --i) {
5099      auto* m = klass->GetVTableEntry(i, image_pointer_size_);
5100      auto* super_m = klass->GetSuperClass()->GetVTableEntry(i, image_pointer_size_);
5101      if (m != super_m) {
5102        if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self,
5103                                                                klass,
5104                                                                super_klass,
5105                                                                m,
5106                                                                super_m))) {
5107          self->AssertPendingException();
5108          return false;
5109        }
5110      }
5111    }
5112  }
5113  for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
5114    super_klass.Assign(klass->GetIfTable()->GetInterface(i));
5115    if (klass->GetClassLoader() != super_klass->GetClassLoader()) {
5116      uint32_t num_methods = super_klass->NumVirtualMethods();
5117      for (uint32_t j = 0; j < num_methods; ++j) {
5118        auto* m = klass->GetIfTable()->GetMethodArray(i)->GetElementPtrSize<ArtMethod*>(
5119            j, image_pointer_size_);
5120        auto* super_m = super_klass->GetVirtualMethod(j, image_pointer_size_);
5121        if (m != super_m) {
5122          if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self,
5123                                                                  klass,
5124                                                                  super_klass,
5125                                                                  m,
5126                                                                  super_m))) {
5127            self->AssertPendingException();
5128            return false;
5129          }
5130        }
5131      }
5132    }
5133  }
5134  return true;
5135}
5136
5137bool ClassLinker::EnsureInitialized(Thread* self,
5138                                    Handle<mirror::Class> c,
5139                                    bool can_init_fields,
5140                                    bool can_init_parents) {
5141  DCHECK(c != nullptr);
5142  if (c->IsInitialized()) {
5143    EnsureSkipAccessChecksMethods(c, image_pointer_size_);
5144    self->AssertNoPendingException();
5145    return true;
5146  }
5147  const bool success = InitializeClass(self, c, can_init_fields, can_init_parents);
5148  if (!success) {
5149    if (can_init_fields && can_init_parents) {
5150      CHECK(self->IsExceptionPending()) << c->PrettyClass();
5151    }
5152  } else {
5153    self->AssertNoPendingException();
5154  }
5155  return success;
5156}
5157
5158void ClassLinker::FixupTemporaryDeclaringClass(ObjPtr<mirror::Class> temp_class,
5159                                               ObjPtr<mirror::Class> new_class) {
5160  DCHECK_EQ(temp_class->NumInstanceFields(), 0u);
5161  for (ArtField& field : new_class->GetIFields()) {
5162    if (field.GetDeclaringClass() == temp_class) {
5163      field.SetDeclaringClass(new_class);
5164    }
5165  }
5166
5167  DCHECK_EQ(temp_class->NumStaticFields(), 0u);
5168  for (ArtField& field : new_class->GetSFields()) {
5169    if (field.GetDeclaringClass() == temp_class) {
5170      field.SetDeclaringClass(new_class);
5171    }
5172  }
5173
5174  DCHECK_EQ(temp_class->NumDirectMethods(), 0u);
5175  DCHECK_EQ(temp_class->NumVirtualMethods(), 0u);
5176  for (auto& method : new_class->GetMethods(image_pointer_size_)) {
5177    if (method.GetDeclaringClass() == temp_class) {
5178      method.SetDeclaringClass(new_class);
5179    }
5180  }
5181
5182  // Make sure the remembered set and mod-union tables know that we updated some of the native
5183  // roots.
5184  Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(new_class);
5185}
5186
5187void ClassLinker::RegisterClassLoader(ObjPtr<mirror::ClassLoader> class_loader) {
5188  CHECK(class_loader->GetAllocator() == nullptr);
5189  CHECK(class_loader->GetClassTable() == nullptr);
5190  Thread* const self = Thread::Current();
5191  ClassLoaderData data;
5192  data.weak_root = self->GetJniEnv()->vm->AddWeakGlobalRef(self, class_loader);
5193  // Create and set the class table.
5194  data.class_table = new ClassTable;
5195  class_loader->SetClassTable(data.class_table);
5196  // Create and set the linear allocator.
5197  data.allocator = Runtime::Current()->CreateLinearAlloc();
5198  class_loader->SetAllocator(data.allocator);
5199  // Add to the list so that we know to free the data later.
5200  class_loaders_.push_back(data);
5201}
5202
5203ClassTable* ClassLinker::InsertClassTableForClassLoader(ObjPtr<mirror::ClassLoader> class_loader) {
5204  if (class_loader == nullptr) {
5205    return &boot_class_table_;
5206  }
5207  ClassTable* class_table = class_loader->GetClassTable();
5208  if (class_table == nullptr) {
5209    RegisterClassLoader(class_loader);
5210    class_table = class_loader->GetClassTable();
5211    DCHECK(class_table != nullptr);
5212  }
5213  return class_table;
5214}
5215
5216ClassTable* ClassLinker::ClassTableForClassLoader(ObjPtr<mirror::ClassLoader> class_loader) {
5217  return class_loader == nullptr ? &boot_class_table_ : class_loader->GetClassTable();
5218}
5219
5220static ImTable* FindSuperImt(ObjPtr<mirror::Class> klass, PointerSize pointer_size)
5221    REQUIRES_SHARED(Locks::mutator_lock_) {
5222  while (klass->HasSuperClass()) {
5223    klass = klass->GetSuperClass();
5224    if (klass->ShouldHaveImt()) {
5225      return klass->GetImt(pointer_size);
5226    }
5227  }
5228  return nullptr;
5229}
5230
5231bool ClassLinker::LinkClass(Thread* self,
5232                            const char* descriptor,
5233                            Handle<mirror::Class> klass,
5234                            Handle<mirror::ObjectArray<mirror::Class>> interfaces,
5235                            MutableHandle<mirror::Class>* h_new_class_out) {
5236  CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus());
5237
5238  if (!LinkSuperClass(klass)) {
5239    return false;
5240  }
5241  ArtMethod* imt_data[ImTable::kSize];
5242  // If there are any new conflicts compared to super class.
5243  bool new_conflict = false;
5244  std::fill_n(imt_data, arraysize(imt_data), Runtime::Current()->GetImtUnimplementedMethod());
5245  if (!LinkMethods(self, klass, interfaces, &new_conflict, imt_data)) {
5246    return false;
5247  }
5248  if (!LinkInstanceFields(self, klass)) {
5249    return false;
5250  }
5251  size_t class_size;
5252  if (!LinkStaticFields(self, klass, &class_size)) {
5253    return false;
5254  }
5255  CreateReferenceInstanceOffsets(klass);
5256  CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus());
5257
5258  ImTable* imt = nullptr;
5259  if (klass->ShouldHaveImt()) {
5260    // If there are any new conflicts compared to the super class we can not make a copy. There
5261    // can be cases where both will have a conflict method at the same slot without having the same
5262    // set of conflicts. In this case, we can not share the IMT since the conflict table slow path
5263    // will possibly create a table that is incorrect for either of the classes.
5264    // Same IMT with new_conflict does not happen very often.
5265    if (!new_conflict) {
5266      ImTable* super_imt = FindSuperImt(klass.Get(), image_pointer_size_);
5267      if (super_imt != nullptr) {
5268        bool imt_equals = true;
5269        for (size_t i = 0; i < ImTable::kSize && imt_equals; ++i) {
5270          imt_equals = imt_equals && (super_imt->Get(i, image_pointer_size_) == imt_data[i]);
5271        }
5272        if (imt_equals) {
5273          imt = super_imt;
5274        }
5275      }
5276    }
5277    if (imt == nullptr) {
5278      LinearAlloc* allocator = GetAllocatorForClassLoader(klass->GetClassLoader());
5279      imt = reinterpret_cast<ImTable*>(
5280          allocator->Alloc(self, ImTable::SizeInBytes(image_pointer_size_)));
5281      if (imt == nullptr) {
5282        return false;
5283      }
5284      imt->Populate(imt_data, image_pointer_size_);
5285    }
5286  }
5287
5288  if (!klass->IsTemp() || (!init_done_ && klass->GetClassSize() == class_size)) {
5289    // We don't need to retire this class as it has no embedded tables or it was created the
5290    // correct size during class linker initialization.
5291    CHECK_EQ(klass->GetClassSize(), class_size) << klass->PrettyDescriptor();
5292
5293    if (klass->ShouldHaveEmbeddedVTable()) {
5294      klass->PopulateEmbeddedVTable(image_pointer_size_);
5295    }
5296    if (klass->ShouldHaveImt()) {
5297      klass->SetImt(imt, image_pointer_size_);
5298    }
5299
5300    // Update CHA info based on whether we override methods.
5301    // Have to do this before setting the class as resolved which allows
5302    // instantiation of klass.
5303    Runtime::Current()->GetClassHierarchyAnalysis()->UpdateAfterLoadingOf(klass);
5304
5305    // This will notify waiters on klass that saw the not yet resolved
5306    // class in the class_table_ during EnsureResolved.
5307    mirror::Class::SetStatus(klass, mirror::Class::kStatusResolved, self);
5308    h_new_class_out->Assign(klass.Get());
5309  } else {
5310    CHECK(!klass->IsResolved());
5311    // Retire the temporary class and create the correctly sized resolved class.
5312    StackHandleScope<1> hs(self);
5313    auto h_new_class = hs.NewHandle(klass->CopyOf(self, class_size, imt, image_pointer_size_));
5314    // Set arrays to null since we don't want to have multiple classes with the same ArtField or
5315    // ArtMethod array pointers. If this occurs, it causes bugs in remembered sets since the GC
5316    // may not see any references to the target space and clean the card for a class if another
5317    // class had the same array pointer.
5318    klass->SetMethodsPtrUnchecked(nullptr, 0, 0);
5319    klass->SetSFieldsPtrUnchecked(nullptr);
5320    klass->SetIFieldsPtrUnchecked(nullptr);
5321    if (UNLIKELY(h_new_class == nullptr)) {
5322      self->AssertPendingOOMException();
5323      mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorUnresolved, self);
5324      return false;
5325    }
5326
5327    CHECK_EQ(h_new_class->GetClassSize(), class_size);
5328    ObjectLock<mirror::Class> lock(self, h_new_class);
5329    FixupTemporaryDeclaringClass(klass.Get(), h_new_class.Get());
5330
5331    {
5332      WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
5333      ObjPtr<mirror::ClassLoader> const class_loader = h_new_class.Get()->GetClassLoader();
5334      ClassTable* const table = InsertClassTableForClassLoader(class_loader);
5335      ObjPtr<mirror::Class> existing = table->UpdateClass(descriptor, h_new_class.Get(),
5336                                                   ComputeModifiedUtf8Hash(descriptor));
5337      if (class_loader != nullptr) {
5338        // We updated the class in the class table, perform the write barrier so that the GC knows
5339        // about the change.
5340        Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader);
5341      }
5342      CHECK_EQ(existing, klass.Get());
5343      if (log_new_roots_) {
5344        new_class_roots_.push_back(GcRoot<mirror::Class>(h_new_class.Get()));
5345      }
5346    }
5347
5348    // Update CHA info based on whether we override methods.
5349    // Have to do this before setting the class as resolved which allows
5350    // instantiation of klass.
5351    Runtime::Current()->GetClassHierarchyAnalysis()->UpdateAfterLoadingOf(h_new_class);
5352
5353    // This will notify waiters on temp class that saw the not yet resolved class in the
5354    // class_table_ during EnsureResolved.
5355    mirror::Class::SetStatus(klass, mirror::Class::kStatusRetired, self);
5356
5357    CHECK_EQ(h_new_class->GetStatus(), mirror::Class::kStatusResolving);
5358    // This will notify waiters on new_class that saw the not yet resolved
5359    // class in the class_table_ during EnsureResolved.
5360    mirror::Class::SetStatus(h_new_class, mirror::Class::kStatusResolved, self);
5361    // Return the new class.
5362    h_new_class_out->Assign(h_new_class.Get());
5363  }
5364  return true;
5365}
5366
5367static void CountMethodsAndFields(ClassDataItemIterator& dex_data,
5368                                  size_t* virtual_methods,
5369                                  size_t* direct_methods,
5370                                  size_t* static_fields,
5371                                  size_t* instance_fields) {
5372  *virtual_methods = *direct_methods = *static_fields = *instance_fields = 0;
5373
5374  while (dex_data.HasNextStaticField()) {
5375    dex_data.Next();
5376    (*static_fields)++;
5377  }
5378  while (dex_data.HasNextInstanceField()) {
5379    dex_data.Next();
5380    (*instance_fields)++;
5381  }
5382  while (dex_data.HasNextDirectMethod()) {
5383    (*direct_methods)++;
5384    dex_data.Next();
5385  }
5386  while (dex_data.HasNextVirtualMethod()) {
5387    (*virtual_methods)++;
5388    dex_data.Next();
5389  }
5390  DCHECK(!dex_data.HasNext());
5391}
5392
5393static void DumpClass(std::ostream& os,
5394                      const DexFile& dex_file, const DexFile::ClassDef& dex_class_def,
5395                      const char* suffix) {
5396  ClassDataItemIterator dex_data(dex_file, dex_file.GetClassData(dex_class_def));
5397  os << dex_file.GetClassDescriptor(dex_class_def) << suffix << ":\n";
5398  os << " Static fields:\n";
5399  while (dex_data.HasNextStaticField()) {
5400    const DexFile::FieldId& id = dex_file.GetFieldId(dex_data.GetMemberIndex());
5401    os << "  " << dex_file.GetFieldTypeDescriptor(id) << " " << dex_file.GetFieldName(id) << "\n";
5402    dex_data.Next();
5403  }
5404  os << " Instance fields:\n";
5405  while (dex_data.HasNextInstanceField()) {
5406    const DexFile::FieldId& id = dex_file.GetFieldId(dex_data.GetMemberIndex());
5407    os << "  " << dex_file.GetFieldTypeDescriptor(id) << " " << dex_file.GetFieldName(id) << "\n";
5408    dex_data.Next();
5409  }
5410  os << " Direct methods:\n";
5411  while (dex_data.HasNextDirectMethod()) {
5412    const DexFile::MethodId& id = dex_file.GetMethodId(dex_data.GetMemberIndex());
5413    os << "  " << dex_file.GetMethodName(id) << dex_file.GetMethodSignature(id).ToString() << "\n";
5414    dex_data.Next();
5415  }
5416  os << " Virtual methods:\n";
5417  while (dex_data.HasNextVirtualMethod()) {
5418    const DexFile::MethodId& id = dex_file.GetMethodId(dex_data.GetMemberIndex());
5419    os << "  " << dex_file.GetMethodName(id) << dex_file.GetMethodSignature(id).ToString() << "\n";
5420    dex_data.Next();
5421  }
5422}
5423
5424static std::string DumpClasses(const DexFile& dex_file1,
5425                               const DexFile::ClassDef& dex_class_def1,
5426                               const DexFile& dex_file2,
5427                               const DexFile::ClassDef& dex_class_def2) {
5428  std::ostringstream os;
5429  DumpClass(os, dex_file1, dex_class_def1, " (Compile time)");
5430  DumpClass(os, dex_file2, dex_class_def2, " (Runtime)");
5431  return os.str();
5432}
5433
5434
5435// Very simple structural check on whether the classes match. Only compares the number of
5436// methods and fields.
5437static bool SimpleStructuralCheck(const DexFile& dex_file1,
5438                                  const DexFile::ClassDef& dex_class_def1,
5439                                  const DexFile& dex_file2,
5440                                  const DexFile::ClassDef& dex_class_def2,
5441                                  std::string* error_msg) {
5442  ClassDataItemIterator dex_data1(dex_file1, dex_file1.GetClassData(dex_class_def1));
5443  ClassDataItemIterator dex_data2(dex_file2, dex_file2.GetClassData(dex_class_def2));
5444
5445  // Counters for current dex file.
5446  size_t dex_virtual_methods1, dex_direct_methods1, dex_static_fields1, dex_instance_fields1;
5447  CountMethodsAndFields(dex_data1,
5448                        &dex_virtual_methods1,
5449                        &dex_direct_methods1,
5450                        &dex_static_fields1,
5451                        &dex_instance_fields1);
5452  // Counters for compile-time dex file.
5453  size_t dex_virtual_methods2, dex_direct_methods2, dex_static_fields2, dex_instance_fields2;
5454  CountMethodsAndFields(dex_data2,
5455                        &dex_virtual_methods2,
5456                        &dex_direct_methods2,
5457                        &dex_static_fields2,
5458                        &dex_instance_fields2);
5459
5460  if (dex_virtual_methods1 != dex_virtual_methods2) {
5461    std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5462    *error_msg = StringPrintf("Virtual method count off: %zu vs %zu\n%s",
5463                              dex_virtual_methods1,
5464                              dex_virtual_methods2,
5465                              class_dump.c_str());
5466    return false;
5467  }
5468  if (dex_direct_methods1 != dex_direct_methods2) {
5469    std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5470    *error_msg = StringPrintf("Direct method count off: %zu vs %zu\n%s",
5471                              dex_direct_methods1,
5472                              dex_direct_methods2,
5473                              class_dump.c_str());
5474    return false;
5475  }
5476  if (dex_static_fields1 != dex_static_fields2) {
5477    std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5478    *error_msg = StringPrintf("Static field count off: %zu vs %zu\n%s",
5479                              dex_static_fields1,
5480                              dex_static_fields2,
5481                              class_dump.c_str());
5482    return false;
5483  }
5484  if (dex_instance_fields1 != dex_instance_fields2) {
5485    std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5486    *error_msg = StringPrintf("Instance field count off: %zu vs %zu\n%s",
5487                              dex_instance_fields1,
5488                              dex_instance_fields2,
5489                              class_dump.c_str());
5490    return false;
5491  }
5492
5493  return true;
5494}
5495
5496// Checks whether a the super-class changed from what we had at compile-time. This would
5497// invalidate quickening.
5498static bool CheckSuperClassChange(Handle<mirror::Class> klass,
5499                                  const DexFile& dex_file,
5500                                  const DexFile::ClassDef& class_def,
5501                                  ObjPtr<mirror::Class> super_class)
5502    REQUIRES_SHARED(Locks::mutator_lock_) {
5503  // Check for unexpected changes in the superclass.
5504  // Quick check 1) is the super_class class-loader the boot class loader? This always has
5505  // precedence.
5506  if (super_class->GetClassLoader() != nullptr &&
5507      // Quick check 2) different dex cache? Breaks can only occur for different dex files,
5508      // which is implied by different dex cache.
5509      klass->GetDexCache() != super_class->GetDexCache()) {
5510    // Now comes the expensive part: things can be broken if (a) the klass' dex file has a
5511    // definition for the super-class, and (b) the files are in separate oat files. The oat files
5512    // are referenced from the dex file, so do (b) first. Only relevant if we have oat files.
5513    const OatDexFile* class_oat_dex_file = dex_file.GetOatDexFile();
5514    const OatFile* class_oat_file = nullptr;
5515    if (class_oat_dex_file != nullptr) {
5516      class_oat_file = class_oat_dex_file->GetOatFile();
5517    }
5518
5519    if (class_oat_file != nullptr) {
5520      const OatDexFile* loaded_super_oat_dex_file = super_class->GetDexFile().GetOatDexFile();
5521      const OatFile* loaded_super_oat_file = nullptr;
5522      if (loaded_super_oat_dex_file != nullptr) {
5523        loaded_super_oat_file = loaded_super_oat_dex_file->GetOatFile();
5524      }
5525
5526      if (loaded_super_oat_file != nullptr && class_oat_file != loaded_super_oat_file) {
5527        // Now check (a).
5528        const DexFile::ClassDef* super_class_def = dex_file.FindClassDef(class_def.superclass_idx_);
5529        if (super_class_def != nullptr) {
5530          // Uh-oh, we found something. Do our check.
5531          std::string error_msg;
5532          if (!SimpleStructuralCheck(dex_file, *super_class_def,
5533                                     super_class->GetDexFile(), *super_class->GetClassDef(),
5534                                     &error_msg)) {
5535            // Print a warning to the log. This exception might be caught, e.g., as common in test
5536            // drivers. When the class is later tried to be used, we re-throw a new instance, as we
5537            // only save the type of the exception.
5538            LOG(WARNING) << "Incompatible structural change detected: " <<
5539                StringPrintf(
5540                    "Structural change of %s is hazardous (%s at compile time, %s at runtime): %s",
5541                    dex_file.PrettyType(super_class_def->class_idx_).c_str(),
5542                    class_oat_file->GetLocation().c_str(),
5543                    loaded_super_oat_file->GetLocation().c_str(),
5544                    error_msg.c_str());
5545            ThrowIncompatibleClassChangeError(klass.Get(),
5546                "Structural change of %s is hazardous (%s at compile time, %s at runtime): %s",
5547                dex_file.PrettyType(super_class_def->class_idx_).c_str(),
5548                class_oat_file->GetLocation().c_str(),
5549                loaded_super_oat_file->GetLocation().c_str(),
5550                error_msg.c_str());
5551            return false;
5552          }
5553        }
5554      }
5555    }
5556  }
5557  return true;
5558}
5559
5560bool ClassLinker::LoadSuperAndInterfaces(Handle<mirror::Class> klass, const DexFile& dex_file) {
5561  CHECK_EQ(mirror::Class::kStatusIdx, klass->GetStatus());
5562  const DexFile::ClassDef& class_def = dex_file.GetClassDef(klass->GetDexClassDefIndex());
5563  dex::TypeIndex super_class_idx = class_def.superclass_idx_;
5564  if (super_class_idx.IsValid()) {
5565    // Check that a class does not inherit from itself directly.
5566    //
5567    // TODO: This is a cheap check to detect the straightforward case
5568    // of a class extending itself (b/28685551), but we should do a
5569    // proper cycle detection on loaded classes, to detect all cases
5570    // of class circularity errors (b/28830038).
5571    if (super_class_idx == class_def.class_idx_) {
5572      ThrowClassCircularityError(klass.Get(),
5573                                 "Class %s extends itself",
5574                                 klass->PrettyDescriptor().c_str());
5575      return false;
5576    }
5577
5578    ObjPtr<mirror::Class> super_class = ResolveType(dex_file, super_class_idx, klass.Get());
5579    if (super_class == nullptr) {
5580      DCHECK(Thread::Current()->IsExceptionPending());
5581      return false;
5582    }
5583    // Verify
5584    if (!klass->CanAccess(super_class)) {
5585      ThrowIllegalAccessError(klass.Get(), "Class %s extended by class %s is inaccessible",
5586                              super_class->PrettyDescriptor().c_str(),
5587                              klass->PrettyDescriptor().c_str());
5588      return false;
5589    }
5590    CHECK(super_class->IsResolved());
5591    klass->SetSuperClass(super_class);
5592
5593    if (!CheckSuperClassChange(klass, dex_file, class_def, super_class)) {
5594      DCHECK(Thread::Current()->IsExceptionPending());
5595      return false;
5596    }
5597  }
5598  const DexFile::TypeList* interfaces = dex_file.GetInterfacesList(class_def);
5599  if (interfaces != nullptr) {
5600    for (size_t i = 0; i < interfaces->Size(); i++) {
5601      dex::TypeIndex idx = interfaces->GetTypeItem(i).type_idx_;
5602      ObjPtr<mirror::Class> interface = ResolveType(dex_file, idx, klass.Get());
5603      if (interface == nullptr) {
5604        DCHECK(Thread::Current()->IsExceptionPending());
5605        return false;
5606      }
5607      // Verify
5608      if (!klass->CanAccess(interface)) {
5609        // TODO: the RI seemed to ignore this in my testing.
5610        ThrowIllegalAccessError(klass.Get(),
5611                                "Interface %s implemented by class %s is inaccessible",
5612                                interface->PrettyDescriptor().c_str(),
5613                                klass->PrettyDescriptor().c_str());
5614        return false;
5615      }
5616    }
5617  }
5618  // Mark the class as loaded.
5619  mirror::Class::SetStatus(klass, mirror::Class::kStatusLoaded, nullptr);
5620  return true;
5621}
5622
5623bool ClassLinker::LinkSuperClass(Handle<mirror::Class> klass) {
5624  CHECK(!klass->IsPrimitive());
5625  ObjPtr<mirror::Class> super = klass->GetSuperClass();
5626  if (klass.Get() == GetClassRoot(kJavaLangObject)) {
5627    if (super != nullptr) {
5628      ThrowClassFormatError(klass.Get(), "java.lang.Object must not have a superclass");
5629      return false;
5630    }
5631    return true;
5632  }
5633  if (super == nullptr) {
5634    ThrowLinkageError(klass.Get(), "No superclass defined for class %s",
5635                      klass->PrettyDescriptor().c_str());
5636    return false;
5637  }
5638  // Verify
5639  if (super->IsFinal() || super->IsInterface()) {
5640    ThrowIncompatibleClassChangeError(klass.Get(),
5641                                      "Superclass %s of %s is %s",
5642                                      super->PrettyDescriptor().c_str(),
5643                                      klass->PrettyDescriptor().c_str(),
5644                                      super->IsFinal() ? "declared final" : "an interface");
5645    return false;
5646  }
5647  if (!klass->CanAccess(super)) {
5648    ThrowIllegalAccessError(klass.Get(), "Superclass %s is inaccessible to class %s",
5649                            super->PrettyDescriptor().c_str(),
5650                            klass->PrettyDescriptor().c_str());
5651    return false;
5652  }
5653
5654  // Inherit kAccClassIsFinalizable from the superclass in case this
5655  // class doesn't override finalize.
5656  if (super->IsFinalizable()) {
5657    klass->SetFinalizable();
5658  }
5659
5660  // Inherit class loader flag form super class.
5661  if (super->IsClassLoaderClass()) {
5662    klass->SetClassLoaderClass();
5663  }
5664
5665  // Inherit reference flags (if any) from the superclass.
5666  uint32_t reference_flags = (super->GetClassFlags() & mirror::kClassFlagReference);
5667  if (reference_flags != 0) {
5668    CHECK_EQ(klass->GetClassFlags(), 0u);
5669    klass->SetClassFlags(klass->GetClassFlags() | reference_flags);
5670  }
5671  // Disallow custom direct subclasses of java.lang.ref.Reference.
5672  if (init_done_ && super == GetClassRoot(kJavaLangRefReference)) {
5673    ThrowLinkageError(klass.Get(),
5674                      "Class %s attempts to subclass java.lang.ref.Reference, which is not allowed",
5675                      klass->PrettyDescriptor().c_str());
5676    return false;
5677  }
5678
5679  if (kIsDebugBuild) {
5680    // Ensure super classes are fully resolved prior to resolving fields..
5681    while (super != nullptr) {
5682      CHECK(super->IsResolved());
5683      super = super->GetSuperClass();
5684    }
5685  }
5686  return true;
5687}
5688
5689// Populate the class vtable and itable. Compute return type indices.
5690bool ClassLinker::LinkMethods(Thread* self,
5691                              Handle<mirror::Class> klass,
5692                              Handle<mirror::ObjectArray<mirror::Class>> interfaces,
5693                              bool* out_new_conflict,
5694                              ArtMethod** out_imt) {
5695  self->AllowThreadSuspension();
5696  // A map from vtable indexes to the method they need to be updated to point to. Used because we
5697  // need to have default methods be in the virtuals array of each class but we don't set that up
5698  // until LinkInterfaceMethods.
5699  std::unordered_map<size_t, ClassLinker::MethodTranslation> default_translations;
5700  // Link virtual methods then interface methods.
5701  // We set up the interface lookup table first because we need it to determine if we need to update
5702  // any vtable entries with new default method implementations.
5703  return SetupInterfaceLookupTable(self, klass, interfaces)
5704          && LinkVirtualMethods(self, klass, /*out*/ &default_translations)
5705          && LinkInterfaceMethods(self, klass, default_translations, out_new_conflict, out_imt);
5706}
5707
5708// Comparator for name and signature of a method, used in finding overriding methods. Implementation
5709// avoids the use of handles, if it didn't then rather than compare dex files we could compare dex
5710// caches in the implementation below.
5711class MethodNameAndSignatureComparator FINAL : public ValueObject {
5712 public:
5713  explicit MethodNameAndSignatureComparator(ArtMethod* method)
5714      REQUIRES_SHARED(Locks::mutator_lock_) :
5715      dex_file_(method->GetDexFile()), mid_(&dex_file_->GetMethodId(method->GetDexMethodIndex())),
5716      name_(nullptr), name_len_(0) {
5717    DCHECK(!method->IsProxyMethod()) << method->PrettyMethod();
5718  }
5719
5720  const char* GetName() {
5721    if (name_ == nullptr) {
5722      name_ = dex_file_->StringDataAndUtf16LengthByIdx(mid_->name_idx_, &name_len_);
5723    }
5724    return name_;
5725  }
5726
5727  bool HasSameNameAndSignature(ArtMethod* other)
5728      REQUIRES_SHARED(Locks::mutator_lock_) {
5729    DCHECK(!other->IsProxyMethod()) << other->PrettyMethod();
5730    const DexFile* other_dex_file = other->GetDexFile();
5731    const DexFile::MethodId& other_mid = other_dex_file->GetMethodId(other->GetDexMethodIndex());
5732    if (dex_file_ == other_dex_file) {
5733      return mid_->name_idx_ == other_mid.name_idx_ && mid_->proto_idx_ == other_mid.proto_idx_;
5734    }
5735    GetName();  // Only used to make sure its calculated.
5736    uint32_t other_name_len;
5737    const char* other_name = other_dex_file->StringDataAndUtf16LengthByIdx(other_mid.name_idx_,
5738                                                                           &other_name_len);
5739    if (name_len_ != other_name_len || strcmp(name_, other_name) != 0) {
5740      return false;
5741    }
5742    return dex_file_->GetMethodSignature(*mid_) == other_dex_file->GetMethodSignature(other_mid);
5743  }
5744
5745 private:
5746  // Dex file for the method to compare against.
5747  const DexFile* const dex_file_;
5748  // MethodId for the method to compare against.
5749  const DexFile::MethodId* const mid_;
5750  // Lazily computed name from the dex file's strings.
5751  const char* name_;
5752  // Lazily computed name length.
5753  uint32_t name_len_;
5754};
5755
5756class LinkVirtualHashTable {
5757 public:
5758  LinkVirtualHashTable(Handle<mirror::Class> klass,
5759                       size_t hash_size,
5760                       uint32_t* hash_table,
5761                       PointerSize image_pointer_size)
5762     : klass_(klass),
5763       hash_size_(hash_size),
5764       hash_table_(hash_table),
5765       image_pointer_size_(image_pointer_size) {
5766    std::fill(hash_table_, hash_table_ + hash_size_, invalid_index_);
5767  }
5768
5769  void Add(uint32_t virtual_method_index) REQUIRES_SHARED(Locks::mutator_lock_) {
5770    ArtMethod* local_method = klass_->GetVirtualMethodDuringLinking(
5771        virtual_method_index, image_pointer_size_);
5772    const char* name = local_method->GetInterfaceMethodIfProxy(image_pointer_size_)->GetName();
5773    uint32_t hash = ComputeModifiedUtf8Hash(name);
5774    uint32_t index = hash % hash_size_;
5775    // Linear probe until we have an empty slot.
5776    while (hash_table_[index] != invalid_index_) {
5777      if (++index == hash_size_) {
5778        index = 0;
5779      }
5780    }
5781    hash_table_[index] = virtual_method_index;
5782  }
5783
5784  uint32_t FindAndRemove(MethodNameAndSignatureComparator* comparator)
5785      REQUIRES_SHARED(Locks::mutator_lock_) {
5786    const char* name = comparator->GetName();
5787    uint32_t hash = ComputeModifiedUtf8Hash(name);
5788    size_t index = hash % hash_size_;
5789    while (true) {
5790      const uint32_t value = hash_table_[index];
5791      // Since linear probe makes continuous blocks, hitting an invalid index means we are done
5792      // the block and can safely assume not found.
5793      if (value == invalid_index_) {
5794        break;
5795      }
5796      if (value != removed_index_) {  // This signifies not already overriden.
5797        ArtMethod* virtual_method =
5798            klass_->GetVirtualMethodDuringLinking(value, image_pointer_size_);
5799        if (comparator->HasSameNameAndSignature(
5800            virtual_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
5801          hash_table_[index] = removed_index_;
5802          return value;
5803        }
5804      }
5805      if (++index == hash_size_) {
5806        index = 0;
5807      }
5808    }
5809    return GetNotFoundIndex();
5810  }
5811
5812  static uint32_t GetNotFoundIndex() {
5813    return invalid_index_;
5814  }
5815
5816 private:
5817  static const uint32_t invalid_index_;
5818  static const uint32_t removed_index_;
5819
5820  Handle<mirror::Class> klass_;
5821  const size_t hash_size_;
5822  uint32_t* const hash_table_;
5823  const PointerSize image_pointer_size_;
5824};
5825
5826const uint32_t LinkVirtualHashTable::invalid_index_ = std::numeric_limits<uint32_t>::max();
5827const uint32_t LinkVirtualHashTable::removed_index_ = std::numeric_limits<uint32_t>::max() - 1;
5828
5829bool ClassLinker::LinkVirtualMethods(
5830    Thread* self,
5831    Handle<mirror::Class> klass,
5832    /*out*/std::unordered_map<size_t, ClassLinker::MethodTranslation>* default_translations) {
5833  const size_t num_virtual_methods = klass->NumVirtualMethods();
5834  if (klass->IsInterface()) {
5835    // No vtable.
5836    if (!IsUint<16>(num_virtual_methods)) {
5837      ThrowClassFormatError(klass.Get(), "Too many methods on interface: %zu", num_virtual_methods);
5838      return false;
5839    }
5840    bool has_defaults = false;
5841    // Assign each method an IMT index and set the default flag.
5842    for (size_t i = 0; i < num_virtual_methods; ++i) {
5843      ArtMethod* m = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
5844      m->SetMethodIndex(i);
5845      if (!m->IsAbstract()) {
5846        m->SetAccessFlags(m->GetAccessFlags() | kAccDefault);
5847        has_defaults = true;
5848      }
5849    }
5850    // Mark that we have default methods so that we won't need to scan the virtual_methods_ array
5851    // during initialization. This is a performance optimization. We could simply traverse the
5852    // virtual_methods_ array again during initialization.
5853    if (has_defaults) {
5854      klass->SetHasDefaultMethods();
5855    }
5856    return true;
5857  } else if (klass->HasSuperClass()) {
5858    const size_t super_vtable_length = klass->GetSuperClass()->GetVTableLength();
5859    const size_t max_count = num_virtual_methods + super_vtable_length;
5860    StackHandleScope<2> hs(self);
5861    Handle<mirror::Class> super_class(hs.NewHandle(klass->GetSuperClass()));
5862    MutableHandle<mirror::PointerArray> vtable;
5863    if (super_class->ShouldHaveEmbeddedVTable()) {
5864      vtable = hs.NewHandle(AllocPointerArray(self, max_count));
5865      if (UNLIKELY(vtable == nullptr)) {
5866        self->AssertPendingOOMException();
5867        return false;
5868      }
5869      for (size_t i = 0; i < super_vtable_length; i++) {
5870        vtable->SetElementPtrSize(
5871            i, super_class->GetEmbeddedVTableEntry(i, image_pointer_size_), image_pointer_size_);
5872      }
5873      // We might need to change vtable if we have new virtual methods or new interfaces (since that
5874      // might give us new default methods). If no new interfaces then we can skip the rest since
5875      // the class cannot override any of the super-class's methods. This is required for
5876      // correctness since without it we might not update overridden default method vtable entries
5877      // correctly.
5878      if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) {
5879        klass->SetVTable(vtable.Get());
5880        return true;
5881      }
5882    } else {
5883      DCHECK(super_class->IsAbstract() && !super_class->IsArrayClass());
5884      auto* super_vtable = super_class->GetVTable();
5885      CHECK(super_vtable != nullptr) << super_class->PrettyClass();
5886      // We might need to change vtable if we have new virtual methods or new interfaces (since that
5887      // might give us new default methods). See comment above.
5888      if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) {
5889        klass->SetVTable(super_vtable);
5890        return true;
5891      }
5892      vtable = hs.NewHandle(down_cast<mirror::PointerArray*>(
5893          super_vtable->CopyOf(self, max_count)));
5894      if (UNLIKELY(vtable == nullptr)) {
5895        self->AssertPendingOOMException();
5896        return false;
5897      }
5898    }
5899    // How the algorithm works:
5900    // 1. Populate hash table by adding num_virtual_methods from klass. The values in the hash
5901    // table are: invalid_index for unused slots, index super_vtable_length + i for a virtual
5902    // method which has not been matched to a vtable method, and j if the virtual method at the
5903    // index overrode the super virtual method at index j.
5904    // 2. Loop through super virtual methods, if they overwrite, update hash table to j
5905    // (j < super_vtable_length) to avoid redundant checks. (TODO maybe use this info for reducing
5906    // the need for the initial vtable which we later shrink back down).
5907    // 3. Add non overridden methods to the end of the vtable.
5908    static constexpr size_t kMaxStackHash = 250;
5909    // + 1 so that even if we only have new default methods we will still be able to use this hash
5910    // table (i.e. it will never have 0 size).
5911    const size_t hash_table_size = num_virtual_methods * 3 + 1;
5912    uint32_t* hash_table_ptr;
5913    std::unique_ptr<uint32_t[]> hash_heap_storage;
5914    if (hash_table_size <= kMaxStackHash) {
5915      hash_table_ptr = reinterpret_cast<uint32_t*>(
5916          alloca(hash_table_size * sizeof(*hash_table_ptr)));
5917    } else {
5918      hash_heap_storage.reset(new uint32_t[hash_table_size]);
5919      hash_table_ptr = hash_heap_storage.get();
5920    }
5921    LinkVirtualHashTable hash_table(klass, hash_table_size, hash_table_ptr, image_pointer_size_);
5922    // Add virtual methods to the hash table.
5923    for (size_t i = 0; i < num_virtual_methods; ++i) {
5924      DCHECK(klass->GetVirtualMethodDuringLinking(
5925          i, image_pointer_size_)->GetDeclaringClass() != nullptr);
5926      hash_table.Add(i);
5927    }
5928    // Loop through each super vtable method and see if they are overridden by a method we added to
5929    // the hash table.
5930    for (size_t j = 0; j < super_vtable_length; ++j) {
5931      // Search the hash table to see if we are overridden by any method.
5932      ArtMethod* super_method = vtable->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
5933      if (!klass->CanAccessMember(super_method->GetDeclaringClass(),
5934                                  super_method->GetAccessFlags())) {
5935        // Continue on to the next method since this one is package private and canot be overridden.
5936        // Before Android 4.1, the package-private method super_method might have been incorrectly
5937        // overridden.
5938        continue;
5939      }
5940      MethodNameAndSignatureComparator super_method_name_comparator(
5941          super_method->GetInterfaceMethodIfProxy(image_pointer_size_));
5942      // We remove the method so that subsequent lookups will be faster by making the hash-map
5943      // smaller as we go on.
5944      uint32_t hash_index = hash_table.FindAndRemove(&super_method_name_comparator);
5945      if (hash_index != hash_table.GetNotFoundIndex()) {
5946        ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(
5947            hash_index, image_pointer_size_);
5948        if (super_method->IsFinal()) {
5949          ThrowLinkageError(klass.Get(), "Method %s overrides final method in class %s",
5950                            virtual_method->PrettyMethod().c_str(),
5951                            super_method->GetDeclaringClassDescriptor());
5952          return false;
5953        }
5954        vtable->SetElementPtrSize(j, virtual_method, image_pointer_size_);
5955        virtual_method->SetMethodIndex(j);
5956      } else if (super_method->IsOverridableByDefaultMethod()) {
5957        // We didn't directly override this method but we might through default methods...
5958        // Check for default method update.
5959        ArtMethod* default_method = nullptr;
5960        switch (FindDefaultMethodImplementation(self,
5961                                                super_method,
5962                                                klass,
5963                                                /*out*/&default_method)) {
5964          case DefaultMethodSearchResult::kDefaultConflict: {
5965            // A conflict was found looking for default methods. Note this (assuming it wasn't
5966            // pre-existing) in the translations map.
5967            if (UNLIKELY(!super_method->IsDefaultConflicting())) {
5968              // Don't generate another conflict method to reduce memory use as an optimization.
5969              default_translations->insert(
5970                  {j, ClassLinker::MethodTranslation::CreateConflictingMethod()});
5971            }
5972            break;
5973          }
5974          case DefaultMethodSearchResult::kAbstractFound: {
5975            // No conflict but method is abstract.
5976            // We note that this vtable entry must be made abstract.
5977            if (UNLIKELY(!super_method->IsAbstract())) {
5978              default_translations->insert(
5979                  {j, ClassLinker::MethodTranslation::CreateAbstractMethod()});
5980            }
5981            break;
5982          }
5983          case DefaultMethodSearchResult::kDefaultFound: {
5984            if (UNLIKELY(super_method->IsDefaultConflicting() ||
5985                        default_method->GetDeclaringClass() != super_method->GetDeclaringClass())) {
5986              // Found a default method implementation that is new.
5987              // TODO Refactor this add default methods to virtuals here and not in
5988              //      LinkInterfaceMethods maybe.
5989              //      The problem is default methods might override previously present
5990              //      default-method or miranda-method vtable entries from the superclass.
5991              //      Unfortunately we need these to be entries in this class's virtuals. We do not
5992              //      give these entries there until LinkInterfaceMethods so we pass this map around
5993              //      to let it know which vtable entries need to be updated.
5994              // Make a note that vtable entry j must be updated, store what it needs to be updated
5995              // to. We will allocate a virtual method slot in LinkInterfaceMethods and fix it up
5996              // then.
5997              default_translations->insert(
5998                  {j, ClassLinker::MethodTranslation::CreateTranslatedMethod(default_method)});
5999              VLOG(class_linker) << "Method " << super_method->PrettyMethod()
6000                                 << " overridden by default "
6001                                 << default_method->PrettyMethod()
6002                                 << " in " << mirror::Class::PrettyClass(klass.Get());
6003            }
6004            break;
6005          }
6006        }
6007      }
6008    }
6009    size_t actual_count = super_vtable_length;
6010    // Add the non-overridden methods at the end.
6011    for (size_t i = 0; i < num_virtual_methods; ++i) {
6012      ArtMethod* local_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
6013      size_t method_idx = local_method->GetMethodIndexDuringLinking();
6014      if (method_idx < super_vtable_length &&
6015          local_method == vtable->GetElementPtrSize<ArtMethod*>(method_idx, image_pointer_size_)) {
6016        continue;
6017      }
6018      vtable->SetElementPtrSize(actual_count, local_method, image_pointer_size_);
6019      local_method->SetMethodIndex(actual_count);
6020      ++actual_count;
6021    }
6022    if (!IsUint<16>(actual_count)) {
6023      ThrowClassFormatError(klass.Get(), "Too many methods defined on class: %zd", actual_count);
6024      return false;
6025    }
6026    // Shrink vtable if possible
6027    CHECK_LE(actual_count, max_count);
6028    if (actual_count < max_count) {
6029      vtable.Assign(down_cast<mirror::PointerArray*>(vtable->CopyOf(self, actual_count)));
6030      if (UNLIKELY(vtable == nullptr)) {
6031        self->AssertPendingOOMException();
6032        return false;
6033      }
6034    }
6035    klass->SetVTable(vtable.Get());
6036  } else {
6037    CHECK_EQ(klass.Get(), GetClassRoot(kJavaLangObject));
6038    if (!IsUint<16>(num_virtual_methods)) {
6039      ThrowClassFormatError(klass.Get(), "Too many methods: %d",
6040                            static_cast<int>(num_virtual_methods));
6041      return false;
6042    }
6043    auto* vtable = AllocPointerArray(self, num_virtual_methods);
6044    if (UNLIKELY(vtable == nullptr)) {
6045      self->AssertPendingOOMException();
6046      return false;
6047    }
6048    for (size_t i = 0; i < num_virtual_methods; ++i) {
6049      ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
6050      vtable->SetElementPtrSize(i, virtual_method, image_pointer_size_);
6051      virtual_method->SetMethodIndex(i & 0xFFFF);
6052    }
6053    klass->SetVTable(vtable);
6054  }
6055  return true;
6056}
6057
6058// Determine if the given iface has any subinterface in the given list that declares the method
6059// specified by 'target'.
6060//
6061// Arguments
6062// - self:    The thread we are running on
6063// - target:  A comparator that will match any method that overrides the method we are checking for
6064// - iftable: The iftable we are searching for an overriding method on.
6065// - ifstart: The index of the interface we are checking to see if anything overrides
6066// - iface:   The interface we are checking to see if anything overrides.
6067// - image_pointer_size:
6068//            The image pointer size.
6069//
6070// Returns
6071// - True:  There is some method that matches the target comparator defined in an interface that
6072//          is a subtype of iface.
6073// - False: There is no method that matches the target comparator in any interface that is a subtype
6074//          of iface.
6075static bool ContainsOverridingMethodOf(Thread* self,
6076                                       MethodNameAndSignatureComparator& target,
6077                                       Handle<mirror::IfTable> iftable,
6078                                       size_t ifstart,
6079                                       Handle<mirror::Class> iface,
6080                                       PointerSize image_pointer_size)
6081    REQUIRES_SHARED(Locks::mutator_lock_) {
6082  DCHECK(self != nullptr);
6083  DCHECK(iface != nullptr);
6084  DCHECK(iftable != nullptr);
6085  DCHECK_GE(ifstart, 0u);
6086  DCHECK_LT(ifstart, iftable->Count());
6087  DCHECK_EQ(iface.Get(), iftable->GetInterface(ifstart));
6088  DCHECK(iface->IsInterface());
6089
6090  size_t iftable_count = iftable->Count();
6091  StackHandleScope<1> hs(self);
6092  MutableHandle<mirror::Class> current_iface(hs.NewHandle<mirror::Class>(nullptr));
6093  for (size_t k = ifstart + 1; k < iftable_count; k++) {
6094    // Skip ifstart since our current interface obviously cannot override itself.
6095    current_iface.Assign(iftable->GetInterface(k));
6096    // Iterate through every method on this interface. The order does not matter.
6097    for (ArtMethod& current_method : current_iface->GetDeclaredVirtualMethods(image_pointer_size)) {
6098      if (UNLIKELY(target.HasSameNameAndSignature(
6099                      current_method.GetInterfaceMethodIfProxy(image_pointer_size)))) {
6100        // Check if the i'th interface is a subtype of this one.
6101        if (iface->IsAssignableFrom(current_iface.Get())) {
6102          return true;
6103        }
6104        break;
6105      }
6106    }
6107  }
6108  return false;
6109}
6110
6111// Find the default method implementation for 'interface_method' in 'klass'. Stores it into
6112// out_default_method and returns kDefaultFound on success. If no default method was found return
6113// kAbstractFound and store nullptr into out_default_method. If an error occurs (such as a
6114// default_method conflict) it will return kDefaultConflict.
6115ClassLinker::DefaultMethodSearchResult ClassLinker::FindDefaultMethodImplementation(
6116    Thread* self,
6117    ArtMethod* target_method,
6118    Handle<mirror::Class> klass,
6119    /*out*/ArtMethod** out_default_method) const {
6120  DCHECK(self != nullptr);
6121  DCHECK(target_method != nullptr);
6122  DCHECK(out_default_method != nullptr);
6123
6124  *out_default_method = nullptr;
6125
6126  // We organize the interface table so that, for interface I any subinterfaces J follow it in the
6127  // table. This lets us walk the table backwards when searching for default methods.  The first one
6128  // we encounter is the best candidate since it is the most specific. Once we have found it we keep
6129  // track of it and then continue checking all other interfaces, since we need to throw an error if
6130  // we encounter conflicting default method implementations (one is not a subtype of the other).
6131  //
6132  // The order of unrelated interfaces does not matter and is not defined.
6133  size_t iftable_count = klass->GetIfTableCount();
6134  if (iftable_count == 0) {
6135    // No interfaces. We have already reset out to null so just return kAbstractFound.
6136    return DefaultMethodSearchResult::kAbstractFound;
6137  }
6138
6139  StackHandleScope<3> hs(self);
6140  MutableHandle<mirror::Class> chosen_iface(hs.NewHandle<mirror::Class>(nullptr));
6141  MutableHandle<mirror::IfTable> iftable(hs.NewHandle(klass->GetIfTable()));
6142  MutableHandle<mirror::Class> iface(hs.NewHandle<mirror::Class>(nullptr));
6143  MethodNameAndSignatureComparator target_name_comparator(
6144      target_method->GetInterfaceMethodIfProxy(image_pointer_size_));
6145  // Iterates over the klass's iftable in reverse
6146  for (size_t k = iftable_count; k != 0; ) {
6147    --k;
6148
6149    DCHECK_LT(k, iftable->Count());
6150
6151    iface.Assign(iftable->GetInterface(k));
6152    // Iterate through every declared method on this interface. The order does not matter.
6153    for (auto& method_iter : iface->GetDeclaredVirtualMethods(image_pointer_size_)) {
6154      ArtMethod* current_method = &method_iter;
6155      // Skip abstract methods and methods with different names.
6156      if (current_method->IsAbstract() ||
6157          !target_name_comparator.HasSameNameAndSignature(
6158              current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
6159        continue;
6160      } else if (!current_method->IsPublic()) {
6161        // The verifier should have caught the non-public method for dex version 37. Just warn and
6162        // skip it since this is from before default-methods so we don't really need to care that it
6163        // has code.
6164        LOG(WARNING) << "Interface method " << current_method->PrettyMethod()
6165                     << " is not public! "
6166                     << "This will be a fatal error in subsequent versions of android. "
6167                     << "Continuing anyway.";
6168      }
6169      if (UNLIKELY(chosen_iface != nullptr)) {
6170        // We have multiple default impls of the same method. This is a potential default conflict.
6171        // We need to check if this possibly conflicting method is either a superclass of the chosen
6172        // default implementation or is overridden by a non-default interface method. In either case
6173        // there is no conflict.
6174        if (!iface->IsAssignableFrom(chosen_iface.Get()) &&
6175            !ContainsOverridingMethodOf(self,
6176                                        target_name_comparator,
6177                                        iftable,
6178                                        k,
6179                                        iface,
6180                                        image_pointer_size_)) {
6181          VLOG(class_linker) << "Conflicting default method implementations found: "
6182                             << current_method->PrettyMethod() << " and "
6183                             << ArtMethod::PrettyMethod(*out_default_method) << " in class "
6184                             << klass->PrettyClass() << " conflict.";
6185          *out_default_method = nullptr;
6186          return DefaultMethodSearchResult::kDefaultConflict;
6187        } else {
6188          break;  // Continue checking at the next interface.
6189        }
6190      } else {
6191        // chosen_iface == null
6192        if (!ContainsOverridingMethodOf(self,
6193                                        target_name_comparator,
6194                                        iftable,
6195                                        k,
6196                                        iface,
6197                                        image_pointer_size_)) {
6198          // Don't set this as the chosen interface if something else is overriding it (because that
6199          // other interface would be potentially chosen instead if it was default). If the other
6200          // interface was abstract then we wouldn't select this interface as chosen anyway since
6201          // the abstract method masks it.
6202          *out_default_method = current_method;
6203          chosen_iface.Assign(iface.Get());
6204          // We should now finish traversing the graph to find if we have default methods that
6205          // conflict.
6206        } else {
6207          VLOG(class_linker) << "A default method '" << current_method->PrettyMethod()
6208                             << "' was "
6209                             << "skipped because it was overridden by an abstract method in a "
6210                             << "subinterface on class '" << klass->PrettyClass() << "'";
6211        }
6212      }
6213      break;
6214    }
6215  }
6216  if (*out_default_method != nullptr) {
6217    VLOG(class_linker) << "Default method '" << (*out_default_method)->PrettyMethod()
6218                       << "' selected "
6219                       << "as the implementation for '" << target_method->PrettyMethod()
6220                       << "' in '" << klass->PrettyClass() << "'";
6221    return DefaultMethodSearchResult::kDefaultFound;
6222  } else {
6223    return DefaultMethodSearchResult::kAbstractFound;
6224  }
6225}
6226
6227ArtMethod* ClassLinker::AddMethodToConflictTable(ObjPtr<mirror::Class> klass,
6228                                                 ArtMethod* conflict_method,
6229                                                 ArtMethod* interface_method,
6230                                                 ArtMethod* method,
6231                                                 bool force_new_conflict_method) {
6232  ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
6233  Runtime* const runtime = Runtime::Current();
6234  LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader());
6235  bool new_entry = conflict_method == runtime->GetImtConflictMethod() || force_new_conflict_method;
6236
6237  // Create a new entry if the existing one is the shared conflict method.
6238  ArtMethod* new_conflict_method = new_entry
6239      ? runtime->CreateImtConflictMethod(linear_alloc)
6240      : conflict_method;
6241
6242  // Allocate a new table. Note that we will leak this table at the next conflict,
6243  // but that's a tradeoff compared to making the table fixed size.
6244  void* data = linear_alloc->Alloc(
6245      Thread::Current(), ImtConflictTable::ComputeSizeWithOneMoreEntry(current_table,
6246                                                                       image_pointer_size_));
6247  if (data == nullptr) {
6248    LOG(ERROR) << "Failed to allocate conflict table";
6249    return conflict_method;
6250  }
6251  ImtConflictTable* new_table = new (data) ImtConflictTable(current_table,
6252                                                            interface_method,
6253                                                            method,
6254                                                            image_pointer_size_);
6255
6256  // Do a fence to ensure threads see the data in the table before it is assigned
6257  // to the conflict method.
6258  // Note that there is a race in the presence of multiple threads and we may leak
6259  // memory from the LinearAlloc, but that's a tradeoff compared to using
6260  // atomic operations.
6261  QuasiAtomic::ThreadFenceRelease();
6262  new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_);
6263  return new_conflict_method;
6264}
6265
6266bool ClassLinker::AllocateIfTableMethodArrays(Thread* self,
6267                                              Handle<mirror::Class> klass,
6268                                              Handle<mirror::IfTable> iftable) {
6269  DCHECK(!klass->IsInterface());
6270  const bool has_superclass = klass->HasSuperClass();
6271  const bool extend_super_iftable = has_superclass;
6272  const size_t ifcount = klass->GetIfTableCount();
6273  const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U;
6274  for (size_t i = 0; i < ifcount; ++i) {
6275    size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods();
6276    if (num_methods > 0) {
6277      const bool is_super = i < super_ifcount;
6278      // This is an interface implemented by a super-class. Therefore we can just copy the method
6279      // array from the superclass.
6280      const bool super_interface = is_super && extend_super_iftable;
6281      ObjPtr<mirror::PointerArray> method_array;
6282      if (super_interface) {
6283        ObjPtr<mirror::IfTable> if_table = klass->GetSuperClass()->GetIfTable();
6284        DCHECK(if_table != nullptr);
6285        DCHECK(if_table->GetMethodArray(i) != nullptr);
6286        // If we are working on a super interface, try extending the existing method array.
6287        method_array = down_cast<mirror::PointerArray*>(if_table->GetMethodArray(i)->Clone(self));
6288      } else {
6289        method_array = AllocPointerArray(self, num_methods);
6290      }
6291      if (UNLIKELY(method_array == nullptr)) {
6292        self->AssertPendingOOMException();
6293        return false;
6294      }
6295      iftable->SetMethodArray(i, method_array);
6296    }
6297  }
6298  return true;
6299}
6300
6301void ClassLinker::SetIMTRef(ArtMethod* unimplemented_method,
6302                            ArtMethod* imt_conflict_method,
6303                            ArtMethod* current_method,
6304                            /*out*/bool* new_conflict,
6305                            /*out*/ArtMethod** imt_ref) {
6306  // Place method in imt if entry is empty, place conflict otherwise.
6307  if (*imt_ref == unimplemented_method) {
6308    *imt_ref = current_method;
6309  } else if (!(*imt_ref)->IsRuntimeMethod()) {
6310    // If we are not a conflict and we have the same signature and name as the imt
6311    // entry, it must be that we overwrote a superclass vtable entry.
6312    // Note that we have checked IsRuntimeMethod, as there may be multiple different
6313    // conflict methods.
6314    MethodNameAndSignatureComparator imt_comparator(
6315        (*imt_ref)->GetInterfaceMethodIfProxy(image_pointer_size_));
6316    if (imt_comparator.HasSameNameAndSignature(
6317          current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
6318      *imt_ref = current_method;
6319    } else {
6320      *imt_ref = imt_conflict_method;
6321      *new_conflict = true;
6322    }
6323  } else {
6324    // Place the default conflict method. Note that there may be an existing conflict
6325    // method in the IMT, but it could be one tailored to the super class, with a
6326    // specific ImtConflictTable.
6327    *imt_ref = imt_conflict_method;
6328    *new_conflict = true;
6329  }
6330}
6331
6332void ClassLinker::FillIMTAndConflictTables(ObjPtr<mirror::Class> klass) {
6333  DCHECK(klass->ShouldHaveImt()) << klass->PrettyClass();
6334  DCHECK(!klass->IsTemp()) << klass->PrettyClass();
6335  ArtMethod* imt_data[ImTable::kSize];
6336  Runtime* const runtime = Runtime::Current();
6337  ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod();
6338  ArtMethod* const conflict_method = runtime->GetImtConflictMethod();
6339  std::fill_n(imt_data, arraysize(imt_data), unimplemented_method);
6340  if (klass->GetIfTable() != nullptr) {
6341    bool new_conflict = false;
6342    FillIMTFromIfTable(klass->GetIfTable(),
6343                       unimplemented_method,
6344                       conflict_method,
6345                       klass,
6346                       /*create_conflict_tables*/true,
6347                       /*ignore_copied_methods*/false,
6348                       &new_conflict,
6349                       &imt_data[0]);
6350  }
6351  if (!klass->ShouldHaveImt()) {
6352    return;
6353  }
6354  // Compare the IMT with the super class including the conflict methods. If they are equivalent,
6355  // we can just use the same pointer.
6356  ImTable* imt = nullptr;
6357  ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
6358  if (super_class != nullptr && super_class->ShouldHaveImt()) {
6359    ImTable* super_imt = super_class->GetImt(image_pointer_size_);
6360    bool same = true;
6361    for (size_t i = 0; same && i < ImTable::kSize; ++i) {
6362      ArtMethod* method = imt_data[i];
6363      ArtMethod* super_method = super_imt->Get(i, image_pointer_size_);
6364      if (method != super_method) {
6365        bool is_conflict_table = method->IsRuntimeMethod() &&
6366                                 method != unimplemented_method &&
6367                                 method != conflict_method;
6368        // Verify conflict contents.
6369        bool super_conflict_table = super_method->IsRuntimeMethod() &&
6370                                    super_method != unimplemented_method &&
6371                                    super_method != conflict_method;
6372        if (!is_conflict_table || !super_conflict_table) {
6373          same = false;
6374        } else {
6375          ImtConflictTable* table1 = method->GetImtConflictTable(image_pointer_size_);
6376          ImtConflictTable* table2 = super_method->GetImtConflictTable(image_pointer_size_);
6377          same = same && table1->Equals(table2, image_pointer_size_);
6378        }
6379      }
6380    }
6381    if (same) {
6382      imt = super_imt;
6383    }
6384  }
6385  if (imt == nullptr) {
6386    imt = klass->GetImt(image_pointer_size_);
6387    DCHECK(imt != nullptr);
6388    imt->Populate(imt_data, image_pointer_size_);
6389  } else {
6390    klass->SetImt(imt, image_pointer_size_);
6391  }
6392}
6393
6394ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count,
6395                                                      LinearAlloc* linear_alloc,
6396                                                      PointerSize image_pointer_size) {
6397  void* data = linear_alloc->Alloc(Thread::Current(),
6398                                   ImtConflictTable::ComputeSize(count,
6399                                                                 image_pointer_size));
6400  return (data != nullptr) ? new (data) ImtConflictTable(count, image_pointer_size) : nullptr;
6401}
6402
6403ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count, LinearAlloc* linear_alloc) {
6404  return CreateImtConflictTable(count, linear_alloc, image_pointer_size_);
6405}
6406
6407void ClassLinker::FillIMTFromIfTable(ObjPtr<mirror::IfTable> if_table,
6408                                     ArtMethod* unimplemented_method,
6409                                     ArtMethod* imt_conflict_method,
6410                                     ObjPtr<mirror::Class> klass,
6411                                     bool create_conflict_tables,
6412                                     bool ignore_copied_methods,
6413                                     /*out*/bool* new_conflict,
6414                                     /*out*/ArtMethod** imt) {
6415  uint32_t conflict_counts[ImTable::kSize] = {};
6416  for (size_t i = 0, length = if_table->Count(); i < length; ++i) {
6417    ObjPtr<mirror::Class> interface = if_table->GetInterface(i);
6418    const size_t num_virtuals = interface->NumVirtualMethods();
6419    const size_t method_array_count = if_table->GetMethodArrayCount(i);
6420    // Virtual methods can be larger than the if table methods if there are default methods.
6421    DCHECK_GE(num_virtuals, method_array_count);
6422    if (kIsDebugBuild) {
6423      if (klass->IsInterface()) {
6424        DCHECK_EQ(method_array_count, 0u);
6425      } else {
6426        DCHECK_EQ(interface->NumDeclaredVirtualMethods(), method_array_count);
6427      }
6428    }
6429    if (method_array_count == 0) {
6430      continue;
6431    }
6432    auto* method_array = if_table->GetMethodArray(i);
6433    for (size_t j = 0; j < method_array_count; ++j) {
6434      ArtMethod* implementation_method =
6435          method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
6436      if (ignore_copied_methods && implementation_method->IsCopied()) {
6437        continue;
6438      }
6439      DCHECK(implementation_method != nullptr);
6440      // Miranda methods cannot be used to implement an interface method, but they are safe to put
6441      // in the IMT since their entrypoint is the interface trampoline. If we put any copied methods
6442      // or interface methods in the IMT here they will not create extra conflicts since we compare
6443      // names and signatures in SetIMTRef.
6444      ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_);
6445      const uint32_t imt_index = ImTable::GetImtIndex(interface_method);
6446
6447      // There is only any conflicts if all of the interface methods for an IMT slot don't have
6448      // the same implementation method, keep track of this to avoid creating a conflict table in
6449      // this case.
6450
6451      // Conflict table size for each IMT slot.
6452      ++conflict_counts[imt_index];
6453
6454      SetIMTRef(unimplemented_method,
6455                imt_conflict_method,
6456                implementation_method,
6457                /*out*/new_conflict,
6458                /*out*/&imt[imt_index]);
6459    }
6460  }
6461
6462  if (create_conflict_tables) {
6463    // Create the conflict tables.
6464    LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader());
6465    for (size_t i = 0; i < ImTable::kSize; ++i) {
6466      size_t conflicts = conflict_counts[i];
6467      if (imt[i] == imt_conflict_method) {
6468        ImtConflictTable* new_table = CreateImtConflictTable(conflicts, linear_alloc);
6469        if (new_table != nullptr) {
6470          ArtMethod* new_conflict_method =
6471              Runtime::Current()->CreateImtConflictMethod(linear_alloc);
6472          new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_);
6473          imt[i] = new_conflict_method;
6474        } else {
6475          LOG(ERROR) << "Failed to allocate conflict table";
6476          imt[i] = imt_conflict_method;
6477        }
6478      } else {
6479        DCHECK_NE(imt[i], imt_conflict_method);
6480      }
6481    }
6482
6483    for (size_t i = 0, length = if_table->Count(); i < length; ++i) {
6484      ObjPtr<mirror::Class> interface = if_table->GetInterface(i);
6485      const size_t method_array_count = if_table->GetMethodArrayCount(i);
6486      // Virtual methods can be larger than the if table methods if there are default methods.
6487      if (method_array_count == 0) {
6488        continue;
6489      }
6490      auto* method_array = if_table->GetMethodArray(i);
6491      for (size_t j = 0; j < method_array_count; ++j) {
6492        ArtMethod* implementation_method =
6493            method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
6494        if (ignore_copied_methods && implementation_method->IsCopied()) {
6495          continue;
6496        }
6497        DCHECK(implementation_method != nullptr);
6498        ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_);
6499        const uint32_t imt_index = ImTable::GetImtIndex(interface_method);
6500        if (!imt[imt_index]->IsRuntimeMethod() ||
6501            imt[imt_index] == unimplemented_method ||
6502            imt[imt_index] == imt_conflict_method) {
6503          continue;
6504        }
6505        ImtConflictTable* table = imt[imt_index]->GetImtConflictTable(image_pointer_size_);
6506        const size_t num_entries = table->NumEntries(image_pointer_size_);
6507        table->SetInterfaceMethod(num_entries, image_pointer_size_, interface_method);
6508        table->SetImplementationMethod(num_entries, image_pointer_size_, implementation_method);
6509      }
6510    }
6511  }
6512}
6513
6514// Simple helper function that checks that no subtypes of 'val' are contained within the 'classes'
6515// set.
6516static bool NotSubinterfaceOfAny(
6517    const std::unordered_set<ObjPtr<mirror::Class>, HashObjPtr>& classes,
6518    ObjPtr<mirror::Class> val)
6519    REQUIRES(Roles::uninterruptible_)
6520    REQUIRES_SHARED(Locks::mutator_lock_) {
6521  DCHECK(val != nullptr);
6522  for (ObjPtr<mirror::Class> c : classes) {
6523    if (val->IsAssignableFrom(c)) {
6524      return false;
6525    }
6526  }
6527  return true;
6528}
6529
6530// Fills in and flattens the interface inheritance hierarchy.
6531//
6532// By the end of this function all interfaces in the transitive closure of to_process are added to
6533// the iftable and every interface precedes all of its sub-interfaces in this list.
6534//
6535// all I, J: Interface | I <: J implies J precedes I
6536//
6537// (note A <: B means that A is a subtype of B)
6538//
6539// This returns the total number of items in the iftable. The iftable might be resized down after
6540// this call.
6541//
6542// We order this backwards so that we do not need to reorder superclass interfaces when new
6543// interfaces are added in subclass's interface tables.
6544//
6545// Upon entry into this function iftable is a copy of the superclass's iftable with the first
6546// super_ifcount entries filled in with the transitive closure of the interfaces of the superclass.
6547// The other entries are uninitialized.  We will fill in the remaining entries in this function. The
6548// iftable must be large enough to hold all interfaces without changing its size.
6549static size_t FillIfTable(ObjPtr<mirror::IfTable> iftable,
6550                          size_t super_ifcount,
6551                          std::vector<mirror::Class*> to_process)
6552    REQUIRES(Roles::uninterruptible_)
6553    REQUIRES_SHARED(Locks::mutator_lock_) {
6554  // This is the set of all class's already in the iftable. Used to make checking if a class has
6555  // already been added quicker.
6556  std::unordered_set<ObjPtr<mirror::Class>, HashObjPtr> classes_in_iftable;
6557  // The first super_ifcount elements are from the superclass. We note that they are already added.
6558  for (size_t i = 0; i < super_ifcount; i++) {
6559    ObjPtr<mirror::Class> iface = iftable->GetInterface(i);
6560    DCHECK(NotSubinterfaceOfAny(classes_in_iftable, iface)) << "Bad ordering.";
6561    classes_in_iftable.insert(iface);
6562  }
6563  size_t filled_ifcount = super_ifcount;
6564  for (ObjPtr<mirror::Class> interface : to_process) {
6565    // Let us call the first filled_ifcount elements of iftable the current-iface-list.
6566    // At this point in the loop current-iface-list has the invariant that:
6567    //    for every pair of interfaces I,J within it:
6568    //      if index_of(I) < index_of(J) then I is not a subtype of J
6569
6570    // If we have already seen this element then all of its super-interfaces must already be in the
6571    // current-iface-list so we can skip adding it.
6572    if (!ContainsElement(classes_in_iftable, interface)) {
6573      // We haven't seen this interface so add all of its super-interfaces onto the
6574      // current-iface-list, skipping those already on it.
6575      int32_t ifcount = interface->GetIfTableCount();
6576      for (int32_t j = 0; j < ifcount; j++) {
6577        ObjPtr<mirror::Class> super_interface = interface->GetIfTable()->GetInterface(j);
6578        if (!ContainsElement(classes_in_iftable, super_interface)) {
6579          DCHECK(NotSubinterfaceOfAny(classes_in_iftable, super_interface)) << "Bad ordering.";
6580          classes_in_iftable.insert(super_interface);
6581          iftable->SetInterface(filled_ifcount, super_interface);
6582          filled_ifcount++;
6583        }
6584      }
6585      DCHECK(NotSubinterfaceOfAny(classes_in_iftable, interface)) << "Bad ordering";
6586      // Place this interface onto the current-iface-list after all of its super-interfaces.
6587      classes_in_iftable.insert(interface);
6588      iftable->SetInterface(filled_ifcount, interface);
6589      filled_ifcount++;
6590    } else if (kIsDebugBuild) {
6591      // Check all super-interfaces are already in the list.
6592      int32_t ifcount = interface->GetIfTableCount();
6593      for (int32_t j = 0; j < ifcount; j++) {
6594        ObjPtr<mirror::Class> super_interface = interface->GetIfTable()->GetInterface(j);
6595        DCHECK(ContainsElement(classes_in_iftable, super_interface))
6596            << "Iftable does not contain " << mirror::Class::PrettyClass(super_interface)
6597            << ", a superinterface of " << interface->PrettyClass();
6598      }
6599    }
6600  }
6601  if (kIsDebugBuild) {
6602    // Check that the iftable is ordered correctly.
6603    for (size_t i = 0; i < filled_ifcount; i++) {
6604      ObjPtr<mirror::Class> if_a = iftable->GetInterface(i);
6605      for (size_t j = i + 1; j < filled_ifcount; j++) {
6606        ObjPtr<mirror::Class> if_b = iftable->GetInterface(j);
6607        // !(if_a <: if_b)
6608        CHECK(!if_b->IsAssignableFrom(if_a))
6609            << "Bad interface order: " << mirror::Class::PrettyClass(if_a) << " (index " << i
6610            << ") extends "
6611            << if_b->PrettyClass() << " (index " << j << ") and so should be after it in the "
6612            << "interface list.";
6613      }
6614    }
6615  }
6616  return filled_ifcount;
6617}
6618
6619bool ClassLinker::SetupInterfaceLookupTable(Thread* self, Handle<mirror::Class> klass,
6620                                            Handle<mirror::ObjectArray<mirror::Class>> interfaces) {
6621  StackHandleScope<1> hs(self);
6622  const bool has_superclass = klass->HasSuperClass();
6623  const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U;
6624  const bool have_interfaces = interfaces != nullptr;
6625  const size_t num_interfaces =
6626      have_interfaces ? interfaces->GetLength() : klass->NumDirectInterfaces();
6627  if (num_interfaces == 0) {
6628    if (super_ifcount == 0) {
6629      if (LIKELY(has_superclass)) {
6630        klass->SetIfTable(klass->GetSuperClass()->GetIfTable());
6631      }
6632      // Class implements no interfaces.
6633      DCHECK_EQ(klass->GetIfTableCount(), 0);
6634      return true;
6635    }
6636    // Class implements same interfaces as parent, are any of these not marker interfaces?
6637    bool has_non_marker_interface = false;
6638    ObjPtr<mirror::IfTable> super_iftable = klass->GetSuperClass()->GetIfTable();
6639    for (size_t i = 0; i < super_ifcount; ++i) {
6640      if (super_iftable->GetMethodArrayCount(i) > 0) {
6641        has_non_marker_interface = true;
6642        break;
6643      }
6644    }
6645    // Class just inherits marker interfaces from parent so recycle parent's iftable.
6646    if (!has_non_marker_interface) {
6647      klass->SetIfTable(super_iftable);
6648      return true;
6649    }
6650  }
6651  size_t ifcount = super_ifcount + num_interfaces;
6652  // Check that every class being implemented is an interface.
6653  for (size_t i = 0; i < num_interfaces; i++) {
6654    ObjPtr<mirror::Class> interface = have_interfaces
6655        ? interfaces->GetWithoutChecks(i)
6656        : mirror::Class::GetDirectInterface(self, klass.Get(), i);
6657    DCHECK(interface != nullptr);
6658    if (UNLIKELY(!interface->IsInterface())) {
6659      std::string temp;
6660      ThrowIncompatibleClassChangeError(klass.Get(),
6661                                        "Class %s implements non-interface class %s",
6662                                        klass->PrettyDescriptor().c_str(),
6663                                        PrettyDescriptor(interface->GetDescriptor(&temp)).c_str());
6664      return false;
6665    }
6666    ifcount += interface->GetIfTableCount();
6667  }
6668  // Create the interface function table.
6669  MutableHandle<mirror::IfTable> iftable(hs.NewHandle(AllocIfTable(self, ifcount)));
6670  if (UNLIKELY(iftable == nullptr)) {
6671    self->AssertPendingOOMException();
6672    return false;
6673  }
6674  // Fill in table with superclass's iftable.
6675  if (super_ifcount != 0) {
6676    ObjPtr<mirror::IfTable> super_iftable = klass->GetSuperClass()->GetIfTable();
6677    for (size_t i = 0; i < super_ifcount; i++) {
6678      ObjPtr<mirror::Class> super_interface = super_iftable->GetInterface(i);
6679      iftable->SetInterface(i, super_interface);
6680    }
6681  }
6682
6683  // Note that AllowThreadSuspension is to thread suspension as pthread_testcancel is to pthread
6684  // cancellation. That is it will suspend if one has a pending suspend request but otherwise
6685  // doesn't really do anything.
6686  self->AllowThreadSuspension();
6687
6688  size_t new_ifcount;
6689  {
6690    ScopedAssertNoThreadSuspension nts("Copying mirror::Class*'s for FillIfTable");
6691    std::vector<mirror::Class*> to_add;
6692    for (size_t i = 0; i < num_interfaces; i++) {
6693      ObjPtr<mirror::Class> interface = have_interfaces ? interfaces->Get(i) :
6694          mirror::Class::GetDirectInterface(self, klass.Get(), i);
6695      to_add.push_back(interface.Ptr());
6696    }
6697
6698    new_ifcount = FillIfTable(iftable.Get(), super_ifcount, std::move(to_add));
6699  }
6700
6701  self->AllowThreadSuspension();
6702
6703  // Shrink iftable in case duplicates were found
6704  if (new_ifcount < ifcount) {
6705    DCHECK_NE(num_interfaces, 0U);
6706    iftable.Assign(down_cast<mirror::IfTable*>(
6707        iftable->CopyOf(self, new_ifcount * mirror::IfTable::kMax)));
6708    if (UNLIKELY(iftable == nullptr)) {
6709      self->AssertPendingOOMException();
6710      return false;
6711    }
6712    ifcount = new_ifcount;
6713  } else {
6714    DCHECK_EQ(new_ifcount, ifcount);
6715  }
6716  klass->SetIfTable(iftable.Get());
6717  return true;
6718}
6719
6720// Finds the method with a name/signature that matches cmp in the given lists of methods. The list
6721// of methods must be unique.
6722static ArtMethod* FindSameNameAndSignature(MethodNameAndSignatureComparator& cmp ATTRIBUTE_UNUSED) {
6723  return nullptr;
6724}
6725
6726template <typename ... Types>
6727static ArtMethod* FindSameNameAndSignature(MethodNameAndSignatureComparator& cmp,
6728                                           const ScopedArenaVector<ArtMethod*>& list,
6729                                           const Types& ... rest)
6730    REQUIRES_SHARED(Locks::mutator_lock_) {
6731  for (ArtMethod* method : list) {
6732    if (cmp.HasSameNameAndSignature(method)) {
6733      return method;
6734    }
6735  }
6736  return FindSameNameAndSignature(cmp, rest...);
6737}
6738
6739// Check that all vtable entries are present in this class's virtuals or are the same as a
6740// superclasses vtable entry.
6741static void CheckClassOwnsVTableEntries(Thread* self,
6742                                        Handle<mirror::Class> klass,
6743                                        PointerSize pointer_size)
6744    REQUIRES_SHARED(Locks::mutator_lock_) {
6745  StackHandleScope<2> hs(self);
6746  Handle<mirror::PointerArray> check_vtable(hs.NewHandle(klass->GetVTableDuringLinking()));
6747  ObjPtr<mirror::Class> super_temp = (klass->HasSuperClass()) ? klass->GetSuperClass() : nullptr;
6748  Handle<mirror::Class> superclass(hs.NewHandle(super_temp));
6749  int32_t super_vtable_length = (superclass != nullptr) ? superclass->GetVTableLength() : 0;
6750  for (int32_t i = 0; i < check_vtable->GetLength(); ++i) {
6751    ArtMethod* m = check_vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size);
6752    CHECK(m != nullptr);
6753
6754    if (m->GetMethodIndexDuringLinking() != i) {
6755      LOG(WARNING) << m->PrettyMethod()
6756                   << " has an unexpected method index for its spot in the vtable for class"
6757                   << klass->PrettyClass();
6758    }
6759    ArraySlice<ArtMethod> virtuals = klass->GetVirtualMethodsSliceUnchecked(pointer_size);
6760    auto is_same_method = [m] (const ArtMethod& meth) {
6761      return &meth == m;
6762    };
6763    if (!((super_vtable_length > i && superclass->GetVTableEntry(i, pointer_size) == m) ||
6764          std::find_if(virtuals.begin(), virtuals.end(), is_same_method) != virtuals.end())) {
6765      LOG(WARNING) << m->PrettyMethod() << " does not seem to be owned by current class "
6766                   << klass->PrettyClass() << " or any of its superclasses!";
6767    }
6768  }
6769}
6770
6771// Check to make sure the vtable does not have duplicates. Duplicates could cause problems when a
6772// method is overridden in a subclass.
6773static void CheckVTableHasNoDuplicates(Thread* self,
6774                                       Handle<mirror::Class> klass,
6775                                       PointerSize pointer_size)
6776    REQUIRES_SHARED(Locks::mutator_lock_) {
6777  StackHandleScope<1> hs(self);
6778  Handle<mirror::PointerArray> vtable(hs.NewHandle(klass->GetVTableDuringLinking()));
6779  int32_t num_entries = vtable->GetLength();
6780  for (int32_t i = 0; i < num_entries; i++) {
6781    ArtMethod* vtable_entry = vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size);
6782    // Don't bother if we cannot 'see' the vtable entry (i.e. it is a package-private member maybe).
6783    if (!klass->CanAccessMember(vtable_entry->GetDeclaringClass(),
6784                                vtable_entry->GetAccessFlags())) {
6785      continue;
6786    }
6787    MethodNameAndSignatureComparator name_comparator(
6788        vtable_entry->GetInterfaceMethodIfProxy(pointer_size));
6789    for (int32_t j = i + 1; j < num_entries; j++) {
6790      ArtMethod* other_entry = vtable->GetElementPtrSize<ArtMethod*>(j, pointer_size);
6791      if (!klass->CanAccessMember(other_entry->GetDeclaringClass(),
6792                                  other_entry->GetAccessFlags())) {
6793        continue;
6794      }
6795      if (vtable_entry == other_entry ||
6796          name_comparator.HasSameNameAndSignature(
6797               other_entry->GetInterfaceMethodIfProxy(pointer_size))) {
6798        LOG(WARNING) << "vtable entries " << i << " and " << j << " are identical for "
6799                     << klass->PrettyClass() << " in method " << vtable_entry->PrettyMethod()
6800                     << " (0x" << std::hex << reinterpret_cast<uintptr_t>(vtable_entry) << ") and "
6801                     << other_entry->PrettyMethod() << "  (0x" << std::hex
6802                     << reinterpret_cast<uintptr_t>(other_entry) << ")";
6803      }
6804    }
6805  }
6806}
6807
6808static void SanityCheckVTable(Thread* self, Handle<mirror::Class> klass, PointerSize pointer_size)
6809    REQUIRES_SHARED(Locks::mutator_lock_) {
6810  CheckClassOwnsVTableEntries(self, klass, pointer_size);
6811  CheckVTableHasNoDuplicates(self, klass, pointer_size);
6812}
6813
6814void ClassLinker::FillImtFromSuperClass(Handle<mirror::Class> klass,
6815                                        ArtMethod* unimplemented_method,
6816                                        ArtMethod* imt_conflict_method,
6817                                        bool* new_conflict,
6818                                        ArtMethod** imt) {
6819  DCHECK(klass->HasSuperClass());
6820  ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
6821  if (super_class->ShouldHaveImt()) {
6822    ImTable* super_imt = super_class->GetImt(image_pointer_size_);
6823    for (size_t i = 0; i < ImTable::kSize; ++i) {
6824      imt[i] = super_imt->Get(i, image_pointer_size_);
6825    }
6826  } else {
6827    // No imt in the super class, need to reconstruct from the iftable.
6828    ObjPtr<mirror::IfTable> if_table = super_class->GetIfTable();
6829    if (if_table->Count() != 0) {
6830      // Ignore copied methods since we will handle these in LinkInterfaceMethods.
6831      FillIMTFromIfTable(if_table,
6832                         unimplemented_method,
6833                         imt_conflict_method,
6834                         klass.Get(),
6835                         /*create_conflict_table*/false,
6836                         /*ignore_copied_methods*/true,
6837                         /*out*/new_conflict,
6838                         /*out*/imt);
6839    }
6840  }
6841}
6842
6843class ClassLinker::LinkInterfaceMethodsHelper {
6844 public:
6845  LinkInterfaceMethodsHelper(ClassLinker* class_linker,
6846                             Handle<mirror::Class> klass,
6847                             Thread* self,
6848                             Runtime* runtime)
6849      : class_linker_(class_linker),
6850        klass_(klass),
6851        method_alignment_(ArtMethod::Alignment(class_linker->GetImagePointerSize())),
6852        method_size_(ArtMethod::Size(class_linker->GetImagePointerSize())),
6853        self_(self),
6854        stack_(runtime->GetLinearAlloc()->GetArenaPool()),
6855        allocator_(&stack_),
6856        default_conflict_methods_(allocator_.Adapter()),
6857        overriding_default_conflict_methods_(allocator_.Adapter()),
6858        miranda_methods_(allocator_.Adapter()),
6859        default_methods_(allocator_.Adapter()),
6860        overriding_default_methods_(allocator_.Adapter()),
6861        move_table_(allocator_.Adapter()) {
6862  }
6863
6864  ArtMethod* FindMethod(ArtMethod* interface_method,
6865                        MethodNameAndSignatureComparator& interface_name_comparator,
6866                        ArtMethod* vtable_impl)
6867      REQUIRES_SHARED(Locks::mutator_lock_);
6868
6869  ArtMethod* GetOrCreateMirandaMethod(ArtMethod* interface_method,
6870                                      MethodNameAndSignatureComparator& interface_name_comparator)
6871      REQUIRES_SHARED(Locks::mutator_lock_);
6872
6873  bool HasNewVirtuals() const {
6874    return !(miranda_methods_.empty() &&
6875             default_methods_.empty() &&
6876             overriding_default_methods_.empty() &&
6877             overriding_default_conflict_methods_.empty() &&
6878             default_conflict_methods_.empty());
6879  }
6880
6881  void ReallocMethods() REQUIRES_SHARED(Locks::mutator_lock_);
6882
6883  ObjPtr<mirror::PointerArray> UpdateVtable(
6884      const std::unordered_map<size_t, ClassLinker::MethodTranslation>& default_translations,
6885      ObjPtr<mirror::PointerArray> old_vtable) REQUIRES_SHARED(Locks::mutator_lock_);
6886
6887  void UpdateIfTable(Handle<mirror::IfTable> iftable) REQUIRES_SHARED(Locks::mutator_lock_);
6888
6889  void UpdateIMT(ArtMethod** out_imt);
6890
6891  void CheckNoStaleMethodsInDexCache() REQUIRES_SHARED(Locks::mutator_lock_) {
6892    if (kIsDebugBuild) {
6893      PointerSize pointer_size = class_linker_->GetImagePointerSize();
6894      // Check that there are no stale methods are in the dex cache array.
6895      auto* resolved_methods = klass_->GetDexCache()->GetResolvedMethods();
6896      for (size_t i = 0, count = klass_->GetDexCache()->NumResolvedMethods(); i < count; ++i) {
6897        auto* m = mirror::DexCache::GetElementPtrSize(resolved_methods, i, pointer_size);
6898        CHECK(move_table_.find(m) == move_table_.end() ||
6899              // The original versions of copied methods will still be present so allow those too.
6900              // Note that if the first check passes this might fail to GetDeclaringClass().
6901              std::find_if(m->GetDeclaringClass()->GetMethods(pointer_size).begin(),
6902                           m->GetDeclaringClass()->GetMethods(pointer_size).end(),
6903                           [m] (ArtMethod& meth) {
6904                             return &meth == m;
6905                           }) != m->GetDeclaringClass()->GetMethods(pointer_size).end())
6906            << "Obsolete method " << m->PrettyMethod() << " is in dex cache!";
6907      }
6908    }
6909  }
6910
6911  void ClobberOldMethods(LengthPrefixedArray<ArtMethod>* old_methods,
6912                         LengthPrefixedArray<ArtMethod>* methods) {
6913    if (kIsDebugBuild) {
6914      CHECK(methods != nullptr);
6915      // Put some random garbage in old methods to help find stale pointers.
6916      if (methods != old_methods && old_methods != nullptr) {
6917        // Need to make sure the GC is not running since it could be scanning the methods we are
6918        // about to overwrite.
6919        ScopedThreadStateChange tsc(self_, kSuspended);
6920        gc::ScopedGCCriticalSection gcs(self_,
6921                                        gc::kGcCauseClassLinker,
6922                                        gc::kCollectorTypeClassLinker);
6923        const size_t old_size = LengthPrefixedArray<ArtMethod>::ComputeSize(old_methods->size(),
6924                                                                            method_size_,
6925                                                                            method_alignment_);
6926        memset(old_methods, 0xFEu, old_size);
6927      }
6928    }
6929  }
6930
6931 private:
6932  size_t NumberOfNewVirtuals() const {
6933    return miranda_methods_.size() +
6934           default_methods_.size() +
6935           overriding_default_conflict_methods_.size() +
6936           overriding_default_methods_.size() +
6937           default_conflict_methods_.size();
6938  }
6939
6940  bool FillTables() REQUIRES_SHARED(Locks::mutator_lock_) {
6941    return !klass_->IsInterface();
6942  }
6943
6944  void LogNewVirtuals() const REQUIRES_SHARED(Locks::mutator_lock_) {
6945    DCHECK(!klass_->IsInterface() || (default_methods_.empty() && miranda_methods_.empty()))
6946        << "Interfaces should only have default-conflict methods appended to them.";
6947    VLOG(class_linker) << mirror::Class::PrettyClass(klass_.Get()) << ": miranda_methods="
6948                       << miranda_methods_.size()
6949                       << " default_methods=" << default_methods_.size()
6950                       << " overriding_default_methods=" << overriding_default_methods_.size()
6951                       << " default_conflict_methods=" << default_conflict_methods_.size()
6952                       << " overriding_default_conflict_methods="
6953                       << overriding_default_conflict_methods_.size();
6954  }
6955
6956  ClassLinker* class_linker_;
6957  Handle<mirror::Class> klass_;
6958  size_t method_alignment_;
6959  size_t method_size_;
6960  Thread* const self_;
6961
6962  // These are allocated on the heap to begin, we then transfer to linear alloc when we re-create
6963  // the virtual methods array.
6964  // Need to use low 4GB arenas for compiler or else the pointers wont fit in 32 bit method array
6965  // during cross compilation.
6966  // Use the linear alloc pool since this one is in the low 4gb for the compiler.
6967  ArenaStack stack_;
6968  ScopedArenaAllocator allocator_;
6969
6970  ScopedArenaVector<ArtMethod*> default_conflict_methods_;
6971  ScopedArenaVector<ArtMethod*> overriding_default_conflict_methods_;
6972  ScopedArenaVector<ArtMethod*> miranda_methods_;
6973  ScopedArenaVector<ArtMethod*> default_methods_;
6974  ScopedArenaVector<ArtMethod*> overriding_default_methods_;
6975
6976  ScopedArenaUnorderedMap<ArtMethod*, ArtMethod*> move_table_;
6977};
6978
6979ArtMethod* ClassLinker::LinkInterfaceMethodsHelper::FindMethod(
6980    ArtMethod* interface_method,
6981    MethodNameAndSignatureComparator& interface_name_comparator,
6982    ArtMethod* vtable_impl) {
6983  ArtMethod* current_method = nullptr;
6984  switch (class_linker_->FindDefaultMethodImplementation(self_,
6985                                                         interface_method,
6986                                                         klass_,
6987                                                         /*out*/&current_method)) {
6988    case DefaultMethodSearchResult::kDefaultConflict: {
6989      // Default method conflict.
6990      DCHECK(current_method == nullptr);
6991      ArtMethod* default_conflict_method = nullptr;
6992      if (vtable_impl != nullptr && vtable_impl->IsDefaultConflicting()) {
6993        // We can reuse the method from the superclass, don't bother adding it to virtuals.
6994        default_conflict_method = vtable_impl;
6995      } else {
6996        // See if we already have a conflict method for this method.
6997        ArtMethod* preexisting_conflict = FindSameNameAndSignature(
6998            interface_name_comparator,
6999            default_conflict_methods_,
7000            overriding_default_conflict_methods_);
7001        if (LIKELY(preexisting_conflict != nullptr)) {
7002          // We already have another conflict we can reuse.
7003          default_conflict_method = preexisting_conflict;
7004        } else {
7005          // Note that we do this even if we are an interface since we need to create this and
7006          // cannot reuse another classes.
7007          // Create a new conflict method for this to use.
7008          default_conflict_method = reinterpret_cast<ArtMethod*>(allocator_.Alloc(method_size_));
7009          new(default_conflict_method) ArtMethod(interface_method,
7010                                                 class_linker_->GetImagePointerSize());
7011          if (vtable_impl == nullptr) {
7012            // Save the conflict method. We need to add it to the vtable.
7013            default_conflict_methods_.push_back(default_conflict_method);
7014          } else {
7015            // Save the conflict method but it is already in the vtable.
7016            overriding_default_conflict_methods_.push_back(default_conflict_method);
7017          }
7018        }
7019      }
7020      current_method = default_conflict_method;
7021      break;
7022    }  // case kDefaultConflict
7023    case DefaultMethodSearchResult::kDefaultFound: {
7024      DCHECK(current_method != nullptr);
7025      // Found a default method.
7026      if (vtable_impl != nullptr &&
7027          current_method->GetDeclaringClass() == vtable_impl->GetDeclaringClass()) {
7028        // We found a default method but it was the same one we already have from our
7029        // superclass. Don't bother adding it to our vtable again.
7030        current_method = vtable_impl;
7031      } else if (LIKELY(FillTables())) {
7032        // Interfaces don't need to copy default methods since they don't have vtables.
7033        // Only record this default method if it is new to save space.
7034        // TODO It might be worthwhile to copy default methods on interfaces anyway since it
7035        //      would make lookup for interface super much faster. (We would only need to scan
7036        //      the iftable to find if there is a NSME or AME.)
7037        ArtMethod* old = FindSameNameAndSignature(interface_name_comparator,
7038                                                  default_methods_,
7039                                                  overriding_default_methods_);
7040        if (old == nullptr) {
7041          // We found a default method implementation and there were no conflicts.
7042          if (vtable_impl == nullptr) {
7043            // Save the default method. We need to add it to the vtable.
7044            default_methods_.push_back(current_method);
7045          } else {
7046            // Save the default method but it is already in the vtable.
7047            overriding_default_methods_.push_back(current_method);
7048          }
7049        } else {
7050          CHECK(old == current_method) << "Multiple default implementations selected!";
7051        }
7052      }
7053      break;
7054    }  // case kDefaultFound
7055    case DefaultMethodSearchResult::kAbstractFound: {
7056      DCHECK(current_method == nullptr);
7057      // Abstract method masks all defaults.
7058      if (vtable_impl != nullptr &&
7059          vtable_impl->IsAbstract() &&
7060          !vtable_impl->IsDefaultConflicting()) {
7061        // We need to make this an abstract method but the version in the vtable already is so
7062        // don't do anything.
7063        current_method = vtable_impl;
7064      }
7065      break;
7066    }  // case kAbstractFound
7067  }
7068  return current_method;
7069}
7070
7071ArtMethod* ClassLinker::LinkInterfaceMethodsHelper::GetOrCreateMirandaMethod(
7072    ArtMethod* interface_method,
7073    MethodNameAndSignatureComparator& interface_name_comparator) {
7074  // Find out if there is already a miranda method we can use.
7075  ArtMethod* miranda_method = FindSameNameAndSignature(interface_name_comparator,
7076                                                       miranda_methods_);
7077  if (miranda_method == nullptr) {
7078    DCHECK(interface_method->IsAbstract()) << interface_method->PrettyMethod();
7079    miranda_method = reinterpret_cast<ArtMethod*>(allocator_.Alloc(method_size_));
7080    CHECK(miranda_method != nullptr);
7081    // Point the interface table at a phantom slot.
7082    new(miranda_method) ArtMethod(interface_method, class_linker_->GetImagePointerSize());
7083    miranda_methods_.push_back(miranda_method);
7084  }
7085  return miranda_method;
7086}
7087
7088void ClassLinker::LinkInterfaceMethodsHelper::ReallocMethods() {
7089  LogNewVirtuals();
7090
7091  const size_t old_method_count = klass_->NumMethods();
7092  const size_t new_method_count = old_method_count + NumberOfNewVirtuals();
7093  DCHECK_NE(old_method_count, new_method_count);
7094
7095  // Attempt to realloc to save RAM if possible.
7096  LengthPrefixedArray<ArtMethod>* old_methods = klass_->GetMethodsPtr();
7097  // The Realloced virtual methods aren't visible from the class roots, so there is no issue
7098  // where GCs could attempt to mark stale pointers due to memcpy. And since we overwrite the
7099  // realloced memory with out->CopyFrom, we are guaranteed to have objects in the to space since
7100  // CopyFrom has internal read barriers.
7101  //
7102  // TODO We should maybe move some of this into mirror::Class or at least into another method.
7103  const size_t old_size = LengthPrefixedArray<ArtMethod>::ComputeSize(old_method_count,
7104                                                                      method_size_,
7105                                                                      method_alignment_);
7106  const size_t new_size = LengthPrefixedArray<ArtMethod>::ComputeSize(new_method_count,
7107                                                                      method_size_,
7108                                                                      method_alignment_);
7109  const size_t old_methods_ptr_size = (old_methods != nullptr) ? old_size : 0;
7110  auto* methods = reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(
7111      Runtime::Current()->GetLinearAlloc()->Realloc(
7112          self_, old_methods, old_methods_ptr_size, new_size));
7113  CHECK(methods != nullptr);  // Native allocation failure aborts.
7114
7115  PointerSize pointer_size = class_linker_->GetImagePointerSize();
7116  if (methods != old_methods) {
7117    // Maps from heap allocated miranda method to linear alloc miranda method.
7118    StrideIterator<ArtMethod> out = methods->begin(method_size_, method_alignment_);
7119    // Copy over the old methods.
7120    for (auto& m : klass_->GetMethods(pointer_size)) {
7121      move_table_.emplace(&m, &*out);
7122      // The CopyFrom is only necessary to not miss read barriers since Realloc won't do read
7123      // barriers when it copies.
7124      out->CopyFrom(&m, pointer_size);
7125      ++out;
7126    }
7127  }
7128  StrideIterator<ArtMethod> out(methods->begin(method_size_, method_alignment_) + old_method_count);
7129  // Copy over miranda methods before copying vtable since CopyOf may cause thread suspension and
7130  // we want the roots of the miranda methods to get visited.
7131  for (size_t i = 0; i < miranda_methods_.size(); ++i) {
7132    ArtMethod* mir_method = miranda_methods_[i];
7133    ArtMethod& new_method = *out;
7134    new_method.CopyFrom(mir_method, pointer_size);
7135    new_method.SetAccessFlags(new_method.GetAccessFlags() | kAccMiranda | kAccCopied);
7136    DCHECK_NE(new_method.GetAccessFlags() & kAccAbstract, 0u)
7137        << "Miranda method should be abstract!";
7138    move_table_.emplace(mir_method, &new_method);
7139    // Update the entry in the method array, as the array will be used for future lookups,
7140    // where thread suspension is allowed.
7141    // As such, the array should not contain locally allocated ArtMethod, otherwise the GC
7142    // would not see them.
7143    miranda_methods_[i] = &new_method;
7144    ++out;
7145  }
7146  // We need to copy the default methods into our own method table since the runtime requires that
7147  // every method on a class's vtable be in that respective class's virtual method table.
7148  // NOTE This means that two classes might have the same implementation of a method from the same
7149  // interface but will have different ArtMethod*s for them. This also means we cannot compare a
7150  // default method found on a class with one found on the declaring interface directly and must
7151  // look at the declaring class to determine if they are the same.
7152  for (ScopedArenaVector<ArtMethod*>* methods_vec : {&default_methods_,
7153                                                     &overriding_default_methods_}) {
7154    for (size_t i = 0; i < methods_vec->size(); ++i) {
7155      ArtMethod* def_method = (*methods_vec)[i];
7156      ArtMethod& new_method = *out;
7157      new_method.CopyFrom(def_method, pointer_size);
7158      // Clear the kAccSkipAccessChecks flag if it is present. Since this class hasn't been
7159      // verified yet it shouldn't have methods that are skipping access checks.
7160      // TODO This is rather arbitrary. We should maybe support classes where only some of its
7161      // methods are skip_access_checks.
7162      constexpr uint32_t kSetFlags = kAccDefault | kAccCopied;
7163      constexpr uint32_t kMaskFlags = ~kAccSkipAccessChecks;
7164      new_method.SetAccessFlags((new_method.GetAccessFlags() | kSetFlags) & kMaskFlags);
7165      move_table_.emplace(def_method, &new_method);
7166      // Update the entry in the method array, as the array will be used for future lookups,
7167      // where thread suspension is allowed.
7168      // As such, the array should not contain locally allocated ArtMethod, otherwise the GC
7169      // would not see them.
7170      (*methods_vec)[i] = &new_method;
7171      ++out;
7172    }
7173  }
7174  for (ScopedArenaVector<ArtMethod*>* methods_vec : {&default_conflict_methods_,
7175                                                     &overriding_default_conflict_methods_}) {
7176    for (size_t i = 0; i < methods_vec->size(); ++i) {
7177      ArtMethod* conf_method = (*methods_vec)[i];
7178      ArtMethod& new_method = *out;
7179      new_method.CopyFrom(conf_method, pointer_size);
7180      // This is a type of default method (there are default method impls, just a conflict) so
7181      // mark this as a default, non-abstract method, since thats what it is. Also clear the
7182      // kAccSkipAccessChecks bit since this class hasn't been verified yet it shouldn't have
7183      // methods that are skipping access checks.
7184      constexpr uint32_t kSetFlags = kAccDefault | kAccDefaultConflict | kAccCopied;
7185      constexpr uint32_t kMaskFlags = ~(kAccAbstract | kAccSkipAccessChecks);
7186      new_method.SetAccessFlags((new_method.GetAccessFlags() | kSetFlags) & kMaskFlags);
7187      DCHECK(new_method.IsDefaultConflicting());
7188      // The actual method might or might not be marked abstract since we just copied it from a
7189      // (possibly default) interface method. We need to set it entry point to be the bridge so
7190      // that the compiler will not invoke the implementation of whatever method we copied from.
7191      EnsureThrowsInvocationError(class_linker_, &new_method);
7192      move_table_.emplace(conf_method, &new_method);
7193      // Update the entry in the method array, as the array will be used for future lookups,
7194      // where thread suspension is allowed.
7195      // As such, the array should not contain locally allocated ArtMethod, otherwise the GC
7196      // would not see them.
7197      (*methods_vec)[i] = &new_method;
7198      ++out;
7199    }
7200  }
7201  methods->SetSize(new_method_count);
7202  class_linker_->UpdateClassMethods(klass_.Get(), methods);
7203}
7204
7205ObjPtr<mirror::PointerArray> ClassLinker::LinkInterfaceMethodsHelper::UpdateVtable(
7206    const std::unordered_map<size_t, ClassLinker::MethodTranslation>& default_translations,
7207    ObjPtr<mirror::PointerArray> old_vtable) {
7208  // Update the vtable to the new method structures. We can skip this for interfaces since they
7209  // do not have vtables.
7210  const size_t old_vtable_count = old_vtable->GetLength();
7211  const size_t new_vtable_count = old_vtable_count +
7212                                  miranda_methods_.size() +
7213                                  default_methods_.size() +
7214                                  default_conflict_methods_.size();
7215
7216  ObjPtr<mirror::PointerArray> vtable =
7217      down_cast<mirror::PointerArray*>(old_vtable->CopyOf(self_, new_vtable_count));
7218  if (UNLIKELY(vtable == nullptr)) {
7219    self_->AssertPendingOOMException();
7220    return nullptr;
7221  }
7222
7223  size_t vtable_pos = old_vtable_count;
7224  PointerSize pointer_size = class_linker_->GetImagePointerSize();
7225  // Update all the newly copied method's indexes so they denote their placement in the vtable.
7226  for (const ScopedArenaVector<ArtMethod*>& methods_vec : {default_methods_,
7227                                                           default_conflict_methods_,
7228                                                           miranda_methods_}) {
7229    // These are the functions that are not already in the vtable!
7230    for (ArtMethod* new_vtable_method : methods_vec) {
7231      // Leave the declaring class alone the method's dex_code_item_offset_ and dex_method_index_
7232      // fields are references into the dex file the method was defined in. Since the ArtMethod
7233      // does not store that information it uses declaring_class_->dex_cache_.
7234      new_vtable_method->SetMethodIndex(0xFFFF & vtable_pos);
7235      vtable->SetElementPtrSize(vtable_pos, new_vtable_method, pointer_size);
7236      ++vtable_pos;
7237    }
7238  }
7239  DCHECK_EQ(vtable_pos, new_vtable_count);
7240
7241  // Update old vtable methods. We use the default_translations map to figure out what each
7242  // vtable entry should be updated to, if they need to be at all.
7243  for (size_t i = 0; i < old_vtable_count; ++i) {
7244    ArtMethod* translated_method = vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size);
7245    // Try and find what we need to change this method to.
7246    auto translation_it = default_translations.find(i);
7247    if (translation_it != default_translations.end()) {
7248      if (translation_it->second.IsInConflict()) {
7249        // Find which conflict method we are to use for this method.
7250        MethodNameAndSignatureComparator old_method_comparator(
7251            translated_method->GetInterfaceMethodIfProxy(pointer_size));
7252        // We only need to look through overriding_default_conflict_methods since this is an
7253        // overridden method we are fixing up here.
7254        ArtMethod* new_conflict_method = FindSameNameAndSignature(
7255            old_method_comparator, overriding_default_conflict_methods_);
7256        CHECK(new_conflict_method != nullptr) << "Expected a conflict method!";
7257        translated_method = new_conflict_method;
7258      } else if (translation_it->second.IsAbstract()) {
7259        // Find which miranda method we are to use for this method.
7260        MethodNameAndSignatureComparator old_method_comparator(
7261            translated_method->GetInterfaceMethodIfProxy(pointer_size));
7262        ArtMethod* miranda_method = FindSameNameAndSignature(old_method_comparator,
7263                                                             miranda_methods_);
7264        DCHECK(miranda_method != nullptr);
7265        translated_method = miranda_method;
7266      } else {
7267        // Normal default method (changed from an older default or abstract interface method).
7268        DCHECK(translation_it->second.IsTranslation());
7269        translated_method = translation_it->second.GetTranslation();
7270        auto it = move_table_.find(translated_method);
7271        DCHECK(it != move_table_.end());
7272        translated_method = it->second;
7273      }
7274    } else {
7275      auto it = move_table_.find(translated_method);
7276      translated_method = (it != move_table_.end()) ? it->second : nullptr;
7277    }
7278
7279    if (translated_method != nullptr) {
7280      // Make sure the new_methods index is set.
7281      if (translated_method->GetMethodIndexDuringLinking() != i) {
7282        if (kIsDebugBuild) {
7283          auto* methods = klass_->GetMethodsPtr();
7284          CHECK_LE(reinterpret_cast<uintptr_t>(&*methods->begin(method_size_, method_alignment_)),
7285                   reinterpret_cast<uintptr_t>(translated_method));
7286          CHECK_LT(reinterpret_cast<uintptr_t>(translated_method),
7287                   reinterpret_cast<uintptr_t>(&*methods->end(method_size_, method_alignment_)));
7288        }
7289        translated_method->SetMethodIndex(0xFFFF & i);
7290      }
7291      vtable->SetElementPtrSize(i, translated_method, pointer_size);
7292    }
7293  }
7294  klass_->SetVTable(vtable.Ptr());
7295  return vtable;
7296}
7297
7298void ClassLinker::LinkInterfaceMethodsHelper::UpdateIfTable(Handle<mirror::IfTable> iftable) {
7299  PointerSize pointer_size = class_linker_->GetImagePointerSize();
7300  const size_t ifcount = klass_->GetIfTableCount();
7301  // Go fix up all the stale iftable pointers.
7302  for (size_t i = 0; i < ifcount; ++i) {
7303    for (size_t j = 0, count = iftable->GetMethodArrayCount(i); j < count; ++j) {
7304      auto* method_array = iftable->GetMethodArray(i);
7305      auto* m = method_array->GetElementPtrSize<ArtMethod*>(j, pointer_size);
7306      DCHECK(m != nullptr) << klass_->PrettyClass();
7307      auto it = move_table_.find(m);
7308      if (it != move_table_.end()) {
7309        auto* new_m = it->second;
7310        DCHECK(new_m != nullptr) << klass_->PrettyClass();
7311        method_array->SetElementPtrSize(j, new_m, pointer_size);
7312      }
7313    }
7314  }
7315}
7316
7317void ClassLinker::LinkInterfaceMethodsHelper::UpdateIMT(ArtMethod** out_imt) {
7318  // Fix up IMT next.
7319  for (size_t i = 0; i < ImTable::kSize; ++i) {
7320    auto it = move_table_.find(out_imt[i]);
7321    if (it != move_table_.end()) {
7322      out_imt[i] = it->second;
7323    }
7324  }
7325}
7326
7327// TODO This method needs to be split up into several smaller methods.
7328bool ClassLinker::LinkInterfaceMethods(
7329    Thread* self,
7330    Handle<mirror::Class> klass,
7331    const std::unordered_map<size_t, ClassLinker::MethodTranslation>& default_translations,
7332    bool* out_new_conflict,
7333    ArtMethod** out_imt) {
7334  StackHandleScope<3> hs(self);
7335  Runtime* const runtime = Runtime::Current();
7336
7337  const bool is_interface = klass->IsInterface();
7338  const bool has_superclass = klass->HasSuperClass();
7339  const bool fill_tables = !is_interface;
7340  const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U;
7341  const size_t ifcount = klass->GetIfTableCount();
7342
7343  Handle<mirror::IfTable> iftable(hs.NewHandle(klass->GetIfTable()));
7344
7345  MutableHandle<mirror::PointerArray> vtable(hs.NewHandle(klass->GetVTableDuringLinking()));
7346  ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod();
7347  ArtMethod* const imt_conflict_method = runtime->GetImtConflictMethod();
7348  // Copy the IMT from the super class if possible.
7349  const bool extend_super_iftable = has_superclass;
7350  if (has_superclass && fill_tables) {
7351    FillImtFromSuperClass(klass,
7352                          unimplemented_method,
7353                          imt_conflict_method,
7354                          out_new_conflict,
7355                          out_imt);
7356  }
7357  // Allocate method arrays before since we don't want miss visiting miranda method roots due to
7358  // thread suspension.
7359  if (fill_tables) {
7360    if (!AllocateIfTableMethodArrays(self, klass, iftable)) {
7361      return false;
7362    }
7363  }
7364
7365  LinkInterfaceMethodsHelper helper(this, klass, self, runtime);
7366
7367  auto* old_cause = self->StartAssertNoThreadSuspension(
7368      "Copying ArtMethods for LinkInterfaceMethods");
7369  // Going in reverse to ensure that we will hit abstract methods that override defaults before the
7370  // defaults. This means we don't need to do any trickery when creating the Miranda methods, since
7371  // they will already be null. This has the additional benefit that the declarer of a miranda
7372  // method will actually declare an abstract method.
7373  for (size_t i = ifcount; i != 0; ) {
7374    --i;
7375
7376    DCHECK_GE(i, 0u);
7377    DCHECK_LT(i, ifcount);
7378
7379    size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods();
7380    if (num_methods > 0) {
7381      StackHandleScope<2> hs2(self);
7382      const bool is_super = i < super_ifcount;
7383      const bool super_interface = is_super && extend_super_iftable;
7384      // We don't actually create or fill these tables for interfaces, we just copy some methods for
7385      // conflict methods. Just set this as nullptr in those cases.
7386      Handle<mirror::PointerArray> method_array(fill_tables
7387                                                ? hs2.NewHandle(iftable->GetMethodArray(i))
7388                                                : hs2.NewHandle<mirror::PointerArray>(nullptr));
7389
7390      ArraySlice<ArtMethod> input_virtual_methods;
7391      ScopedNullHandle<mirror::PointerArray> null_handle;
7392      Handle<mirror::PointerArray> input_vtable_array(null_handle);
7393      int32_t input_array_length = 0;
7394
7395      // TODO Cleanup Needed: In the presence of default methods this optimization is rather dirty
7396      //      and confusing. Default methods should always look through all the superclasses
7397      //      because they are the last choice of an implementation. We get around this by looking
7398      //      at the super-classes iftable methods (copied into method_array previously) when we are
7399      //      looking for the implementation of a super-interface method but that is rather dirty.
7400      bool using_virtuals;
7401      if (super_interface || is_interface) {
7402        // If we are overwriting a super class interface, try to only virtual methods instead of the
7403        // whole vtable.
7404        using_virtuals = true;
7405        input_virtual_methods = klass->GetDeclaredMethodsSlice(image_pointer_size_);
7406        input_array_length = input_virtual_methods.size();
7407      } else {
7408        // For a new interface, however, we need the whole vtable in case a new
7409        // interface method is implemented in the whole superclass.
7410        using_virtuals = false;
7411        DCHECK(vtable != nullptr);
7412        input_vtable_array = vtable;
7413        input_array_length = input_vtable_array->GetLength();
7414      }
7415
7416      // For each method in interface
7417      for (size_t j = 0; j < num_methods; ++j) {
7418        auto* interface_method = iftable->GetInterface(i)->GetVirtualMethod(j, image_pointer_size_);
7419        MethodNameAndSignatureComparator interface_name_comparator(
7420            interface_method->GetInterfaceMethodIfProxy(image_pointer_size_));
7421        uint32_t imt_index = ImTable::GetImtIndex(interface_method);
7422        ArtMethod** imt_ptr = &out_imt[imt_index];
7423        // For each method listed in the interface's method list, find the
7424        // matching method in our class's method list.  We want to favor the
7425        // subclass over the superclass, which just requires walking
7426        // back from the end of the vtable.  (This only matters if the
7427        // superclass defines a private method and this class redefines
7428        // it -- otherwise it would use the same vtable slot.  In .dex files
7429        // those don't end up in the virtual method table, so it shouldn't
7430        // matter which direction we go.  We walk it backward anyway.)
7431        //
7432        // To find defaults we need to do the same but also go over interfaces.
7433        bool found_impl = false;
7434        ArtMethod* vtable_impl = nullptr;
7435        for (int32_t k = input_array_length - 1; k >= 0; --k) {
7436          ArtMethod* vtable_method = using_virtuals ?
7437              &input_virtual_methods[k] :
7438              input_vtable_array->GetElementPtrSize<ArtMethod*>(k, image_pointer_size_);
7439          ArtMethod* vtable_method_for_name_comparison =
7440              vtable_method->GetInterfaceMethodIfProxy(image_pointer_size_);
7441          if (interface_name_comparator.HasSameNameAndSignature(
7442              vtable_method_for_name_comparison)) {
7443            if (!vtable_method->IsAbstract() && !vtable_method->IsPublic()) {
7444              // Must do EndAssertNoThreadSuspension before throw since the throw can cause
7445              // allocations.
7446              self->EndAssertNoThreadSuspension(old_cause);
7447              ThrowIllegalAccessError(klass.Get(),
7448                  "Method '%s' implementing interface method '%s' is not public",
7449                  vtable_method->PrettyMethod().c_str(),
7450                  interface_method->PrettyMethod().c_str());
7451              return false;
7452            } else if (UNLIKELY(vtable_method->IsOverridableByDefaultMethod())) {
7453              // We might have a newer, better, default method for this, so we just skip it. If we
7454              // are still using this we will select it again when scanning for default methods. To
7455              // obviate the need to copy the method again we will make a note that we already found
7456              // a default here.
7457              // TODO This should be much cleaner.
7458              vtable_impl = vtable_method;
7459              break;
7460            } else {
7461              found_impl = true;
7462              if (LIKELY(fill_tables)) {
7463                method_array->SetElementPtrSize(j, vtable_method, image_pointer_size_);
7464                // Place method in imt if entry is empty, place conflict otherwise.
7465                SetIMTRef(unimplemented_method,
7466                          imt_conflict_method,
7467                          vtable_method,
7468                          /*out*/out_new_conflict,
7469                          /*out*/imt_ptr);
7470              }
7471              break;
7472            }
7473          }
7474        }
7475        // Continue on to the next method if we are done.
7476        if (LIKELY(found_impl)) {
7477          continue;
7478        } else if (LIKELY(super_interface)) {
7479          // Don't look for a default implementation when the super-method is implemented directly
7480          // by the class.
7481          //
7482          // See if we can use the superclasses method and skip searching everything else.
7483          // Note: !found_impl && super_interface
7484          CHECK(extend_super_iftable);
7485          // If this is a super_interface method it is possible we shouldn't override it because a
7486          // superclass could have implemented it directly.  We get the method the superclass used
7487          // to implement this to know if we can override it with a default method. Doing this is
7488          // safe since we know that the super_iftable is filled in so we can simply pull it from
7489          // there. We don't bother if this is not a super-classes interface since in that case we
7490          // have scanned the entire vtable anyway and would have found it.
7491          // TODO This is rather dirty but it is faster than searching through the entire vtable
7492          //      every time.
7493          ArtMethod* supers_method =
7494              method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
7495          DCHECK(supers_method != nullptr);
7496          DCHECK(interface_name_comparator.HasSameNameAndSignature(supers_method));
7497          if (LIKELY(!supers_method->IsOverridableByDefaultMethod())) {
7498            // The method is not overridable by a default method (i.e. it is directly implemented
7499            // in some class). Therefore move onto the next interface method.
7500            continue;
7501          } else {
7502            // If the super-classes method is override-able by a default method we need to keep
7503            // track of it since though it is override-able it is not guaranteed to be 'overridden'.
7504            // If it turns out not to be overridden and we did not keep track of it we might add it
7505            // to the vtable twice, causing corruption (vtable entries having inconsistent and
7506            // illegal states, incorrect vtable size, and incorrect or inconsistent iftable entries)
7507            // in this class and any subclasses.
7508            DCHECK(vtable_impl == nullptr || vtable_impl == supers_method)
7509                << "vtable_impl was " << ArtMethod::PrettyMethod(vtable_impl)
7510                << " and not 'nullptr' or "
7511                << supers_method->PrettyMethod()
7512                << " as expected. IFTable appears to be corrupt!";
7513            vtable_impl = supers_method;
7514          }
7515        }
7516        // If we haven't found it yet we should search through the interfaces for default methods.
7517        ArtMethod* current_method = helper.FindMethod(interface_method,
7518                                                      interface_name_comparator,
7519                                                      vtable_impl);
7520        if (LIKELY(fill_tables)) {
7521          if (current_method == nullptr && !super_interface) {
7522            // We could not find an implementation for this method and since it is a brand new
7523            // interface we searched the entire vtable (and all default methods) for an
7524            // implementation but couldn't find one. We therefore need to make a miranda method.
7525            current_method = helper.GetOrCreateMirandaMethod(interface_method,
7526                                                             interface_name_comparator);
7527          }
7528
7529          if (current_method != nullptr) {
7530            // We found a default method implementation. Record it in the iftable and IMT.
7531            method_array->SetElementPtrSize(j, current_method, image_pointer_size_);
7532            SetIMTRef(unimplemented_method,
7533                      imt_conflict_method,
7534                      current_method,
7535                      /*out*/out_new_conflict,
7536                      /*out*/imt_ptr);
7537          }
7538        }
7539      }  // For each method in interface end.
7540    }  // if (num_methods > 0)
7541  }  // For each interface.
7542  // TODO don't extend virtuals of interface unless necessary (when is it?).
7543  if (helper.HasNewVirtuals()) {
7544    LengthPrefixedArray<ArtMethod>* old_methods = kIsDebugBuild ? klass->GetMethodsPtr() : nullptr;
7545    helper.ReallocMethods();  // No return value to check. Native allocation failure aborts.
7546    LengthPrefixedArray<ArtMethod>* methods = kIsDebugBuild ? klass->GetMethodsPtr() : nullptr;
7547
7548    // Done copying methods, they are all roots in the class now, so we can end the no thread
7549    // suspension assert.
7550    self->EndAssertNoThreadSuspension(old_cause);
7551
7552    if (fill_tables) {
7553      vtable.Assign(helper.UpdateVtable(default_translations, vtable.Get()));
7554      if (UNLIKELY(vtable == nullptr)) {
7555        // The helper has already called self->AssertPendingOOMException();
7556        return false;
7557      }
7558      helper.UpdateIfTable(iftable);
7559      helper.UpdateIMT(out_imt);
7560    }
7561
7562    helper.CheckNoStaleMethodsInDexCache();
7563    helper.ClobberOldMethods(old_methods, methods);
7564  } else {
7565    self->EndAssertNoThreadSuspension(old_cause);
7566  }
7567  if (kIsDebugBuild && !is_interface) {
7568    SanityCheckVTable(self, klass, image_pointer_size_);
7569  }
7570  return true;
7571}
7572
7573bool ClassLinker::LinkInstanceFields(Thread* self, Handle<mirror::Class> klass) {
7574  CHECK(klass != nullptr);
7575  return LinkFields(self, klass, false, nullptr);
7576}
7577
7578bool ClassLinker::LinkStaticFields(Thread* self, Handle<mirror::Class> klass, size_t* class_size) {
7579  CHECK(klass != nullptr);
7580  return LinkFields(self, klass, true, class_size);
7581}
7582
7583struct LinkFieldsComparator {
7584  explicit LinkFieldsComparator() REQUIRES_SHARED(Locks::mutator_lock_) {
7585  }
7586  // No thread safety analysis as will be called from STL. Checked lock held in constructor.
7587  bool operator()(ArtField* field1, ArtField* field2)
7588      NO_THREAD_SAFETY_ANALYSIS {
7589    // First come reference fields, then 64-bit, then 32-bit, and then 16-bit, then finally 8-bit.
7590    Primitive::Type type1 = field1->GetTypeAsPrimitiveType();
7591    Primitive::Type type2 = field2->GetTypeAsPrimitiveType();
7592    if (type1 != type2) {
7593      if (type1 == Primitive::kPrimNot) {
7594        // Reference always goes first.
7595        return true;
7596      }
7597      if (type2 == Primitive::kPrimNot) {
7598        // Reference always goes first.
7599        return false;
7600      }
7601      size_t size1 = Primitive::ComponentSize(type1);
7602      size_t size2 = Primitive::ComponentSize(type2);
7603      if (size1 != size2) {
7604        // Larger primitive types go first.
7605        return size1 > size2;
7606      }
7607      // Primitive types differ but sizes match. Arbitrarily order by primitive type.
7608      return type1 < type2;
7609    }
7610    // Same basic group? Then sort by dex field index. This is guaranteed to be sorted
7611    // by name and for equal names by type id index.
7612    // NOTE: This works also for proxies. Their static fields are assigned appropriate indexes.
7613    return field1->GetDexFieldIndex() < field2->GetDexFieldIndex();
7614  }
7615};
7616
7617bool ClassLinker::LinkFields(Thread* self,
7618                             Handle<mirror::Class> klass,
7619                             bool is_static,
7620                             size_t* class_size) {
7621  self->AllowThreadSuspension();
7622  const size_t num_fields = is_static ? klass->NumStaticFields() : klass->NumInstanceFields();
7623  LengthPrefixedArray<ArtField>* const fields = is_static ? klass->GetSFieldsPtr() :
7624      klass->GetIFieldsPtr();
7625
7626  // Initialize field_offset
7627  MemberOffset field_offset(0);
7628  if (is_static) {
7629    field_offset = klass->GetFirstReferenceStaticFieldOffsetDuringLinking(image_pointer_size_);
7630  } else {
7631    ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
7632    if (super_class != nullptr) {
7633      CHECK(super_class->IsResolved())
7634          << klass->PrettyClass() << " " << super_class->PrettyClass();
7635      field_offset = MemberOffset(super_class->GetObjectSize());
7636    }
7637  }
7638
7639  CHECK_EQ(num_fields == 0, fields == nullptr) << klass->PrettyClass();
7640
7641  // we want a relatively stable order so that adding new fields
7642  // minimizes disruption of C++ version such as Class and Method.
7643  //
7644  // The overall sort order order is:
7645  // 1) All object reference fields, sorted alphabetically.
7646  // 2) All java long (64-bit) integer fields, sorted alphabetically.
7647  // 3) All java double (64-bit) floating point fields, sorted alphabetically.
7648  // 4) All java int (32-bit) integer fields, sorted alphabetically.
7649  // 5) All java float (32-bit) floating point fields, sorted alphabetically.
7650  // 6) All java char (16-bit) integer fields, sorted alphabetically.
7651  // 7) All java short (16-bit) integer fields, sorted alphabetically.
7652  // 8) All java boolean (8-bit) integer fields, sorted alphabetically.
7653  // 9) All java byte (8-bit) integer fields, sorted alphabetically.
7654  //
7655  // Once the fields are sorted in this order we will attempt to fill any gaps that might be present
7656  // in the memory layout of the structure. See ShuffleForward for how this is done.
7657  std::deque<ArtField*> grouped_and_sorted_fields;
7658  const char* old_no_suspend_cause = self->StartAssertNoThreadSuspension(
7659      "Naked ArtField references in deque");
7660  for (size_t i = 0; i < num_fields; i++) {
7661    grouped_and_sorted_fields.push_back(&fields->At(i));
7662  }
7663  std::sort(grouped_and_sorted_fields.begin(), grouped_and_sorted_fields.end(),
7664            LinkFieldsComparator());
7665
7666  // References should be at the front.
7667  size_t current_field = 0;
7668  size_t num_reference_fields = 0;
7669  FieldGaps gaps;
7670
7671  for (; current_field < num_fields; current_field++) {
7672    ArtField* field = grouped_and_sorted_fields.front();
7673    Primitive::Type type = field->GetTypeAsPrimitiveType();
7674    bool isPrimitive = type != Primitive::kPrimNot;
7675    if (isPrimitive) {
7676      break;  // past last reference, move on to the next phase
7677    }
7678    if (UNLIKELY(!IsAligned<sizeof(mirror::HeapReference<mirror::Object>)>(
7679        field_offset.Uint32Value()))) {
7680      MemberOffset old_offset = field_offset;
7681      field_offset = MemberOffset(RoundUp(field_offset.Uint32Value(), 4));
7682      AddFieldGap(old_offset.Uint32Value(), field_offset.Uint32Value(), &gaps);
7683    }
7684    DCHECK_ALIGNED(field_offset.Uint32Value(), sizeof(mirror::HeapReference<mirror::Object>));
7685    grouped_and_sorted_fields.pop_front();
7686    num_reference_fields++;
7687    field->SetOffset(field_offset);
7688    field_offset = MemberOffset(field_offset.Uint32Value() +
7689                                sizeof(mirror::HeapReference<mirror::Object>));
7690  }
7691  // Gaps are stored as a max heap which means that we must shuffle from largest to smallest
7692  // otherwise we could end up with suboptimal gap fills.
7693  ShuffleForward<8>(&current_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7694  ShuffleForward<4>(&current_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7695  ShuffleForward<2>(&current_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7696  ShuffleForward<1>(&current_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7697  CHECK(grouped_and_sorted_fields.empty()) << "Missed " << grouped_and_sorted_fields.size() <<
7698      " fields.";
7699  self->EndAssertNoThreadSuspension(old_no_suspend_cause);
7700
7701  // We lie to the GC about the java.lang.ref.Reference.referent field, so it doesn't scan it.
7702  if (!is_static && klass->DescriptorEquals("Ljava/lang/ref/Reference;")) {
7703    // We know there are no non-reference fields in the Reference classes, and we know
7704    // that 'referent' is alphabetically last, so this is easy...
7705    CHECK_EQ(num_reference_fields, num_fields) << klass->PrettyClass();
7706    CHECK_STREQ(fields->At(num_fields - 1).GetName(), "referent")
7707        << klass->PrettyClass();
7708    --num_reference_fields;
7709  }
7710
7711  size_t size = field_offset.Uint32Value();
7712  // Update klass
7713  if (is_static) {
7714    klass->SetNumReferenceStaticFields(num_reference_fields);
7715    *class_size = size;
7716  } else {
7717    klass->SetNumReferenceInstanceFields(num_reference_fields);
7718    ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
7719    if (num_reference_fields == 0 || super_class == nullptr) {
7720      // object has one reference field, klass, but we ignore it since we always visit the class.
7721      // super_class is null iff the class is java.lang.Object.
7722      if (super_class == nullptr ||
7723          (super_class->GetClassFlags() & mirror::kClassFlagNoReferenceFields) != 0) {
7724        klass->SetClassFlags(klass->GetClassFlags() | mirror::kClassFlagNoReferenceFields);
7725      }
7726    }
7727    if (kIsDebugBuild) {
7728      DCHECK_EQ(super_class == nullptr, klass->DescriptorEquals("Ljava/lang/Object;"));
7729      size_t total_reference_instance_fields = 0;
7730      ObjPtr<mirror::Class> cur_super = klass.Get();
7731      while (cur_super != nullptr) {
7732        total_reference_instance_fields += cur_super->NumReferenceInstanceFieldsDuringLinking();
7733        cur_super = cur_super->GetSuperClass();
7734      }
7735      if (super_class == nullptr) {
7736        CHECK_EQ(total_reference_instance_fields, 1u) << klass->PrettyDescriptor();
7737      } else {
7738        // Check that there is at least num_reference_fields other than Object.class.
7739        CHECK_GE(total_reference_instance_fields, 1u + num_reference_fields)
7740            << klass->PrettyClass();
7741      }
7742    }
7743    if (!klass->IsVariableSize()) {
7744      std::string temp;
7745      DCHECK_GE(size, sizeof(mirror::Object)) << klass->GetDescriptor(&temp);
7746      size_t previous_size = klass->GetObjectSize();
7747      if (previous_size != 0) {
7748        // Make sure that we didn't originally have an incorrect size.
7749        CHECK_EQ(previous_size, size) << klass->GetDescriptor(&temp);
7750      }
7751      klass->SetObjectSize(size);
7752    }
7753  }
7754
7755  if (kIsDebugBuild) {
7756    // Make sure that the fields array is ordered by name but all reference
7757    // offsets are at the beginning as far as alignment allows.
7758    MemberOffset start_ref_offset = is_static
7759        ? klass->GetFirstReferenceStaticFieldOffsetDuringLinking(image_pointer_size_)
7760        : klass->GetFirstReferenceInstanceFieldOffset();
7761    MemberOffset end_ref_offset(start_ref_offset.Uint32Value() +
7762                                num_reference_fields *
7763                                    sizeof(mirror::HeapReference<mirror::Object>));
7764    MemberOffset current_ref_offset = start_ref_offset;
7765    for (size_t i = 0; i < num_fields; i++) {
7766      ArtField* field = &fields->At(i);
7767      VLOG(class_linker) << "LinkFields: " << (is_static ? "static" : "instance")
7768          << " class=" << klass->PrettyClass() << " field=" << field->PrettyField()
7769          << " offset=" << field->GetOffsetDuringLinking();
7770      if (i != 0) {
7771        ArtField* const prev_field = &fields->At(i - 1);
7772        // NOTE: The field names can be the same. This is not possible in the Java language
7773        // but it's valid Java/dex bytecode and for example proguard can generate such bytecode.
7774        DCHECK_LE(strcmp(prev_field->GetName(), field->GetName()), 0);
7775      }
7776      Primitive::Type type = field->GetTypeAsPrimitiveType();
7777      bool is_primitive = type != Primitive::kPrimNot;
7778      if (klass->DescriptorEquals("Ljava/lang/ref/Reference;") &&
7779          strcmp("referent", field->GetName()) == 0) {
7780        is_primitive = true;  // We lied above, so we have to expect a lie here.
7781      }
7782      MemberOffset offset = field->GetOffsetDuringLinking();
7783      if (is_primitive) {
7784        if (offset.Uint32Value() < end_ref_offset.Uint32Value()) {
7785          // Shuffled before references.
7786          size_t type_size = Primitive::ComponentSize(type);
7787          CHECK_LT(type_size, sizeof(mirror::HeapReference<mirror::Object>));
7788          CHECK_LT(offset.Uint32Value(), start_ref_offset.Uint32Value());
7789          CHECK_LE(offset.Uint32Value() + type_size, start_ref_offset.Uint32Value());
7790          CHECK(!IsAligned<sizeof(mirror::HeapReference<mirror::Object>)>(offset.Uint32Value()));
7791        }
7792      } else {
7793        CHECK_EQ(current_ref_offset.Uint32Value(), offset.Uint32Value());
7794        current_ref_offset = MemberOffset(current_ref_offset.Uint32Value() +
7795                                          sizeof(mirror::HeapReference<mirror::Object>));
7796      }
7797    }
7798    CHECK_EQ(current_ref_offset.Uint32Value(), end_ref_offset.Uint32Value());
7799  }
7800  return true;
7801}
7802
7803//  Set the bitmap of reference instance field offsets.
7804void ClassLinker::CreateReferenceInstanceOffsets(Handle<mirror::Class> klass) {
7805  uint32_t reference_offsets = 0;
7806  ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
7807  // Leave the reference offsets as 0 for mirror::Object (the class field is handled specially).
7808  if (super_class != nullptr) {
7809    reference_offsets = super_class->GetReferenceInstanceOffsets();
7810    // Compute reference offsets unless our superclass overflowed.
7811    if (reference_offsets != mirror::Class::kClassWalkSuper) {
7812      size_t num_reference_fields = klass->NumReferenceInstanceFieldsDuringLinking();
7813      if (num_reference_fields != 0u) {
7814        // All of the fields that contain object references are guaranteed be grouped in memory
7815        // starting at an appropriately aligned address after super class object data.
7816        uint32_t start_offset = RoundUp(super_class->GetObjectSize(),
7817                                        sizeof(mirror::HeapReference<mirror::Object>));
7818        uint32_t start_bit = (start_offset - mirror::kObjectHeaderSize) /
7819            sizeof(mirror::HeapReference<mirror::Object>);
7820        if (start_bit + num_reference_fields > 32) {
7821          reference_offsets = mirror::Class::kClassWalkSuper;
7822        } else {
7823          reference_offsets |= (0xffffffffu << start_bit) &
7824                               (0xffffffffu >> (32 - (start_bit + num_reference_fields)));
7825        }
7826      }
7827    }
7828  }
7829  klass->SetReferenceInstanceOffsets(reference_offsets);
7830}
7831
7832mirror::String* ClassLinker::ResolveString(const DexFile& dex_file,
7833                                           dex::StringIndex string_idx,
7834                                           Handle<mirror::DexCache> dex_cache) {
7835  DCHECK(dex_cache != nullptr);
7836  Thread::PoisonObjectPointersIfDebug();
7837  ObjPtr<mirror::String> resolved = dex_cache->GetResolvedString(string_idx);
7838  if (resolved != nullptr) {
7839    return resolved.Ptr();
7840  }
7841  uint32_t utf16_length;
7842  const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length);
7843  ObjPtr<mirror::String> string = intern_table_->InternStrong(utf16_length, utf8_data);
7844  if (string != nullptr) {
7845    dex_cache->SetResolvedString(string_idx, string);
7846  }
7847  return string.Ptr();
7848}
7849
7850mirror::String* ClassLinker::LookupString(const DexFile& dex_file,
7851                                          dex::StringIndex string_idx,
7852                                          ObjPtr<mirror::DexCache> dex_cache) {
7853  DCHECK(dex_cache != nullptr);
7854  ObjPtr<mirror::String> resolved = dex_cache->GetResolvedString(string_idx);
7855  if (resolved != nullptr) {
7856    return resolved.Ptr();
7857  }
7858  uint32_t utf16_length;
7859  const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length);
7860  ObjPtr<mirror::String> string =
7861      intern_table_->LookupStrong(Thread::Current(), utf16_length, utf8_data);
7862  if (string != nullptr) {
7863    dex_cache->SetResolvedString(string_idx, string);
7864  }
7865  return string.Ptr();
7866}
7867
7868ObjPtr<mirror::Class> ClassLinker::LookupResolvedType(const DexFile& dex_file,
7869                                                      dex::TypeIndex type_idx,
7870                                                      ObjPtr<mirror::DexCache> dex_cache,
7871                                                      ObjPtr<mirror::ClassLoader> class_loader) {
7872  ObjPtr<mirror::Class> type = dex_cache->GetResolvedType(type_idx);
7873  if (type == nullptr) {
7874    const char* descriptor = dex_file.StringByTypeIdx(type_idx);
7875    DCHECK_NE(*descriptor, '\0') << "descriptor is empty string";
7876    if (descriptor[1] == '\0') {
7877      // only the descriptors of primitive types should be 1 character long, also avoid class lookup
7878      // for primitive classes that aren't backed by dex files.
7879      type = FindPrimitiveClass(descriptor[0]);
7880    } else {
7881      Thread* const self = Thread::Current();
7882      DCHECK(self != nullptr);
7883      const size_t hash = ComputeModifiedUtf8Hash(descriptor);
7884      // Find the class in the loaded classes table.
7885      type = LookupClass(self, descriptor, hash, class_loader.Ptr());
7886    }
7887    if (type != nullptr) {
7888      if (type->IsResolved()) {
7889        dex_cache->SetResolvedType(type_idx, type);
7890      } else {
7891        type = nullptr;
7892      }
7893    }
7894  }
7895  DCHECK(type == nullptr || type->IsResolved());
7896  return type;
7897}
7898
7899mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file,
7900                                        dex::TypeIndex type_idx,
7901                                        ObjPtr<mirror::Class> referrer) {
7902  StackHandleScope<2> hs(Thread::Current());
7903  Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache()));
7904  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(referrer->GetClassLoader()));
7905  return ResolveType(dex_file, type_idx, dex_cache, class_loader);
7906}
7907
7908mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file,
7909                                        dex::TypeIndex type_idx,
7910                                        Handle<mirror::DexCache> dex_cache,
7911                                        Handle<mirror::ClassLoader> class_loader) {
7912  DCHECK(dex_cache != nullptr);
7913  Thread::PoisonObjectPointersIfDebug();
7914  ObjPtr<mirror::Class> resolved = dex_cache->GetResolvedType(type_idx);
7915  if (resolved == nullptr) {
7916    // TODO: Avoid this lookup as it duplicates work done in FindClass(). It is here
7917    // as a workaround for FastNative JNI to avoid AssertNoPendingException() when
7918    // trying to resolve annotations while an exception may be pending. Bug: 34659969
7919    resolved = LookupResolvedType(dex_file, type_idx, dex_cache.Get(), class_loader.Get());
7920  }
7921  if (resolved == nullptr) {
7922    Thread* self = Thread::Current();
7923    const char* descriptor = dex_file.StringByTypeIdx(type_idx);
7924    resolved = FindClass(self, descriptor, class_loader);
7925    if (resolved != nullptr) {
7926      // TODO: we used to throw here if resolved's class loader was not the
7927      //       boot class loader. This was to permit different classes with the
7928      //       same name to be loaded simultaneously by different loaders
7929      dex_cache->SetResolvedType(type_idx, resolved);
7930    } else {
7931      CHECK(self->IsExceptionPending())
7932          << "Expected pending exception for failed resolution of: " << descriptor;
7933      // Convert a ClassNotFoundException to a NoClassDefFoundError.
7934      StackHandleScope<1> hs(self);
7935      Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException()));
7936      if (cause->InstanceOf(GetClassRoot(kJavaLangClassNotFoundException))) {
7937        DCHECK(resolved == nullptr);  // No Handle needed to preserve resolved.
7938        self->ClearException();
7939        ThrowNoClassDefFoundError("Failed resolution of: %s", descriptor);
7940        self->GetException()->SetCause(cause.Get());
7941      }
7942    }
7943  }
7944  DCHECK((resolved == nullptr) || resolved->IsResolved())
7945      << resolved->PrettyDescriptor() << " " << resolved->GetStatus();
7946  return resolved.Ptr();
7947}
7948
7949template <ClassLinker::ResolveMode kResolveMode>
7950ArtMethod* ClassLinker::ResolveMethod(const DexFile& dex_file,
7951                                      uint32_t method_idx,
7952                                      Handle<mirror::DexCache> dex_cache,
7953                                      Handle<mirror::ClassLoader> class_loader,
7954                                      ArtMethod* referrer,
7955                                      InvokeType type) {
7956  DCHECK(dex_cache != nullptr);
7957  // Check for hit in the dex cache.
7958  ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx, image_pointer_size_);
7959  Thread::PoisonObjectPointersIfDebug();
7960  if (resolved != nullptr && !resolved->IsRuntimeMethod()) {
7961    DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex();
7962    if (kResolveMode == ClassLinker::kForceICCECheck) {
7963      if (resolved->CheckIncompatibleClassChange(type)) {
7964        ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer);
7965        return nullptr;
7966      }
7967    }
7968    return resolved;
7969  }
7970  // Fail, get the declaring class.
7971  const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
7972  ObjPtr<mirror::Class> klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader);
7973  if (klass == nullptr) {
7974    DCHECK(Thread::Current()->IsExceptionPending());
7975    return nullptr;
7976  }
7977  // Scan using method_idx, this saves string compares but will only hit for matching dex
7978  // caches/files.
7979  switch (type) {
7980    case kDirect:  // Fall-through.
7981    case kStatic:
7982      resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7983      DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr);
7984      break;
7985    case kInterface:
7986      // We have to check whether the method id really belongs to an interface (dex static bytecode
7987      // constraint A15). Otherwise you must not invoke-interface on it.
7988      //
7989      // This is not symmetric to A12-A14 (direct, static, virtual), as using FindInterfaceMethod
7990      // assumes that the given type is an interface, and will check the interface table if the
7991      // method isn't declared in the class. So it may find an interface method (usually by name
7992      // in the handling below, but we do the constraint check early). In that case,
7993      // CheckIncompatibleClassChange will succeed (as it is called on an interface method)
7994      // unexpectedly.
7995      // Example:
7996      //    interface I {
7997      //      foo()
7998      //    }
7999      //    class A implements I {
8000      //      ...
8001      //    }
8002      //    class B extends A {
8003      //      ...
8004      //    }
8005      //    invoke-interface B.foo
8006      //      -> FindInterfaceMethod finds I.foo (interface method), not A.foo (miranda method)
8007      if (UNLIKELY(!klass->IsInterface())) {
8008        ThrowIncompatibleClassChangeError(klass,
8009                                          "Found class %s, but interface was expected",
8010                                          klass->PrettyDescriptor().c_str());
8011        return nullptr;
8012      } else {
8013        resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, image_pointer_size_);
8014        DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface());
8015      }
8016      break;
8017    case kSuper:
8018      if (klass->IsInterface()) {
8019        resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, image_pointer_size_);
8020      } else {
8021        resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_);
8022      }
8023      break;
8024    case kVirtual:
8025      resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_);
8026      break;
8027    default:
8028      LOG(FATAL) << "Unreachable - invocation type: " << type;
8029      UNREACHABLE();
8030  }
8031  if (resolved == nullptr) {
8032    // Search by name, which works across dex files.
8033    const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
8034    const Signature signature = dex_file.GetMethodSignature(method_id);
8035    switch (type) {
8036      case kDirect:  // Fall-through.
8037      case kStatic:
8038        resolved = klass->FindDirectMethod(name, signature, image_pointer_size_);
8039        DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr);
8040        break;
8041      case kInterface:
8042        resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
8043        DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface());
8044        break;
8045      case kSuper:
8046        if (klass->IsInterface()) {
8047          resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
8048        } else {
8049          resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
8050        }
8051        break;
8052      case kVirtual:
8053        resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
8054        break;
8055    }
8056  }
8057  // If we found a method, check for incompatible class changes.
8058  if (LIKELY(resolved != nullptr && !resolved->CheckIncompatibleClassChange(type))) {
8059    // Be a good citizen and update the dex cache to speed subsequent calls.
8060    dex_cache->SetResolvedMethod(method_idx, resolved, image_pointer_size_);
8061    return resolved;
8062  } else {
8063    // If we had a method, it's an incompatible-class-change error.
8064    if (resolved != nullptr) {
8065      ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer);
8066    } else {
8067      // We failed to find the method which means either an access error, an incompatible class
8068      // change, or no such method. First try to find the method among direct and virtual methods.
8069      const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
8070      const Signature signature = dex_file.GetMethodSignature(method_id);
8071      switch (type) {
8072        case kDirect:
8073        case kStatic:
8074          resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
8075          // Note: kDirect and kStatic are also mutually exclusive, but in that case we would
8076          //       have had a resolved method before, which triggers the "true" branch above.
8077          break;
8078        case kInterface:
8079        case kVirtual:
8080        case kSuper:
8081          resolved = klass->FindDirectMethod(name, signature, image_pointer_size_);
8082          break;
8083      }
8084
8085      // If we found something, check that it can be accessed by the referrer.
8086      bool exception_generated = false;
8087      if (resolved != nullptr && referrer != nullptr) {
8088        ObjPtr<mirror::Class> methods_class = resolved->GetDeclaringClass();
8089        ObjPtr<mirror::Class> referring_class = referrer->GetDeclaringClass();
8090        if (!referring_class->CanAccess(methods_class)) {
8091          ThrowIllegalAccessErrorClassForMethodDispatch(referring_class,
8092                                                        methods_class,
8093                                                        resolved,
8094                                                        type);
8095          exception_generated = true;
8096        } else if (!referring_class->CanAccessMember(methods_class, resolved->GetAccessFlags())) {
8097          ThrowIllegalAccessErrorMethod(referring_class, resolved);
8098          exception_generated = true;
8099        }
8100      }
8101      if (!exception_generated) {
8102        // Otherwise, throw an IncompatibleClassChangeError if we found something, and check
8103        // interface methods and throw if we find the method there. If we find nothing, throw a
8104        // NoSuchMethodError.
8105        switch (type) {
8106          case kDirect:
8107          case kStatic:
8108            if (resolved != nullptr) {
8109              ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer);
8110            } else {
8111              resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
8112              if (resolved != nullptr) {
8113                ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer);
8114              } else {
8115                ThrowNoSuchMethodError(type, klass, name, signature);
8116              }
8117            }
8118            break;
8119          case kInterface:
8120            if (resolved != nullptr) {
8121              ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
8122            } else {
8123              resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
8124              if (resolved != nullptr) {
8125                ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer);
8126              } else {
8127                ThrowNoSuchMethodError(type, klass, name, signature);
8128              }
8129            }
8130            break;
8131          case kSuper:
8132            if (resolved != nullptr) {
8133              ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
8134            } else {
8135              ThrowNoSuchMethodError(type, klass, name, signature);
8136            }
8137            break;
8138          case kVirtual:
8139            if (resolved != nullptr) {
8140              ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
8141            } else {
8142              resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
8143              if (resolved != nullptr) {
8144                ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer);
8145              } else {
8146                ThrowNoSuchMethodError(type, klass, name, signature);
8147              }
8148            }
8149            break;
8150        }
8151      }
8152    }
8153    Thread::Current()->AssertPendingException();
8154    return nullptr;
8155  }
8156}
8157
8158ArtMethod* ClassLinker::ResolveMethodWithoutInvokeType(const DexFile& dex_file,
8159                                                       uint32_t method_idx,
8160                                                       Handle<mirror::DexCache> dex_cache,
8161                                                       Handle<mirror::ClassLoader> class_loader) {
8162  ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx, image_pointer_size_);
8163  Thread::PoisonObjectPointersIfDebug();
8164  if (resolved != nullptr && !resolved->IsRuntimeMethod()) {
8165    DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex();
8166    return resolved;
8167  }
8168  // Fail, get the declaring class.
8169  const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
8170  ObjPtr<mirror::Class> klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader);
8171  if (klass == nullptr) {
8172    Thread::Current()->AssertPendingException();
8173    return nullptr;
8174  }
8175  if (klass->IsInterface()) {
8176    LOG(FATAL) << "ResolveAmbiguousMethod: unexpected method in interface: "
8177               << klass->PrettyClass();
8178    return nullptr;
8179  }
8180
8181  // Search both direct and virtual methods
8182  resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx, image_pointer_size_);
8183  if (resolved == nullptr) {
8184    resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_);
8185  }
8186
8187  return resolved;
8188}
8189
8190ArtField* ClassLinker::LookupResolvedField(uint32_t field_idx,
8191                                           ObjPtr<mirror::DexCache> dex_cache,
8192                                           ObjPtr<mirror::ClassLoader> class_loader,
8193                                           bool is_static) {
8194  const DexFile& dex_file = *dex_cache->GetDexFile();
8195  const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
8196  ObjPtr<mirror::Class> klass = dex_cache->GetResolvedType(field_id.class_idx_);
8197  if (klass == nullptr) {
8198    klass = LookupResolvedType(dex_file, field_id.class_idx_, dex_cache, class_loader);
8199  }
8200  if (klass == nullptr) {
8201    // The class has not been resolved yet, so the field is also unresolved.
8202    return nullptr;
8203  }
8204  DCHECK(klass->IsResolved());
8205  Thread* self = is_static ? Thread::Current() : nullptr;
8206
8207  // First try to find a field declared directly by `klass` by the field index.
8208  ArtField* resolved_field = is_static
8209      ? mirror::Class::FindStaticField(self, klass, dex_cache, field_idx)
8210      : klass->FindInstanceField(dex_cache, field_idx);
8211
8212  if (resolved_field == nullptr) {
8213    // If not found in `klass` by field index, search the class hierarchy using the name and type.
8214    const char* name = dex_file.GetFieldName(field_id);
8215    const char* type = dex_file.GetFieldTypeDescriptor(field_id);
8216    resolved_field = is_static
8217        ? mirror::Class::FindStaticField(self, klass, name, type)
8218        : klass->FindInstanceField(name, type);
8219  }
8220
8221  if (resolved_field != nullptr) {
8222    dex_cache->SetResolvedField(field_idx, resolved_field, image_pointer_size_);
8223  }
8224  return resolved_field;
8225}
8226
8227ArtField* ClassLinker::ResolveField(const DexFile& dex_file,
8228                                    uint32_t field_idx,
8229                                    Handle<mirror::DexCache> dex_cache,
8230                                    Handle<mirror::ClassLoader> class_loader,
8231                                    bool is_static) {
8232  DCHECK(dex_cache != nullptr);
8233  ArtField* resolved = dex_cache->GetResolvedField(field_idx, image_pointer_size_);
8234  Thread::PoisonObjectPointersIfDebug();
8235  if (resolved != nullptr) {
8236    return resolved;
8237  }
8238  const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
8239  Thread* const self = Thread::Current();
8240  ObjPtr<mirror::Class> klass = ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader);
8241  if (klass == nullptr) {
8242    DCHECK(Thread::Current()->IsExceptionPending());
8243    return nullptr;
8244  }
8245
8246  if (is_static) {
8247    resolved = mirror::Class::FindStaticField(self, klass, dex_cache.Get(), field_idx);
8248  } else {
8249    resolved = klass->FindInstanceField(dex_cache.Get(), field_idx);
8250  }
8251
8252  if (resolved == nullptr) {
8253    const char* name = dex_file.GetFieldName(field_id);
8254    const char* type = dex_file.GetFieldTypeDescriptor(field_id);
8255    if (is_static) {
8256      resolved = mirror::Class::FindStaticField(self, klass, name, type);
8257    } else {
8258      resolved = klass->FindInstanceField(name, type);
8259    }
8260    if (resolved == nullptr) {
8261      ThrowNoSuchFieldError(is_static ? "static " : "instance ", klass, type, name);
8262      return nullptr;
8263    }
8264  }
8265  dex_cache->SetResolvedField(field_idx, resolved, image_pointer_size_);
8266  return resolved;
8267}
8268
8269ArtField* ClassLinker::ResolveFieldJLS(const DexFile& dex_file,
8270                                       uint32_t field_idx,
8271                                       Handle<mirror::DexCache> dex_cache,
8272                                       Handle<mirror::ClassLoader> class_loader) {
8273  DCHECK(dex_cache != nullptr);
8274  ArtField* resolved = dex_cache->GetResolvedField(field_idx, image_pointer_size_);
8275  Thread::PoisonObjectPointersIfDebug();
8276  if (resolved != nullptr) {
8277    return resolved;
8278  }
8279  const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
8280  Thread* self = Thread::Current();
8281  ObjPtr<mirror::Class> klass(ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader));
8282  if (klass == nullptr) {
8283    DCHECK(Thread::Current()->IsExceptionPending());
8284    return nullptr;
8285  }
8286
8287  StringPiece name(dex_file.GetFieldName(field_id));
8288  StringPiece type(dex_file.GetFieldTypeDescriptor(field_id));
8289  resolved = mirror::Class::FindField(self, klass, name, type);
8290  if (resolved != nullptr) {
8291    dex_cache->SetResolvedField(field_idx, resolved, image_pointer_size_);
8292  } else {
8293    ThrowNoSuchFieldError("", klass, type, name);
8294  }
8295  return resolved;
8296}
8297
8298mirror::MethodType* ClassLinker::ResolveMethodType(const DexFile& dex_file,
8299                                                   uint32_t proto_idx,
8300                                                   Handle<mirror::DexCache> dex_cache,
8301                                                   Handle<mirror::ClassLoader> class_loader) {
8302  DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
8303  DCHECK(dex_cache != nullptr);
8304
8305  ObjPtr<mirror::MethodType> resolved = dex_cache->GetResolvedMethodType(proto_idx);
8306  if (resolved != nullptr) {
8307    return resolved.Ptr();
8308  }
8309
8310  Thread* const self = Thread::Current();
8311  StackHandleScope<4> hs(self);
8312
8313  // First resolve the return type.
8314  const DexFile::ProtoId& proto_id = dex_file.GetProtoId(proto_idx);
8315  Handle<mirror::Class> return_type(hs.NewHandle(
8316      ResolveType(dex_file, proto_id.return_type_idx_, dex_cache, class_loader)));
8317  if (return_type == nullptr) {
8318    DCHECK(self->IsExceptionPending());
8319    return nullptr;
8320  }
8321
8322  // Then resolve the argument types.
8323  //
8324  // TODO: Is there a better way to figure out the number of method arguments
8325  // other than by looking at the shorty ?
8326  const size_t num_method_args = strlen(dex_file.StringDataByIdx(proto_id.shorty_idx_)) - 1;
8327
8328  ObjPtr<mirror::Class> class_type = mirror::Class::GetJavaLangClass();
8329  ObjPtr<mirror::Class> array_of_class = FindArrayClass(self, &class_type);
8330  Handle<mirror::ObjectArray<mirror::Class>> method_params(hs.NewHandle(
8331      mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, num_method_args)));
8332  if (method_params == nullptr) {
8333    DCHECK(self->IsExceptionPending());
8334    return nullptr;
8335  }
8336
8337  DexFileParameterIterator it(dex_file, proto_id);
8338  int32_t i = 0;
8339  MutableHandle<mirror::Class> param_class = hs.NewHandle<mirror::Class>(nullptr);
8340  for (; it.HasNext(); it.Next()) {
8341    const dex::TypeIndex type_idx = it.GetTypeIdx();
8342    param_class.Assign(ResolveType(dex_file, type_idx, dex_cache, class_loader));
8343    if (param_class == nullptr) {
8344      DCHECK(self->IsExceptionPending());
8345      return nullptr;
8346    }
8347
8348    method_params->Set(i++, param_class.Get());
8349  }
8350
8351  DCHECK(!it.HasNext());
8352
8353  Handle<mirror::MethodType> type = hs.NewHandle(
8354      mirror::MethodType::Create(self, return_type, method_params));
8355  dex_cache->SetResolvedMethodType(proto_idx, type.Get());
8356
8357  return type.Get();
8358}
8359
8360mirror::MethodHandle* ClassLinker::ResolveMethodHandle(uint32_t method_handle_idx,
8361                                                       ArtMethod* referrer)
8362    REQUIRES_SHARED(Locks::mutator_lock_) {
8363  Thread* const self = Thread::Current();
8364  const DexFile* const dex_file = referrer->GetDexFile();
8365  const DexFile::MethodHandleItem& mh = dex_file->GetMethodHandle(method_handle_idx);
8366
8367  union {
8368    ArtField* field;
8369    ArtMethod* method;
8370    uintptr_t field_or_method;
8371  } target;
8372  uint32_t num_params;
8373  mirror::MethodHandle::Kind kind;
8374  DexFile::MethodHandleType handle_type =
8375      static_cast<DexFile::MethodHandleType>(mh.method_handle_type_);
8376  switch (handle_type) {
8377    case DexFile::MethodHandleType::kStaticPut: {
8378      kind = mirror::MethodHandle::Kind::kStaticPut;
8379      target.field = ResolveField(mh.field_or_method_idx_, referrer, true /* is_static */);
8380      num_params = 1;
8381      break;
8382    }
8383    case DexFile::MethodHandleType::kStaticGet: {
8384      kind = mirror::MethodHandle::Kind::kStaticGet;
8385      target.field = ResolveField(mh.field_or_method_idx_, referrer, true /* is_static */);
8386      num_params = 0;
8387      break;
8388    }
8389    case DexFile::MethodHandleType::kInstancePut: {
8390      kind = mirror::MethodHandle::Kind::kInstancePut;
8391      target.field = ResolveField(mh.field_or_method_idx_, referrer, false /* is_static */);
8392      num_params = 2;
8393      break;
8394    }
8395    case DexFile::MethodHandleType::kInstanceGet: {
8396      kind = mirror::MethodHandle::Kind::kInstanceGet;
8397      target.field = ResolveField(mh.field_or_method_idx_, referrer, false /* is_static */);
8398      num_params = 1;
8399      break;
8400    }
8401    case DexFile::MethodHandleType::kInvokeStatic: {
8402      kind = mirror::MethodHandle::Kind::kInvokeStatic;
8403      target.method = ResolveMethod<kNoICCECheckForCache>(self,
8404                                                          mh.field_or_method_idx_,
8405                                                          referrer,
8406                                                          InvokeType::kStatic);
8407      uint32_t shorty_length;
8408      target.method->GetShorty(&shorty_length);
8409      num_params = shorty_length - 1;  // Remove 1 for return value.
8410      break;
8411    }
8412    case DexFile::MethodHandleType::kInvokeInstance: {
8413      kind = mirror::MethodHandle::Kind::kInvokeVirtual;
8414      target.method = ResolveMethod<kNoICCECheckForCache>(self,
8415                                                          mh.field_or_method_idx_,
8416                                                          referrer,
8417                                                          InvokeType::kVirtual);
8418      uint32_t shorty_length;
8419      target.method->GetShorty(&shorty_length);
8420      num_params = shorty_length - 1;  // Remove 1 for return value.
8421      break;
8422    }
8423    case DexFile::MethodHandleType::kInvokeConstructor: {
8424      UNIMPLEMENTED(FATAL) << "Invoke constructor is implemented as a transform.";
8425      num_params = 0;
8426    }
8427  }
8428
8429  StackHandleScope<5> hs(self);
8430  ObjPtr<mirror::Class> class_type = mirror::Class::GetJavaLangClass();
8431  ObjPtr<mirror::Class> array_of_class = FindArrayClass(self, &class_type);
8432  Handle<mirror::ObjectArray<mirror::Class>> method_params(hs.NewHandle(
8433      mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, num_params)));
8434  if (method_params.Get() == nullptr) {
8435    DCHECK(self->IsExceptionPending());
8436    return nullptr;
8437  }
8438
8439  Handle<mirror::Class> return_type;
8440  switch (handle_type) {
8441    case DexFile::MethodHandleType::kStaticPut: {
8442      method_params->Set(0, target.field->GetType<true>());
8443      return_type = hs.NewHandle(FindPrimitiveClass('V'));
8444      break;
8445    }
8446    case DexFile::MethodHandleType::kStaticGet: {
8447      return_type = hs.NewHandle(target.field->GetType<true>());
8448      break;
8449    }
8450    case DexFile::MethodHandleType::kInstancePut: {
8451      method_params->Set(0, target.field->GetDeclaringClass());
8452      method_params->Set(1, target.field->GetType<true>());
8453      return_type = hs.NewHandle(FindPrimitiveClass('V'));
8454      break;
8455    }
8456    case DexFile::MethodHandleType::kInstanceGet: {
8457      method_params->Set(0, target.field->GetDeclaringClass());
8458      return_type = hs.NewHandle(target.field->GetType<true>());
8459      break;
8460    }
8461    case DexFile::MethodHandleType::kInvokeStatic:
8462    case DexFile::MethodHandleType::kInvokeInstance: {
8463      // TODO(oth): This will not work for varargs methods as this
8464      // requires instantiating a Transformer. This resolution step
8465      // would be best done in managed code rather than in the run
8466      // time (b/35235705)
8467      Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache()));
8468      Handle<mirror::ClassLoader> class_loader(hs.NewHandle(referrer->GetClassLoader()));
8469      DexFileParameterIterator it(*dex_file, target.method->GetPrototype());
8470      for (int32_t i = 0; it.HasNext(); i++, it.Next()) {
8471        const dex::TypeIndex type_idx = it.GetTypeIdx();
8472        mirror::Class* klass = ResolveType(*dex_file, type_idx, dex_cache, class_loader);
8473        if (nullptr == klass) {
8474          DCHECK(self->IsExceptionPending());
8475          return nullptr;
8476        }
8477        method_params->Set(i, klass);
8478      }
8479      return_type = hs.NewHandle(target.method->GetReturnType(true));
8480      break;
8481    }
8482    case DexFile::MethodHandleType::kInvokeConstructor: {
8483      // TODO(oth): b/35235705
8484      UNIMPLEMENTED(FATAL) << "Invoke constructor is implemented as a transform.";
8485    }
8486  }
8487
8488  if (return_type.IsNull()) {
8489    DCHECK(self->IsExceptionPending());
8490    return nullptr;
8491  }
8492
8493  Handle<mirror::MethodType>
8494      mt(hs.NewHandle(mirror::MethodType::Create(self, return_type, method_params)));
8495  if (mt.IsNull()) {
8496    DCHECK(self->IsExceptionPending());
8497    return nullptr;
8498  }
8499  return mirror::MethodHandleImpl::Create(self, target.field_or_method, kind, mt);
8500}
8501
8502bool ClassLinker::IsQuickResolutionStub(const void* entry_point) const {
8503  return (entry_point == GetQuickResolutionStub()) ||
8504      (quick_resolution_trampoline_ == entry_point);
8505}
8506
8507bool ClassLinker::IsQuickToInterpreterBridge(const void* entry_point) const {
8508  return (entry_point == GetQuickToInterpreterBridge()) ||
8509      (quick_to_interpreter_bridge_trampoline_ == entry_point);
8510}
8511
8512bool ClassLinker::IsQuickGenericJniStub(const void* entry_point) const {
8513  return (entry_point == GetQuickGenericJniStub()) ||
8514      (quick_generic_jni_trampoline_ == entry_point);
8515}
8516
8517const void* ClassLinker::GetRuntimeQuickGenericJniStub() const {
8518  return GetQuickGenericJniStub();
8519}
8520
8521void ClassLinker::SetEntryPointsToCompiledCode(ArtMethod* method, const void* code) const {
8522  CHECK(code != nullptr);
8523  const uint8_t* base = reinterpret_cast<const uint8_t*>(code);  // Base of data points at code.
8524  base -= sizeof(void*);  // Move backward so that code_offset != 0.
8525  const uint32_t code_offset = sizeof(void*);
8526  OatFile::OatMethod oat_method(base, code_offset);
8527  oat_method.LinkMethod(method);
8528}
8529
8530void ClassLinker::SetEntryPointsToInterpreter(ArtMethod* method) const {
8531  if (!method->IsNative()) {
8532    method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
8533  } else {
8534    SetEntryPointsToCompiledCode(method, GetQuickGenericJniStub());
8535  }
8536}
8537
8538void ClassLinker::SetEntryPointsForObsoleteMethod(ArtMethod* method) const {
8539  DCHECK(method->IsObsolete());
8540  // We cannot mess with the entrypoints of native methods because they are used to determine how
8541  // large the method's quick stack frame is. Without this information we cannot walk the stacks.
8542  if (!method->IsNative()) {
8543    method->SetEntryPointFromQuickCompiledCode(GetInvokeObsoleteMethodStub());
8544  }
8545}
8546
8547void ClassLinker::DumpForSigQuit(std::ostream& os) {
8548  ScopedObjectAccess soa(Thread::Current());
8549  ReaderMutexLock mu(soa.Self(), *Locks::classlinker_classes_lock_);
8550  os << "Zygote loaded classes=" << NumZygoteClasses() << " post zygote classes="
8551     << NumNonZygoteClasses() << "\n";
8552}
8553
8554class CountClassesVisitor : public ClassLoaderVisitor {
8555 public:
8556  CountClassesVisitor() : num_zygote_classes(0), num_non_zygote_classes(0) {}
8557
8558  void Visit(ObjPtr<mirror::ClassLoader> class_loader)
8559      REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE {
8560    ClassTable* const class_table = class_loader->GetClassTable();
8561    if (class_table != nullptr) {
8562      num_zygote_classes += class_table->NumZygoteClasses(class_loader);
8563      num_non_zygote_classes += class_table->NumNonZygoteClasses(class_loader);
8564    }
8565  }
8566
8567  size_t num_zygote_classes;
8568  size_t num_non_zygote_classes;
8569};
8570
8571size_t ClassLinker::NumZygoteClasses() const {
8572  CountClassesVisitor visitor;
8573  VisitClassLoaders(&visitor);
8574  return visitor.num_zygote_classes + boot_class_table_.NumZygoteClasses(nullptr);
8575}
8576
8577size_t ClassLinker::NumNonZygoteClasses() const {
8578  CountClassesVisitor visitor;
8579  VisitClassLoaders(&visitor);
8580  return visitor.num_non_zygote_classes + boot_class_table_.NumNonZygoteClasses(nullptr);
8581}
8582
8583size_t ClassLinker::NumLoadedClasses() {
8584  ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
8585  // Only return non zygote classes since these are the ones which apps which care about.
8586  return NumNonZygoteClasses();
8587}
8588
8589pid_t ClassLinker::GetClassesLockOwner() {
8590  return Locks::classlinker_classes_lock_->GetExclusiveOwnerTid();
8591}
8592
8593pid_t ClassLinker::GetDexLockOwner() {
8594  return Locks::dex_lock_->GetExclusiveOwnerTid();
8595}
8596
8597void ClassLinker::SetClassRoot(ClassRoot class_root, ObjPtr<mirror::Class> klass) {
8598  DCHECK(!init_done_);
8599
8600  DCHECK(klass != nullptr);
8601  DCHECK(klass->GetClassLoader() == nullptr);
8602
8603  mirror::ObjectArray<mirror::Class>* class_roots = class_roots_.Read();
8604  DCHECK(class_roots != nullptr);
8605  DCHECK(class_roots->Get(class_root) == nullptr);
8606  class_roots->Set<false>(class_root, klass);
8607}
8608
8609const char* ClassLinker::GetClassRootDescriptor(ClassRoot class_root) {
8610  static const char* class_roots_descriptors[] = {
8611    "Ljava/lang/Class;",
8612    "Ljava/lang/Object;",
8613    "[Ljava/lang/Class;",
8614    "[Ljava/lang/Object;",
8615    "Ljava/lang/String;",
8616    "Ljava/lang/DexCache;",
8617    "Ljava/lang/ref/Reference;",
8618    "Ljava/lang/reflect/Constructor;",
8619    "Ljava/lang/reflect/Field;",
8620    "Ljava/lang/reflect/Method;",
8621    "Ljava/lang/reflect/Proxy;",
8622    "[Ljava/lang/String;",
8623    "[Ljava/lang/reflect/Constructor;",
8624    "[Ljava/lang/reflect/Field;",
8625    "[Ljava/lang/reflect/Method;",
8626    "Ljava/lang/invoke/CallSite;",
8627    "Ljava/lang/invoke/MethodHandleImpl;",
8628    "Ljava/lang/invoke/MethodHandles$Lookup;",
8629    "Ljava/lang/invoke/MethodType;",
8630    "Ljava/lang/ClassLoader;",
8631    "Ljava/lang/Throwable;",
8632    "Ljava/lang/ClassNotFoundException;",
8633    "Ljava/lang/StackTraceElement;",
8634    "Ldalvik/system/EmulatedStackFrame;",
8635    "Z",
8636    "B",
8637    "C",
8638    "D",
8639    "F",
8640    "I",
8641    "J",
8642    "S",
8643    "V",
8644    "[Z",
8645    "[B",
8646    "[C",
8647    "[D",
8648    "[F",
8649    "[I",
8650    "[J",
8651    "[S",
8652    "[Ljava/lang/StackTraceElement;",
8653    "Ldalvik/system/ClassExt;",
8654  };
8655  static_assert(arraysize(class_roots_descriptors) == size_t(kClassRootsMax),
8656                "Mismatch between class descriptors and class-root enum");
8657
8658  const char* descriptor = class_roots_descriptors[class_root];
8659  CHECK(descriptor != nullptr);
8660  return descriptor;
8661}
8662
8663jobject ClassLinker::CreatePathClassLoader(Thread* self,
8664                                           const std::vector<const DexFile*>& dex_files) {
8665  // SOAAlreadyRunnable is protected, and we need something to add a global reference.
8666  // We could move the jobject to the callers, but all call-sites do this...
8667  ScopedObjectAccessUnchecked soa(self);
8668
8669  // For now, create a libcore-level DexFile for each ART DexFile. This "explodes" multidex.
8670  StackHandleScope<6> hs(self);
8671
8672  ArtField* dex_elements_field =
8673      jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList_dexElements);
8674
8675  Handle<mirror::Class> dex_elements_class(hs.NewHandle(dex_elements_field->GetType<true>()));
8676  DCHECK(dex_elements_class != nullptr);
8677  DCHECK(dex_elements_class->IsArrayClass());
8678  Handle<mirror::ObjectArray<mirror::Object>> h_dex_elements(hs.NewHandle(
8679      mirror::ObjectArray<mirror::Object>::Alloc(self,
8680                                                 dex_elements_class.Get(),
8681                                                 dex_files.size())));
8682  Handle<mirror::Class> h_dex_element_class =
8683      hs.NewHandle(dex_elements_class->GetComponentType());
8684
8685  ArtField* element_file_field =
8686      jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile);
8687  DCHECK_EQ(h_dex_element_class.Get(), element_file_field->GetDeclaringClass());
8688
8689  ArtField* cookie_field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie);
8690  DCHECK_EQ(cookie_field->GetDeclaringClass(), element_file_field->GetType<false>());
8691
8692  ArtField* file_name_field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_fileName);
8693  DCHECK_EQ(file_name_field->GetDeclaringClass(), element_file_field->GetType<false>());
8694
8695  // Fill the elements array.
8696  int32_t index = 0;
8697  for (const DexFile* dex_file : dex_files) {
8698    StackHandleScope<4> hs2(self);
8699
8700    // CreatePathClassLoader is only used by gtests. Index 0 of h_long_array is supposed to be the
8701    // oat file but we can leave it null.
8702    Handle<mirror::LongArray> h_long_array = hs2.NewHandle(mirror::LongArray::Alloc(
8703        self,
8704        kDexFileIndexStart + 1));
8705    DCHECK(h_long_array != nullptr);
8706    h_long_array->Set(kDexFileIndexStart, reinterpret_cast<intptr_t>(dex_file));
8707
8708    // Note that this creates a finalizable dalvik.system.DexFile object and a corresponding
8709    // FinalizerReference which will never get cleaned up without a started runtime.
8710    Handle<mirror::Object> h_dex_file = hs2.NewHandle(
8711        cookie_field->GetDeclaringClass()->AllocObject(self));
8712    DCHECK(h_dex_file != nullptr);
8713    cookie_field->SetObject<false>(h_dex_file.Get(), h_long_array.Get());
8714
8715    Handle<mirror::String> h_file_name = hs2.NewHandle(
8716        mirror::String::AllocFromModifiedUtf8(self, dex_file->GetLocation().c_str()));
8717    DCHECK(h_file_name != nullptr);
8718    file_name_field->SetObject<false>(h_dex_file.Get(), h_file_name.Get());
8719
8720    Handle<mirror::Object> h_element = hs2.NewHandle(h_dex_element_class->AllocObject(self));
8721    DCHECK(h_element != nullptr);
8722    element_file_field->SetObject<false>(h_element.Get(), h_dex_file.Get());
8723
8724    h_dex_elements->Set(index, h_element.Get());
8725    index++;
8726  }
8727  DCHECK_EQ(index, h_dex_elements->GetLength());
8728
8729  // Create DexPathList.
8730  Handle<mirror::Object> h_dex_path_list = hs.NewHandle(
8731      dex_elements_field->GetDeclaringClass()->AllocObject(self));
8732  DCHECK(h_dex_path_list != nullptr);
8733  // Set elements.
8734  dex_elements_field->SetObject<false>(h_dex_path_list.Get(), h_dex_elements.Get());
8735
8736  // Create PathClassLoader.
8737  Handle<mirror::Class> h_path_class_class = hs.NewHandle(
8738      soa.Decode<mirror::Class>(WellKnownClasses::dalvik_system_PathClassLoader));
8739  Handle<mirror::Object> h_path_class_loader = hs.NewHandle(
8740      h_path_class_class->AllocObject(self));
8741  DCHECK(h_path_class_loader != nullptr);
8742  // Set DexPathList.
8743  ArtField* path_list_field =
8744      jni::DecodeArtField(WellKnownClasses::dalvik_system_BaseDexClassLoader_pathList);
8745  DCHECK(path_list_field != nullptr);
8746  path_list_field->SetObject<false>(h_path_class_loader.Get(), h_dex_path_list.Get());
8747
8748  // Make a pretend boot-classpath.
8749  // TODO: Should we scan the image?
8750  ArtField* const parent_field =
8751      mirror::Class::FindField(self,
8752                               h_path_class_loader->GetClass(),
8753                               "parent",
8754                               "Ljava/lang/ClassLoader;");
8755  DCHECK(parent_field != nullptr);
8756  ObjPtr<mirror::Object> boot_cl =
8757      soa.Decode<mirror::Class>(WellKnownClasses::java_lang_BootClassLoader)->AllocObject(self);
8758  parent_field->SetObject<false>(h_path_class_loader.Get(), boot_cl);
8759
8760  // Make it a global ref and return.
8761  ScopedLocalRef<jobject> local_ref(
8762      soa.Env(), soa.Env()->AddLocalReference<jobject>(h_path_class_loader.Get()));
8763  return soa.Env()->NewGlobalRef(local_ref.get());
8764}
8765
8766void ClassLinker::DropFindArrayClassCache() {
8767  std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot<mirror::Class>(nullptr));
8768  find_array_class_cache_next_victim_ = 0;
8769}
8770
8771void ClassLinker::ClearClassTableStrongRoots() const {
8772  Thread* const self = Thread::Current();
8773  WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
8774  for (const ClassLoaderData& data : class_loaders_) {
8775    if (data.class_table != nullptr) {
8776      data.class_table->ClearStrongRoots();
8777    }
8778  }
8779}
8780
8781void ClassLinker::VisitClassLoaders(ClassLoaderVisitor* visitor) const {
8782  Thread* const self = Thread::Current();
8783  for (const ClassLoaderData& data : class_loaders_) {
8784    // Need to use DecodeJObject so that we get null for cleared JNI weak globals.
8785    ObjPtr<mirror::ClassLoader> class_loader = ObjPtr<mirror::ClassLoader>::DownCast(
8786        self->DecodeJObject(data.weak_root));
8787    if (class_loader != nullptr) {
8788      visitor->Visit(class_loader.Ptr());
8789    }
8790  }
8791}
8792
8793void ClassLinker::InsertDexFileInToClassLoader(ObjPtr<mirror::Object> dex_file,
8794                                               ObjPtr<mirror::ClassLoader> class_loader) {
8795  DCHECK(dex_file != nullptr);
8796  Thread* const self = Thread::Current();
8797  WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
8798  ClassTable* const table = ClassTableForClassLoader(class_loader.Ptr());
8799  DCHECK(table != nullptr);
8800  if (table->InsertStrongRoot(dex_file) && class_loader != nullptr) {
8801    // It was not already inserted, perform the write barrier to let the GC know the class loader's
8802    // class table was modified.
8803    Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader);
8804  }
8805}
8806
8807void ClassLinker::CleanupClassLoaders() {
8808  Thread* const self = Thread::Current();
8809  std::vector<ClassLoaderData> to_delete;
8810  // Do the delete outside the lock to avoid lock violation in jit code cache.
8811  {
8812    WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
8813    for (auto it = class_loaders_.begin(); it != class_loaders_.end(); ) {
8814      const ClassLoaderData& data = *it;
8815      // Need to use DecodeJObject so that we get null for cleared JNI weak globals.
8816      ObjPtr<mirror::ClassLoader> class_loader =
8817          ObjPtr<mirror::ClassLoader>::DownCast(self->DecodeJObject(data.weak_root));
8818      if (class_loader != nullptr) {
8819        ++it;
8820      } else {
8821        VLOG(class_linker) << "Freeing class loader";
8822        to_delete.push_back(data);
8823        it = class_loaders_.erase(it);
8824      }
8825    }
8826  }
8827  for (ClassLoaderData& data : to_delete) {
8828    DeleteClassLoader(self, data);
8829  }
8830}
8831
8832class GetResolvedClassesVisitor : public ClassVisitor {
8833 public:
8834  GetResolvedClassesVisitor(std::set<DexCacheResolvedClasses>* result, bool ignore_boot_classes)
8835      : result_(result),
8836        ignore_boot_classes_(ignore_boot_classes),
8837        last_resolved_classes_(result->end()),
8838        last_dex_file_(nullptr),
8839        vlog_is_on_(VLOG_IS_ON(class_linker)),
8840        extra_stats_(),
8841        last_extra_stats_(extra_stats_.end()) { }
8842
8843  bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
8844    if (!klass->IsProxyClass() &&
8845        !klass->IsArrayClass() &&
8846        klass->IsResolved() &&
8847        !klass->IsErroneousResolved() &&
8848        (!ignore_boot_classes_ || klass->GetClassLoader() != nullptr)) {
8849      const DexFile& dex_file = klass->GetDexFile();
8850      if (&dex_file != last_dex_file_) {
8851        last_dex_file_ = &dex_file;
8852        DexCacheResolvedClasses resolved_classes(dex_file.GetLocation(),
8853                                                 dex_file.GetBaseLocation(),
8854                                                 dex_file.GetLocationChecksum());
8855        last_resolved_classes_ = result_->find(resolved_classes);
8856        if (last_resolved_classes_ == result_->end()) {
8857          last_resolved_classes_ = result_->insert(resolved_classes).first;
8858        }
8859      }
8860      bool added = last_resolved_classes_->AddClass(klass->GetDexTypeIndex());
8861      if (UNLIKELY(vlog_is_on_) && added) {
8862        const DexCacheResolvedClasses* resolved_classes = std::addressof(*last_resolved_classes_);
8863        if (last_extra_stats_ == extra_stats_.end() ||
8864            last_extra_stats_->first != resolved_classes) {
8865          last_extra_stats_ = extra_stats_.find(resolved_classes);
8866          if (last_extra_stats_ == extra_stats_.end()) {
8867            last_extra_stats_ =
8868                extra_stats_.emplace(resolved_classes, ExtraStats(dex_file.NumClassDefs())).first;
8869          }
8870        }
8871      }
8872    }
8873    return true;
8874  }
8875
8876  void PrintStatistics() const {
8877    if (vlog_is_on_) {
8878      for (const DexCacheResolvedClasses& resolved_classes : *result_) {
8879        auto it = extra_stats_.find(std::addressof(resolved_classes));
8880        DCHECK(it != extra_stats_.end());
8881        const ExtraStats& extra_stats = it->second;
8882        LOG(INFO) << "Dex location " << resolved_classes.GetDexLocation()
8883                  << " has " << resolved_classes.GetClasses().size() << " / "
8884                  << extra_stats.number_of_class_defs_ << " resolved classes";
8885      }
8886    }
8887  }
8888
8889 private:
8890  struct ExtraStats {
8891    explicit ExtraStats(uint32_t number_of_class_defs)
8892        : number_of_class_defs_(number_of_class_defs) {}
8893    uint32_t number_of_class_defs_;
8894  };
8895
8896  std::set<DexCacheResolvedClasses>* result_;
8897  bool ignore_boot_classes_;
8898  std::set<DexCacheResolvedClasses>::iterator last_resolved_classes_;
8899  const DexFile* last_dex_file_;
8900
8901  // Statistics.
8902  bool vlog_is_on_;
8903  std::map<const DexCacheResolvedClasses*, ExtraStats> extra_stats_;
8904  std::map<const DexCacheResolvedClasses*, ExtraStats>::iterator last_extra_stats_;
8905};
8906
8907std::set<DexCacheResolvedClasses> ClassLinker::GetResolvedClasses(bool ignore_boot_classes) {
8908  ScopedTrace trace(__PRETTY_FUNCTION__);
8909  ScopedObjectAccess soa(Thread::Current());
8910  ScopedAssertNoThreadSuspension ants(__FUNCTION__);
8911  std::set<DexCacheResolvedClasses> ret;
8912  VLOG(class_linker) << "Collecting resolved classes";
8913  const uint64_t start_time = NanoTime();
8914  GetResolvedClassesVisitor visitor(&ret, ignore_boot_classes);
8915  VisitClasses(&visitor);
8916  if (VLOG_IS_ON(class_linker)) {
8917    visitor.PrintStatistics();
8918    LOG(INFO) << "Collecting class profile took " << PrettyDuration(NanoTime() - start_time);
8919  }
8920  return ret;
8921}
8922
8923std::unordered_set<std::string> ClassLinker::GetClassDescriptorsForResolvedClasses(
8924    const std::set<DexCacheResolvedClasses>& classes) {
8925  ScopedTrace trace(__PRETTY_FUNCTION__);
8926  std::unordered_set<std::string> ret;
8927  Thread* const self = Thread::Current();
8928  std::unordered_map<std::string, const DexFile*> location_to_dex_file;
8929  ScopedObjectAccess soa(self);
8930  ScopedAssertNoThreadSuspension ants(__FUNCTION__);
8931  ReaderMutexLock mu(self, *Locks::dex_lock_);
8932  for (const ClassLinker::DexCacheData& data : GetDexCachesData()) {
8933    if (!self->IsJWeakCleared(data.weak_root)) {
8934      ObjPtr<mirror::DexCache> dex_cache = soa.Decode<mirror::DexCache>(data.weak_root);
8935      if (dex_cache != nullptr) {
8936        const DexFile* dex_file = dex_cache->GetDexFile();
8937        // There could be duplicates if two dex files with the same location are mapped.
8938        location_to_dex_file.emplace(dex_file->GetLocation(), dex_file);
8939      }
8940    }
8941  }
8942  for (const DexCacheResolvedClasses& info : classes) {
8943    const std::string& location = info.GetDexLocation();
8944    auto found = location_to_dex_file.find(location);
8945    if (found != location_to_dex_file.end()) {
8946      const DexFile* dex_file = found->second;
8947      VLOG(profiler) << "Found opened dex file for " << dex_file->GetLocation() << " with "
8948                     << info.GetClasses().size() << " classes";
8949      DCHECK_EQ(dex_file->GetLocationChecksum(), info.GetLocationChecksum());
8950      for (dex::TypeIndex type_idx : info.GetClasses()) {
8951        if (!dex_file->IsTypeIndexValid(type_idx)) {
8952          // Something went bad. The profile is probably corrupted. Abort and return an emtpy set.
8953          LOG(WARNING) << "Corrupted profile: invalid type index "
8954              << type_idx.index_ << " in dex " << location;
8955          return std::unordered_set<std::string>();
8956        }
8957        const DexFile::TypeId& type_id = dex_file->GetTypeId(type_idx);
8958        const char* descriptor = dex_file->GetTypeDescriptor(type_id);
8959        ret.insert(descriptor);
8960      }
8961    } else {
8962      VLOG(class_linker) << "Failed to find opened dex file for location " << location;
8963    }
8964  }
8965  return ret;
8966}
8967
8968class ClassLinker::FindVirtualMethodHolderVisitor : public ClassVisitor {
8969 public:
8970  FindVirtualMethodHolderVisitor(const ArtMethod* method, PointerSize pointer_size)
8971      : method_(method),
8972        pointer_size_(pointer_size) {}
8973
8974  bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE {
8975    if (klass->GetVirtualMethodsSliceUnchecked(pointer_size_).Contains(method_)) {
8976      holder_ = klass;
8977    }
8978    // Return false to stop searching if holder_ is not null.
8979    return holder_ == nullptr;
8980  }
8981
8982  ObjPtr<mirror::Class> holder_ = nullptr;
8983  const ArtMethod* const method_;
8984  const PointerSize pointer_size_;
8985};
8986
8987mirror::Class* ClassLinker::GetHoldingClassOfCopiedMethod(ArtMethod* method) {
8988  ScopedTrace trace(__FUNCTION__);  // Since this function is slow, have a trace to notify people.
8989  CHECK(method->IsCopied());
8990  FindVirtualMethodHolderVisitor visitor(method, image_pointer_size_);
8991  VisitClasses(&visitor);
8992  return visitor.holder_.Ptr();
8993}
8994
8995mirror::IfTable* ClassLinker::AllocIfTable(Thread* self, size_t ifcount) {
8996  return down_cast<mirror::IfTable*>(
8997      mirror::IfTable::Alloc(self,
8998                             GetClassRoot(kObjectArrayClass),
8999                             ifcount * mirror::IfTable::kMax));
9000}
9001
9002// Instantiate ResolveMethod.
9003template ArtMethod* ClassLinker::ResolveMethod<ClassLinker::kForceICCECheck>(
9004    const DexFile& dex_file,
9005    uint32_t method_idx,
9006    Handle<mirror::DexCache> dex_cache,
9007    Handle<mirror::ClassLoader> class_loader,
9008    ArtMethod* referrer,
9009    InvokeType type);
9010template ArtMethod* ClassLinker::ResolveMethod<ClassLinker::kNoICCECheckForCache>(
9011    const DexFile& dex_file,
9012    uint32_t method_idx,
9013    Handle<mirror::DexCache> dex_cache,
9014    Handle<mirror::ClassLoader> class_loader,
9015    ArtMethod* referrer,
9016    InvokeType type);
9017
9018}  // namespace art
9019