1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "reference_processor.h"
18
19#include "base/time_utils.h"
20#include "collector/garbage_collector.h"
21#include "java_vm_ext.h"
22#include "mirror/class-inl.h"
23#include "mirror/object-inl.h"
24#include "mirror/reference-inl.h"
25#include "reference_processor-inl.h"
26#include "reflection.h"
27#include "ScopedLocalRef.h"
28#include "scoped_thread_state_change-inl.h"
29#include "task_processor.h"
30#include "utils.h"
31#include "well_known_classes.h"
32
33namespace art {
34namespace gc {
35
36static constexpr bool kAsyncReferenceQueueAdd = false;
37
38ReferenceProcessor::ReferenceProcessor()
39    : collector_(nullptr),
40      preserving_references_(false),
41      condition_("reference processor condition", *Locks::reference_processor_lock_) ,
42      soft_reference_queue_(Locks::reference_queue_soft_references_lock_),
43      weak_reference_queue_(Locks::reference_queue_weak_references_lock_),
44      finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_),
45      phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_),
46      cleared_references_(Locks::reference_queue_cleared_references_lock_) {
47}
48
49void ReferenceProcessor::EnableSlowPath() {
50  mirror::Reference::GetJavaLangRefReference()->SetSlowPath(true);
51}
52
53void ReferenceProcessor::DisableSlowPath(Thread* self) {
54  mirror::Reference::GetJavaLangRefReference()->SetSlowPath(false);
55  condition_.Broadcast(self);
56}
57
58void ReferenceProcessor::BroadcastForSlowPath(Thread* self) {
59  MutexLock mu(self, *Locks::reference_processor_lock_);
60  condition_.Broadcast(self);
61}
62
63ObjPtr<mirror::Object> ReferenceProcessor::GetReferent(Thread* self,
64                                                       ObjPtr<mirror::Reference> reference) {
65  if (!kUseReadBarrier || self->GetWeakRefAccessEnabled()) {
66    // Under read barrier / concurrent copying collector, it's not safe to call GetReferent() when
67    // weak ref access is disabled as the call includes a read barrier which may push a ref onto the
68    // mark stack and interfere with termination of marking.
69    ObjPtr<mirror::Object> const referent = reference->GetReferent();
70    // If the referent is null then it is already cleared, we can just return null since there is no
71    // scenario where it becomes non-null during the reference processing phase.
72    if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) {
73      return referent;
74    }
75  }
76  MutexLock mu(self, *Locks::reference_processor_lock_);
77  while ((!kUseReadBarrier && SlowPathEnabled()) ||
78         (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) {
79    ObjPtr<mirror::Object> referent = reference->GetReferent<kWithoutReadBarrier>();
80    // If the referent became cleared, return it. Don't need barrier since thread roots can't get
81    // updated until after we leave the function due to holding the mutator lock.
82    if (referent == nullptr) {
83      return nullptr;
84    }
85    // Try to see if the referent is already marked by using the is_marked_callback. We can return
86    // it to the mutator as long as the GC is not preserving references.
87    if (LIKELY(collector_ != nullptr)) {
88      // If it's null it means not marked, but it could become marked if the referent is reachable
89      // by finalizer referents. So we cannot return in this case and must block. Otherwise, we
90      // can return it to the mutator as long as the GC is not preserving references, in which
91      // case only black nodes can be safely returned. If the GC is preserving references, the
92      // mutator could take a white field from a grey or white node and move it somewhere else
93      // in the heap causing corruption since this field would get swept.
94      // Use the cached referent instead of calling GetReferent since other threads could call
95      // Reference.clear() after we did the null check resulting in a null pointer being
96      // incorrectly passed to IsMarked. b/33569625
97      ObjPtr<mirror::Object> forwarded_ref = collector_->IsMarked(referent.Ptr());
98      if (forwarded_ref != nullptr) {
99        // Non null means that it is marked.
100        if (!preserving_references_ ||
101           (LIKELY(!reference->IsFinalizerReferenceInstance()) && reference->IsUnprocessed())) {
102          return forwarded_ref;
103        }
104      }
105    }
106    // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
107    // presence of threads blocking for weak ref access.
108    self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_);
109    condition_.WaitHoldingLocks(self);
110  }
111  return reference->GetReferent();
112}
113
114void ReferenceProcessor::StartPreservingReferences(Thread* self) {
115  MutexLock mu(self, *Locks::reference_processor_lock_);
116  preserving_references_ = true;
117}
118
119void ReferenceProcessor::StopPreservingReferences(Thread* self) {
120  MutexLock mu(self, *Locks::reference_processor_lock_);
121  preserving_references_ = false;
122  // We are done preserving references, some people who are blocked may see a marked referent.
123  condition_.Broadcast(self);
124}
125
126// Process reference class instances and schedule finalizations.
127void ReferenceProcessor::ProcessReferences(bool concurrent,
128                                           TimingLogger* timings,
129                                           bool clear_soft_references,
130                                           collector::GarbageCollector* collector) {
131  TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings);
132  Thread* self = Thread::Current();
133  {
134    MutexLock mu(self, *Locks::reference_processor_lock_);
135    collector_ = collector;
136    if (!kUseReadBarrier) {
137      CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent";
138    } else {
139      // Weak ref access is enabled at Zygote compaction by SemiSpace (concurrent == false).
140      CHECK_EQ(!self->GetWeakRefAccessEnabled(), concurrent);
141    }
142  }
143  if (kIsDebugBuild && collector->IsTransactionActive()) {
144    // In transaction mode, we shouldn't enqueue any Reference to the queues.
145    // See DelayReferenceReferent().
146    DCHECK(soft_reference_queue_.IsEmpty());
147    DCHECK(weak_reference_queue_.IsEmpty());
148    DCHECK(finalizer_reference_queue_.IsEmpty());
149    DCHECK(phantom_reference_queue_.IsEmpty());
150  }
151  // Unless required to clear soft references with white references, preserve some white referents.
152  if (!clear_soft_references) {
153    TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" :
154        "(Paused)ForwardSoftReferences", timings);
155    if (concurrent) {
156      StartPreservingReferences(self);
157    }
158    // TODO: Add smarter logic for preserving soft references. The behavior should be a conditional
159    // mark if the SoftReference is supposed to be preserved.
160    soft_reference_queue_.ForwardSoftReferences(collector);
161    collector->ProcessMarkStack();
162    if (concurrent) {
163      StopPreservingReferences(self);
164    }
165  }
166  // Clear all remaining soft and weak references with white referents.
167  soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
168  weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
169  {
170    TimingLogger::ScopedTiming t2(concurrent ? "EnqueueFinalizerReferences" :
171        "(Paused)EnqueueFinalizerReferences", timings);
172    if (concurrent) {
173      StartPreservingReferences(self);
174    }
175    // Preserve all white objects with finalize methods and schedule them for finalization.
176    finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, collector);
177    collector->ProcessMarkStack();
178    if (concurrent) {
179      StopPreservingReferences(self);
180    }
181  }
182  // Clear all finalizer referent reachable soft and weak references with white referents.
183  soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
184  weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
185  // Clear all phantom references with white referents.
186  phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
187  // At this point all reference queues other than the cleared references should be empty.
188  DCHECK(soft_reference_queue_.IsEmpty());
189  DCHECK(weak_reference_queue_.IsEmpty());
190  DCHECK(finalizer_reference_queue_.IsEmpty());
191  DCHECK(phantom_reference_queue_.IsEmpty());
192  {
193    MutexLock mu(self, *Locks::reference_processor_lock_);
194    // Need to always do this since the next GC may be concurrent. Doing this for only concurrent
195    // could result in a stale is_marked_callback_ being called before the reference processing
196    // starts since there is a small window of time where slow_path_enabled_ is enabled but the
197    // callback isn't yet set.
198    collector_ = nullptr;
199    if (!kUseReadBarrier && concurrent) {
200      // Done processing, disable the slow path and broadcast to the waiters.
201      DisableSlowPath(self);
202    }
203  }
204}
205
206// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
207// marked, put it on the appropriate list in the heap for later processing.
208void ReferenceProcessor::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
209                                                ObjPtr<mirror::Reference> ref,
210                                                collector::GarbageCollector* collector) {
211  // klass can be the class of the old object if the visitor already updated the class of ref.
212  DCHECK(klass != nullptr);
213  DCHECK(klass->IsTypeOfReferenceClass());
214  mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr();
215  // do_atomic_update needs to be true because this happens outside of the reference processing
216  // phase.
217  if (!collector->IsNullOrMarkedHeapReference(referent, /*do_atomic_update*/true)) {
218    if (UNLIKELY(collector->IsTransactionActive())) {
219      // In transaction mode, keep the referent alive and avoid any reference processing to avoid the
220      // issue of rolling back reference processing.  do_atomic_update needs to be true because this
221      // happens outside of the reference processing phase.
222      if (!referent->IsNull()) {
223        collector->MarkHeapReference(referent, /*do_atomic_update*/ true);
224      }
225      return;
226    }
227    Thread* self = Thread::Current();
228    // TODO: Remove these locks, and use atomic stacks for storing references?
229    // We need to check that the references haven't already been enqueued since we can end up
230    // scanning the same reference multiple times due to dirty cards.
231    if (klass->IsSoftReferenceClass()) {
232      soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
233    } else if (klass->IsWeakReferenceClass()) {
234      weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
235    } else if (klass->IsFinalizerReferenceClass()) {
236      finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
237    } else if (klass->IsPhantomReferenceClass()) {
238      phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
239    } else {
240      LOG(FATAL) << "Invalid reference type " << klass->PrettyClass() << " " << std::hex
241                 << klass->GetAccessFlags();
242    }
243  }
244}
245
246void ReferenceProcessor::UpdateRoots(IsMarkedVisitor* visitor) {
247  cleared_references_.UpdateRoots(visitor);
248}
249
250class ClearedReferenceTask : public HeapTask {
251 public:
252  explicit ClearedReferenceTask(jobject cleared_references)
253      : HeapTask(NanoTime()), cleared_references_(cleared_references) {
254  }
255  virtual void Run(Thread* thread) {
256    ScopedObjectAccess soa(thread);
257    jvalue args[1];
258    args[0].l = cleared_references_;
259    InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
260    soa.Env()->DeleteGlobalRef(cleared_references_);
261  }
262
263 private:
264  const jobject cleared_references_;
265};
266
267void ReferenceProcessor::EnqueueClearedReferences(Thread* self) {
268  Locks::mutator_lock_->AssertNotHeld(self);
269  // When a runtime isn't started there are no reference queues to care about so ignore.
270  if (!cleared_references_.IsEmpty()) {
271    if (LIKELY(Runtime::Current()->IsStarted())) {
272      jobject cleared_references;
273      {
274        ReaderMutexLock mu(self, *Locks::mutator_lock_);
275        cleared_references = self->GetJniEnv()->vm->AddGlobalRef(
276            self, cleared_references_.GetList());
277      }
278      if (kAsyncReferenceQueueAdd) {
279        // TODO: This can cause RunFinalization to terminate before newly freed objects are
280        // finalized since they may not be enqueued by the time RunFinalization starts.
281        Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask(
282            self, new ClearedReferenceTask(cleared_references));
283      } else {
284        ClearedReferenceTask task(cleared_references);
285        task.Run(self);
286      }
287    }
288    cleared_references_.Clear();
289  }
290}
291
292void ReferenceProcessor::ClearReferent(ObjPtr<mirror::Reference> ref) {
293  Thread* self = Thread::Current();
294  MutexLock mu(self, *Locks::reference_processor_lock_);
295  // Need to wait until reference processing is done since IsMarkedHeapReference does not have a
296  // CAS. If we do not wait, it can result in the GC un-clearing references due to race conditions.
297  // This also handles the race where the referent gets cleared after a null check but before
298  // IsMarkedHeapReference is called.
299  WaitUntilDoneProcessingReferences(self);
300  if (Runtime::Current()->IsActiveTransaction()) {
301    ref->ClearReferent<true>();
302  } else {
303    ref->ClearReferent<false>();
304  }
305}
306
307void ReferenceProcessor::WaitUntilDoneProcessingReferences(Thread* self) {
308  // Wait until we are done processing reference.
309  while ((!kUseReadBarrier && SlowPathEnabled()) ||
310         (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) {
311    // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
312    // presence of threads blocking for weak ref access.
313    self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_);
314    condition_.WaitHoldingLocks(self);
315  }
316}
317
318bool ReferenceProcessor::MakeCircularListIfUnenqueued(
319    ObjPtr<mirror::FinalizerReference> reference) {
320  Thread* self = Thread::Current();
321  MutexLock mu(self, *Locks::reference_processor_lock_);
322  WaitUntilDoneProcessingReferences(self);
323  // At this point, since the sentinel of the reference is live, it is guaranteed to not be
324  // enqueued if we just finished processing references. Otherwise, we may be doing the main GC
325  // phase. Since we are holding the reference processor lock, it guarantees that reference
326  // processing can't begin. The GC could have just enqueued the reference one one of the internal
327  // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this
328  // race.
329  MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_);
330  if (reference->IsUnprocessed()) {
331    CHECK(reference->IsFinalizerReferenceInstance());
332    reference->SetPendingNext(reference);
333    return true;
334  }
335  return false;
336}
337
338}  // namespace gc
339}  // namespace art
340