1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
18#define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
19
20#include <stdint.h>
21#include <memory>
22
23#include "common_runtime_test.h"
24#include "globals.h"
25#include "mirror/array-inl.h"
26#include "mirror/class-inl.h"
27#include "mirror/class_loader.h"
28#include "mirror/object-inl.h"
29#include "scoped_thread_state_change-inl.h"
30#include "thread_list.h"
31#include "zygote_space.h"
32
33namespace art {
34namespace gc {
35namespace space {
36
37template <class Super>
38class SpaceTest : public Super {
39 public:
40  jobject byte_array_class_ = nullptr;
41
42  void AddSpace(ContinuousSpace* space, bool revoke = true) {
43    Heap* heap = Runtime::Current()->GetHeap();
44    if (revoke) {
45      heap->RevokeAllThreadLocalBuffers();
46    }
47    {
48      ScopedThreadStateChange sts(Thread::Current(), kSuspended);
49      ScopedSuspendAll ssa("Add image space");
50      heap->AddSpace(space);
51    }
52    heap->SetSpaceAsDefault(space);
53  }
54
55  mirror::Class* GetByteArrayClass(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) {
56    StackHandleScope<1> hs(self);
57    auto null_loader(hs.NewHandle<mirror::ClassLoader>(nullptr));
58    if (byte_array_class_ == nullptr) {
59      mirror::Class* byte_array_class =
60          Runtime::Current()->GetClassLinker()->FindClass(self, "[B", null_loader);
61      EXPECT_TRUE(byte_array_class != nullptr);
62      byte_array_class_ = self->GetJniEnv()->NewLocalRef(byte_array_class);
63      EXPECT_TRUE(byte_array_class_ != nullptr);
64    }
65    return self->DecodeJObject(byte_array_class_)->AsClass();
66  }
67
68  mirror::Object* Alloc(space::MallocSpace* alloc_space,
69                        Thread* self,
70                        size_t bytes,
71                        size_t* bytes_allocated,
72                        size_t* usable_size,
73                        size_t* bytes_tl_bulk_allocated)
74      REQUIRES_SHARED(Locks::mutator_lock_) {
75    StackHandleScope<1> hs(self);
76    Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
77    mirror::Object* obj = alloc_space->Alloc(self,
78                                             bytes,
79                                             bytes_allocated,
80                                             usable_size,
81                                             bytes_tl_bulk_allocated);
82    if (obj != nullptr) {
83      InstallClass(obj, byte_array_class.Get(), bytes);
84    }
85    return obj;
86  }
87
88  mirror::Object* AllocWithGrowth(space::MallocSpace* alloc_space,
89                                  Thread* self,
90                                  size_t bytes,
91                                  size_t* bytes_allocated,
92                                  size_t* usable_size,
93                                  size_t* bytes_tl_bulk_allocated)
94      REQUIRES_SHARED(Locks::mutator_lock_) {
95    StackHandleScope<1> hs(self);
96    Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
97    mirror::Object* obj = alloc_space->AllocWithGrowth(self, bytes, bytes_allocated, usable_size,
98                                                       bytes_tl_bulk_allocated);
99    if (obj != nullptr) {
100      InstallClass(obj, byte_array_class.Get(), bytes);
101    }
102    return obj;
103  }
104
105  void InstallClass(mirror::Object* o, mirror::Class* byte_array_class, size_t size)
106      REQUIRES_SHARED(Locks::mutator_lock_) {
107    // Note the minimum size, which is the size of a zero-length byte array.
108    EXPECT_GE(size, SizeOfZeroLengthByteArray());
109    EXPECT_TRUE(byte_array_class != nullptr);
110    o->SetClass(byte_array_class);
111    if (kUseBakerReadBarrier) {
112      // Like the proper heap object allocation, install and verify
113      // the correct read barrier state.
114      o->AssertReadBarrierState();
115    }
116    mirror::Array* arr = o->AsArray<kVerifyNone>();
117    size_t header_size = SizeOfZeroLengthByteArray();
118    int32_t length = size - header_size;
119    arr->SetLength(length);
120    EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size);
121  }
122
123  static size_t SizeOfZeroLengthByteArray() {
124    return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value();
125  }
126
127  typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit,
128                                        size_t capacity, uint8_t* requested_begin);
129
130  void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
131                                           int round, size_t growth_limit);
132  void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
133};
134
135static inline size_t test_rand(size_t* seed) {
136  *seed = *seed * 1103515245 + 12345;
137  return *seed;
138}
139
140template <class Super>
141void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space,
142                                                           intptr_t object_size,
143                                                           int round,
144                                                           size_t growth_limit) {
145  if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
146      ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
147    // No allocation can succeed
148    return;
149  }
150
151  // The space's footprint equals amount of resources requested from system
152  size_t footprint = space->GetFootprint();
153
154  // The space must at least have its book keeping allocated
155  EXPECT_GT(footprint, 0u);
156
157  // But it shouldn't exceed the initial size
158  EXPECT_LE(footprint, growth_limit);
159
160  // space's size shouldn't exceed the initial size
161  EXPECT_LE(space->Size(), growth_limit);
162
163  // this invariant should always hold or else the space has grown to be larger than what the
164  // space believes its size is (which will break invariants)
165  EXPECT_GE(space->Size(), footprint);
166
167  // Fill the space with lots of small objects up to the growth limit
168  size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
169  std::unique_ptr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
170  size_t last_object = 0;  // last object for which allocation succeeded
171  size_t amount_allocated = 0;  // amount of space allocated
172  Thread* self = Thread::Current();
173  ScopedObjectAccess soa(self);
174  size_t rand_seed = 123456789;
175  for (size_t i = 0; i < max_objects; i++) {
176    size_t alloc_fails = 0;  // number of failed allocations
177    size_t max_fails = 30;  // number of times we fail allocation before giving up
178    for (; alloc_fails < max_fails; alloc_fails++) {
179      size_t alloc_size;
180      if (object_size > 0) {
181        alloc_size = object_size;
182      } else {
183        alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
184        // Note the minimum size, which is the size of a zero-length byte array.
185        size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
186        if (alloc_size < size_of_zero_length_byte_array) {
187          alloc_size = size_of_zero_length_byte_array;
188        }
189      }
190      StackHandleScope<1> hs(soa.Self());
191      auto object(hs.NewHandle<mirror::Object>(nullptr));
192      size_t bytes_allocated = 0;
193      size_t bytes_tl_bulk_allocated;
194      if (round <= 1) {
195        object.Assign(Alloc(space, self, alloc_size, &bytes_allocated, nullptr,
196                            &bytes_tl_bulk_allocated));
197      } else {
198        object.Assign(AllocWithGrowth(space, self, alloc_size, &bytes_allocated, nullptr,
199                                      &bytes_tl_bulk_allocated));
200      }
201      footprint = space->GetFootprint();
202      EXPECT_GE(space->Size(), footprint);  // invariant
203      if (object != nullptr) {  // allocation succeeded
204        lots_of_objects[i] = object.Get();
205        size_t allocation_size = space->AllocationSize(object.Get(), nullptr);
206        EXPECT_EQ(bytes_allocated, allocation_size);
207        if (object_size > 0) {
208          EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
209        } else {
210          EXPECT_GE(allocation_size, 8u);
211        }
212        EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
213                    bytes_tl_bulk_allocated >= allocation_size);
214        amount_allocated += allocation_size;
215        break;
216      }
217    }
218    if (alloc_fails == max_fails) {
219      last_object = i;
220      break;
221    }
222  }
223  CHECK_NE(last_object, 0u);  // we should have filled the space
224  EXPECT_GT(amount_allocated, 0u);
225
226  // We shouldn't have gone past the growth_limit
227  EXPECT_LE(amount_allocated, growth_limit);
228  EXPECT_LE(footprint, growth_limit);
229  EXPECT_LE(space->Size(), growth_limit);
230
231  // footprint and size should agree with amount allocated
232  EXPECT_GE(footprint, amount_allocated);
233  EXPECT_GE(space->Size(), amount_allocated);
234
235  // Release storage in a semi-adhoc manner
236  size_t free_increment = 96;
237  while (true) {
238    {
239      ScopedThreadStateChange tsc(self, kNative);
240      // Give the space a haircut.
241      space->Trim();
242    }
243
244    // Bounds sanity
245    footprint = space->GetFootprint();
246    EXPECT_LE(amount_allocated, growth_limit);
247    EXPECT_GE(footprint, amount_allocated);
248    EXPECT_LE(footprint, growth_limit);
249    EXPECT_GE(space->Size(), amount_allocated);
250    EXPECT_LE(space->Size(), growth_limit);
251
252    if (free_increment == 0) {
253      break;
254    }
255
256    // Free some objects
257    for (size_t i = 0; i < last_object; i += free_increment) {
258      mirror::Object* object = lots_of_objects.get()[i];
259      if (object == nullptr) {
260        continue;
261      }
262      size_t allocation_size = space->AllocationSize(object, nullptr);
263      if (object_size > 0) {
264        EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
265      } else {
266        EXPECT_GE(allocation_size, 8u);
267      }
268      space->Free(self, object);
269      lots_of_objects.get()[i] = nullptr;
270      amount_allocated -= allocation_size;
271      footprint = space->GetFootprint();
272      EXPECT_GE(space->Size(), footprint);  // invariant
273    }
274
275    free_increment >>= 1;
276  }
277
278  // The space has become empty here before allocating a large object
279  // below. For RosAlloc, revoke thread-local runs, which are kept
280  // even when empty for a performance reason, so that they won't
281  // cause the following large object allocation to fail due to
282  // potential fragmentation. Note they are normally revoked at each
283  // GC (but no GC here.)
284  space->RevokeAllThreadLocalBuffers();
285
286  // All memory was released, try a large allocation to check freed memory is being coalesced
287  StackHandleScope<1> hs(soa.Self());
288  auto large_object(hs.NewHandle<mirror::Object>(nullptr));
289  size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
290  size_t bytes_allocated = 0;
291  size_t bytes_tl_bulk_allocated;
292  if (round <= 1) {
293    large_object.Assign(Alloc(space, self, three_quarters_space, &bytes_allocated, nullptr,
294                              &bytes_tl_bulk_allocated));
295  } else {
296    large_object.Assign(AllocWithGrowth(space, self, three_quarters_space, &bytes_allocated,
297                                        nullptr, &bytes_tl_bulk_allocated));
298  }
299  EXPECT_TRUE(large_object != nullptr);
300
301  // Sanity check footprint
302  footprint = space->GetFootprint();
303  EXPECT_LE(footprint, growth_limit);
304  EXPECT_GE(space->Size(), footprint);
305  EXPECT_LE(space->Size(), growth_limit);
306
307  // Clean up
308  space->Free(self, large_object.Assign(nullptr));
309
310  // Sanity check footprint
311  footprint = space->GetFootprint();
312  EXPECT_LE(footprint, growth_limit);
313  EXPECT_GE(space->Size(), footprint);
314  EXPECT_LE(space->Size(), growth_limit);
315}
316
317template <class Super>
318void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size,
319                                                             CreateSpaceFn create_space) {
320  if (object_size < SizeOfZeroLengthByteArray()) {
321    // Too small for the object layout/model.
322    return;
323  }
324  size_t initial_size = 4 * MB;
325  size_t growth_limit = 8 * MB;
326  size_t capacity = 16 * MB;
327  MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, nullptr));
328  ASSERT_TRUE(space != nullptr);
329
330  // Basic sanity
331  EXPECT_EQ(space->Capacity(), growth_limit);
332  EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
333
334  // Make space findable to the heap, will also delete space when runtime is cleaned up
335  AddSpace(space);
336
337  // In this round we don't allocate with growth and therefore can't grow past the initial size.
338  // This effectively makes the growth_limit the initial_size, so assert this.
339  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
340  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
341  // Remove growth limit
342  space->ClearGrowthLimit();
343  EXPECT_EQ(space->Capacity(), capacity);
344  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
345}
346
347#define TEST_SizeFootPrintGrowthLimitAndTrimStatic(name, spaceName, spaceFn, size) \
348  TEST_F(spaceName##StaticTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
349    SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \
350  }
351
352#define TEST_SizeFootPrintGrowthLimitAndTrimRandom(name, spaceName, spaceFn, size) \
353  TEST_F(spaceName##RandomTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
354    SizeFootPrintGrowthLimitAndTrimDriver(-(size), spaceFn); \
355  }
356
357#define TEST_SPACE_CREATE_FN_STATIC(spaceName, spaceFn) \
358  class spaceName##StaticTest : public SpaceTest<CommonRuntimeTest> { \
359  }; \
360  \
361  TEST_SizeFootPrintGrowthLimitAndTrimStatic(12B, spaceName, spaceFn, 12) \
362  TEST_SizeFootPrintGrowthLimitAndTrimStatic(16B, spaceName, spaceFn, 16) \
363  TEST_SizeFootPrintGrowthLimitAndTrimStatic(24B, spaceName, spaceFn, 24) \
364  TEST_SizeFootPrintGrowthLimitAndTrimStatic(32B, spaceName, spaceFn, 32) \
365  TEST_SizeFootPrintGrowthLimitAndTrimStatic(64B, spaceName, spaceFn, 64) \
366  TEST_SizeFootPrintGrowthLimitAndTrimStatic(128B, spaceName, spaceFn, 128) \
367  TEST_SizeFootPrintGrowthLimitAndTrimStatic(1KB, spaceName, spaceFn, 1 * KB) \
368  TEST_SizeFootPrintGrowthLimitAndTrimStatic(4KB, spaceName, spaceFn, 4 * KB) \
369  TEST_SizeFootPrintGrowthLimitAndTrimStatic(1MB, spaceName, spaceFn, 1 * MB) \
370  TEST_SizeFootPrintGrowthLimitAndTrimStatic(4MB, spaceName, spaceFn, 4 * MB) \
371  TEST_SizeFootPrintGrowthLimitAndTrimStatic(8MB, spaceName, spaceFn, 8 * MB)
372
373#define TEST_SPACE_CREATE_FN_RANDOM(spaceName, spaceFn) \
374  class spaceName##RandomTest : public SpaceTest<CommonRuntimeTest> { \
375  }; \
376  \
377  TEST_SizeFootPrintGrowthLimitAndTrimRandom(16B, spaceName, spaceFn, 16) \
378  TEST_SizeFootPrintGrowthLimitAndTrimRandom(24B, spaceName, spaceFn, 24) \
379  TEST_SizeFootPrintGrowthLimitAndTrimRandom(32B, spaceName, spaceFn, 32) \
380  TEST_SizeFootPrintGrowthLimitAndTrimRandom(64B, spaceName, spaceFn, 64) \
381  TEST_SizeFootPrintGrowthLimitAndTrimRandom(128B, spaceName, spaceFn, 128) \
382  TEST_SizeFootPrintGrowthLimitAndTrimRandom(1KB, spaceName, spaceFn, 1 * KB) \
383  TEST_SizeFootPrintGrowthLimitAndTrimRandom(4KB, spaceName, spaceFn, 4 * KB) \
384  TEST_SizeFootPrintGrowthLimitAndTrimRandom(1MB, spaceName, spaceFn, 1 * MB) \
385  TEST_SizeFootPrintGrowthLimitAndTrimRandom(4MB, spaceName, spaceFn, 4 * MB) \
386  TEST_SizeFootPrintGrowthLimitAndTrimRandom(8MB, spaceName, spaceFn, 8 * MB)
387
388}  // namespace space
389}  // namespace gc
390}  // namespace art
391
392#endif  // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
393