1/* SHA256 module */
2
3/* This module provides an interface to NIST's SHA-256 and SHA-224 Algorithms */
4
5/* See below for information about the original code this module was
6   based upon. Additional work performed by:
7
8   Andrew Kuchling (amk@amk.ca)
9   Greg Stein (gstein@lyra.org)
10   Trevor Perrin (trevp@trevp.net)
11
12   Copyright (C) 2005   Gregory P. Smith (greg@krypto.org)
13   Licensed to PSF under a Contributor Agreement.
14
15*/
16
17/* SHA objects */
18
19#include "Python.h"
20#include "structmember.h"
21
22
23/* Endianness testing and definitions */
24#define TestEndianness(variable) {int i=1; variable=PCT_BIG_ENDIAN;\
25        if (*((char*)&i)==1) variable=PCT_LITTLE_ENDIAN;}
26
27#define PCT_LITTLE_ENDIAN 1
28#define PCT_BIG_ENDIAN 0
29
30/* Some useful types */
31
32typedef unsigned char SHA_BYTE;
33
34#if SIZEOF_INT == 4
35typedef unsigned int SHA_INT32; /* 32-bit integer */
36#else
37/* not defined. compilation will die. */
38#endif
39
40/* The SHA block size and message digest sizes, in bytes */
41
42#define SHA_BLOCKSIZE    64
43#define SHA_DIGESTSIZE  32
44
45/* The structure for storing SHA info */
46
47typedef struct {
48    PyObject_HEAD
49    SHA_INT32 digest[8];                /* Message digest */
50    SHA_INT32 count_lo, count_hi;       /* 64-bit bit count */
51    SHA_BYTE data[SHA_BLOCKSIZE];       /* SHA data buffer */
52    int Endianness;
53    int local;                          /* unprocessed amount in data */
54    int digestsize;
55} SHAobject;
56
57/* When run on a little-endian CPU we need to perform byte reversal on an
58   array of longwords. */
59
60static void longReverse(SHA_INT32 *buffer, int byteCount, int Endianness)
61{
62    SHA_INT32 value;
63
64    if ( Endianness == PCT_BIG_ENDIAN )
65        return;
66
67    byteCount /= sizeof(*buffer);
68    while (byteCount--) {
69        value = *buffer;
70        value = ( ( value & 0xFF00FF00L ) >> 8  ) | \
71                ( ( value & 0x00FF00FFL ) << 8 );
72        *buffer++ = ( value << 16 ) | ( value >> 16 );
73    }
74}
75
76static void SHAcopy(SHAobject *src, SHAobject *dest)
77{
78    dest->Endianness = src->Endianness;
79    dest->local = src->local;
80    dest->digestsize = src->digestsize;
81    dest->count_lo = src->count_lo;
82    dest->count_hi = src->count_hi;
83    memcpy(dest->digest, src->digest, sizeof(src->digest));
84    memcpy(dest->data, src->data, sizeof(src->data));
85}
86
87
88/* ------------------------------------------------------------------------
89 *
90 * This code for the SHA-256 algorithm was noted as public domain. The
91 * original headers are pasted below.
92 *
93 * Several changes have been made to make it more compatible with the
94 * Python environment and desired interface.
95 *
96 */
97
98/* LibTomCrypt, modular cryptographic library -- Tom St Denis
99 *
100 * LibTomCrypt is a library that provides various cryptographic
101 * algorithms in a highly modular and flexible manner.
102 *
103 * The library is free for all purposes without any express
104 * gurantee it works.
105 *
106 * Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
107 */
108
109
110/* SHA256 by Tom St Denis */
111
112/* Various logical functions */
113#define ROR(x, y)\
114( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \
115((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
116#define Ch(x,y,z)       (z ^ (x & (y ^ z)))
117#define Maj(x,y,z)      (((x | y) & z) | (x & y))
118#define S(x, n)         ROR((x),(n))
119#define R(x, n)         (((x)&0xFFFFFFFFUL)>>(n))
120#define Sigma0(x)       (S(x, 2) ^ S(x, 13) ^ S(x, 22))
121#define Sigma1(x)       (S(x, 6) ^ S(x, 11) ^ S(x, 25))
122#define Gamma0(x)       (S(x, 7) ^ S(x, 18) ^ R(x, 3))
123#define Gamma1(x)       (S(x, 17) ^ S(x, 19) ^ R(x, 10))
124
125
126static void
127sha_transform(SHAobject *sha_info)
128{
129    int i;
130        SHA_INT32 S[8], W[64], t0, t1;
131
132    memcpy(W, sha_info->data, sizeof(sha_info->data));
133    longReverse(W, (int)sizeof(sha_info->data), sha_info->Endianness);
134
135    for (i = 16; i < 64; ++i) {
136                W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
137    }
138    for (i = 0; i < 8; ++i) {
139        S[i] = sha_info->digest[i];
140    }
141
142    /* Compress */
143#define RND(a,b,c,d,e,f,g,h,i,ki)                    \
144     t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i];   \
145     t1 = Sigma0(a) + Maj(a, b, c);                  \
146     d += t0;                                        \
147     h  = t0 + t1;
148
149    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98);
150    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491);
151    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf);
152    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5);
153    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b);
154    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1);
155    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4);
156    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5);
157    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98);
158    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01);
159    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be);
160    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3);
161    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74);
162    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe);
163    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7);
164    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174);
165    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1);
166    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786);
167    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6);
168    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc);
169    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f);
170    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa);
171    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc);
172    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da);
173    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152);
174    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d);
175    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8);
176    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7);
177    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3);
178    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147);
179    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351);
180    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967);
181    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85);
182    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138);
183    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc);
184    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13);
185    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354);
186    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb);
187    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e);
188    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85);
189    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1);
190    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b);
191    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70);
192    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3);
193    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819);
194    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624);
195    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585);
196    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070);
197    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116);
198    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08);
199    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c);
200    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5);
201    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3);
202    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a);
203    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f);
204    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3);
205    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee);
206    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f);
207    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814);
208    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208);
209    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa);
210    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb);
211    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7);
212    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2);
213
214#undef RND
215
216    /* feedback */
217    for (i = 0; i < 8; i++) {
218        sha_info->digest[i] = sha_info->digest[i] + S[i];
219    }
220
221}
222
223
224
225/* initialize the SHA digest */
226
227static void
228sha_init(SHAobject *sha_info)
229{
230    TestEndianness(sha_info->Endianness)
231    sha_info->digest[0] = 0x6A09E667L;
232    sha_info->digest[1] = 0xBB67AE85L;
233    sha_info->digest[2] = 0x3C6EF372L;
234    sha_info->digest[3] = 0xA54FF53AL;
235    sha_info->digest[4] = 0x510E527FL;
236    sha_info->digest[5] = 0x9B05688CL;
237    sha_info->digest[6] = 0x1F83D9ABL;
238    sha_info->digest[7] = 0x5BE0CD19L;
239    sha_info->count_lo = 0L;
240    sha_info->count_hi = 0L;
241    sha_info->local = 0;
242    sha_info->digestsize = 32;
243}
244
245static void
246sha224_init(SHAobject *sha_info)
247{
248    TestEndianness(sha_info->Endianness)
249    sha_info->digest[0] = 0xc1059ed8L;
250    sha_info->digest[1] = 0x367cd507L;
251    sha_info->digest[2] = 0x3070dd17L;
252    sha_info->digest[3] = 0xf70e5939L;
253    sha_info->digest[4] = 0xffc00b31L;
254    sha_info->digest[5] = 0x68581511L;
255    sha_info->digest[6] = 0x64f98fa7L;
256    sha_info->digest[7] = 0xbefa4fa4L;
257    sha_info->count_lo = 0L;
258    sha_info->count_hi = 0L;
259    sha_info->local = 0;
260    sha_info->digestsize = 28;
261}
262
263
264/* update the SHA digest */
265
266static void
267sha_update(SHAobject *sha_info, SHA_BYTE *buffer, int count)
268{
269    int i;
270    SHA_INT32 clo;
271
272    clo = sha_info->count_lo + ((SHA_INT32) count << 3);
273    if (clo < sha_info->count_lo) {
274        ++sha_info->count_hi;
275    }
276    sha_info->count_lo = clo;
277    sha_info->count_hi += (SHA_INT32) count >> 29;
278    if (sha_info->local) {
279        i = SHA_BLOCKSIZE - sha_info->local;
280        if (i > count) {
281            i = count;
282        }
283        memcpy(((SHA_BYTE *) sha_info->data) + sha_info->local, buffer, i);
284        count -= i;
285        buffer += i;
286        sha_info->local += i;
287        if (sha_info->local == SHA_BLOCKSIZE) {
288            sha_transform(sha_info);
289        }
290        else {
291            return;
292        }
293    }
294    while (count >= SHA_BLOCKSIZE) {
295        memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
296        buffer += SHA_BLOCKSIZE;
297        count -= SHA_BLOCKSIZE;
298        sha_transform(sha_info);
299    }
300    memcpy(sha_info->data, buffer, count);
301    sha_info->local = count;
302}
303
304/* finish computing the SHA digest */
305
306static void
307sha_final(unsigned char digest[SHA_DIGESTSIZE], SHAobject *sha_info)
308{
309    int count;
310    SHA_INT32 lo_bit_count, hi_bit_count;
311
312    lo_bit_count = sha_info->count_lo;
313    hi_bit_count = sha_info->count_hi;
314    count = (int) ((lo_bit_count >> 3) & 0x3f);
315    ((SHA_BYTE *) sha_info->data)[count++] = 0x80;
316    if (count > SHA_BLOCKSIZE - 8) {
317        memset(((SHA_BYTE *) sha_info->data) + count, 0,
318               SHA_BLOCKSIZE - count);
319        sha_transform(sha_info);
320        memset((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 8);
321    }
322    else {
323        memset(((SHA_BYTE *) sha_info->data) + count, 0,
324               SHA_BLOCKSIZE - 8 - count);
325    }
326
327    /* GJS: note that we add the hi/lo in big-endian. sha_transform will
328       swap these values into host-order. */
329    sha_info->data[56] = (hi_bit_count >> 24) & 0xff;
330    sha_info->data[57] = (hi_bit_count >> 16) & 0xff;
331    sha_info->data[58] = (hi_bit_count >>  8) & 0xff;
332    sha_info->data[59] = (hi_bit_count >>  0) & 0xff;
333    sha_info->data[60] = (lo_bit_count >> 24) & 0xff;
334    sha_info->data[61] = (lo_bit_count >> 16) & 0xff;
335    sha_info->data[62] = (lo_bit_count >>  8) & 0xff;
336    sha_info->data[63] = (lo_bit_count >>  0) & 0xff;
337    sha_transform(sha_info);
338    digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff);
339    digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff);
340    digest[ 2] = (unsigned char) ((sha_info->digest[0] >>  8) & 0xff);
341    digest[ 3] = (unsigned char) ((sha_info->digest[0]      ) & 0xff);
342    digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff);
343    digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff);
344    digest[ 6] = (unsigned char) ((sha_info->digest[1] >>  8) & 0xff);
345    digest[ 7] = (unsigned char) ((sha_info->digest[1]      ) & 0xff);
346    digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff);
347    digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff);
348    digest[10] = (unsigned char) ((sha_info->digest[2] >>  8) & 0xff);
349    digest[11] = (unsigned char) ((sha_info->digest[2]      ) & 0xff);
350    digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff);
351    digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff);
352    digest[14] = (unsigned char) ((sha_info->digest[3] >>  8) & 0xff);
353    digest[15] = (unsigned char) ((sha_info->digest[3]      ) & 0xff);
354    digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff);
355    digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff);
356    digest[18] = (unsigned char) ((sha_info->digest[4] >>  8) & 0xff);
357    digest[19] = (unsigned char) ((sha_info->digest[4]      ) & 0xff);
358    digest[20] = (unsigned char) ((sha_info->digest[5] >> 24) & 0xff);
359    digest[21] = (unsigned char) ((sha_info->digest[5] >> 16) & 0xff);
360    digest[22] = (unsigned char) ((sha_info->digest[5] >>  8) & 0xff);
361    digest[23] = (unsigned char) ((sha_info->digest[5]      ) & 0xff);
362    digest[24] = (unsigned char) ((sha_info->digest[6] >> 24) & 0xff);
363    digest[25] = (unsigned char) ((sha_info->digest[6] >> 16) & 0xff);
364    digest[26] = (unsigned char) ((sha_info->digest[6] >>  8) & 0xff);
365    digest[27] = (unsigned char) ((sha_info->digest[6]      ) & 0xff);
366    digest[28] = (unsigned char) ((sha_info->digest[7] >> 24) & 0xff);
367    digest[29] = (unsigned char) ((sha_info->digest[7] >> 16) & 0xff);
368    digest[30] = (unsigned char) ((sha_info->digest[7] >>  8) & 0xff);
369    digest[31] = (unsigned char) ((sha_info->digest[7]      ) & 0xff);
370}
371
372/*
373 * End of copied SHA code.
374 *
375 * ------------------------------------------------------------------------
376 */
377
378static PyTypeObject SHA224type;
379static PyTypeObject SHA256type;
380
381
382static SHAobject *
383newSHA224object(void)
384{
385    return (SHAobject *)PyObject_New(SHAobject, &SHA224type);
386}
387
388static SHAobject *
389newSHA256object(void)
390{
391    return (SHAobject *)PyObject_New(SHAobject, &SHA256type);
392}
393
394/* Internal methods for a hash object */
395
396static void
397SHA_dealloc(PyObject *ptr)
398{
399    PyObject_Del(ptr);
400}
401
402
403/* External methods for a hash object */
404
405PyDoc_STRVAR(SHA256_copy__doc__, "Return a copy of the hash object.");
406
407static PyObject *
408SHA256_copy(SHAobject *self, PyObject *unused)
409{
410    SHAobject *newobj;
411
412    if (Py_TYPE(self) == &SHA256type) {
413        if ( (newobj = newSHA256object())==NULL)
414            return NULL;
415    } else {
416        if ( (newobj = newSHA224object())==NULL)
417            return NULL;
418    }
419
420    SHAcopy(self, newobj);
421    return (PyObject *)newobj;
422}
423
424PyDoc_STRVAR(SHA256_digest__doc__,
425"Return the digest value as a string of binary data.");
426
427static PyObject *
428SHA256_digest(SHAobject *self, PyObject *unused)
429{
430    unsigned char digest[SHA_DIGESTSIZE];
431    SHAobject temp;
432
433    SHAcopy(self, &temp);
434    sha_final(digest, &temp);
435    return PyString_FromStringAndSize((const char *)digest, self->digestsize);
436}
437
438PyDoc_STRVAR(SHA256_hexdigest__doc__,
439"Return the digest value as a string of hexadecimal digits.");
440
441static PyObject *
442SHA256_hexdigest(SHAobject *self, PyObject *unused)
443{
444    unsigned char digest[SHA_DIGESTSIZE];
445    SHAobject temp;
446    PyObject *retval;
447    char *hex_digest;
448    int i, j;
449
450    /* Get the raw (binary) digest value */
451    SHAcopy(self, &temp);
452    sha_final(digest, &temp);
453
454    /* Create a new string */
455    retval = PyString_FromStringAndSize(NULL, self->digestsize * 2);
456    if (!retval)
457            return NULL;
458    hex_digest = PyString_AsString(retval);
459    if (!hex_digest) {
460            Py_DECREF(retval);
461            return NULL;
462    }
463
464    /* Make hex version of the digest */
465    for(i=j=0; i<self->digestsize; i++) {
466        char c;
467        c = (digest[i] >> 4) & 0xf;
468        c = (c>9) ? c+'a'-10 : c + '0';
469        hex_digest[j++] = c;
470        c = (digest[i] & 0xf);
471        c = (c>9) ? c+'a'-10 : c + '0';
472        hex_digest[j++] = c;
473    }
474    return retval;
475}
476
477PyDoc_STRVAR(SHA256_update__doc__,
478"Update this hash object's state with the provided string.");
479
480static PyObject *
481SHA256_update(SHAobject *self, PyObject *args)
482{
483    Py_buffer buf;
484
485    if (!PyArg_ParseTuple(args, "s*:update", &buf))
486        return NULL;
487
488    sha_update(self, buf.buf, buf.len);
489
490    PyBuffer_Release(&buf);
491    Py_RETURN_NONE;
492}
493
494static PyMethodDef SHA_methods[] = {
495    {"copy",      (PyCFunction)SHA256_copy,      METH_NOARGS,  SHA256_copy__doc__},
496    {"digest",    (PyCFunction)SHA256_digest,    METH_NOARGS,  SHA256_digest__doc__},
497    {"hexdigest", (PyCFunction)SHA256_hexdigest, METH_NOARGS,  SHA256_hexdigest__doc__},
498    {"update",    (PyCFunction)SHA256_update,    METH_VARARGS, SHA256_update__doc__},
499    {NULL,        NULL}         /* sentinel */
500};
501
502static PyObject *
503SHA256_get_block_size(PyObject *self, void *closure)
504{
505    return PyInt_FromLong(SHA_BLOCKSIZE);
506}
507
508static PyObject *
509SHA256_get_name(PyObject *self, void *closure)
510{
511    if (((SHAobject *)self)->digestsize == 32)
512        return PyString_FromStringAndSize("SHA256", 6);
513    else
514        return PyString_FromStringAndSize("SHA224", 6);
515}
516
517static PyGetSetDef SHA_getseters[] = {
518    {"block_size",
519     (getter)SHA256_get_block_size, NULL,
520     NULL,
521     NULL},
522    {"name",
523     (getter)SHA256_get_name, NULL,
524     NULL,
525     NULL},
526    {NULL}  /* Sentinel */
527};
528
529static PyMemberDef SHA_members[] = {
530    {"digest_size", T_INT, offsetof(SHAobject, digestsize), READONLY, NULL},
531    /* the old md5 and sha modules support 'digest_size' as in PEP 247.
532     * the old sha module also supported 'digestsize'.  ugh. */
533    {"digestsize", T_INT, offsetof(SHAobject, digestsize), READONLY, NULL},
534    {NULL}  /* Sentinel */
535};
536
537static PyTypeObject SHA224type = {
538    PyVarObject_HEAD_INIT(NULL, 0)
539    "_sha256.sha224",   /*tp_name*/
540    sizeof(SHAobject),  /*tp_size*/
541    0,                  /*tp_itemsize*/
542    /* methods */
543    SHA_dealloc,        /*tp_dealloc*/
544    0,                  /*tp_print*/
545    0,                  /*tp_getattr*/
546    0,                  /*tp_setattr*/
547    0,                  /*tp_compare*/
548    0,                  /*tp_repr*/
549    0,                  /*tp_as_number*/
550    0,                  /*tp_as_sequence*/
551    0,                  /*tp_as_mapping*/
552    0,                  /*tp_hash*/
553    0,                  /*tp_call*/
554    0,                  /*tp_str*/
555    0,                  /*tp_getattro*/
556    0,                  /*tp_setattro*/
557    0,                  /*tp_as_buffer*/
558    Py_TPFLAGS_DEFAULT, /*tp_flags*/
559    0,                  /*tp_doc*/
560    0,                  /*tp_traverse*/
561    0,                  /*tp_clear*/
562    0,                  /*tp_richcompare*/
563    0,                  /*tp_weaklistoffset*/
564    0,                  /*tp_iter*/
565    0,                  /*tp_iternext*/
566    SHA_methods,        /* tp_methods */
567    SHA_members,        /* tp_members */
568    SHA_getseters,      /* tp_getset */
569};
570
571static PyTypeObject SHA256type = {
572    PyVarObject_HEAD_INIT(NULL, 0)
573    "_sha256.sha256",   /*tp_name*/
574    sizeof(SHAobject),  /*tp_size*/
575    0,                  /*tp_itemsize*/
576    /* methods */
577    SHA_dealloc,        /*tp_dealloc*/
578    0,                  /*tp_print*/
579    0,                  /*tp_getattr*/
580    0,                  /*tp_setattr*/
581    0,                  /*tp_compare*/
582    0,                  /*tp_repr*/
583    0,                  /*tp_as_number*/
584    0,                  /*tp_as_sequence*/
585    0,                  /*tp_as_mapping*/
586    0,                  /*tp_hash*/
587    0,                  /*tp_call*/
588    0,                  /*tp_str*/
589    0,                  /*tp_getattro*/
590    0,                  /*tp_setattro*/
591    0,                  /*tp_as_buffer*/
592    Py_TPFLAGS_DEFAULT, /*tp_flags*/
593    0,                  /*tp_doc*/
594    0,                  /*tp_traverse*/
595    0,                  /*tp_clear*/
596    0,                  /*tp_richcompare*/
597    0,                  /*tp_weaklistoffset*/
598    0,                  /*tp_iter*/
599    0,                  /*tp_iternext*/
600    SHA_methods,        /* tp_methods */
601    SHA_members,        /* tp_members */
602    SHA_getseters,      /* tp_getset */
603};
604
605
606/* The single module-level function: new() */
607
608PyDoc_STRVAR(SHA256_new__doc__,
609"Return a new SHA-256 hash object; optionally initialized with a string.");
610
611static PyObject *
612SHA256_new(PyObject *self, PyObject *args, PyObject *kwdict)
613{
614    static char *kwlist[] = {"string", NULL};
615    SHAobject *new;
616    Py_buffer buf = { 0 };
617
618    if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s*:new", kwlist,
619                                     &buf)) {
620        return NULL;
621    }
622
623    if ((new = newSHA256object()) == NULL) {
624        PyBuffer_Release(&buf);
625        return NULL;
626    }
627
628    sha_init(new);
629
630    if (PyErr_Occurred()) {
631        Py_DECREF(new);
632        PyBuffer_Release(&buf);
633        return NULL;
634    }
635    if (buf.len > 0) {
636        sha_update(new, buf.buf, buf.len);
637    }
638    PyBuffer_Release(&buf);
639
640    return (PyObject *)new;
641}
642
643PyDoc_STRVAR(SHA224_new__doc__,
644"Return a new SHA-224 hash object; optionally initialized with a string.");
645
646static PyObject *
647SHA224_new(PyObject *self, PyObject *args, PyObject *kwdict)
648{
649    static char *kwlist[] = {"string", NULL};
650    SHAobject *new;
651    Py_buffer buf = { 0 };
652
653    if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s*:new", kwlist,
654                                     &buf)) {
655        return NULL;
656    }
657
658    if ((new = newSHA224object()) == NULL) {
659        PyBuffer_Release(&buf);
660        return NULL;
661    }
662
663    sha224_init(new);
664
665    if (PyErr_Occurred()) {
666        Py_DECREF(new);
667        PyBuffer_Release(&buf);
668        return NULL;
669    }
670    if (buf.len > 0) {
671        sha_update(new, buf.buf, buf.len);
672    }
673    PyBuffer_Release(&buf);
674
675    return (PyObject *)new;
676}
677
678
679/* List of functions exported by this module */
680
681static struct PyMethodDef SHA_functions[] = {
682    {"sha256", (PyCFunction)SHA256_new, METH_VARARGS|METH_KEYWORDS, SHA256_new__doc__},
683    {"sha224", (PyCFunction)SHA224_new, METH_VARARGS|METH_KEYWORDS, SHA224_new__doc__},
684    {NULL,      NULL}            /* Sentinel */
685};
686
687
688/* Initialize this module. */
689
690#define insint(n,v) { PyModule_AddIntConstant(m,n,v); }
691
692PyMODINIT_FUNC
693init_sha256(void)
694{
695    PyObject *m;
696
697    Py_TYPE(&SHA224type) = &PyType_Type;
698    if (PyType_Ready(&SHA224type) < 0)
699        return;
700    Py_TYPE(&SHA256type) = &PyType_Type;
701    if (PyType_Ready(&SHA256type) < 0)
702        return;
703    m = Py_InitModule("_sha256", SHA_functions);
704    if (m == NULL)
705        return;
706}
707