1#include "Python.h"
2
3#if defined(__has_feature)  /* Clang */
4 #if __has_feature(address_sanitizer)  /* is ASAN enabled? */
5  #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \
6        __attribute__((no_address_safety_analysis)) \
7        __attribute__ ((noinline))
8 #else
9  #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
10 #endif
11#else
12 #if defined(__SANITIZE_ADDRESS__)  /* GCC 4.8.x, is ASAN enabled? */
13  #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \
14        __attribute__((no_address_safety_analysis)) \
15        __attribute__ ((noinline))
16 #else
17  #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
18 #endif
19#endif
20
21#ifdef WITH_PYMALLOC
22
23#ifdef HAVE_MMAP
24 #include <sys/mman.h>
25 #ifdef MAP_ANONYMOUS
26  #define ARENAS_USE_MMAP
27 #endif
28#endif
29
30#ifdef WITH_VALGRIND
31#include <valgrind/valgrind.h>
32
33/* If we're using GCC, use __builtin_expect() to reduce overhead of
34   the valgrind checks */
35#if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
36#  define UNLIKELY(value) __builtin_expect((value), 0)
37#else
38#  define UNLIKELY(value) (value)
39#endif
40
41/* -1 indicates that we haven't checked that we're running on valgrind yet. */
42static int running_on_valgrind = -1;
43#endif
44
45/* An object allocator for Python.
46
47   Here is an introduction to the layers of the Python memory architecture,
48   showing where the object allocator is actually used (layer +2), It is
49   called for every object allocation and deallocation (PyObject_New/Del),
50   unless the object-specific allocators implement a proprietary allocation
51   scheme (ex.: ints use a simple free list). This is also the place where
52   the cyclic garbage collector operates selectively on container objects.
53
54
55    Object-specific allocators
56    _____   ______   ______       ________
57   [ int ] [ dict ] [ list ] ... [ string ]       Python core         |
58+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
59    _______________________________       |                           |
60   [   Python's object allocator   ]      |                           |
61+2 | ####### Object memory ####### | <------ Internal buffers ------> |
62    ______________________________________________________________    |
63   [          Python's raw memory allocator (PyMem_ API)          ]   |
64+1 | <----- Python memory (under PyMem manager's control) ------> |   |
65    __________________________________________________________________
66   [    Underlying general-purpose allocator (ex: C library malloc)   ]
67 0 | <------ Virtual memory allocated for the python process -------> |
68
69   =========================================================================
70    _______________________________________________________________________
71   [                OS-specific Virtual Memory Manager (VMM)               ]
72-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
73    __________________________________   __________________________________
74   [                                  ] [                                  ]
75-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
76
77*/
78/*==========================================================================*/
79
80/* A fast, special-purpose memory allocator for small blocks, to be used
81   on top of a general-purpose malloc -- heavily based on previous art. */
82
83/* Vladimir Marangozov -- August 2000 */
84
85/*
86 * "Memory management is where the rubber meets the road -- if we do the wrong
87 * thing at any level, the results will not be good. And if we don't make the
88 * levels work well together, we are in serious trouble." (1)
89 *
90 * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
91 *    "Dynamic Storage Allocation: A Survey and Critical Review",
92 *    in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
93 */
94
95/* #undef WITH_MEMORY_LIMITS */         /* disable mem limit checks  */
96
97/*==========================================================================*/
98
99/*
100 * Allocation strategy abstract:
101 *
102 * For small requests, the allocator sub-allocates <Big> blocks of memory.
103 * Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the
104 * system's allocator.
105 *
106 * Small requests are grouped in size classes spaced 8 bytes apart, due
107 * to the required valid alignment of the returned address. Requests of
108 * a particular size are serviced from memory pools of 4K (one VMM page).
109 * Pools are fragmented on demand and contain free lists of blocks of one
110 * particular size class. In other words, there is a fixed-size allocator
111 * for each size class. Free pools are shared by the different allocators
112 * thus minimizing the space reserved for a particular size class.
113 *
114 * This allocation strategy is a variant of what is known as "simple
115 * segregated storage based on array of free lists". The main drawback of
116 * simple segregated storage is that we might end up with lot of reserved
117 * memory for the different free lists, which degenerate in time. To avoid
118 * this, we partition each free list in pools and we share dynamically the
119 * reserved space between all free lists. This technique is quite efficient
120 * for memory intensive programs which allocate mainly small-sized blocks.
121 *
122 * For small requests we have the following table:
123 *
124 * Request in bytes     Size of allocated block      Size class idx
125 * ----------------------------------------------------------------
126 *        1-8                     8                       0
127 *        9-16                   16                       1
128 *       17-24                   24                       2
129 *       25-32                   32                       3
130 *       33-40                   40                       4
131 *       41-48                   48                       5
132 *       49-56                   56                       6
133 *       57-64                   64                       7
134 *       65-72                   72                       8
135 *        ...                   ...                     ...
136 *      497-504                 504                      62
137 *      505-512                 512                      63
138 *
139 *      0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying
140 *      allocator.
141 */
142
143/*==========================================================================*/
144
145/*
146 * -- Main tunable settings section --
147 */
148
149/*
150 * Alignment of addresses returned to the user. 8-bytes alignment works
151 * on most current architectures (with 32-bit or 64-bit address busses).
152 * The alignment value is also used for grouping small requests in size
153 * classes spaced ALIGNMENT bytes apart.
154 *
155 * You shouldn't change this unless you know what you are doing.
156 */
157#define ALIGNMENT               8               /* must be 2^N */
158#define ALIGNMENT_SHIFT         3
159#define ALIGNMENT_MASK          (ALIGNMENT - 1)
160
161/* Return the number of bytes in size class I, as a uint. */
162#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
163
164/*
165 * Max size threshold below which malloc requests are considered to be
166 * small enough in order to use preallocated memory pools. You can tune
167 * this value according to your application behaviour and memory needs.
168 *
169 * The following invariants must hold:
170 *      1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 256
171 *      2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
172 *
173 * Note: a size threshold of 512 guarantees that newly created dictionaries
174 * will be allocated from preallocated memory pools on 64-bit.
175 *
176 * Although not required, for better performance and space efficiency,
177 * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
178 */
179#define SMALL_REQUEST_THRESHOLD 512
180#define NB_SMALL_SIZE_CLASSES   (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
181
182/*
183 * The system's VMM page size can be obtained on most unices with a
184 * getpagesize() call or deduced from various header files. To make
185 * things simpler, we assume that it is 4K, which is OK for most systems.
186 * It is probably better if this is the native page size, but it doesn't
187 * have to be.  In theory, if SYSTEM_PAGE_SIZE is larger than the native page
188 * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
189 * violation fault.  4K is apparently OK for all the platforms that python
190 * currently targets.
191 */
192#define SYSTEM_PAGE_SIZE        (4 * 1024)
193#define SYSTEM_PAGE_SIZE_MASK   (SYSTEM_PAGE_SIZE - 1)
194
195/*
196 * Maximum amount of memory managed by the allocator for small requests.
197 */
198#ifdef WITH_MEMORY_LIMITS
199#ifndef SMALL_MEMORY_LIMIT
200#define SMALL_MEMORY_LIMIT      (64 * 1024 * 1024)      /* 64 MB -- more? */
201#endif
202#endif
203
204/*
205 * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
206 * on a page boundary. This is a reserved virtual address space for the
207 * current process (obtained through a malloc()/mmap() call). In no way this
208 * means that the memory arenas will be used entirely. A malloc(<Big>) is
209 * usually an address range reservation for <Big> bytes, unless all pages within
210 * this space are referenced subsequently. So malloc'ing big blocks and not
211 * using them does not mean "wasting memory". It's an addressable range
212 * wastage...
213 *
214 * Arenas are allocated with mmap() on systems supporting anonymous memory
215 * mappings to reduce heap fragmentation.
216 */
217#define ARENA_SIZE              (256 << 10)     /* 256KB */
218
219#ifdef WITH_MEMORY_LIMITS
220#define MAX_ARENAS              (SMALL_MEMORY_LIMIT / ARENA_SIZE)
221#endif
222
223/*
224 * Size of the pools used for small blocks. Should be a power of 2,
225 * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.
226 */
227#define POOL_SIZE               SYSTEM_PAGE_SIZE        /* must be 2^N */
228#define POOL_SIZE_MASK          SYSTEM_PAGE_SIZE_MASK
229
230/*
231 * -- End of tunable settings section --
232 */
233
234/*==========================================================================*/
235
236/*
237 * Locking
238 *
239 * To reduce lock contention, it would probably be better to refine the
240 * crude function locking with per size class locking. I'm not positive
241 * however, whether it's worth switching to such locking policy because
242 * of the performance penalty it might introduce.
243 *
244 * The following macros describe the simplest (should also be the fastest)
245 * lock object on a particular platform and the init/fini/lock/unlock
246 * operations on it. The locks defined here are not expected to be recursive
247 * because it is assumed that they will always be called in the order:
248 * INIT, [LOCK, UNLOCK]*, FINI.
249 */
250
251/*
252 * Python's threads are serialized, so object malloc locking is disabled.
253 */
254#define SIMPLELOCK_DECL(lock)   /* simple lock declaration              */
255#define SIMPLELOCK_INIT(lock)   /* allocate (if needed) and initialize  */
256#define SIMPLELOCK_FINI(lock)   /* free/destroy an existing lock        */
257#define SIMPLELOCK_LOCK(lock)   /* acquire released lock */
258#define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */
259
260/*
261 * Basic types
262 * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom.
263 */
264#undef  uchar
265#define uchar   unsigned char   /* assuming == 8 bits  */
266
267#undef  uint
268#define uint    unsigned int    /* assuming >= 16 bits */
269
270#undef  ulong
271#define ulong   unsigned long   /* assuming >= 32 bits */
272
273#undef uptr
274#define uptr    Py_uintptr_t
275
276/* When you say memory, my mind reasons in terms of (pointers to) blocks */
277typedef uchar block;
278
279/* Pool for small blocks. */
280struct pool_header {
281    union { block *_padding;
282            uint count; } ref;          /* number of allocated blocks    */
283    block *freeblock;                   /* pool's free list head         */
284    struct pool_header *nextpool;       /* next pool of this size class  */
285    struct pool_header *prevpool;       /* previous pool       ""        */
286    uint arenaindex;                    /* index into arenas of base adr */
287    uint szidx;                         /* block size class index        */
288    uint nextoffset;                    /* bytes to virgin block         */
289    uint maxnextoffset;                 /* largest valid nextoffset      */
290};
291
292typedef struct pool_header *poolp;
293
294/* Record keeping for arenas. */
295struct arena_object {
296    /* The address of the arena, as returned by malloc.  Note that 0
297     * will never be returned by a successful malloc, and is used
298     * here to mark an arena_object that doesn't correspond to an
299     * allocated arena.
300     */
301    uptr address;
302
303    /* Pool-aligned pointer to the next pool to be carved off. */
304    block* pool_address;
305
306    /* The number of available pools in the arena:  free pools + never-
307     * allocated pools.
308     */
309    uint nfreepools;
310
311    /* The total number of pools in the arena, whether or not available. */
312    uint ntotalpools;
313
314    /* Singly-linked list of available pools. */
315    struct pool_header* freepools;
316
317    /* Whenever this arena_object is not associated with an allocated
318     * arena, the nextarena member is used to link all unassociated
319     * arena_objects in the singly-linked `unused_arena_objects` list.
320     * The prevarena member is unused in this case.
321     *
322     * When this arena_object is associated with an allocated arena
323     * with at least one available pool, both members are used in the
324     * doubly-linked `usable_arenas` list, which is maintained in
325     * increasing order of `nfreepools` values.
326     *
327     * Else this arena_object is associated with an allocated arena
328     * all of whose pools are in use.  `nextarena` and `prevarena`
329     * are both meaningless in this case.
330     */
331    struct arena_object* nextarena;
332    struct arena_object* prevarena;
333};
334
335#undef  ROUNDUP
336#define ROUNDUP(x)              (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK)
337#define POOL_OVERHEAD           ROUNDUP(sizeof(struct pool_header))
338
339#define DUMMY_SIZE_IDX          0xffff  /* size class of newly cached pools */
340
341/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
342#define POOL_ADDR(P) ((poolp)((uptr)(P) & ~(uptr)POOL_SIZE_MASK))
343
344/* Return total number of blocks in pool of size index I, as a uint. */
345#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
346
347/*==========================================================================*/
348
349/*
350 * This malloc lock
351 */
352SIMPLELOCK_DECL(_malloc_lock)
353#define LOCK()          SIMPLELOCK_LOCK(_malloc_lock)
354#define UNLOCK()        SIMPLELOCK_UNLOCK(_malloc_lock)
355#define LOCK_INIT()     SIMPLELOCK_INIT(_malloc_lock)
356#define LOCK_FINI()     SIMPLELOCK_FINI(_malloc_lock)
357
358/*
359 * Pool table -- headed, circular, doubly-linked lists of partially used pools.
360
361This is involved.  For an index i, usedpools[i+i] is the header for a list of
362all partially used pools holding small blocks with "size class idx" i. So
363usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
36416, and so on:  index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
365
366Pools are carved off an arena's highwater mark (an arena_object's pool_address
367member) as needed.  Once carved off, a pool is in one of three states forever
368after:
369
370used == partially used, neither empty nor full
371    At least one block in the pool is currently allocated, and at least one
372    block in the pool is not currently allocated (note this implies a pool
373    has room for at least two blocks).
374    This is a pool's initial state, as a pool is created only when malloc
375    needs space.
376    The pool holds blocks of a fixed size, and is in the circular list headed
377    at usedpools[i] (see above).  It's linked to the other used pools of the
378    same size class via the pool_header's nextpool and prevpool members.
379    If all but one block is currently allocated, a malloc can cause a
380    transition to the full state.  If all but one block is not currently
381    allocated, a free can cause a transition to the empty state.
382
383full == all the pool's blocks are currently allocated
384    On transition to full, a pool is unlinked from its usedpools[] list.
385    It's not linked to from anything then anymore, and its nextpool and
386    prevpool members are meaningless until it transitions back to used.
387    A free of a block in a full pool puts the pool back in the used state.
388    Then it's linked in at the front of the appropriate usedpools[] list, so
389    that the next allocation for its size class will reuse the freed block.
390
391empty == all the pool's blocks are currently available for allocation
392    On transition to empty, a pool is unlinked from its usedpools[] list,
393    and linked to the front of its arena_object's singly-linked freepools list,
394    via its nextpool member.  The prevpool member has no meaning in this case.
395    Empty pools have no inherent size class:  the next time a malloc finds
396    an empty list in usedpools[], it takes the first pool off of freepools.
397    If the size class needed happens to be the same as the size class the pool
398    last had, some pool initialization can be skipped.
399
400
401Block Management
402
403Blocks within pools are again carved out as needed.  pool->freeblock points to
404the start of a singly-linked list of free blocks within the pool.  When a
405block is freed, it's inserted at the front of its pool's freeblock list.  Note
406that the available blocks in a pool are *not* linked all together when a pool
407is initialized.  Instead only "the first two" (lowest addresses) blocks are
408set up, returning the first such block, and setting pool->freeblock to a
409one-block list holding the second such block.  This is consistent with that
410pymalloc strives at all levels (arena, pool, and block) never to touch a piece
411of memory until it's actually needed.
412
413So long as a pool is in the used state, we're certain there *is* a block
414available for allocating, and pool->freeblock is not NULL.  If pool->freeblock
415points to the end of the free list before we've carved the entire pool into
416blocks, that means we simply haven't yet gotten to one of the higher-address
417blocks.  The offset from the pool_header to the start of "the next" virgin
418block is stored in the pool_header nextoffset member, and the largest value
419of nextoffset that makes sense is stored in the maxnextoffset member when a
420pool is initialized.  All the blocks in a pool have been passed out at least
421once when and only when nextoffset > maxnextoffset.
422
423
424Major obscurity:  While the usedpools vector is declared to have poolp
425entries, it doesn't really.  It really contains two pointers per (conceptual)
426poolp entry, the nextpool and prevpool members of a pool_header.  The
427excruciating initialization code below fools C so that
428
429    usedpool[i+i]
430
431"acts like" a genuine poolp, but only so long as you only reference its
432nextpool and prevpool members.  The "- 2*sizeof(block *)" gibberish is
433compensating for that a pool_header's nextpool and prevpool members
434immediately follow a pool_header's first two members:
435
436    union { block *_padding;
437            uint count; } ref;
438    block *freeblock;
439
440each of which consume sizeof(block *) bytes.  So what usedpools[i+i] really
441contains is a fudged-up pointer p such that *if* C believes it's a poolp
442pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
443circular list is empty).
444
445It's unclear why the usedpools setup is so convoluted.  It could be to
446minimize the amount of cache required to hold this heavily-referenced table
447(which only *needs* the two interpool pointer members of a pool_header). OTOH,
448referencing code has to remember to "double the index" and doing so isn't
449free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
450on that C doesn't insert any padding anywhere in a pool_header at or before
451the prevpool member.
452**************************************************************************** */
453
454#define PTA(x)  ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
455#define PT(x)   PTA(x), PTA(x)
456
457static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
458    PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
459#if NB_SMALL_SIZE_CLASSES > 8
460    , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
461#if NB_SMALL_SIZE_CLASSES > 16
462    , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
463#if NB_SMALL_SIZE_CLASSES > 24
464    , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
465#if NB_SMALL_SIZE_CLASSES > 32
466    , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
467#if NB_SMALL_SIZE_CLASSES > 40
468    , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
469#if NB_SMALL_SIZE_CLASSES > 48
470    , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
471#if NB_SMALL_SIZE_CLASSES > 56
472    , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
473#if NB_SMALL_SIZE_CLASSES > 64
474#error "NB_SMALL_SIZE_CLASSES should be less than 64"
475#endif /* NB_SMALL_SIZE_CLASSES > 64 */
476#endif /* NB_SMALL_SIZE_CLASSES > 56 */
477#endif /* NB_SMALL_SIZE_CLASSES > 48 */
478#endif /* NB_SMALL_SIZE_CLASSES > 40 */
479#endif /* NB_SMALL_SIZE_CLASSES > 32 */
480#endif /* NB_SMALL_SIZE_CLASSES > 24 */
481#endif /* NB_SMALL_SIZE_CLASSES > 16 */
482#endif /* NB_SMALL_SIZE_CLASSES >  8 */
483};
484
485/*==========================================================================
486Arena management.
487
488`arenas` is a vector of arena_objects.  It contains maxarenas entries, some of
489which may not be currently used (== they're arena_objects that aren't
490currently associated with an allocated arena).  Note that arenas proper are
491separately malloc'ed.
492
493Prior to Python 2.5, arenas were never free()'ed.  Starting with Python 2.5,
494we do try to free() arenas, and use some mild heuristic strategies to increase
495the likelihood that arenas eventually can be freed.
496
497unused_arena_objects
498
499    This is a singly-linked list of the arena_objects that are currently not
500    being used (no arena is associated with them).  Objects are taken off the
501    head of the list in new_arena(), and are pushed on the head of the list in
502    PyObject_Free() when the arena is empty.  Key invariant:  an arena_object
503    is on this list if and only if its .address member is 0.
504
505usable_arenas
506
507    This is a doubly-linked list of the arena_objects associated with arenas
508    that have pools available.  These pools are either waiting to be reused,
509    or have not been used before.  The list is sorted to have the most-
510    allocated arenas first (ascending order based on the nfreepools member).
511    This means that the next allocation will come from a heavily used arena,
512    which gives the nearly empty arenas a chance to be returned to the system.
513    In my unscientific tests this dramatically improved the number of arenas
514    that could be freed.
515
516Note that an arena_object associated with an arena all of whose pools are
517currently in use isn't on either list.
518*/
519
520/* Array of objects used to track chunks of memory (arenas). */
521static struct arena_object* arenas = NULL;
522/* Number of slots currently allocated in the `arenas` vector. */
523static uint maxarenas = 0;
524
525/* The head of the singly-linked, NULL-terminated list of available
526 * arena_objects.
527 */
528static struct arena_object* unused_arena_objects = NULL;
529
530/* The head of the doubly-linked, NULL-terminated at each end, list of
531 * arena_objects associated with arenas that have pools available.
532 */
533static struct arena_object* usable_arenas = NULL;
534
535/* How many arena_objects do we initially allocate?
536 * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
537 * `arenas` vector.
538 */
539#define INITIAL_ARENA_OBJECTS 16
540
541/* Number of arenas allocated that haven't been free()'d. */
542static size_t narenas_currently_allocated = 0;
543
544#ifdef PYMALLOC_DEBUG
545/* Total number of times malloc() called to allocate an arena. */
546static size_t ntimes_arena_allocated = 0;
547/* High water mark (max value ever seen) for narenas_currently_allocated. */
548static size_t narenas_highwater = 0;
549#endif
550
551/* Allocate a new arena.  If we run out of memory, return NULL.  Else
552 * allocate a new arena, and return the address of an arena_object
553 * describing the new arena.  It's expected that the caller will set
554 * `usable_arenas` to the return value.
555 */
556static struct arena_object*
557new_arena(void)
558{
559    struct arena_object* arenaobj;
560    uint excess;        /* number of bytes above pool alignment */
561    void *address;
562    int err;
563
564#ifdef PYMALLOC_DEBUG
565    if (Py_GETENV("PYTHONMALLOCSTATS"))
566        _PyObject_DebugMallocStats();
567#endif
568    if (unused_arena_objects == NULL) {
569        uint i;
570        uint numarenas;
571        size_t nbytes;
572
573        /* Double the number of arena objects on each allocation.
574         * Note that it's possible for `numarenas` to overflow.
575         */
576        numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
577        if (numarenas <= maxarenas)
578            return NULL;                /* overflow */
579#if SIZEOF_SIZE_T <= SIZEOF_INT
580        if (numarenas > PY_SIZE_MAX / sizeof(*arenas))
581            return NULL;                /* overflow */
582#endif
583        nbytes = numarenas * sizeof(*arenas);
584        arenaobj = (struct arena_object *)realloc(arenas, nbytes);
585        if (arenaobj == NULL)
586            return NULL;
587        arenas = arenaobj;
588
589        /* We might need to fix pointers that were copied.  However,
590         * new_arena only gets called when all the pages in the
591         * previous arenas are full.  Thus, there are *no* pointers
592         * into the old array. Thus, we don't have to worry about
593         * invalid pointers.  Just to be sure, some asserts:
594         */
595        assert(usable_arenas == NULL);
596        assert(unused_arena_objects == NULL);
597
598        /* Put the new arenas on the unused_arena_objects list. */
599        for (i = maxarenas; i < numarenas; ++i) {
600            arenas[i].address = 0;              /* mark as unassociated */
601            arenas[i].nextarena = i < numarenas - 1 ?
602                                   &arenas[i+1] : NULL;
603        }
604
605        /* Update globals. */
606        unused_arena_objects = &arenas[maxarenas];
607        maxarenas = numarenas;
608    }
609
610    /* Take the next available arena object off the head of the list. */
611    assert(unused_arena_objects != NULL);
612    arenaobj = unused_arena_objects;
613    unused_arena_objects = arenaobj->nextarena;
614    assert(arenaobj->address == 0);
615#ifdef ARENAS_USE_MMAP
616    address = mmap(NULL, ARENA_SIZE, PROT_READ|PROT_WRITE,
617                   MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
618    err = (address == MAP_FAILED);
619#else
620    address = malloc(ARENA_SIZE);
621    err = (address == 0);
622#endif
623    if (err) {
624        /* The allocation failed: return NULL after putting the
625         * arenaobj back.
626         */
627        arenaobj->nextarena = unused_arena_objects;
628        unused_arena_objects = arenaobj;
629        return NULL;
630    }
631    arenaobj->address = (uptr)address;
632
633    ++narenas_currently_allocated;
634#ifdef PYMALLOC_DEBUG
635    ++ntimes_arena_allocated;
636    if (narenas_currently_allocated > narenas_highwater)
637        narenas_highwater = narenas_currently_allocated;
638#endif
639    arenaobj->freepools = NULL;
640    /* pool_address <- first pool-aligned address in the arena
641       nfreepools <- number of whole pools that fit after alignment */
642    arenaobj->pool_address = (block*)arenaobj->address;
643    arenaobj->nfreepools = ARENA_SIZE / POOL_SIZE;
644    assert(POOL_SIZE * arenaobj->nfreepools == ARENA_SIZE);
645    excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
646    if (excess != 0) {
647        --arenaobj->nfreepools;
648        arenaobj->pool_address += POOL_SIZE - excess;
649    }
650    arenaobj->ntotalpools = arenaobj->nfreepools;
651
652    return arenaobj;
653}
654
655/*
656Py_ADDRESS_IN_RANGE(P, POOL)
657
658Return true if and only if P is an address that was allocated by pymalloc.
659POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
660(the caller is asked to compute this because the macro expands POOL more than
661once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
662variable and pass the latter to the macro; because Py_ADDRESS_IN_RANGE is
663called on every alloc/realloc/free, micro-efficiency is important here).
664
665Tricky:  Let B be the arena base address associated with the pool, B =
666arenas[(POOL)->arenaindex].address.  Then P belongs to the arena if and only if
667
668    B <= P < B + ARENA_SIZE
669
670Subtracting B throughout, this is true iff
671
672    0 <= P-B < ARENA_SIZE
673
674By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
675
676Obscure:  A PyMem "free memory" function can call the pymalloc free or realloc
677before the first arena has been allocated.  `arenas` is still NULL in that
678case.  We're relying on that maxarenas is also 0 in that case, so that
679(POOL)->arenaindex < maxarenas  must be false, saving us from trying to index
680into a NULL arenas.
681
682Details:  given P and POOL, the arena_object corresponding to P is AO =
683arenas[(POOL)->arenaindex].  Suppose obmalloc controls P.  Then (barring wild
684stores, etc), POOL is the correct address of P's pool, AO.address is the
685correct base address of the pool's arena, and P must be within ARENA_SIZE of
686AO.address.  In addition, AO.address is not 0 (no arena can start at address 0
687(NULL)).  Therefore Py_ADDRESS_IN_RANGE correctly reports that obmalloc
688controls P.
689
690Now suppose obmalloc does not control P (e.g., P was obtained via a direct
691call to the system malloc() or realloc()).  (POOL)->arenaindex may be anything
692in this case -- it may even be uninitialized trash.  If the trash arenaindex
693is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
694control P.
695
696Else arenaindex is < maxarena, and AO is read up.  If AO corresponds to an
697allocated arena, obmalloc controls all the memory in slice AO.address :
698AO.address+ARENA_SIZE.  By case assumption, P is not controlled by obmalloc,
699so P doesn't lie in that slice, so the macro correctly reports that P is not
700controlled by obmalloc.
701
702Finally, if P is not controlled by obmalloc and AO corresponds to an unused
703arena_object (one not currently associated with an allocated arena),
704AO.address is 0, and the second test in the macro reduces to:
705
706    P < ARENA_SIZE
707
708If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
709that P is not controlled by obmalloc.  However, if P < ARENA_SIZE, this part
710of the test still passes, and the third clause (AO.address != 0) is necessary
711to get the correct result:  AO.address is 0 in this case, so the macro
712correctly reports that P is not controlled by obmalloc (despite that P lies in
713slice AO.address : AO.address + ARENA_SIZE).
714
715Note:  The third (AO.address != 0) clause was added in Python 2.5.  Before
7162.5, arenas were never free()'ed, and an arenaindex < maxarena always
717corresponded to a currently-allocated arena, so the "P is not controlled by
718obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
719was impossible.
720
721Note that the logic is excruciating, and reading up possibly uninitialized
722memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
723creates problems for some memory debuggers.  The overwhelming advantage is
724that this test determines whether an arbitrary address is controlled by
725obmalloc in a small constant time, independent of the number of arenas
726obmalloc controls.  Since this test is needed at every entry point, it's
727extremely desirable that it be this fast.
728
729Since Py_ADDRESS_IN_RANGE may be reading from memory which was not allocated
730by Python, it is important that (POOL)->arenaindex is read only once, as
731another thread may be concurrently modifying the value without holding the
732GIL.  To accomplish this, the arenaindex_temp variable is used to store
733(POOL)->arenaindex for the duration of the Py_ADDRESS_IN_RANGE macro's
734execution.  The caller of the macro is responsible for declaring this
735variable.
736*/
737#define Py_ADDRESS_IN_RANGE(P, POOL)                    \
738    ((arenaindex_temp = (POOL)->arenaindex) < maxarenas &&              \
739     (uptr)(P) - arenas[arenaindex_temp].address < (uptr)ARENA_SIZE && \
740     arenas[arenaindex_temp].address != 0)
741
742
743/* This is only useful when running memory debuggers such as
744 * Purify or Valgrind.  Uncomment to use.
745 *
746#define Py_USING_MEMORY_DEBUGGER
747 */
748
749#ifdef Py_USING_MEMORY_DEBUGGER
750
751/* Py_ADDRESS_IN_RANGE may access uninitialized memory by design
752 * This leads to thousands of spurious warnings when using
753 * Purify or Valgrind.  By making a function, we can easily
754 * suppress the uninitialized memory reads in this one function.
755 * So we won't ignore real errors elsewhere.
756 *
757 * Disable the macro and use a function.
758 */
759
760#undef Py_ADDRESS_IN_RANGE
761
762#if defined(__GNUC__) && ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) || \
763                          (__GNUC__ >= 4))
764#define Py_NO_INLINE __attribute__((__noinline__))
765#else
766#define Py_NO_INLINE
767#endif
768
769/* Don't make static, to try to ensure this isn't inlined. */
770int Py_ADDRESS_IN_RANGE(void *P, poolp pool) Py_NO_INLINE;
771#undef Py_NO_INLINE
772#endif
773
774/*==========================================================================*/
775
776/* malloc.  Note that nbytes==0 tries to return a non-NULL pointer, distinct
777 * from all other currently live pointers.  This may not be possible.
778 */
779
780/*
781 * The basic blocks are ordered by decreasing execution frequency,
782 * which minimizes the number of jumps in the most common cases,
783 * improves branching prediction and instruction scheduling (small
784 * block allocations typically result in a couple of instructions).
785 * Unless the optimizer reorders everything, being too smart...
786 */
787
788#undef PyObject_Malloc
789void *
790PyObject_Malloc(size_t nbytes)
791{
792    block *bp;
793    poolp pool;
794    poolp next;
795    uint size;
796
797#ifdef WITH_VALGRIND
798    if (UNLIKELY(running_on_valgrind == -1))
799        running_on_valgrind = RUNNING_ON_VALGRIND;
800    if (UNLIKELY(running_on_valgrind))
801        goto redirect;
802#endif
803
804    /*
805     * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
806     * Most python internals blindly use a signed Py_ssize_t to track
807     * things without checking for overflows or negatives.
808     * As size_t is unsigned, checking for nbytes < 0 is not required.
809     */
810    if (nbytes > PY_SSIZE_T_MAX)
811        return NULL;
812
813    /*
814     * This implicitly redirects malloc(0).
815     */
816    if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) {
817        LOCK();
818        /*
819         * Most frequent paths first
820         */
821        size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
822        pool = usedpools[size + size];
823        if (pool != pool->nextpool) {
824            /*
825             * There is a used pool for this size class.
826             * Pick up the head block of its free list.
827             */
828            ++pool->ref.count;
829            bp = pool->freeblock;
830            assert(bp != NULL);
831            if ((pool->freeblock = *(block **)bp) != NULL) {
832                UNLOCK();
833                return (void *)bp;
834            }
835            /*
836             * Reached the end of the free list, try to extend it.
837             */
838            if (pool->nextoffset <= pool->maxnextoffset) {
839                /* There is room for another block. */
840                pool->freeblock = (block*)pool +
841                                  pool->nextoffset;
842                pool->nextoffset += INDEX2SIZE(size);
843                *(block **)(pool->freeblock) = NULL;
844                UNLOCK();
845                return (void *)bp;
846            }
847            /* Pool is full, unlink from used pools. */
848            next = pool->nextpool;
849            pool = pool->prevpool;
850            next->prevpool = pool;
851            pool->nextpool = next;
852            UNLOCK();
853            return (void *)bp;
854        }
855
856        /* There isn't a pool of the right size class immediately
857         * available:  use a free pool.
858         */
859        if (usable_arenas == NULL) {
860            /* No arena has a free pool:  allocate a new arena. */
861#ifdef WITH_MEMORY_LIMITS
862            if (narenas_currently_allocated >= MAX_ARENAS) {
863                UNLOCK();
864                goto redirect;
865            }
866#endif
867            usable_arenas = new_arena();
868            if (usable_arenas == NULL) {
869                UNLOCK();
870                goto redirect;
871            }
872            usable_arenas->nextarena =
873                usable_arenas->prevarena = NULL;
874        }
875        assert(usable_arenas->address != 0);
876
877        /* Try to get a cached free pool. */
878        pool = usable_arenas->freepools;
879        if (pool != NULL) {
880            /* Unlink from cached pools. */
881            usable_arenas->freepools = pool->nextpool;
882
883            /* This arena already had the smallest nfreepools
884             * value, so decreasing nfreepools doesn't change
885             * that, and we don't need to rearrange the
886             * usable_arenas list.  However, if the arena has
887             * become wholly allocated, we need to remove its
888             * arena_object from usable_arenas.
889             */
890            --usable_arenas->nfreepools;
891            if (usable_arenas->nfreepools == 0) {
892                /* Wholly allocated:  remove. */
893                assert(usable_arenas->freepools == NULL);
894                assert(usable_arenas->nextarena == NULL ||
895                       usable_arenas->nextarena->prevarena ==
896                       usable_arenas);
897
898                usable_arenas = usable_arenas->nextarena;
899                if (usable_arenas != NULL) {
900                    usable_arenas->prevarena = NULL;
901                    assert(usable_arenas->address != 0);
902                }
903            }
904            else {
905                /* nfreepools > 0:  it must be that freepools
906                 * isn't NULL, or that we haven't yet carved
907                 * off all the arena's pools for the first
908                 * time.
909                 */
910                assert(usable_arenas->freepools != NULL ||
911                       usable_arenas->pool_address <=
912                       (block*)usable_arenas->address +
913                           ARENA_SIZE - POOL_SIZE);
914            }
915        init_pool:
916            /* Frontlink to used pools. */
917            next = usedpools[size + size]; /* == prev */
918            pool->nextpool = next;
919            pool->prevpool = next;
920            next->nextpool = pool;
921            next->prevpool = pool;
922            pool->ref.count = 1;
923            if (pool->szidx == size) {
924                /* Luckily, this pool last contained blocks
925                 * of the same size class, so its header
926                 * and free list are already initialized.
927                 */
928                bp = pool->freeblock;
929                pool->freeblock = *(block **)bp;
930                UNLOCK();
931                return (void *)bp;
932            }
933            /*
934             * Initialize the pool header, set up the free list to
935             * contain just the second block, and return the first
936             * block.
937             */
938            pool->szidx = size;
939            size = INDEX2SIZE(size);
940            bp = (block *)pool + POOL_OVERHEAD;
941            pool->nextoffset = POOL_OVERHEAD + (size << 1);
942            pool->maxnextoffset = POOL_SIZE - size;
943            pool->freeblock = bp + size;
944            *(block **)(pool->freeblock) = NULL;
945            UNLOCK();
946            return (void *)bp;
947        }
948
949        /* Carve off a new pool. */
950        assert(usable_arenas->nfreepools > 0);
951        assert(usable_arenas->freepools == NULL);
952        pool = (poolp)usable_arenas->pool_address;
953        assert((block*)pool <= (block*)usable_arenas->address +
954                               ARENA_SIZE - POOL_SIZE);
955        pool->arenaindex = usable_arenas - arenas;
956        assert(&arenas[pool->arenaindex] == usable_arenas);
957        pool->szidx = DUMMY_SIZE_IDX;
958        usable_arenas->pool_address += POOL_SIZE;
959        --usable_arenas->nfreepools;
960
961        if (usable_arenas->nfreepools == 0) {
962            assert(usable_arenas->nextarena == NULL ||
963                   usable_arenas->nextarena->prevarena ==
964                   usable_arenas);
965            /* Unlink the arena:  it is completely allocated. */
966            usable_arenas = usable_arenas->nextarena;
967            if (usable_arenas != NULL) {
968                usable_arenas->prevarena = NULL;
969                assert(usable_arenas->address != 0);
970            }
971        }
972
973        goto init_pool;
974    }
975
976    /* The small block allocator ends here. */
977
978redirect:
979    /* Redirect the original request to the underlying (libc) allocator.
980     * We jump here on bigger requests, on error in the code above (as a
981     * last chance to serve the request) or when the max memory limit
982     * has been reached.
983     */
984    if (nbytes == 0)
985        nbytes = 1;
986    return (void *)malloc(nbytes);
987}
988
989/* free */
990
991#undef PyObject_Free
992ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
993void
994PyObject_Free(void *p)
995{
996    poolp pool;
997    block *lastfree;
998    poolp next, prev;
999    uint size;
1000#ifndef Py_USING_MEMORY_DEBUGGER
1001    uint arenaindex_temp;
1002#endif
1003
1004    if (p == NULL)      /* free(NULL) has no effect */
1005        return;
1006
1007#ifdef WITH_VALGRIND
1008    if (UNLIKELY(running_on_valgrind > 0))
1009        goto redirect;
1010#endif
1011
1012    pool = POOL_ADDR(p);
1013    if (Py_ADDRESS_IN_RANGE(p, pool)) {
1014        /* We allocated this address. */
1015        LOCK();
1016        /* Link p to the start of the pool's freeblock list.  Since
1017         * the pool had at least the p block outstanding, the pool
1018         * wasn't empty (so it's already in a usedpools[] list, or
1019         * was full and is in no list -- it's not in the freeblocks
1020         * list in any case).
1021         */
1022        assert(pool->ref.count > 0);            /* else it was empty */
1023        *(block **)p = lastfree = pool->freeblock;
1024        pool->freeblock = (block *)p;
1025        if (lastfree) {
1026            struct arena_object* ao;
1027            uint nf;  /* ao->nfreepools */
1028
1029            /* freeblock wasn't NULL, so the pool wasn't full,
1030             * and the pool is in a usedpools[] list.
1031             */
1032            if (--pool->ref.count != 0) {
1033                /* pool isn't empty:  leave it in usedpools */
1034                UNLOCK();
1035                return;
1036            }
1037            /* Pool is now empty:  unlink from usedpools, and
1038             * link to the front of freepools.  This ensures that
1039             * previously freed pools will be allocated later
1040             * (being not referenced, they are perhaps paged out).
1041             */
1042            next = pool->nextpool;
1043            prev = pool->prevpool;
1044            next->prevpool = prev;
1045            prev->nextpool = next;
1046
1047            /* Link the pool to freepools.  This is a singly-linked
1048             * list, and pool->prevpool isn't used there.
1049             */
1050            ao = &arenas[pool->arenaindex];
1051            pool->nextpool = ao->freepools;
1052            ao->freepools = pool;
1053            nf = ++ao->nfreepools;
1054
1055            /* All the rest is arena management.  We just freed
1056             * a pool, and there are 4 cases for arena mgmt:
1057             * 1. If all the pools are free, return the arena to
1058             *    the system free().
1059             * 2. If this is the only free pool in the arena,
1060             *    add the arena back to the `usable_arenas` list.
1061             * 3. If the "next" arena has a smaller count of free
1062             *    pools, we have to "slide this arena right" to
1063             *    restore that usable_arenas is sorted in order of
1064             *    nfreepools.
1065             * 4. Else there's nothing more to do.
1066             */
1067            if (nf == ao->ntotalpools) {
1068                /* Case 1.  First unlink ao from usable_arenas.
1069                 */
1070                assert(ao->prevarena == NULL ||
1071                       ao->prevarena->address != 0);
1072                assert(ao ->nextarena == NULL ||
1073                       ao->nextarena->address != 0);
1074
1075                /* Fix the pointer in the prevarena, or the
1076                 * usable_arenas pointer.
1077                 */
1078                if (ao->prevarena == NULL) {
1079                    usable_arenas = ao->nextarena;
1080                    assert(usable_arenas == NULL ||
1081                           usable_arenas->address != 0);
1082                }
1083                else {
1084                    assert(ao->prevarena->nextarena == ao);
1085                    ao->prevarena->nextarena =
1086                        ao->nextarena;
1087                }
1088                /* Fix the pointer in the nextarena. */
1089                if (ao->nextarena != NULL) {
1090                    assert(ao->nextarena->prevarena == ao);
1091                    ao->nextarena->prevarena =
1092                        ao->prevarena;
1093                }
1094                /* Record that this arena_object slot is
1095                 * available to be reused.
1096                 */
1097                ao->nextarena = unused_arena_objects;
1098                unused_arena_objects = ao;
1099
1100                /* Free the entire arena. */
1101#ifdef ARENAS_USE_MMAP
1102                munmap((void *)ao->address, ARENA_SIZE);
1103#else
1104                free((void *)ao->address);
1105#endif
1106                ao->address = 0;                        /* mark unassociated */
1107                --narenas_currently_allocated;
1108
1109                UNLOCK();
1110                return;
1111            }
1112            if (nf == 1) {
1113                /* Case 2.  Put ao at the head of
1114                 * usable_arenas.  Note that because
1115                 * ao->nfreepools was 0 before, ao isn't
1116                 * currently on the usable_arenas list.
1117                 */
1118                ao->nextarena = usable_arenas;
1119                ao->prevarena = NULL;
1120                if (usable_arenas)
1121                    usable_arenas->prevarena = ao;
1122                usable_arenas = ao;
1123                assert(usable_arenas->address != 0);
1124
1125                UNLOCK();
1126                return;
1127            }
1128            /* If this arena is now out of order, we need to keep
1129             * the list sorted.  The list is kept sorted so that
1130             * the "most full" arenas are used first, which allows
1131             * the nearly empty arenas to be completely freed.  In
1132             * a few un-scientific tests, it seems like this
1133             * approach allowed a lot more memory to be freed.
1134             */
1135            if (ao->nextarena == NULL ||
1136                         nf <= ao->nextarena->nfreepools) {
1137                /* Case 4.  Nothing to do. */
1138                UNLOCK();
1139                return;
1140            }
1141            /* Case 3:  We have to move the arena towards the end
1142             * of the list, because it has more free pools than
1143             * the arena to its right.
1144             * First unlink ao from usable_arenas.
1145             */
1146            if (ao->prevarena != NULL) {
1147                /* ao isn't at the head of the list */
1148                assert(ao->prevarena->nextarena == ao);
1149                ao->prevarena->nextarena = ao->nextarena;
1150            }
1151            else {
1152                /* ao is at the head of the list */
1153                assert(usable_arenas == ao);
1154                usable_arenas = ao->nextarena;
1155            }
1156            ao->nextarena->prevarena = ao->prevarena;
1157
1158            /* Locate the new insertion point by iterating over
1159             * the list, using our nextarena pointer.
1160             */
1161            while (ao->nextarena != NULL &&
1162                            nf > ao->nextarena->nfreepools) {
1163                ao->prevarena = ao->nextarena;
1164                ao->nextarena = ao->nextarena->nextarena;
1165            }
1166
1167            /* Insert ao at this point. */
1168            assert(ao->nextarena == NULL ||
1169                ao->prevarena == ao->nextarena->prevarena);
1170            assert(ao->prevarena->nextarena == ao->nextarena);
1171
1172            ao->prevarena->nextarena = ao;
1173            if (ao->nextarena != NULL)
1174                ao->nextarena->prevarena = ao;
1175
1176            /* Verify that the swaps worked. */
1177            assert(ao->nextarena == NULL ||
1178                      nf <= ao->nextarena->nfreepools);
1179            assert(ao->prevarena == NULL ||
1180                      nf > ao->prevarena->nfreepools);
1181            assert(ao->nextarena == NULL ||
1182                ao->nextarena->prevarena == ao);
1183            assert((usable_arenas == ao &&
1184                ao->prevarena == NULL) ||
1185                ao->prevarena->nextarena == ao);
1186
1187            UNLOCK();
1188            return;
1189        }
1190        /* Pool was full, so doesn't currently live in any list:
1191         * link it to the front of the appropriate usedpools[] list.
1192         * This mimics LRU pool usage for new allocations and
1193         * targets optimal filling when several pools contain
1194         * blocks of the same size class.
1195         */
1196        --pool->ref.count;
1197        assert(pool->ref.count > 0);            /* else the pool is empty */
1198        size = pool->szidx;
1199        next = usedpools[size + size];
1200        prev = next->prevpool;
1201        /* insert pool before next:   prev <-> pool <-> next */
1202        pool->nextpool = next;
1203        pool->prevpool = prev;
1204        next->prevpool = pool;
1205        prev->nextpool = pool;
1206        UNLOCK();
1207        return;
1208    }
1209
1210#ifdef WITH_VALGRIND
1211redirect:
1212#endif
1213    /* We didn't allocate this address. */
1214    free(p);
1215}
1216
1217/* realloc.  If p is NULL, this acts like malloc(nbytes).  Else if nbytes==0,
1218 * then as the Python docs promise, we do not treat this like free(p), and
1219 * return a non-NULL result.
1220 */
1221
1222#undef PyObject_Realloc
1223ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
1224void *
1225PyObject_Realloc(void *p, size_t nbytes)
1226{
1227    void *bp;
1228    poolp pool;
1229    size_t size;
1230#ifndef Py_USING_MEMORY_DEBUGGER
1231    uint arenaindex_temp;
1232#endif
1233
1234    if (p == NULL)
1235        return PyObject_Malloc(nbytes);
1236
1237    /*
1238     * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
1239     * Most python internals blindly use a signed Py_ssize_t to track
1240     * things without checking for overflows or negatives.
1241     * As size_t is unsigned, checking for nbytes < 0 is not required.
1242     */
1243    if (nbytes > PY_SSIZE_T_MAX)
1244        return NULL;
1245
1246#ifdef WITH_VALGRIND
1247    /* Treat running_on_valgrind == -1 the same as 0 */
1248    if (UNLIKELY(running_on_valgrind > 0))
1249        goto redirect;
1250#endif
1251
1252    pool = POOL_ADDR(p);
1253    if (Py_ADDRESS_IN_RANGE(p, pool)) {
1254        /* We're in charge of this block */
1255        size = INDEX2SIZE(pool->szidx);
1256        if (nbytes <= size) {
1257            /* The block is staying the same or shrinking.  If
1258             * it's shrinking, there's a tradeoff:  it costs
1259             * cycles to copy the block to a smaller size class,
1260             * but it wastes memory not to copy it.  The
1261             * compromise here is to copy on shrink only if at
1262             * least 25% of size can be shaved off.
1263             */
1264            if (4 * nbytes > 3 * size) {
1265                /* It's the same,
1266                 * or shrinking and new/old > 3/4.
1267                 */
1268                return p;
1269            }
1270            size = nbytes;
1271        }
1272        bp = PyObject_Malloc(nbytes);
1273        if (bp != NULL) {
1274            memcpy(bp, p, size);
1275            PyObject_Free(p);
1276        }
1277        return bp;
1278    }
1279#ifdef WITH_VALGRIND
1280 redirect:
1281#endif
1282    /* We're not managing this block.  If nbytes <=
1283     * SMALL_REQUEST_THRESHOLD, it's tempting to try to take over this
1284     * block.  However, if we do, we need to copy the valid data from
1285     * the C-managed block to one of our blocks, and there's no portable
1286     * way to know how much of the memory space starting at p is valid.
1287     * As bug 1185883 pointed out the hard way, it's possible that the
1288     * C-managed block is "at the end" of allocated VM space, so that
1289     * a memory fault can occur if we try to copy nbytes bytes starting
1290     * at p.  Instead we punt:  let C continue to manage this block.
1291     */
1292    if (nbytes)
1293        return realloc(p, nbytes);
1294    /* C doesn't define the result of realloc(p, 0) (it may or may not
1295     * return NULL then), but Python's docs promise that nbytes==0 never
1296     * returns NULL.  We don't pass 0 to realloc(), to avoid that endcase
1297     * to begin with.  Even then, we can't be sure that realloc() won't
1298     * return NULL.
1299     */
1300    bp = realloc(p, 1);
1301    return bp ? bp : p;
1302}
1303
1304#else   /* ! WITH_PYMALLOC */
1305
1306/*==========================================================================*/
1307/* pymalloc not enabled:  Redirect the entry points to malloc.  These will
1308 * only be used by extensions that are compiled with pymalloc enabled. */
1309
1310void *
1311PyObject_Malloc(size_t n)
1312{
1313    return PyMem_MALLOC(n);
1314}
1315
1316void *
1317PyObject_Realloc(void *p, size_t n)
1318{
1319    return PyMem_REALLOC(p, n);
1320}
1321
1322void
1323PyObject_Free(void *p)
1324{
1325    PyMem_FREE(p);
1326}
1327#endif /* WITH_PYMALLOC */
1328
1329#ifdef PYMALLOC_DEBUG
1330/*==========================================================================*/
1331/* A x-platform debugging allocator.  This doesn't manage memory directly,
1332 * it wraps a real allocator, adding extra debugging info to the memory blocks.
1333 */
1334
1335/* Special bytes broadcast into debug memory blocks at appropriate times.
1336 * Strings of these are unlikely to be valid addresses, floats, ints or
1337 * 7-bit ASCII.
1338 */
1339#undef CLEANBYTE
1340#undef DEADBYTE
1341#undef FORBIDDENBYTE
1342#define CLEANBYTE      0xCB    /* clean (newly allocated) memory */
1343#define DEADBYTE       0xDB    /* dead (newly freed) memory */
1344#define FORBIDDENBYTE  0xFB    /* untouchable bytes at each end of a block */
1345
1346/* We tag each block with an API ID in order to tag API violations */
1347#define _PYMALLOC_MEM_ID 'm'   /* the PyMem_Malloc() API */
1348#define _PYMALLOC_OBJ_ID 'o'   /* The PyObject_Malloc() API */
1349
1350static size_t serialno = 0;     /* incremented on each debug {m,re}alloc */
1351
1352/* serialno is always incremented via calling this routine.  The point is
1353 * to supply a single place to set a breakpoint.
1354 */
1355static void
1356bumpserialno(void)
1357{
1358    ++serialno;
1359}
1360
1361#define SST SIZEOF_SIZE_T
1362
1363/* Read sizeof(size_t) bytes at p as a big-endian size_t. */
1364static size_t
1365read_size_t(const void *p)
1366{
1367    const uchar *q = (const uchar *)p;
1368    size_t result = *q++;
1369    int i;
1370
1371    for (i = SST; --i > 0; ++q)
1372        result = (result << 8) | *q;
1373    return result;
1374}
1375
1376/* Write n as a big-endian size_t, MSB at address p, LSB at
1377 * p + sizeof(size_t) - 1.
1378 */
1379static void
1380write_size_t(void *p, size_t n)
1381{
1382    uchar *q = (uchar *)p + SST - 1;
1383    int i;
1384
1385    for (i = SST; --i >= 0; --q) {
1386        *q = (uchar)(n & 0xff);
1387        n >>= 8;
1388    }
1389}
1390
1391#ifdef Py_DEBUG
1392/* Is target in the list?  The list is traversed via the nextpool pointers.
1393 * The list may be NULL-terminated, or circular.  Return 1 if target is in
1394 * list, else 0.
1395 */
1396static int
1397pool_is_in_list(const poolp target, poolp list)
1398{
1399    poolp origlist = list;
1400    assert(target != NULL);
1401    if (list == NULL)
1402        return 0;
1403    do {
1404        if (target == list)
1405            return 1;
1406        list = list->nextpool;
1407    } while (list != NULL && list != origlist);
1408    return 0;
1409}
1410
1411#else
1412#define pool_is_in_list(X, Y) 1
1413
1414#endif  /* Py_DEBUG */
1415
1416/* Let S = sizeof(size_t).  The debug malloc asks for 4*S extra bytes and
1417   fills them with useful stuff, here calling the underlying malloc's result p:
1418
1419p[0: S]
1420    Number of bytes originally asked for.  This is a size_t, big-endian (easier
1421    to read in a memory dump).
1422p[S: 2*S]
1423    Copies of FORBIDDENBYTE.  Used to catch under- writes and reads.
1424p[2*S: 2*S+n]
1425    The requested memory, filled with copies of CLEANBYTE.
1426    Used to catch reference to uninitialized memory.
1427    &p[2*S] is returned.  Note that this is 8-byte aligned if pymalloc
1428    handled the request itself.
1429p[2*S+n: 2*S+n+S]
1430    Copies of FORBIDDENBYTE.  Used to catch over- writes and reads.
1431p[2*S+n+S: 2*S+n+2*S]
1432    A serial number, incremented by 1 on each call to _PyObject_DebugMalloc
1433    and _PyObject_DebugRealloc.
1434    This is a big-endian size_t.
1435    If "bad memory" is detected later, the serial number gives an
1436    excellent way to set a breakpoint on the next run, to capture the
1437    instant at which this block was passed out.
1438*/
1439
1440/* debug replacements for the PyMem_* memory API */
1441void *
1442_PyMem_DebugMalloc(size_t nbytes)
1443{
1444    return _PyObject_DebugMallocApi(_PYMALLOC_MEM_ID, nbytes);
1445}
1446void *
1447_PyMem_DebugRealloc(void *p, size_t nbytes)
1448{
1449    return _PyObject_DebugReallocApi(_PYMALLOC_MEM_ID, p, nbytes);
1450}
1451void
1452_PyMem_DebugFree(void *p)
1453{
1454    _PyObject_DebugFreeApi(_PYMALLOC_MEM_ID, p);
1455}
1456
1457/* debug replacements for the PyObject_* memory API */
1458void *
1459_PyObject_DebugMalloc(size_t nbytes)
1460{
1461    return _PyObject_DebugMallocApi(_PYMALLOC_OBJ_ID, nbytes);
1462}
1463void *
1464_PyObject_DebugRealloc(void *p, size_t nbytes)
1465{
1466    return _PyObject_DebugReallocApi(_PYMALLOC_OBJ_ID, p, nbytes);
1467}
1468void
1469_PyObject_DebugFree(void *p)
1470{
1471    _PyObject_DebugFreeApi(_PYMALLOC_OBJ_ID, p);
1472}
1473void
1474_PyObject_DebugCheckAddress(const void *p)
1475{
1476    _PyObject_DebugCheckAddressApi(_PYMALLOC_OBJ_ID, p);
1477}
1478
1479
1480/* generic debug memory api, with an "id" to identify the API in use */
1481void *
1482_PyObject_DebugMallocApi(char id, size_t nbytes)
1483{
1484    uchar *p;           /* base address of malloc'ed block */
1485    uchar *tail;        /* p + 2*SST + nbytes == pointer to tail pad bytes */
1486    size_t total;       /* nbytes + 4*SST */
1487
1488    bumpserialno();
1489    total = nbytes + 4*SST;
1490    if (total < nbytes)
1491        /* overflow:  can't represent total as a size_t */
1492        return NULL;
1493
1494    p = (uchar *)PyObject_Malloc(total);
1495    if (p == NULL)
1496        return NULL;
1497
1498    /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */
1499    write_size_t(p, nbytes);
1500    p[SST] = (uchar)id;
1501    memset(p + SST + 1 , FORBIDDENBYTE, SST-1);
1502
1503    if (nbytes > 0)
1504        memset(p + 2*SST, CLEANBYTE, nbytes);
1505
1506    /* at tail, write pad (SST bytes) and serialno (SST bytes) */
1507    tail = p + 2*SST + nbytes;
1508    memset(tail, FORBIDDENBYTE, SST);
1509    write_size_t(tail + SST, serialno);
1510
1511    return p + 2*SST;
1512}
1513
1514/* The debug free first checks the 2*SST bytes on each end for sanity (in
1515   particular, that the FORBIDDENBYTEs with the api ID are still intact).
1516   Then fills the original bytes with DEADBYTE.
1517   Then calls the underlying free.
1518*/
1519void
1520_PyObject_DebugFreeApi(char api, void *p)
1521{
1522    uchar *q = (uchar *)p - 2*SST;  /* address returned from malloc */
1523    size_t nbytes;
1524
1525    if (p == NULL)
1526        return;
1527    _PyObject_DebugCheckAddressApi(api, p);
1528    nbytes = read_size_t(q);
1529    nbytes += 4*SST;
1530    if (nbytes > 0)
1531        memset(q, DEADBYTE, nbytes);
1532    PyObject_Free(q);
1533}
1534
1535void *
1536_PyObject_DebugReallocApi(char api, void *p, size_t nbytes)
1537{
1538    uchar *q = (uchar *)p;
1539    uchar *tail;
1540    size_t total;       /* nbytes + 4*SST */
1541    size_t original_nbytes;
1542    int i;
1543
1544    if (p == NULL)
1545        return _PyObject_DebugMallocApi(api, nbytes);
1546
1547    _PyObject_DebugCheckAddressApi(api, p);
1548    bumpserialno();
1549    original_nbytes = read_size_t(q - 2*SST);
1550    total = nbytes + 4*SST;
1551    if (total < nbytes)
1552        /* overflow:  can't represent total as a size_t */
1553        return NULL;
1554
1555    if (nbytes < original_nbytes) {
1556        /* shrinking:  mark old extra memory dead */
1557        memset(q + nbytes, DEADBYTE, original_nbytes - nbytes + 2*SST);
1558    }
1559
1560    /* Resize and add decorations. We may get a new pointer here, in which
1561     * case we didn't get the chance to mark the old memory with DEADBYTE,
1562     * but we live with that.
1563     */
1564    q = (uchar *)PyObject_Realloc(q - 2*SST, total);
1565    if (q == NULL)
1566        return NULL;
1567
1568    write_size_t(q, nbytes);
1569    assert(q[SST] == (uchar)api);
1570    for (i = 1; i < SST; ++i)
1571        assert(q[SST + i] == FORBIDDENBYTE);
1572    q += 2*SST;
1573    tail = q + nbytes;
1574    memset(tail, FORBIDDENBYTE, SST);
1575    write_size_t(tail + SST, serialno);
1576
1577    if (nbytes > original_nbytes) {
1578        /* growing:  mark new extra memory clean */
1579        memset(q + original_nbytes, CLEANBYTE,
1580               nbytes - original_nbytes);
1581    }
1582
1583    return q;
1584}
1585
1586/* Check the forbidden bytes on both ends of the memory allocated for p.
1587 * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
1588 * and call Py_FatalError to kill the program.
1589 * The API id, is also checked.
1590 */
1591 void
1592_PyObject_DebugCheckAddressApi(char api, const void *p)
1593{
1594    const uchar *q = (const uchar *)p;
1595    char msgbuf[64];
1596    char *msg;
1597    size_t nbytes;
1598    const uchar *tail;
1599    int i;
1600    char id;
1601
1602    if (p == NULL) {
1603        msg = "didn't expect a NULL pointer";
1604        goto error;
1605    }
1606
1607    /* Check the API id */
1608    id = (char)q[-SST];
1609    if (id != api) {
1610        msg = msgbuf;
1611        snprintf(msg, sizeof(msgbuf), "bad ID: Allocated using API '%c', verified using API '%c'", id, api);
1612        msgbuf[sizeof(msgbuf)-1] = 0;
1613        goto error;
1614    }
1615
1616    /* Check the stuff at the start of p first:  if there's underwrite
1617     * corruption, the number-of-bytes field may be nuts, and checking
1618     * the tail could lead to a segfault then.
1619     */
1620    for (i = SST-1; i >= 1; --i) {
1621        if (*(q-i) != FORBIDDENBYTE) {
1622            msg = "bad leading pad byte";
1623            goto error;
1624        }
1625    }
1626
1627    nbytes = read_size_t(q - 2*SST);
1628    tail = q + nbytes;
1629    for (i = 0; i < SST; ++i) {
1630        if (tail[i] != FORBIDDENBYTE) {
1631            msg = "bad trailing pad byte";
1632            goto error;
1633        }
1634    }
1635
1636    return;
1637
1638error:
1639    _PyObject_DebugDumpAddress(p);
1640    Py_FatalError(msg);
1641}
1642
1643/* Display info to stderr about the memory block at p. */
1644void
1645_PyObject_DebugDumpAddress(const void *p)
1646{
1647    const uchar *q = (const uchar *)p;
1648    const uchar *tail;
1649    size_t nbytes, serial;
1650    int i;
1651    int ok;
1652    char id;
1653
1654    fprintf(stderr, "Debug memory block at address p=%p:", p);
1655    if (p == NULL) {
1656        fprintf(stderr, "\n");
1657        return;
1658    }
1659    id = (char)q[-SST];
1660    fprintf(stderr, " API '%c'\n", id);
1661
1662    nbytes = read_size_t(q - 2*SST);
1663    fprintf(stderr, "    %" PY_FORMAT_SIZE_T "u bytes originally "
1664                    "requested\n", nbytes);
1665
1666    /* In case this is nuts, check the leading pad bytes first. */
1667    fprintf(stderr, "    The %d pad bytes at p-%d are ", SST-1, SST-1);
1668    ok = 1;
1669    for (i = 1; i <= SST-1; ++i) {
1670        if (*(q-i) != FORBIDDENBYTE) {
1671            ok = 0;
1672            break;
1673        }
1674    }
1675    if (ok)
1676        fputs("FORBIDDENBYTE, as expected.\n", stderr);
1677    else {
1678        fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
1679            FORBIDDENBYTE);
1680        for (i = SST-1; i >= 1; --i) {
1681            const uchar byte = *(q-i);
1682            fprintf(stderr, "        at p-%d: 0x%02x", i, byte);
1683            if (byte != FORBIDDENBYTE)
1684                fputs(" *** OUCH", stderr);
1685            fputc('\n', stderr);
1686        }
1687
1688        fputs("    Because memory is corrupted at the start, the "
1689              "count of bytes requested\n"
1690              "       may be bogus, and checking the trailing pad "
1691              "bytes may segfault.\n", stderr);
1692    }
1693
1694    tail = q + nbytes;
1695    fprintf(stderr, "    The %d pad bytes at tail=%p are ", SST, tail);
1696    ok = 1;
1697    for (i = 0; i < SST; ++i) {
1698        if (tail[i] != FORBIDDENBYTE) {
1699            ok = 0;
1700            break;
1701        }
1702    }
1703    if (ok)
1704        fputs("FORBIDDENBYTE, as expected.\n", stderr);
1705    else {
1706        fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
1707                FORBIDDENBYTE);
1708        for (i = 0; i < SST; ++i) {
1709            const uchar byte = tail[i];
1710            fprintf(stderr, "        at tail+%d: 0x%02x",
1711                    i, byte);
1712            if (byte != FORBIDDENBYTE)
1713                fputs(" *** OUCH", stderr);
1714            fputc('\n', stderr);
1715        }
1716    }
1717
1718    serial = read_size_t(tail + SST);
1719    fprintf(stderr, "    The block was made by call #%" PY_FORMAT_SIZE_T
1720                    "u to debug malloc/realloc.\n", serial);
1721
1722    if (nbytes > 0) {
1723        i = 0;
1724        fputs("    Data at p:", stderr);
1725        /* print up to 8 bytes at the start */
1726        while (q < tail && i < 8) {
1727            fprintf(stderr, " %02x", *q);
1728            ++i;
1729            ++q;
1730        }
1731        /* and up to 8 at the end */
1732        if (q < tail) {
1733            if (tail - q > 8) {
1734                fputs(" ...", stderr);
1735                q = tail - 8;
1736            }
1737            while (q < tail) {
1738                fprintf(stderr, " %02x", *q);
1739                ++q;
1740            }
1741        }
1742        fputc('\n', stderr);
1743    }
1744}
1745
1746static size_t
1747printone(const char* msg, size_t value)
1748{
1749    int i, k;
1750    char buf[100];
1751    size_t origvalue = value;
1752
1753    fputs(msg, stderr);
1754    for (i = (int)strlen(msg); i < 35; ++i)
1755        fputc(' ', stderr);
1756    fputc('=', stderr);
1757
1758    /* Write the value with commas. */
1759    i = 22;
1760    buf[i--] = '\0';
1761    buf[i--] = '\n';
1762    k = 3;
1763    do {
1764        size_t nextvalue = value / 10;
1765        unsigned int digit = (unsigned int)(value - nextvalue * 10);
1766        value = nextvalue;
1767        buf[i--] = (char)(digit + '0');
1768        --k;
1769        if (k == 0 && value && i >= 0) {
1770            k = 3;
1771            buf[i--] = ',';
1772        }
1773    } while (value && i >= 0);
1774
1775    while (i >= 0)
1776        buf[i--] = ' ';
1777    fputs(buf, stderr);
1778
1779    return origvalue;
1780}
1781
1782/* Print summary info to stderr about the state of pymalloc's structures.
1783 * In Py_DEBUG mode, also perform some expensive internal consistency
1784 * checks.
1785 */
1786void
1787_PyObject_DebugMallocStats(void)
1788{
1789    uint i;
1790    const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
1791    /* # of pools, allocated blocks, and free blocks per class index */
1792    size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
1793    size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
1794    size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
1795    /* total # of allocated bytes in used and full pools */
1796    size_t allocated_bytes = 0;
1797    /* total # of available bytes in used pools */
1798    size_t available_bytes = 0;
1799    /* # of free pools + pools not yet carved out of current arena */
1800    uint numfreepools = 0;
1801    /* # of bytes for arena alignment padding */
1802    size_t arena_alignment = 0;
1803    /* # of bytes in used and full pools used for pool_headers */
1804    size_t pool_header_bytes = 0;
1805    /* # of bytes in used and full pools wasted due to quantization,
1806     * i.e. the necessarily leftover space at the ends of used and
1807     * full pools.
1808     */
1809    size_t quantization = 0;
1810    /* # of arenas actually allocated. */
1811    size_t narenas = 0;
1812    /* running total -- should equal narenas * ARENA_SIZE */
1813    size_t total;
1814    char buf[128];
1815
1816    fprintf(stderr, "Small block threshold = %d, in %u size classes.\n",
1817            SMALL_REQUEST_THRESHOLD, numclasses);
1818
1819    for (i = 0; i < numclasses; ++i)
1820        numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
1821
1822    /* Because full pools aren't linked to from anything, it's easiest
1823     * to march over all the arenas.  If we're lucky, most of the memory
1824     * will be living in full pools -- would be a shame to miss them.
1825     */
1826    for (i = 0; i < maxarenas; ++i) {
1827        uint j;
1828        uptr base = arenas[i].address;
1829
1830        /* Skip arenas which are not allocated. */
1831        if (arenas[i].address == (uptr)NULL)
1832            continue;
1833        narenas += 1;
1834
1835        numfreepools += arenas[i].nfreepools;
1836
1837        /* round up to pool alignment */
1838        if (base & (uptr)POOL_SIZE_MASK) {
1839            arena_alignment += POOL_SIZE;
1840            base &= ~(uptr)POOL_SIZE_MASK;
1841            base += POOL_SIZE;
1842        }
1843
1844        /* visit every pool in the arena */
1845        assert(base <= (uptr) arenas[i].pool_address);
1846        for (j = 0;
1847                    base < (uptr) arenas[i].pool_address;
1848                    ++j, base += POOL_SIZE) {
1849            poolp p = (poolp)base;
1850            const uint sz = p->szidx;
1851            uint freeblocks;
1852
1853            if (p->ref.count == 0) {
1854                /* currently unused */
1855                assert(pool_is_in_list(p, arenas[i].freepools));
1856                continue;
1857            }
1858            ++numpools[sz];
1859            numblocks[sz] += p->ref.count;
1860            freeblocks = NUMBLOCKS(sz) - p->ref.count;
1861            numfreeblocks[sz] += freeblocks;
1862#ifdef Py_DEBUG
1863            if (freeblocks > 0)
1864                assert(pool_is_in_list(p, usedpools[sz + sz]));
1865#endif
1866        }
1867    }
1868    assert(narenas == narenas_currently_allocated);
1869
1870    fputc('\n', stderr);
1871    fputs("class   size   num pools   blocks in use  avail blocks\n"
1872          "-----   ----   ---------   -------------  ------------\n",
1873          stderr);
1874
1875    for (i = 0; i < numclasses; ++i) {
1876        size_t p = numpools[i];
1877        size_t b = numblocks[i];
1878        size_t f = numfreeblocks[i];
1879        uint size = INDEX2SIZE(i);
1880        if (p == 0) {
1881            assert(b == 0 && f == 0);
1882            continue;
1883        }
1884        fprintf(stderr, "%5u %6u "
1885                        "%11" PY_FORMAT_SIZE_T "u "
1886                        "%15" PY_FORMAT_SIZE_T "u "
1887                        "%13" PY_FORMAT_SIZE_T "u\n",
1888                i, size, p, b, f);
1889        allocated_bytes += b * size;
1890        available_bytes += f * size;
1891        pool_header_bytes += p * POOL_OVERHEAD;
1892        quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
1893    }
1894    fputc('\n', stderr);
1895    (void)printone("# times object malloc called", serialno);
1896
1897    (void)printone("# arenas allocated total", ntimes_arena_allocated);
1898    (void)printone("# arenas reclaimed", ntimes_arena_allocated - narenas);
1899    (void)printone("# arenas highwater mark", narenas_highwater);
1900    (void)printone("# arenas allocated current", narenas);
1901
1902    PyOS_snprintf(buf, sizeof(buf),
1903        "%" PY_FORMAT_SIZE_T "u arenas * %d bytes/arena",
1904        narenas, ARENA_SIZE);
1905    (void)printone(buf, narenas * ARENA_SIZE);
1906
1907    fputc('\n', stderr);
1908
1909    total = printone("# bytes in allocated blocks", allocated_bytes);
1910    total += printone("# bytes in available blocks", available_bytes);
1911
1912    PyOS_snprintf(buf, sizeof(buf),
1913        "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
1914    total += printone(buf, (size_t)numfreepools * POOL_SIZE);
1915
1916    total += printone("# bytes lost to pool headers", pool_header_bytes);
1917    total += printone("# bytes lost to quantization", quantization);
1918    total += printone("# bytes lost to arena alignment", arena_alignment);
1919    (void)printone("Total", total);
1920}
1921
1922#endif  /* PYMALLOC_DEBUG */
1923
1924#ifdef Py_USING_MEMORY_DEBUGGER
1925/* Make this function last so gcc won't inline it since the definition is
1926 * after the reference.
1927 */
1928int
1929Py_ADDRESS_IN_RANGE(void *P, poolp pool)
1930{
1931    uint arenaindex_temp = pool->arenaindex;
1932
1933    return arenaindex_temp < maxarenas &&
1934           (uptr)P - arenas[arenaindex_temp].address < (uptr)ARENA_SIZE &&
1935           arenas[arenaindex_temp].address != 0;
1936}
1937#endif
1938