1"""Random variable generators.
2
3    integers
4    --------
5           uniform within range
6
7    sequences
8    ---------
9           pick random element
10           pick random sample
11           generate random permutation
12
13    distributions on the real line:
14    ------------------------------
15           uniform
16           triangular
17           normal (Gaussian)
18           lognormal
19           negative exponential
20           gamma
21           beta
22           pareto
23           Weibull
24
25    distributions on the circle (angles 0 to 2pi)
26    ---------------------------------------------
27           circular uniform
28           von Mises
29
30General notes on the underlying Mersenne Twister core generator:
31
32* The period is 2**19937-1.
33* It is one of the most extensively tested generators in existence.
34* Without a direct way to compute N steps forward, the semantics of
35  jumpahead(n) are weakened to simply jump to another distant state and rely
36  on the large period to avoid overlapping sequences.
37* The random() method is implemented in C, executes in a single Python step,
38  and is, therefore, threadsafe.
39
40"""
41
42from __future__ import division
43from warnings import warn as _warn
44from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
45from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
46from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
47from os import urandom as _urandom
48from binascii import hexlify as _hexlify
49import hashlib as _hashlib
50
51__all__ = ["Random","seed","random","uniform","randint","choice","sample",
52           "randrange","shuffle","normalvariate","lognormvariate",
53           "expovariate","vonmisesvariate","gammavariate","triangular",
54           "gauss","betavariate","paretovariate","weibullvariate",
55           "getstate","setstate","jumpahead", "WichmannHill", "getrandbits",
56           "SystemRandom"]
57
58NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
59TWOPI = 2.0*_pi
60LOG4 = _log(4.0)
61SG_MAGICCONST = 1.0 + _log(4.5)
62BPF = 53        # Number of bits in a float
63RECIP_BPF = 2**-BPF
64
65
66# Translated by Guido van Rossum from C source provided by
67# Adrian Baddeley.  Adapted by Raymond Hettinger for use with
68# the Mersenne Twister  and os.urandom() core generators.
69
70import _random
71
72class Random(_random.Random):
73    """Random number generator base class used by bound module functions.
74
75    Used to instantiate instances of Random to get generators that don't
76    share state.  Especially useful for multi-threaded programs, creating
77    a different instance of Random for each thread, and using the jumpahead()
78    method to ensure that the generated sequences seen by each thread don't
79    overlap.
80
81    Class Random can also be subclassed if you want to use a different basic
82    generator of your own devising: in that case, override the following
83    methods: random(), seed(), getstate(), setstate() and jumpahead().
84    Optionally, implement a getrandbits() method so that randrange() can cover
85    arbitrarily large ranges.
86
87    """
88
89    VERSION = 3     # used by getstate/setstate
90
91    def __init__(self, x=None):
92        """Initialize an instance.
93
94        Optional argument x controls seeding, as for Random.seed().
95        """
96
97        self.seed(x)
98        self.gauss_next = None
99
100    def seed(self, a=None):
101        """Initialize internal state from hashable object.
102
103        None or no argument seeds from current time or from an operating
104        system specific randomness source if available.
105
106        If a is not None or an int or long, hash(a) is used instead.
107        """
108
109        if a is None:
110            try:
111                a = long(_hexlify(_urandom(16)), 16)
112            except NotImplementedError:
113                import time
114                a = long(time.time() * 256) # use fractional seconds
115
116        super(Random, self).seed(a)
117        self.gauss_next = None
118
119    def getstate(self):
120        """Return internal state; can be passed to setstate() later."""
121        return self.VERSION, super(Random, self).getstate(), self.gauss_next
122
123    def setstate(self, state):
124        """Restore internal state from object returned by getstate()."""
125        version = state[0]
126        if version == 3:
127            version, internalstate, self.gauss_next = state
128            super(Random, self).setstate(internalstate)
129        elif version == 2:
130            version, internalstate, self.gauss_next = state
131            # In version 2, the state was saved as signed ints, which causes
132            #   inconsistencies between 32/64-bit systems. The state is
133            #   really unsigned 32-bit ints, so we convert negative ints from
134            #   version 2 to positive longs for version 3.
135            try:
136                internalstate = tuple( long(x) % (2**32) for x in internalstate )
137            except ValueError, e:
138                raise TypeError, e
139            super(Random, self).setstate(internalstate)
140        else:
141            raise ValueError("state with version %s passed to "
142                             "Random.setstate() of version %s" %
143                             (version, self.VERSION))
144
145    def jumpahead(self, n):
146        """Change the internal state to one that is likely far away
147        from the current state.  This method will not be in Py3.x,
148        so it is better to simply reseed.
149        """
150        # The super.jumpahead() method uses shuffling to change state,
151        # so it needs a large and "interesting" n to work with.  Here,
152        # we use hashing to create a large n for the shuffle.
153        s = repr(n) + repr(self.getstate())
154        n = int(_hashlib.new('sha512', s).hexdigest(), 16)
155        super(Random, self).jumpahead(n)
156
157## ---- Methods below this point do not need to be overridden when
158## ---- subclassing for the purpose of using a different core generator.
159
160## -------------------- pickle support  -------------------
161
162    def __getstate__(self): # for pickle
163        return self.getstate()
164
165    def __setstate__(self, state):  # for pickle
166        self.setstate(state)
167
168    def __reduce__(self):
169        return self.__class__, (), self.getstate()
170
171## -------------------- integer methods  -------------------
172
173    def randrange(self, start, stop=None, step=1, int=int, default=None,
174                  maxwidth=1L<<BPF):
175        """Choose a random item from range(start, stop[, step]).
176
177        This fixes the problem with randint() which includes the
178        endpoint; in Python this is usually not what you want.
179        Do not supply the 'int', 'default', and 'maxwidth' arguments.
180        """
181
182        # This code is a bit messy to make it fast for the
183        # common case while still doing adequate error checking.
184        istart = int(start)
185        if istart != start:
186            raise ValueError, "non-integer arg 1 for randrange()"
187        if stop is default:
188            if istart > 0:
189                if istart >= maxwidth:
190                    return self._randbelow(istart)
191                return int(self.random() * istart)
192            raise ValueError, "empty range for randrange()"
193
194        # stop argument supplied.
195        istop = int(stop)
196        if istop != stop:
197            raise ValueError, "non-integer stop for randrange()"
198        width = istop - istart
199        if step == 1 and width > 0:
200            # Note that
201            #     int(istart + self.random()*width)
202            # instead would be incorrect.  For example, consider istart
203            # = -2 and istop = 0.  Then the guts would be in
204            # -2.0 to 0.0 exclusive on both ends (ignoring that random()
205            # might return 0.0), and because int() truncates toward 0, the
206            # final result would be -1 or 0 (instead of -2 or -1).
207            #     istart + int(self.random()*width)
208            # would also be incorrect, for a subtler reason:  the RHS
209            # can return a long, and then randrange() would also return
210            # a long, but we're supposed to return an int (for backward
211            # compatibility).
212
213            if width >= maxwidth:
214                return int(istart + self._randbelow(width))
215            return int(istart + int(self.random()*width))
216        if step == 1:
217            raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart, istop, width)
218
219        # Non-unit step argument supplied.
220        istep = int(step)
221        if istep != step:
222            raise ValueError, "non-integer step for randrange()"
223        if istep > 0:
224            n = (width + istep - 1) // istep
225        elif istep < 0:
226            n = (width + istep + 1) // istep
227        else:
228            raise ValueError, "zero step for randrange()"
229
230        if n <= 0:
231            raise ValueError, "empty range for randrange()"
232
233        if n >= maxwidth:
234            return istart + istep*self._randbelow(n)
235        return istart + istep*int(self.random() * n)
236
237    def randint(self, a, b):
238        """Return random integer in range [a, b], including both end points.
239        """
240
241        return self.randrange(a, b+1)
242
243    def _randbelow(self, n, _log=_log, int=int, _maxwidth=1L<<BPF,
244                   _Method=_MethodType, _BuiltinMethod=_BuiltinMethodType):
245        """Return a random int in the range [0,n)
246
247        Handles the case where n has more bits than returned
248        by a single call to the underlying generator.
249        """
250
251        try:
252            getrandbits = self.getrandbits
253        except AttributeError:
254            pass
255        else:
256            # Only call self.getrandbits if the original random() builtin method
257            # has not been overridden or if a new getrandbits() was supplied.
258            # This assures that the two methods correspond.
259            if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
260                k = int(1.00001 + _log(n-1, 2.0))   # 2**k > n-1 > 2**(k-2)
261                r = getrandbits(k)
262                while r >= n:
263                    r = getrandbits(k)
264                return r
265        if n >= _maxwidth:
266            _warn("Underlying random() generator does not supply \n"
267                "enough bits to choose from a population range this large")
268        return int(self.random() * n)
269
270## -------------------- sequence methods  -------------------
271
272    def choice(self, seq):
273        """Choose a random element from a non-empty sequence."""
274        return seq[int(self.random() * len(seq))]  # raises IndexError if seq is empty
275
276    def shuffle(self, x, random=None, int=int):
277        """x, random=random.random -> shuffle list x in place; return None.
278
279        Optional arg random is a 0-argument function returning a random
280        float in [0.0, 1.0); by default, the standard random.random.
281        """
282
283        if random is None:
284            random = self.random
285        for i in reversed(xrange(1, len(x))):
286            # pick an element in x[:i+1] with which to exchange x[i]
287            j = int(random() * (i+1))
288            x[i], x[j] = x[j], x[i]
289
290    def sample(self, population, k):
291        """Chooses k unique random elements from a population sequence.
292
293        Returns a new list containing elements from the population while
294        leaving the original population unchanged.  The resulting list is
295        in selection order so that all sub-slices will also be valid random
296        samples.  This allows raffle winners (the sample) to be partitioned
297        into grand prize and second place winners (the subslices).
298
299        Members of the population need not be hashable or unique.  If the
300        population contains repeats, then each occurrence is a possible
301        selection in the sample.
302
303        To choose a sample in a range of integers, use xrange as an argument.
304        This is especially fast and space efficient for sampling from a
305        large population:   sample(xrange(10000000), 60)
306        """
307
308        # Sampling without replacement entails tracking either potential
309        # selections (the pool) in a list or previous selections in a set.
310
311        # When the number of selections is small compared to the
312        # population, then tracking selections is efficient, requiring
313        # only a small set and an occasional reselection.  For
314        # a larger number of selections, the pool tracking method is
315        # preferred since the list takes less space than the
316        # set and it doesn't suffer from frequent reselections.
317
318        n = len(population)
319        if not 0 <= k <= n:
320            raise ValueError("sample larger than population")
321        random = self.random
322        _int = int
323        result = [None] * k
324        setsize = 21        # size of a small set minus size of an empty list
325        if k > 5:
326            setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
327        if n <= setsize or hasattr(population, "keys"):
328            # An n-length list is smaller than a k-length set, or this is a
329            # mapping type so the other algorithm wouldn't work.
330            pool = list(population)
331            for i in xrange(k):         # invariant:  non-selected at [0,n-i)
332                j = _int(random() * (n-i))
333                result[i] = pool[j]
334                pool[j] = pool[n-i-1]   # move non-selected item into vacancy
335        else:
336            try:
337                selected = set()
338                selected_add = selected.add
339                for i in xrange(k):
340                    j = _int(random() * n)
341                    while j in selected:
342                        j = _int(random() * n)
343                    selected_add(j)
344                    result[i] = population[j]
345            except (TypeError, KeyError):   # handle (at least) sets
346                if isinstance(population, list):
347                    raise
348                return self.sample(tuple(population), k)
349        return result
350
351## -------------------- real-valued distributions  -------------------
352
353## -------------------- uniform distribution -------------------
354
355    def uniform(self, a, b):
356        "Get a random number in the range [a, b) or [a, b] depending on rounding."
357        return a + (b-a) * self.random()
358
359## -------------------- triangular --------------------
360
361    def triangular(self, low=0.0, high=1.0, mode=None):
362        """Triangular distribution.
363
364        Continuous distribution bounded by given lower and upper limits,
365        and having a given mode value in-between.
366
367        http://en.wikipedia.org/wiki/Triangular_distribution
368
369        """
370        u = self.random()
371        c = 0.5 if mode is None else (mode - low) / (high - low)
372        if u > c:
373            u = 1.0 - u
374            c = 1.0 - c
375            low, high = high, low
376        return low + (high - low) * (u * c) ** 0.5
377
378## -------------------- normal distribution --------------------
379
380    def normalvariate(self, mu, sigma):
381        """Normal distribution.
382
383        mu is the mean, and sigma is the standard deviation.
384
385        """
386        # mu = mean, sigma = standard deviation
387
388        # Uses Kinderman and Monahan method. Reference: Kinderman,
389        # A.J. and Monahan, J.F., "Computer generation of random
390        # variables using the ratio of uniform deviates", ACM Trans
391        # Math Software, 3, (1977), pp257-260.
392
393        random = self.random
394        while 1:
395            u1 = random()
396            u2 = 1.0 - random()
397            z = NV_MAGICCONST*(u1-0.5)/u2
398            zz = z*z/4.0
399            if zz <= -_log(u2):
400                break
401        return mu + z*sigma
402
403## -------------------- lognormal distribution --------------------
404
405    def lognormvariate(self, mu, sigma):
406        """Log normal distribution.
407
408        If you take the natural logarithm of this distribution, you'll get a
409        normal distribution with mean mu and standard deviation sigma.
410        mu can have any value, and sigma must be greater than zero.
411
412        """
413        return _exp(self.normalvariate(mu, sigma))
414
415## -------------------- exponential distribution --------------------
416
417    def expovariate(self, lambd):
418        """Exponential distribution.
419
420        lambd is 1.0 divided by the desired mean.  It should be
421        nonzero.  (The parameter would be called "lambda", but that is
422        a reserved word in Python.)  Returned values range from 0 to
423        positive infinity if lambd is positive, and from negative
424        infinity to 0 if lambd is negative.
425
426        """
427        # lambd: rate lambd = 1/mean
428        # ('lambda' is a Python reserved word)
429
430        random = self.random
431        u = random()
432        while u <= 1e-7:
433            u = random()
434        return -_log(u)/lambd
435
436## -------------------- von Mises distribution --------------------
437
438    def vonmisesvariate(self, mu, kappa):
439        """Circular data distribution.
440
441        mu is the mean angle, expressed in radians between 0 and 2*pi, and
442        kappa is the concentration parameter, which must be greater than or
443        equal to zero.  If kappa is equal to zero, this distribution reduces
444        to a uniform random angle over the range 0 to 2*pi.
445
446        """
447        # mu:    mean angle (in radians between 0 and 2*pi)
448        # kappa: concentration parameter kappa (>= 0)
449        # if kappa = 0 generate uniform random angle
450
451        # Based upon an algorithm published in: Fisher, N.I.,
452        # "Statistical Analysis of Circular Data", Cambridge
453        # University Press, 1993.
454
455        # Thanks to Magnus Kessler for a correction to the
456        # implementation of step 4.
457
458        random = self.random
459        if kappa <= 1e-6:
460            return TWOPI * random()
461
462        a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
463        b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
464        r = (1.0 + b * b)/(2.0 * b)
465
466        while 1:
467            u1 = random()
468
469            z = _cos(_pi * u1)
470            f = (1.0 + r * z)/(r + z)
471            c = kappa * (r - f)
472
473            u2 = random()
474
475            if u2 < c * (2.0 - c) or u2 <= c * _exp(1.0 - c):
476                break
477
478        u3 = random()
479        if u3 > 0.5:
480            theta = (mu % TWOPI) + _acos(f)
481        else:
482            theta = (mu % TWOPI) - _acos(f)
483
484        return theta
485
486## -------------------- gamma distribution --------------------
487
488    def gammavariate(self, alpha, beta):
489        """Gamma distribution.  Not the gamma function!
490
491        Conditions on the parameters are alpha > 0 and beta > 0.
492
493        The probability distribution function is:
494
495                    x ** (alpha - 1) * math.exp(-x / beta)
496          pdf(x) =  --------------------------------------
497                      math.gamma(alpha) * beta ** alpha
498
499        """
500
501        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
502
503        # Warning: a few older sources define the gamma distribution in terms
504        # of alpha > -1.0
505        if alpha <= 0.0 or beta <= 0.0:
506            raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
507
508        random = self.random
509        if alpha > 1.0:
510
511            # Uses R.C.H. Cheng, "The generation of Gamma
512            # variables with non-integral shape parameters",
513            # Applied Statistics, (1977), 26, No. 1, p71-74
514
515            ainv = _sqrt(2.0 * alpha - 1.0)
516            bbb = alpha - LOG4
517            ccc = alpha + ainv
518
519            while 1:
520                u1 = random()
521                if not 1e-7 < u1 < .9999999:
522                    continue
523                u2 = 1.0 - random()
524                v = _log(u1/(1.0-u1))/ainv
525                x = alpha*_exp(v)
526                z = u1*u1*u2
527                r = bbb+ccc*v-x
528                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
529                    return x * beta
530
531        elif alpha == 1.0:
532            # expovariate(1)
533            u = random()
534            while u <= 1e-7:
535                u = random()
536            return -_log(u) * beta
537
538        else:   # alpha is between 0 and 1 (exclusive)
539
540            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
541
542            while 1:
543                u = random()
544                b = (_e + alpha)/_e
545                p = b*u
546                if p <= 1.0:
547                    x = p ** (1.0/alpha)
548                else:
549                    x = -_log((b-p)/alpha)
550                u1 = random()
551                if p > 1.0:
552                    if u1 <= x ** (alpha - 1.0):
553                        break
554                elif u1 <= _exp(-x):
555                    break
556            return x * beta
557
558## -------------------- Gauss (faster alternative) --------------------
559
560    def gauss(self, mu, sigma):
561        """Gaussian distribution.
562
563        mu is the mean, and sigma is the standard deviation.  This is
564        slightly faster than the normalvariate() function.
565
566        Not thread-safe without a lock around calls.
567
568        """
569
570        # When x and y are two variables from [0, 1), uniformly
571        # distributed, then
572        #
573        #    cos(2*pi*x)*sqrt(-2*log(1-y))
574        #    sin(2*pi*x)*sqrt(-2*log(1-y))
575        #
576        # are two *independent* variables with normal distribution
577        # (mu = 0, sigma = 1).
578        # (Lambert Meertens)
579        # (corrected version; bug discovered by Mike Miller, fixed by LM)
580
581        # Multithreading note: When two threads call this function
582        # simultaneously, it is possible that they will receive the
583        # same return value.  The window is very small though.  To
584        # avoid this, you have to use a lock around all calls.  (I
585        # didn't want to slow this down in the serial case by using a
586        # lock here.)
587
588        random = self.random
589        z = self.gauss_next
590        self.gauss_next = None
591        if z is None:
592            x2pi = random() * TWOPI
593            g2rad = _sqrt(-2.0 * _log(1.0 - random()))
594            z = _cos(x2pi) * g2rad
595            self.gauss_next = _sin(x2pi) * g2rad
596
597        return mu + z*sigma
598
599## -------------------- beta --------------------
600## See
601## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
602## for Ivan Frohne's insightful analysis of why the original implementation:
603##
604##    def betavariate(self, alpha, beta):
605##        # Discrete Event Simulation in C, pp 87-88.
606##
607##        y = self.expovariate(alpha)
608##        z = self.expovariate(1.0/beta)
609##        return z/(y+z)
610##
611## was dead wrong, and how it probably got that way.
612
613    def betavariate(self, alpha, beta):
614        """Beta distribution.
615
616        Conditions on the parameters are alpha > 0 and beta > 0.
617        Returned values range between 0 and 1.
618
619        """
620
621        # This version due to Janne Sinkkonen, and matches all the std
622        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
623        y = self.gammavariate(alpha, 1.)
624        if y == 0:
625            return 0.0
626        else:
627            return y / (y + self.gammavariate(beta, 1.))
628
629## -------------------- Pareto --------------------
630
631    def paretovariate(self, alpha):
632        """Pareto distribution.  alpha is the shape parameter."""
633        # Jain, pg. 495
634
635        u = 1.0 - self.random()
636        return 1.0 / pow(u, 1.0/alpha)
637
638## -------------------- Weibull --------------------
639
640    def weibullvariate(self, alpha, beta):
641        """Weibull distribution.
642
643        alpha is the scale parameter and beta is the shape parameter.
644
645        """
646        # Jain, pg. 499; bug fix courtesy Bill Arms
647
648        u = 1.0 - self.random()
649        return alpha * pow(-_log(u), 1.0/beta)
650
651## -------------------- Wichmann-Hill -------------------
652
653class WichmannHill(Random):
654
655    VERSION = 1     # used by getstate/setstate
656
657    def seed(self, a=None):
658        """Initialize internal state from hashable object.
659
660        None or no argument seeds from current time or from an operating
661        system specific randomness source if available.
662
663        If a is not None or an int or long, hash(a) is used instead.
664
665        If a is an int or long, a is used directly.  Distinct values between
666        0 and 27814431486575L inclusive are guaranteed to yield distinct
667        internal states (this guarantee is specific to the default
668        Wichmann-Hill generator).
669        """
670
671        if a is None:
672            try:
673                a = long(_hexlify(_urandom(16)), 16)
674            except NotImplementedError:
675                import time
676                a = long(time.time() * 256) # use fractional seconds
677
678        if not isinstance(a, (int, long)):
679            a = hash(a)
680
681        a, x = divmod(a, 30268)
682        a, y = divmod(a, 30306)
683        a, z = divmod(a, 30322)
684        self._seed = int(x)+1, int(y)+1, int(z)+1
685
686        self.gauss_next = None
687
688    def random(self):
689        """Get the next random number in the range [0.0, 1.0)."""
690
691        # Wichman-Hill random number generator.
692        #
693        # Wichmann, B. A. & Hill, I. D. (1982)
694        # Algorithm AS 183:
695        # An efficient and portable pseudo-random number generator
696        # Applied Statistics 31 (1982) 188-190
697        #
698        # see also:
699        #        Correction to Algorithm AS 183
700        #        Applied Statistics 33 (1984) 123
701        #
702        #        McLeod, A. I. (1985)
703        #        A remark on Algorithm AS 183
704        #        Applied Statistics 34 (1985),198-200
705
706        # This part is thread-unsafe:
707        # BEGIN CRITICAL SECTION
708        x, y, z = self._seed
709        x = (171 * x) % 30269
710        y = (172 * y) % 30307
711        z = (170 * z) % 30323
712        self._seed = x, y, z
713        # END CRITICAL SECTION
714
715        # Note:  on a platform using IEEE-754 double arithmetic, this can
716        # never return 0.0 (asserted by Tim; proof too long for a comment).
717        return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
718
719    def getstate(self):
720        """Return internal state; can be passed to setstate() later."""
721        return self.VERSION, self._seed, self.gauss_next
722
723    def setstate(self, state):
724        """Restore internal state from object returned by getstate()."""
725        version = state[0]
726        if version == 1:
727            version, self._seed, self.gauss_next = state
728        else:
729            raise ValueError("state with version %s passed to "
730                             "Random.setstate() of version %s" %
731                             (version, self.VERSION))
732
733    def jumpahead(self, n):
734        """Act as if n calls to random() were made, but quickly.
735
736        n is an int, greater than or equal to 0.
737
738        Example use:  If you have 2 threads and know that each will
739        consume no more than a million random numbers, create two Random
740        objects r1 and r2, then do
741            r2.setstate(r1.getstate())
742            r2.jumpahead(1000000)
743        Then r1 and r2 will use guaranteed-disjoint segments of the full
744        period.
745        """
746
747        if not n >= 0:
748            raise ValueError("n must be >= 0")
749        x, y, z = self._seed
750        x = int(x * pow(171, n, 30269)) % 30269
751        y = int(y * pow(172, n, 30307)) % 30307
752        z = int(z * pow(170, n, 30323)) % 30323
753        self._seed = x, y, z
754
755    def __whseed(self, x=0, y=0, z=0):
756        """Set the Wichmann-Hill seed from (x, y, z).
757
758        These must be integers in the range [0, 256).
759        """
760
761        if not type(x) == type(y) == type(z) == int:
762            raise TypeError('seeds must be integers')
763        if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
764            raise ValueError('seeds must be in range(0, 256)')
765        if 0 == x == y == z:
766            # Initialize from current time
767            import time
768            t = long(time.time() * 256)
769            t = int((t&0xffffff) ^ (t>>24))
770            t, x = divmod(t, 256)
771            t, y = divmod(t, 256)
772            t, z = divmod(t, 256)
773        # Zero is a poor seed, so substitute 1
774        self._seed = (x or 1, y or 1, z or 1)
775
776        self.gauss_next = None
777
778    def whseed(self, a=None):
779        """Seed from hashable object's hash code.
780
781        None or no argument seeds from current time.  It is not guaranteed
782        that objects with distinct hash codes lead to distinct internal
783        states.
784
785        This is obsolete, provided for compatibility with the seed routine
786        used prior to Python 2.1.  Use the .seed() method instead.
787        """
788
789        if a is None:
790            self.__whseed()
791            return
792        a = hash(a)
793        a, x = divmod(a, 256)
794        a, y = divmod(a, 256)
795        a, z = divmod(a, 256)
796        x = (x + a) % 256 or 1
797        y = (y + a) % 256 or 1
798        z = (z + a) % 256 or 1
799        self.__whseed(x, y, z)
800
801## --------------- Operating System Random Source  ------------------
802
803class SystemRandom(Random):
804    """Alternate random number generator using sources provided
805    by the operating system (such as /dev/urandom on Unix or
806    CryptGenRandom on Windows).
807
808     Not available on all systems (see os.urandom() for details).
809    """
810
811    def random(self):
812        """Get the next random number in the range [0.0, 1.0)."""
813        return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF
814
815    def getrandbits(self, k):
816        """getrandbits(k) -> x.  Generates a long int with k random bits."""
817        if k <= 0:
818            raise ValueError('number of bits must be greater than zero')
819        if k != int(k):
820            raise TypeError('number of bits should be an integer')
821        bytes = (k + 7) // 8                    # bits / 8 and rounded up
822        x = long(_hexlify(_urandom(bytes)), 16)
823        return x >> (bytes * 8 - k)             # trim excess bits
824
825    def _stub(self, *args, **kwds):
826        "Stub method.  Not used for a system random number generator."
827        return None
828    seed = jumpahead = _stub
829
830    def _notimplemented(self, *args, **kwds):
831        "Method should not be called for a system random number generator."
832        raise NotImplementedError('System entropy source does not have state.')
833    getstate = setstate = _notimplemented
834
835## -------------------- test program --------------------
836
837def _test_generator(n, func, args):
838    import time
839    print n, 'times', func.__name__
840    total = 0.0
841    sqsum = 0.0
842    smallest = 1e10
843    largest = -1e10
844    t0 = time.time()
845    for i in range(n):
846        x = func(*args)
847        total += x
848        sqsum = sqsum + x*x
849        smallest = min(x, smallest)
850        largest = max(x, largest)
851    t1 = time.time()
852    print round(t1-t0, 3), 'sec,',
853    avg = total/n
854    stddev = _sqrt(sqsum/n - avg*avg)
855    print 'avg %g, stddev %g, min %g, max %g' % \
856              (avg, stddev, smallest, largest)
857
858
859def _test(N=2000):
860    _test_generator(N, random, ())
861    _test_generator(N, normalvariate, (0.0, 1.0))
862    _test_generator(N, lognormvariate, (0.0, 1.0))
863    _test_generator(N, vonmisesvariate, (0.0, 1.0))
864    _test_generator(N, gammavariate, (0.01, 1.0))
865    _test_generator(N, gammavariate, (0.1, 1.0))
866    _test_generator(N, gammavariate, (0.1, 2.0))
867    _test_generator(N, gammavariate, (0.5, 1.0))
868    _test_generator(N, gammavariate, (0.9, 1.0))
869    _test_generator(N, gammavariate, (1.0, 1.0))
870    _test_generator(N, gammavariate, (2.0, 1.0))
871    _test_generator(N, gammavariate, (20.0, 1.0))
872    _test_generator(N, gammavariate, (200.0, 1.0))
873    _test_generator(N, gauss, (0.0, 1.0))
874    _test_generator(N, betavariate, (3.0, 3.0))
875    _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))
876
877# Create one instance, seeded from current time, and export its methods
878# as module-level functions.  The functions share state across all uses
879#(both in the user's code and in the Python libraries), but that's fine
880# for most programs and is easier for the casual user than making them
881# instantiate their own Random() instance.
882
883_inst = Random()
884seed = _inst.seed
885random = _inst.random
886uniform = _inst.uniform
887triangular = _inst.triangular
888randint = _inst.randint
889choice = _inst.choice
890randrange = _inst.randrange
891sample = _inst.sample
892shuffle = _inst.shuffle
893normalvariate = _inst.normalvariate
894lognormvariate = _inst.lognormvariate
895expovariate = _inst.expovariate
896vonmisesvariate = _inst.vonmisesvariate
897gammavariate = _inst.gammavariate
898gauss = _inst.gauss
899betavariate = _inst.betavariate
900paretovariate = _inst.paretovariate
901weibullvariate = _inst.weibullvariate
902getstate = _inst.getstate
903setstate = _inst.setstate
904jumpahead = _inst.jumpahead
905getrandbits = _inst.getrandbits
906
907if __name__ == '__main__':
908    _test()
909