1/** @file
2  This library is only intended to be used by UEFI network stack modules.
3  It provides basic functions for the UEFI network stack.
4
5Copyright (c) 2005 - 2012, Intel Corporation. All rights reserved.<BR>
6This program and the accompanying materials
7are licensed and made available under the terms and conditions of the BSD License
8which accompanies this distribution.  The full text of the license may be found at<BR>
9http://opensource.org/licenses/bsd-license.php
10
11THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14**/
15
16#ifndef _NET_LIB_H_
17#define _NET_LIB_H_
18
19#include <Protocol/Ip6.h>
20
21#include <Library/BaseLib.h>
22#include <Library/BaseMemoryLib.h>
23
24typedef UINT32          IP4_ADDR;
25typedef UINT32          TCP_SEQNO;
26typedef UINT16          TCP_PORTNO;
27
28
29#define  NET_ETHER_ADDR_LEN    6
30#define  NET_IFTYPE_ETHERNET   0x01
31
32#define  NET_VLAN_TAG_LEN      4
33#define  ETHER_TYPE_VLAN       0x8100
34
35#define  EFI_IP_PROTO_UDP      0x11
36#define  EFI_IP_PROTO_TCP      0x06
37#define  EFI_IP_PROTO_ICMP     0x01
38#define  IP4_PROTO_IGMP        0x02
39#define  IP6_ICMP              58
40
41//
42// The address classification
43//
44#define  IP4_ADDR_CLASSA       1
45#define  IP4_ADDR_CLASSB       2
46#define  IP4_ADDR_CLASSC       3
47#define  IP4_ADDR_CLASSD       4
48#define  IP4_ADDR_CLASSE       5
49
50#define  IP4_MASK_NUM          33
51#define  IP6_PREFIX_NUM        129
52
53#define  IP6_HOP_BY_HOP        0
54#define  IP6_DESTINATION       60
55#define  IP6_ROUTING           43
56#define  IP6_FRAGMENT          44
57#define  IP6_AH                51
58#define  IP6_ESP               50
59#define  IP6_NO_NEXT_HEADER    59
60
61#define  IP_VERSION_4          4
62#define  IP_VERSION_6          6
63
64#define  IP6_PREFIX_LENGTH     64
65
66#pragma pack(1)
67
68//
69// Ethernet head definition
70//
71typedef struct {
72  UINT8                 DstMac [NET_ETHER_ADDR_LEN];
73  UINT8                 SrcMac [NET_ETHER_ADDR_LEN];
74  UINT16                EtherType;
75} ETHER_HEAD;
76
77//
78// 802.1Q VLAN Tag Control Information
79//
80typedef union {
81  struct {
82    UINT16              Vid      : 12;  // Unique VLAN identifier (0 to 4094)
83    UINT16              Cfi      : 1;   // Canonical Format Indicator
84    UINT16              Priority : 3;   // 802.1Q priority level (0 to 7)
85  } Bits;
86  UINT16                Uint16;
87} VLAN_TCI;
88
89#define VLAN_TCI_CFI_CANONICAL_MAC      0
90#define VLAN_TCI_CFI_NON_CANONICAL_MAC  1
91
92//
93// The EFI_IP4_HEADER is hard to use because the source and
94// destination address are defined as EFI_IPv4_ADDRESS, which
95// is a structure. Two structures can't be compared or masked
96// directly. This is why there is an internal representation.
97//
98typedef struct {
99  UINT8                 HeadLen : 4;
100  UINT8                 Ver     : 4;
101  UINT8                 Tos;
102  UINT16                TotalLen;
103  UINT16                Id;
104  UINT16                Fragment;
105  UINT8                 Ttl;
106  UINT8                 Protocol;
107  UINT16                Checksum;
108  IP4_ADDR              Src;
109  IP4_ADDR              Dst;
110} IP4_HEAD;
111
112
113//
114// ICMP head definition. Each ICMP message is categorized as either an error
115// message or query message. Two message types have their own head format.
116//
117typedef struct {
118  UINT8                 Type;
119  UINT8                 Code;
120  UINT16                Checksum;
121} IP4_ICMP_HEAD;
122
123typedef struct {
124  IP4_ICMP_HEAD         Head;
125  UINT32                Fourth; // 4th filed of the head, it depends on Type.
126  IP4_HEAD              IpHead;
127} IP4_ICMP_ERROR_HEAD;
128
129typedef struct {
130  IP4_ICMP_HEAD         Head;
131  UINT16                Id;
132  UINT16                Seq;
133} IP4_ICMP_QUERY_HEAD;
134
135typedef struct {
136  UINT8                 Type;
137  UINT8                 Code;
138  UINT16                Checksum;
139} IP6_ICMP_HEAD;
140
141typedef struct {
142  IP6_ICMP_HEAD         Head;
143  UINT32                Fourth;
144  EFI_IP6_HEADER        IpHead;
145} IP6_ICMP_ERROR_HEAD;
146
147typedef struct {
148  IP6_ICMP_HEAD         Head;
149  UINT32                Fourth;
150} IP6_ICMP_INFORMATION_HEAD;
151
152//
153// UDP header definition
154//
155typedef struct {
156  UINT16                SrcPort;
157  UINT16                DstPort;
158  UINT16                Length;
159  UINT16                Checksum;
160} EFI_UDP_HEADER;
161
162//
163// TCP header definition
164//
165typedef struct {
166  TCP_PORTNO            SrcPort;
167  TCP_PORTNO            DstPort;
168  TCP_SEQNO             Seq;
169  TCP_SEQNO             Ack;
170  UINT8                 Res     : 4;
171  UINT8                 HeadLen : 4;
172  UINT8                 Flag;
173  UINT16                Wnd;
174  UINT16                Checksum;
175  UINT16                Urg;
176} TCP_HEAD;
177
178#pragma pack()
179
180#define NET_MAC_EQUAL(pMac1, pMac2, Len)     \
181    (CompareMem ((pMac1), (pMac2), Len) == 0)
182
183#define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
184    (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
185
186#define NTOHL(x)  SwapBytes32 (x)
187
188#define HTONL(x)  NTOHL(x)
189
190#define NTOHS(x)  SwapBytes16 (x)
191
192#define HTONS(x)   NTOHS(x)
193#define NTOHLL(x)  SwapBytes64 (x)
194#define HTONLL(x)  NTOHLL(x)
195#define NTOHLLL(x) Ip6Swap128 (x)
196#define HTONLLL(x) NTOHLLL(x)
197
198//
199// Test the IP's attribute, All the IPs are in host byte order.
200//
201#define IP4_IS_MULTICAST(Ip)              (((Ip) & 0xF0000000) == 0xE0000000)
202#define IP4_IS_LOCAL_BROADCAST(Ip)        ((Ip) == 0xFFFFFFFF)
203#define IP4_NET_EQUAL(Ip1, Ip2, NetMask)  (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
204#define IP4_IS_VALID_NETMASK(Ip)          (NetGetMaskLength (Ip) != IP4_MASK_NUM)
205
206#define IP6_IS_MULTICAST(Ip6)             (((Ip6)->Addr[0]) == 0xFF)
207
208//
209// Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
210//
211#define EFI_IP4(EfiIpAddr)       (*(IP4_ADDR *) ((EfiIpAddr).Addr))
212#define EFI_NTOHL(EfiIp)         (NTOHL (EFI_IP4 ((EfiIp))))
213#define EFI_IP4_EQUAL(Ip1, Ip2)  (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
214
215#define EFI_IP6_EQUAL(Ip1, Ip2)  (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)
216
217#define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))
218#define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))
219#define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))
220
221//
222// The debug level definition. This value is also used as the
223// syslog's servity level. Don't change it.
224//
225#define NETDEBUG_LEVEL_TRACE   5
226#define NETDEBUG_LEVEL_WARNING 4
227#define NETDEBUG_LEVEL_ERROR   3
228
229//
230// Network debug message is sent out as syslog packet.
231//
232#define NET_SYSLOG_FACILITY    16                 // Syslog local facility local use
233#define NET_SYSLOG_PACKET_LEN  512
234#define NET_SYSLOG_TX_TIMEOUT  (500 * 1000 * 10)  // 500ms
235#define NET_DEBUG_MSG_LEN      470                // 512 - (ether+ip4+udp4 head length)
236
237//
238// The debug output expects the ASCII format string, Use %a to print ASCII
239// string, and %s to print UNICODE string. PrintArg must be enclosed in ().
240// For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));
241//
242#define NET_DEBUG_TRACE(Module, PrintArg) \
243  NetDebugOutput ( \
244    NETDEBUG_LEVEL_TRACE, \
245    Module, \
246    __FILE__, \
247    __LINE__, \
248    NetDebugASPrint PrintArg \
249    )
250
251#define NET_DEBUG_WARNING(Module, PrintArg) \
252  NetDebugOutput ( \
253    NETDEBUG_LEVEL_WARNING, \
254    Module, \
255    __FILE__, \
256    __LINE__, \
257    NetDebugASPrint PrintArg \
258    )
259
260#define NET_DEBUG_ERROR(Module, PrintArg) \
261  NetDebugOutput ( \
262    NETDEBUG_LEVEL_ERROR, \
263    Module, \
264    __FILE__, \
265    __LINE__, \
266    NetDebugASPrint PrintArg \
267    )
268
269/**
270  Allocate a buffer, then format the message to it. This is a
271  help function for the NET_DEBUG_XXX macros. The PrintArg of
272  these macros treats the variable length print parameters as a
273  single parameter, and pass it to the NetDebugASPrint. For
274  example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
275  if extracted to:
276
277         NetDebugOutput (
278           NETDEBUG_LEVEL_TRACE,
279           "Tcp",
280           __FILE__,
281           __LINE__,
282           NetDebugASPrint ("State transit to %a\n", Name)
283         )
284
285  @param Format  The ASCII format string.
286  @param ...     The variable length parameter whose format is determined
287                 by the Format string.
288
289  @return        The buffer containing the formatted message,
290                 or NULL if memory allocation failed.
291
292**/
293CHAR8 *
294EFIAPI
295NetDebugASPrint (
296  IN CHAR8                  *Format,
297  ...
298  );
299
300/**
301  Builds an UDP4 syslog packet and send it using SNP.
302
303  This function will locate a instance of SNP then send the message through it.
304  Because it isn't open the SNP BY_DRIVER, apply caution when using it.
305
306  @param Level    The servity level of the message.
307  @param Module   The Moudle that generates the log.
308  @param File     The file that contains the log.
309  @param Line     The exact line that contains the log.
310  @param Message  The user message to log.
311
312  @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
313  @retval EFI_OUT_OF_RESOURCES  Failed to allocate memory for the packet
314  @retval EFI_SUCCESS           The log is discard because that it is more verbose
315                                than the mNetDebugLevelMax. Or, it has been sent out.
316**/
317EFI_STATUS
318EFIAPI
319NetDebugOutput (
320  IN UINT32                    Level,
321  IN UINT8                     *Module,
322  IN UINT8                     *File,
323  IN UINT32                    Line,
324  IN UINT8                     *Message
325  );
326
327
328/**
329  Return the length of the mask.
330
331  Return the length of the mask. Valid values are 0 to 32.
332  If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
333  NetMask is in the host byte order.
334
335  @param[in]  NetMask              The netmask to get the length from.
336
337  @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.
338
339**/
340INTN
341EFIAPI
342NetGetMaskLength (
343  IN IP4_ADDR               NetMask
344  );
345
346/**
347  Return the class of the IP address, such as class A, B, C.
348  Addr is in host byte order.
349
350  The address of class A  starts with 0.
351  If the address belong to class A, return IP4_ADDR_CLASSA.
352  The address of class B  starts with 10.
353  If the address belong to class B, return IP4_ADDR_CLASSB.
354  The address of class C  starts with 110.
355  If the address belong to class C, return IP4_ADDR_CLASSC.
356  The address of class D  starts with 1110.
357  If the address belong to class D, return IP4_ADDR_CLASSD.
358  The address of class E  starts with 1111.
359  If the address belong to class E, return IP4_ADDR_CLASSE.
360
361
362  @param[in]   Addr                  The address to get the class from.
363
364  @return IP address class, such as IP4_ADDR_CLASSA.
365
366**/
367INTN
368EFIAPI
369NetGetIpClass (
370  IN IP4_ADDR               Addr
371  );
372
373/**
374  Check whether the IP is a valid unicast address according to
375  the netmask. If NetMask is zero, use the IP address's class to get the default mask.
376
377  If Ip is 0, IP is not a valid unicast address.
378  Class D address is used for multicasting and class E address is reserved for future. If Ip
379  belongs to class D or class E, Ip is not a valid unicast address.
380  If all bits of the host address of Ip are 0 or 1, Ip is not a valid unicast address.
381
382  @param[in]  Ip                    The IP to check against.
383  @param[in]  NetMask               The mask of the IP.
384
385  @return TRUE if Ip is a valid unicast address on the network, otherwise FALSE.
386
387**/
388BOOLEAN
389EFIAPI
390NetIp4IsUnicast (
391  IN IP4_ADDR               Ip,
392  IN IP4_ADDR               NetMask
393  );
394
395/**
396  Check whether the incoming IPv6 address is a valid unicast address.
397
398  If the address is a multicast address has binary 0xFF at the start, it is not
399  a valid unicast address. If the address is unspecified ::, it is not a valid
400  unicast address to be assigned to any node. If the address is loopback address
401  ::1, it is also not a valid unicast address to be assigned to any physical
402  interface.
403
404  @param[in]  Ip6                   The IPv6 address to check against.
405
406  @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
407
408**/
409BOOLEAN
410EFIAPI
411NetIp6IsValidUnicast (
412  IN EFI_IPv6_ADDRESS       *Ip6
413  );
414
415
416/**
417  Check whether the incoming Ipv6 address is the unspecified address or not.
418
419  @param[in] Ip6   - Ip6 address, in network order.
420
421  @retval TRUE     - Yes, incoming Ipv6 address is the unspecified address.
422  @retval FALSE    - The incoming Ipv6 address is not the unspecified address
423
424**/
425BOOLEAN
426EFIAPI
427NetIp6IsUnspecifiedAddr (
428  IN EFI_IPv6_ADDRESS       *Ip6
429  );
430
431/**
432  Check whether the incoming Ipv6 address is a link-local address.
433
434  @param[in] Ip6   - Ip6 address, in network order.
435
436  @retval TRUE  - The incoming Ipv6 address is a link-local address.
437  @retval FALSE - The incoming Ipv6 address is not a link-local address.
438
439**/
440BOOLEAN
441EFIAPI
442NetIp6IsLinkLocalAddr (
443  IN EFI_IPv6_ADDRESS *Ip6
444  );
445
446/**
447  Check whether the Ipv6 address1 and address2 are on the connected network.
448
449  @param[in] Ip1          - Ip6 address1, in network order.
450  @param[in] Ip2          - Ip6 address2, in network order.
451  @param[in] PrefixLength - The prefix length of the checking net.
452
453  @retval TRUE            - Yes, the Ipv6 address1 and address2 are connected.
454  @retval FALSE           - No the Ipv6 address1 and address2 are not connected.
455
456**/
457BOOLEAN
458EFIAPI
459NetIp6IsNetEqual (
460  EFI_IPv6_ADDRESS *Ip1,
461  EFI_IPv6_ADDRESS *Ip2,
462  UINT8            PrefixLength
463  );
464
465/**
466  Switches the endianess of an IPv6 address.
467
468  This function swaps the bytes in a 128-bit IPv6 address to switch the value
469  from little endian to big endian or vice versa. The byte swapped value is
470  returned.
471
472  @param  Ip6 Points to an IPv6 address.
473
474  @return The byte swapped IPv6 address.
475
476**/
477EFI_IPv6_ADDRESS *
478EFIAPI
479Ip6Swap128 (
480  EFI_IPv6_ADDRESS *Ip6
481  );
482
483extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];
484
485
486extern EFI_IPv4_ADDRESS  mZeroIp4Addr;
487
488#define NET_IS_DIGIT(Ch)            (('0' <= (Ch)) && ((Ch) <= '9'))
489#define NET_ROUNDUP(size, unit)     (((size) + (unit) - 1) & (~((unit) - 1)))
490#define NET_IS_LOWER_CASE_CHAR(Ch)  (('a' <= (Ch)) && ((Ch) <= 'z'))
491#define NET_IS_UPPER_CASE_CHAR(Ch)  (('A' <= (Ch)) && ((Ch) <= 'Z'))
492
493#define TICKS_PER_MS            10000U
494#define TICKS_PER_SECOND        10000000U
495
496#define NET_RANDOM(Seed)        ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
497
498/**
499  Extract a UINT32 from a byte stream.
500
501  This function copies a UINT32 from a byte stream, and then converts it from Network
502  byte order to host byte order. Use this function to avoid alignment error.
503
504  @param[in]  Buf                 The buffer to extract the UINT32.
505
506  @return The UINT32 extracted.
507
508**/
509UINT32
510EFIAPI
511NetGetUint32 (
512  IN UINT8                  *Buf
513  );
514
515/**
516  Puts a UINT32 into the byte stream in network byte order.
517
518  Converts a UINT32 from host byte order to network byte order, then copies it to the
519  byte stream.
520
521  @param[in, out]  Buf          The buffer in which to put the UINT32.
522  @param[in]       Data         The data to be converted and put into the byte stream.
523
524**/
525VOID
526EFIAPI
527NetPutUint32 (
528  IN OUT UINT8                 *Buf,
529  IN     UINT32                Data
530  );
531
532/**
533  Initialize a random seed using current time and monotonic count.
534
535  Get current time and monotonic count first. Then initialize a random seed
536  based on some basic mathematics operation on the hour, day, minute, second,
537  nanosecond and year of the current time and the monotonic count value.
538
539  @return The random seed initialized with current time.
540
541**/
542UINT32
543EFIAPI
544NetRandomInitSeed (
545  VOID
546  );
547
548
549#define NET_LIST_USER_STRUCT(Entry, Type, Field)        \
550          BASE_CR(Entry, Type, Field)
551
552#define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig)  \
553          CR(Entry, Type, Field, Sig)
554
555//
556// Iterate through the double linked list. It is NOT delete safe
557//
558#define NET_LIST_FOR_EACH(Entry, ListHead) \
559  for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
560
561//
562// Iterate through the double linked list. This is delete-safe.
563// Don't touch NextEntry. Also, don't use this macro if list
564// entries other than the Entry may be deleted when processing
565// the current Entry.
566//
567#define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
568  for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
569      Entry != (ListHead); \
570      Entry = NextEntry, NextEntry = Entry->ForwardLink \
571     )
572
573//
574// Make sure the list isn't empty before getting the first/last record.
575//
576#define NET_LIST_HEAD(ListHead, Type, Field)  \
577          NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
578
579#define NET_LIST_TAIL(ListHead, Type, Field)  \
580          NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
581
582
583/**
584  Remove the first node entry on the list, and return the removed node entry.
585
586  Removes the first node entry from a doubly linked list. It is up to the caller of
587  this function to release the memory used by the first node, if that is required. On
588  exit, the removed node is returned.
589
590  If Head is NULL, then ASSERT().
591  If Head was not initialized, then ASSERT().
592  If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
593  linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
594  then ASSERT().
595
596  @param[in, out]  Head                  The list header.
597
598  @return The first node entry that is removed from the list, NULL if the list is empty.
599
600**/
601LIST_ENTRY *
602EFIAPI
603NetListRemoveHead (
604  IN OUT LIST_ENTRY            *Head
605  );
606
607/**
608  Remove the last node entry on the list and return the removed node entry.
609
610  Removes the last node entry from a doubly linked list. It is up to the caller of
611  this function to release the memory used by the first node, if that is required. On
612  exit, the removed node is returned.
613
614  If Head is NULL, then ASSERT().
615  If Head was not initialized, then ASSERT().
616  If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
617  linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
618  then ASSERT().
619
620  @param[in, out]  Head                  The list head.
621
622  @return The last node entry that is removed from the list, NULL if the list is empty.
623
624**/
625LIST_ENTRY *
626EFIAPI
627NetListRemoveTail (
628  IN OUT LIST_ENTRY            *Head
629  );
630
631/**
632  Insert a new node entry after a designated node entry of a doubly linked list.
633
634  Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry
635  of the doubly linked list.
636
637  @param[in, out]  PrevEntry             The entry after which to insert.
638  @param[in, out]  NewEntry              The new entry to insert.
639
640**/
641VOID
642EFIAPI
643NetListInsertAfter (
644  IN OUT LIST_ENTRY         *PrevEntry,
645  IN OUT LIST_ENTRY         *NewEntry
646  );
647
648/**
649  Insert a new node entry before a designated node entry of a doubly linked list.
650
651  Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry
652  of the doubly linked list.
653
654  @param[in, out]  PostEntry             The entry to insert before.
655  @param[in, out]  NewEntry              The new entry to insert.
656
657**/
658VOID
659EFIAPI
660NetListInsertBefore (
661  IN OUT LIST_ENTRY     *PostEntry,
662  IN OUT LIST_ENTRY     *NewEntry
663  );
664
665/**
666  Callback function which provided by user to remove one node in NetDestroyLinkList process.
667
668  @param[in]    Entry           The entry to be removed.
669  @param[in]    Context         Pointer to the callback context corresponds to the Context in NetDestroyLinkList.
670
671  @retval EFI_SUCCESS           The entry has been removed successfully.
672  @retval Others                Fail to remove the entry.
673
674**/
675typedef
676EFI_STATUS
677(EFIAPI *NET_DESTROY_LINK_LIST_CALLBACK) (
678  IN LIST_ENTRY         *Entry,
679  IN VOID               *Context   OPTIONAL
680  );
681
682/**
683  Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished.
684
685  Destroy network children list by list traversals is not safe due to graph dependencies between nodes.
686  This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed
687  has been removed from the list or not.
688  If it has been removed, then restart the traversal from the head.
689  If it hasn't been removed, then continue with the next node directly.
690  This function will end the iterate and return the CallBack's last return value if error happens,
691  or retrun EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list.
692
693  @param[in]    List             The head of the list.
694  @param[in]    CallBack         Pointer to the callback function to destroy one node in the list.
695  @param[in]    Context          Pointer to the callback function's context: corresponds to the
696                                 parameter Context in NET_DESTROY_LINK_LIST_CALLBACK.
697  @param[out]   ListLength       The length of the link list if the function returns successfully.
698
699  @retval EFI_SUCCESS            Two complete passes are made with no changes in the number of children.
700  @retval EFI_INVALID_PARAMETER  The input parameter is invalid.
701  @retval Others                 Return the CallBack's last return value.
702
703**/
704EFI_STATUS
705EFIAPI
706NetDestroyLinkList (
707  IN   LIST_ENTRY                       *List,
708  IN   NET_DESTROY_LINK_LIST_CALLBACK   CallBack,
709  IN   VOID                             *Context,    OPTIONAL
710  OUT  UINTN                            *ListLength  OPTIONAL
711  );
712
713/**
714  This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer.
715
716  @param[in]  Handle             Handle to be checked.
717  @param[in]  NumberOfChildren   Number of Handles in ChildHandleBuffer.
718  @param[in]  ChildHandleBuffer  An array of child handles to be freed. May be NULL
719                                 if NumberOfChildren is 0.
720
721  @retval TURE                   Found the input Handle in ChildHandleBuffer.
722  @retval FALSE                  Can't find the input Handle in ChildHandleBuffer.
723
724**/
725BOOLEAN
726EFIAPI
727NetIsInHandleBuffer (
728  IN  EFI_HANDLE          Handle,
729  IN  UINTN               NumberOfChildren,
730  IN  EFI_HANDLE          *ChildHandleBuffer OPTIONAL
731  );
732
733//
734// Object container: EFI network stack spec defines various kinds of
735// tokens. The drivers can share code to manage those objects.
736//
737typedef struct {
738  LIST_ENTRY                Link;
739  VOID                      *Key;
740  VOID                      *Value;
741} NET_MAP_ITEM;
742
743typedef struct {
744  LIST_ENTRY                Used;
745  LIST_ENTRY                Recycled;
746  UINTN                     Count;
747} NET_MAP;
748
749#define NET_MAP_INCREAMENT  64
750
751/**
752  Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
753
754  Initialize the forward and backward links of two head nodes donated by Map->Used
755  and Map->Recycled of two doubly linked lists.
756  Initializes the count of the <Key, Value> pairs in the netmap to zero.
757
758  If Map is NULL, then ASSERT().
759  If the address of Map->Used is NULL, then ASSERT().
760  If the address of Map->Recycled is NULl, then ASSERT().
761
762  @param[in, out]  Map                   The netmap to initialize.
763
764**/
765VOID
766EFIAPI
767NetMapInit (
768  IN OUT NET_MAP                *Map
769  );
770
771/**
772  To clean up the netmap, that is, release allocated memories.
773
774  Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.
775  Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
776  The number of the <Key, Value> pairs in the netmap is set to zero.
777
778  If Map is NULL, then ASSERT().
779
780  @param[in, out]  Map                   The netmap to clean up.
781
782**/
783VOID
784EFIAPI
785NetMapClean (
786  IN OUT NET_MAP            *Map
787  );
788
789/**
790  Test whether the netmap is empty and return true if it is.
791
792  If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
793
794  If Map is NULL, then ASSERT().
795
796
797  @param[in]  Map                   The net map to test.
798
799  @return TRUE if the netmap is empty, otherwise FALSE.
800
801**/
802BOOLEAN
803EFIAPI
804NetMapIsEmpty (
805  IN NET_MAP                *Map
806  );
807
808/**
809  Return the number of the <Key, Value> pairs in the netmap.
810
811  @param[in]  Map                   The netmap to get the entry number.
812
813  @return The entry number in the netmap.
814
815**/
816UINTN
817EFIAPI
818NetMapGetCount (
819  IN NET_MAP                *Map
820  );
821
822/**
823  Allocate an item to save the <Key, Value> pair to the head of the netmap.
824
825  Allocate an item to save the <Key, Value> pair and add corresponding node entry
826  to the beginning of the Used doubly linked list. The number of the <Key, Value>
827  pairs in the netmap increase by 1.
828
829  If Map is NULL, then ASSERT().
830
831  @param[in, out]  Map                   The netmap to insert into.
832  @param[in]       Key                   The user's key.
833  @param[in]       Value                 The user's value for the key.
834
835  @retval EFI_OUT_OF_RESOURCES  Failed to allocate the memory for the item.
836  @retval EFI_SUCCESS           The item is inserted to the head.
837
838**/
839EFI_STATUS
840EFIAPI
841NetMapInsertHead (
842  IN OUT NET_MAP            *Map,
843  IN VOID                   *Key,
844  IN VOID                   *Value    OPTIONAL
845  );
846
847/**
848  Allocate an item to save the <Key, Value> pair to the tail of the netmap.
849
850  Allocate an item to save the <Key, Value> pair and add corresponding node entry
851  to the tail of the Used doubly linked list. The number of the <Key, Value>
852  pairs in the netmap increase by 1.
853
854  If Map is NULL, then ASSERT().
855
856  @param[in, out]  Map                   The netmap to insert into.
857  @param[in]       Key                   The user's key.
858  @param[in]       Value                 The user's value for the key.
859
860  @retval EFI_OUT_OF_RESOURCES  Failed to allocate the memory for the item.
861  @retval EFI_SUCCESS           The item is inserted to the tail.
862
863**/
864EFI_STATUS
865EFIAPI
866NetMapInsertTail (
867  IN OUT NET_MAP            *Map,
868  IN VOID                   *Key,
869  IN VOID                   *Value    OPTIONAL
870  );
871
872/**
873  Finds the key in the netmap and returns the point to the item containing the Key.
874
875  Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
876  item with the key to search. It returns the point to the item contains the Key if found.
877
878  If Map is NULL, then ASSERT().
879
880  @param[in]  Map                   The netmap to search within.
881  @param[in]  Key                   The key to search.
882
883  @return The point to the item contains the Key, or NULL if Key isn't in the map.
884
885**/
886NET_MAP_ITEM *
887EFIAPI
888NetMapFindKey (
889  IN  NET_MAP               *Map,
890  IN  VOID                  *Key
891  );
892
893/**
894  Remove the node entry of the item from the netmap and return the key of the removed item.
895
896  Remove the node entry of the item from the Used doubly linked list of the netmap.
897  The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
898  entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
899  Value will point to the value of the item. It returns the key of the removed item.
900
901  If Map is NULL, then ASSERT().
902  If Item is NULL, then ASSERT().
903  if item in not in the netmap, then ASSERT().
904
905  @param[in, out]  Map                   The netmap to remove the item from.
906  @param[in, out]  Item                  The item to remove.
907  @param[out]      Value                 The variable to receive the value if not NULL.
908
909  @return                                The key of the removed item.
910
911**/
912VOID *
913EFIAPI
914NetMapRemoveItem (
915  IN  OUT NET_MAP             *Map,
916  IN  OUT NET_MAP_ITEM        *Item,
917  OUT VOID                    **Value           OPTIONAL
918  );
919
920/**
921  Remove the first node entry on the netmap and return the key of the removed item.
922
923  Remove the first node entry from the Used doubly linked list of the netmap.
924  The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
925  entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
926  parameter Value will point to the value of the item. It returns the key of the removed item.
927
928  If Map is NULL, then ASSERT().
929  If the Used doubly linked list is empty, then ASSERT().
930
931  @param[in, out]  Map                   The netmap to remove the head from.
932  @param[out]      Value                 The variable to receive the value if not NULL.
933
934  @return                                The key of the item removed.
935
936**/
937VOID *
938EFIAPI
939NetMapRemoveHead (
940  IN OUT NET_MAP            *Map,
941  OUT VOID                  **Value         OPTIONAL
942  );
943
944/**
945  Remove the last node entry on the netmap and return the key of the removed item.
946
947  Remove the last node entry from the Used doubly linked list of the netmap.
948  The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
949  entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
950  parameter Value will point to the value of the item. It returns the key of the removed item.
951
952  If Map is NULL, then ASSERT().
953  If the Used doubly linked list is empty, then ASSERT().
954
955  @param[in, out]  Map                   The netmap to remove the tail from.
956  @param[out]      Value                 The variable to receive the value if not NULL.
957
958  @return                                The key of the item removed.
959
960**/
961VOID *
962EFIAPI
963NetMapRemoveTail (
964  IN OUT NET_MAP            *Map,
965  OUT VOID                  **Value       OPTIONAL
966  );
967
968typedef
969EFI_STATUS
970(EFIAPI *NET_MAP_CALLBACK) (
971  IN NET_MAP                *Map,
972  IN NET_MAP_ITEM           *Item,
973  IN VOID                   *Arg
974  );
975
976/**
977  Iterate through the netmap and call CallBack for each item.
978
979  It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
980  from the loop. It returns the CallBack's last return value. This function is
981  delete safe for the current item.
982
983  If Map is NULL, then ASSERT().
984  If CallBack is NULL, then ASSERT().
985
986  @param[in]  Map                   The Map to iterate through.
987  @param[in]  CallBack              The callback function to call for each item.
988  @param[in]  Arg                   The opaque parameter to the callback.
989
990  @retval EFI_SUCCESS            There is no item in the netmap, or CallBack for each item
991                                 returns EFI_SUCCESS.
992  @retval Others                 It returns the CallBack's last return value.
993
994**/
995EFI_STATUS
996EFIAPI
997NetMapIterate (
998  IN NET_MAP                *Map,
999  IN NET_MAP_CALLBACK       CallBack,
1000  IN VOID                   *Arg      OPTIONAL
1001  );
1002
1003
1004//
1005// Helper functions to implement driver binding and service binding protocols.
1006//
1007/**
1008  Create a child of the service that is identified by ServiceBindingGuid.
1009
1010  Get the ServiceBinding Protocol first, then use it to create a child.
1011
1012  If ServiceBindingGuid is NULL, then ASSERT().
1013  If ChildHandle is NULL, then ASSERT().
1014
1015  @param[in]       Controller            The controller which has the service installed.
1016  @param[in]       Image                 The image handle used to open service.
1017  @param[in]       ServiceBindingGuid    The service's Guid.
1018  @param[in, out]  ChildHandle           The handle to receive the created child.
1019
1020  @retval EFI_SUCCESS           The child was successfully created.
1021  @retval Others                Failed to create the child.
1022
1023**/
1024EFI_STATUS
1025EFIAPI
1026NetLibCreateServiceChild (
1027  IN  EFI_HANDLE            Controller,
1028  IN  EFI_HANDLE            Image,
1029  IN  EFI_GUID              *ServiceBindingGuid,
1030  IN  OUT EFI_HANDLE        *ChildHandle
1031  );
1032
1033/**
1034  Destroy a child of the service that is identified by ServiceBindingGuid.
1035
1036  Get the ServiceBinding Protocol first, then use it to destroy a child.
1037
1038  If ServiceBindingGuid is NULL, then ASSERT().
1039
1040  @param[in]   Controller            The controller which has the service installed.
1041  @param[in]   Image                 The image handle used to open service.
1042  @param[in]   ServiceBindingGuid    The service's Guid.
1043  @param[in]   ChildHandle           The child to destroy.
1044
1045  @retval EFI_SUCCESS           The child was destroyed.
1046  @retval Others                Failed to destroy the child.
1047
1048**/
1049EFI_STATUS
1050EFIAPI
1051NetLibDestroyServiceChild (
1052  IN  EFI_HANDLE            Controller,
1053  IN  EFI_HANDLE            Image,
1054  IN  EFI_GUID              *ServiceBindingGuid,
1055  IN  EFI_HANDLE            ChildHandle
1056  );
1057
1058/**
1059  Get handle with Simple Network Protocol installed on it.
1060
1061  There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1062  If Simple Network Protocol is already installed on the ServiceHandle, the
1063  ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
1064  try to find its parent handle with SNP installed.
1065
1066  @param[in]   ServiceHandle    The handle where network service binding protocols are
1067                                installed on.
1068  @param[out]  Snp              The pointer to store the address of the SNP instance.
1069                                This is an optional parameter that may be NULL.
1070
1071  @return The SNP handle, or NULL if not found.
1072
1073**/
1074EFI_HANDLE
1075EFIAPI
1076NetLibGetSnpHandle (
1077  IN   EFI_HANDLE                  ServiceHandle,
1078  OUT  EFI_SIMPLE_NETWORK_PROTOCOL **Snp  OPTIONAL
1079  );
1080
1081/**
1082  Retrieve VLAN ID of a VLAN device handle.
1083
1084  Search VLAN device path node in Device Path of specified ServiceHandle and
1085  return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
1086  is not a VLAN device handle, and 0 will be returned.
1087
1088  @param[in]   ServiceHandle    The handle where network service binding protocols are
1089                                installed on.
1090
1091  @return VLAN ID of the device handle, or 0 if not a VLAN device.
1092
1093**/
1094UINT16
1095EFIAPI
1096NetLibGetVlanId (
1097  IN EFI_HANDLE             ServiceHandle
1098  );
1099
1100/**
1101  Find VLAN device handle with specified VLAN ID.
1102
1103  The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
1104  This function will append VLAN device path node to the parent device path,
1105  and then use LocateDevicePath() to find the correct VLAN device handle.
1106
1107  @param[in]   ControllerHandle The handle where network service binding protocols are
1108                                installed on.
1109  @param[in]   VlanId           The configured VLAN ID for the VLAN device.
1110
1111  @return The VLAN device handle, or NULL if not found.
1112
1113**/
1114EFI_HANDLE
1115EFIAPI
1116NetLibGetVlanHandle (
1117  IN EFI_HANDLE             ControllerHandle,
1118  IN UINT16                 VlanId
1119  );
1120
1121/**
1122  Get MAC address associated with the network service handle.
1123
1124  There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1125  If SNP is installed on the ServiceHandle or its parent handle, MAC address will
1126  be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
1127
1128  @param[in]   ServiceHandle    The handle where network service binding protocols are
1129                                installed on.
1130  @param[out]  MacAddress       The pointer to store the returned MAC address.
1131  @param[out]  AddressSize      The length of returned MAC address.
1132
1133  @retval EFI_SUCCESS           MAC address was returned successfully.
1134  @retval Others                Failed to get SNP mode data.
1135
1136**/
1137EFI_STATUS
1138EFIAPI
1139NetLibGetMacAddress (
1140  IN  EFI_HANDLE            ServiceHandle,
1141  OUT EFI_MAC_ADDRESS       *MacAddress,
1142  OUT UINTN                 *AddressSize
1143  );
1144
1145/**
1146  Convert MAC address of the NIC associated with specified Service Binding Handle
1147  to a unicode string. Callers are responsible for freeing the string storage.
1148
1149  Locate simple network protocol associated with the Service Binding Handle and
1150  get the mac address from SNP. Then convert the mac address into a unicode
1151  string. It takes 2 unicode characters to represent a 1 byte binary buffer.
1152  Plus one unicode character for the null-terminator.
1153
1154  @param[in]   ServiceHandle         The handle where network service binding protocol is
1155                                     installed.
1156  @param[in]   ImageHandle           The image handle used to act as the agent handle to
1157                                     get the simple network protocol. This parameter is
1158                                     optional and may be NULL.
1159  @param[out]  MacString             The pointer to store the address of the string
1160                                     representation of  the mac address.
1161
1162  @retval EFI_SUCCESS           Converted the mac address a unicode string successfully.
1163  @retval EFI_OUT_OF_RESOURCES  There are not enough memory resources.
1164  @retval Others                Failed to open the simple network protocol.
1165
1166**/
1167EFI_STATUS
1168EFIAPI
1169NetLibGetMacString (
1170  IN  EFI_HANDLE            ServiceHandle,
1171  IN  EFI_HANDLE            ImageHandle, OPTIONAL
1172  OUT CHAR16                **MacString
1173  );
1174
1175/**
1176  Detect media status for specified network device.
1177
1178  The underlying UNDI driver may or may not support reporting media status from
1179  GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine
1180  will try to invoke Snp->GetStatus() to get the media status. If media is already
1181  present, it returns directly. If media is not present, it will stop SNP and then
1182  restart SNP to get the latest media status. This provides an opportunity to get
1183  the correct media status for old UNDI driver, which doesn't support reporting
1184  media status from GET_STATUS command.
1185  Note: there are two limitations for the current algorithm:
1186  1) For UNDI with this capability, when the cable is not attached, there will
1187     be an redundant Stop/Start() process.
1188  2) for UNDI without this capability, in case that network cable is attached when
1189     Snp->Initialize() is invoked while network cable is unattached later,
1190     NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer
1191     apps to wait for timeout time.
1192
1193  @param[in]   ServiceHandle    The handle where network service binding protocols are
1194                                installed.
1195  @param[out]  MediaPresent     The pointer to store the media status.
1196
1197  @retval EFI_SUCCESS           Media detection success.
1198  @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.
1199  @retval EFI_UNSUPPORTED       The network device does not support media detection.
1200  @retval EFI_DEVICE_ERROR      SNP is in an unknown state.
1201
1202**/
1203EFI_STATUS
1204EFIAPI
1205NetLibDetectMedia (
1206  IN  EFI_HANDLE            ServiceHandle,
1207  OUT BOOLEAN               *MediaPresent
1208  );
1209
1210/**
1211  Create an IPv4 device path node.
1212
1213  The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
1214  The header subtype of IPv4 device path node is MSG_IPv4_DP.
1215  The length of the IPv4 device path node in bytes is 19.
1216  Get other information from parameters to make up the whole IPv4 device path node.
1217
1218  @param[in, out]  Node                  The pointer to the IPv4 device path node.
1219  @param[in]       Controller            The controller handle.
1220  @param[in]       LocalIp               The local IPv4 address.
1221  @param[in]       LocalPort             The local port.
1222  @param[in]       RemoteIp              The remote IPv4 address.
1223  @param[in]       RemotePort            The remote port.
1224  @param[in]       Protocol              The protocol type in the IP header.
1225  @param[in]       UseDefaultAddress     Whether this instance is using default address or not.
1226
1227**/
1228VOID
1229EFIAPI
1230NetLibCreateIPv4DPathNode (
1231  IN OUT IPv4_DEVICE_PATH  *Node,
1232  IN EFI_HANDLE            Controller,
1233  IN IP4_ADDR              LocalIp,
1234  IN UINT16                LocalPort,
1235  IN IP4_ADDR              RemoteIp,
1236  IN UINT16                RemotePort,
1237  IN UINT16                Protocol,
1238  IN BOOLEAN               UseDefaultAddress
1239  );
1240
1241/**
1242  Create an IPv6 device path node.
1243
1244  The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
1245  The header subtype of IPv6 device path node is MSG_IPv6_DP.
1246  The length of the IPv6 device path node in bytes is 43.
1247  Get other information from parameters to make up the whole IPv6 device path node.
1248
1249  @param[in, out]  Node                  The pointer to the IPv6 device path node.
1250  @param[in]       Controller            The controller handle.
1251  @param[in]       LocalIp               The local IPv6 address.
1252  @param[in]       LocalPort             The local port.
1253  @param[in]       RemoteIp              The remote IPv6 address.
1254  @param[in]       RemotePort            The remote port.
1255  @param[in]       Protocol              The protocol type in the IP header.
1256
1257**/
1258VOID
1259EFIAPI
1260NetLibCreateIPv6DPathNode (
1261  IN OUT IPv6_DEVICE_PATH  *Node,
1262  IN EFI_HANDLE            Controller,
1263  IN EFI_IPv6_ADDRESS      *LocalIp,
1264  IN UINT16                LocalPort,
1265  IN EFI_IPv6_ADDRESS      *RemoteIp,
1266  IN UINT16                RemotePort,
1267  IN UINT16                Protocol
1268  );
1269
1270
1271/**
1272  Find the UNDI/SNP handle from controller and protocol GUID.
1273
1274  For example, IP will open an MNP child to transmit/receive
1275  packets. When MNP is stopped, IP should also be stopped. IP
1276  needs to find its own private data that is related the IP's
1277  service binding instance that is installed on the UNDI/SNP handle.
1278  The controller is then either an MNP or an ARP child handle. Note that
1279  IP opens these handles using BY_DRIVER. Use that infomation to get the
1280  UNDI/SNP handle.
1281
1282  @param[in]  Controller            The protocol handle to check.
1283  @param[in]  ProtocolGuid          The protocol that is related with the handle.
1284
1285  @return The UNDI/SNP handle or NULL for errors.
1286
1287**/
1288EFI_HANDLE
1289EFIAPI
1290NetLibGetNicHandle (
1291  IN EFI_HANDLE             Controller,
1292  IN EFI_GUID               *ProtocolGuid
1293  );
1294
1295/**
1296  This is the default unload handle for all the network drivers.
1297
1298  Disconnect the driver specified by ImageHandle from all the devices in the handle database.
1299  Uninstall all the protocols installed in the driver entry point.
1300
1301  @param[in]  ImageHandle       The drivers' driver image.
1302
1303  @retval EFI_SUCCESS           The image is unloaded.
1304  @retval Others                Failed to unload the image.
1305
1306**/
1307EFI_STATUS
1308EFIAPI
1309NetLibDefaultUnload (
1310  IN EFI_HANDLE             ImageHandle
1311  );
1312
1313/**
1314  Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
1315
1316  @param[in]      String         The pointer to the Ascii string.
1317  @param[out]     Ip4Address     The pointer to the converted IPv4 address.
1318
1319  @retval EFI_SUCCESS            Converted to an IPv4 address successfully.
1320  @retval EFI_INVALID_PARAMETER  The string is malformated, or Ip4Address is NULL.
1321
1322**/
1323EFI_STATUS
1324EFIAPI
1325NetLibAsciiStrToIp4 (
1326  IN CONST CHAR8                 *String,
1327  OUT      EFI_IPv4_ADDRESS      *Ip4Address
1328  );
1329
1330/**
1331  Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
1332  string is defined in RFC 4291 - Text Pepresentation of Addresses.
1333
1334  @param[in]      String         The pointer to the Ascii string.
1335  @param[out]     Ip6Address     The pointer to the converted IPv6 address.
1336
1337  @retval EFI_SUCCESS            Converted to an IPv6 address successfully.
1338  @retval EFI_INVALID_PARAMETER  The string is malformated, or Ip6Address is NULL.
1339
1340**/
1341EFI_STATUS
1342EFIAPI
1343NetLibAsciiStrToIp6 (
1344  IN CONST CHAR8                 *String,
1345  OUT      EFI_IPv6_ADDRESS      *Ip6Address
1346  );
1347
1348/**
1349  Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
1350
1351  @param[in]      String         The pointer to the Ascii string.
1352  @param[out]     Ip4Address     The pointer to the converted IPv4 address.
1353
1354  @retval EFI_SUCCESS            Converted to an IPv4 address successfully.
1355  @retval EFI_INVALID_PARAMETER  The string is mal-formated or Ip4Address is NULL.
1356  @retval EFI_OUT_OF_RESOURCES   Failed to perform the operation due to lack of resources.
1357
1358**/
1359EFI_STATUS
1360EFIAPI
1361NetLibStrToIp4 (
1362  IN CONST CHAR16                *String,
1363  OUT      EFI_IPv4_ADDRESS      *Ip4Address
1364  );
1365
1366/**
1367  Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS.  The format of
1368  the string is defined in RFC 4291 - Text Pepresentation of Addresses.
1369
1370  @param[in]      String         The pointer to the Ascii string.
1371  @param[out]     Ip6Address     The pointer to the converted IPv6 address.
1372
1373  @retval EFI_SUCCESS            Converted to an IPv6 address successfully.
1374  @retval EFI_INVALID_PARAMETER  The string is malformated or Ip6Address is NULL.
1375  @retval EFI_OUT_OF_RESOURCES   Failed to perform the operation due to a lack of resources.
1376
1377**/
1378EFI_STATUS
1379EFIAPI
1380NetLibStrToIp6 (
1381  IN CONST CHAR16                *String,
1382  OUT      EFI_IPv6_ADDRESS      *Ip6Address
1383  );
1384
1385/**
1386  Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
1387  The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses
1388  Prefixes: ipv6-address/prefix-length.
1389
1390  @param[in]      String         The pointer to the Ascii string.
1391  @param[out]     Ip6Address     The pointer to the converted IPv6 address.
1392  @param[out]     PrefixLength   The pointer to the converted prefix length.
1393
1394  @retval EFI_SUCCESS            Converted to an  IPv6 address successfully.
1395  @retval EFI_INVALID_PARAMETER  The string is malformated, or Ip6Address is NULL.
1396  @retval EFI_OUT_OF_RESOURCES   Failed to perform the operation due to a lack of resources.
1397
1398**/
1399EFI_STATUS
1400EFIAPI
1401NetLibStrToIp6andPrefix (
1402  IN CONST CHAR16                *String,
1403  OUT      EFI_IPv6_ADDRESS      *Ip6Address,
1404  OUT      UINT8                 *PrefixLength
1405  );
1406
1407/**
1408
1409  Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string.
1410  The text representation of address is defined in RFC 4291.
1411
1412  @param[in]       Ip6Address     The pointer to the IPv6 address.
1413  @param[out]      String         The buffer to return the converted string.
1414  @param[in]       StringSize     The length in bytes of the input String.
1415
1416  @retval EFI_SUCCESS             Convert to string successfully.
1417  @retval EFI_INVALID_PARAMETER   The input parameter is invalid.
1418  @retval EFI_BUFFER_TOO_SMALL    The BufferSize is too small for the result. BufferSize has been
1419                                  updated with the size needed to complete the request.
1420**/
1421EFI_STATUS
1422EFIAPI
1423NetLibIp6ToStr (
1424  IN         EFI_IPv6_ADDRESS      *Ip6Address,
1425  OUT        CHAR16                *String,
1426  IN         UINTN                 StringSize
1427  );
1428
1429//
1430// Various signatures
1431//
1432#define  NET_BUF_SIGNATURE    SIGNATURE_32 ('n', 'b', 'u', 'f')
1433#define  NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')
1434#define  NET_QUE_SIGNATURE    SIGNATURE_32 ('n', 'b', 'q', 'u')
1435
1436
1437#define  NET_PROTO_DATA       64   // Opaque buffer for protocols
1438#define  NET_BUF_HEAD         1    // Trim or allocate space from head
1439#define  NET_BUF_TAIL         0    // Trim or allocate space from tail
1440#define  NET_VECTOR_OWN_FIRST 0x01  // We allocated the 1st block in the vector
1441
1442#define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
1443  ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
1444
1445//
1446// Single memory block in the vector.
1447//
1448typedef struct {
1449  UINT32              Len;        // The block's length
1450  UINT8               *Bulk;      // The block's Data
1451} NET_BLOCK;
1452
1453typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);
1454
1455//
1456//NET_VECTOR contains several blocks to hold all packet's
1457//fragments and other house-keeping stuff for sharing. It
1458//doesn't specify the where actual packet fragment begins.
1459//
1460typedef struct {
1461  UINT32              Signature;
1462  INTN                RefCnt;  // Reference count to share NET_VECTOR.
1463  NET_VECTOR_EXT_FREE Free;    // external function to free NET_VECTOR
1464  VOID                *Arg;    // opeque argument to Free
1465  UINT32              Flag;    // Flags, NET_VECTOR_OWN_FIRST
1466  UINT32              Len;     // Total length of the assocated BLOCKs
1467
1468  UINT32              BlockNum;
1469  NET_BLOCK           Block[1];
1470} NET_VECTOR;
1471
1472//
1473//NET_BLOCK_OP operates on the NET_BLOCK. It specifies
1474//where the actual fragment begins and ends
1475//
1476typedef struct {
1477  UINT8               *BlockHead;   // Block's head, or the smallest valid Head
1478  UINT8               *BlockTail;   // Block's tail. BlockTail-BlockHead=block length
1479  UINT8               *Head;        // 1st byte of the data in the block
1480  UINT8               *Tail;        // Tail of the data in the block, Tail-Head=Size
1481  UINT32              Size;         // The size of the data
1482} NET_BLOCK_OP;
1483
1484typedef union {
1485  IP4_HEAD          *Ip4;
1486  EFI_IP6_HEADER    *Ip6;
1487} NET_IP_HEAD;
1488
1489//
1490//NET_BUF is the buffer manage structure used by the
1491//network stack. Every network packet may be fragmented. The Vector points to
1492//memory blocks used by each fragment, and BlockOp
1493//specifies where each fragment begins and ends.
1494//
1495//It also contains an opaque area for the protocol to store
1496//per-packet information. Protocol must be careful not
1497//to overwrite the members after that.
1498//
1499typedef struct {
1500  UINT32         Signature;
1501  INTN           RefCnt;
1502  LIST_ENTRY     List;                       // The List this NET_BUF is on
1503
1504  NET_IP_HEAD    Ip;                         // Network layer header, for fast access
1505  TCP_HEAD       *Tcp;                       // Transport layer header, for fast access
1506  EFI_UDP_HEADER *Udp;                       // User Datagram Protocol header
1507  UINT8          ProtoData [NET_PROTO_DATA]; //Protocol specific data
1508
1509  NET_VECTOR     *Vector;                    // The vector containing the packet
1510
1511  UINT32         BlockOpNum;                 // Total number of BlockOp in the buffer
1512  UINT32         TotalSize;                  // Total size of the actual packet
1513  NET_BLOCK_OP   BlockOp[1];                 // Specify the position of actual packet
1514} NET_BUF;
1515
1516//
1517//A queue of NET_BUFs. It is a thin extension of
1518//NET_BUF functions.
1519//
1520typedef struct {
1521  UINT32              Signature;
1522  INTN                RefCnt;
1523  LIST_ENTRY          List;       // The List this buffer queue is on
1524
1525  LIST_ENTRY          BufList;    // list of queued buffers
1526  UINT32              BufSize;    // total length of DATA in the buffers
1527  UINT32              BufNum;     // total number of buffers on the chain
1528} NET_BUF_QUEUE;
1529
1530//
1531// Pseudo header for TCP and UDP checksum
1532//
1533#pragma pack(1)
1534typedef struct {
1535  IP4_ADDR            SrcIp;
1536  IP4_ADDR            DstIp;
1537  UINT8               Reserved;
1538  UINT8               Protocol;
1539  UINT16              Len;
1540} NET_PSEUDO_HDR;
1541
1542typedef struct {
1543  EFI_IPv6_ADDRESS    SrcIp;
1544  EFI_IPv6_ADDRESS    DstIp;
1545  UINT32              Len;
1546  UINT32              Reserved:24;
1547  UINT32              NextHeader:8;
1548} NET_IP6_PSEUDO_HDR;
1549#pragma pack()
1550
1551//
1552// The fragment entry table used in network interfaces. This is
1553// the same as NET_BLOCK now. Use two different to distinguish
1554// the two in case that NET_BLOCK be enhanced later.
1555//
1556typedef struct {
1557  UINT32              Len;
1558  UINT8               *Bulk;
1559} NET_FRAGMENT;
1560
1561#define NET_GET_REF(PData)      ((PData)->RefCnt++)
1562#define NET_PUT_REF(PData)      ((PData)->RefCnt--)
1563#define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
1564
1565#define NET_BUF_SHARED(Buf) \
1566  (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
1567
1568#define NET_VECTOR_SIZE(BlockNum) \
1569  (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
1570
1571#define NET_BUF_SIZE(BlockOpNum)  \
1572  (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
1573
1574#define NET_HEADSPACE(BlockOp)  \
1575  (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)
1576
1577#define NET_TAILSPACE(BlockOp)  \
1578  (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)
1579
1580/**
1581  Allocate a single block NET_BUF. Upon allocation, all the
1582  free space is in the tail room.
1583
1584  @param[in]  Len              The length of the block.
1585
1586  @return                      The pointer to the allocated NET_BUF, or NULL if the
1587                               allocation failed due to resource limitations.
1588
1589**/
1590NET_BUF  *
1591EFIAPI
1592NetbufAlloc (
1593  IN UINT32                 Len
1594  );
1595
1596/**
1597  Free the net buffer and its associated NET_VECTOR.
1598
1599  Decrease the reference count of the net buffer by one. Free the associated net
1600  vector and itself if the reference count of the net buffer is decreased to 0.
1601  The net vector free operation decreases the reference count of the net
1602  vector by one, and performs the resource free operation when the reference count
1603  of the net vector is 0.
1604
1605  @param[in]  Nbuf                  The pointer to the NET_BUF to be freed.
1606
1607**/
1608VOID
1609EFIAPI
1610NetbufFree (
1611  IN NET_BUF                *Nbuf
1612  );
1613
1614/**
1615  Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
1616  buffer.
1617
1618  For example, this function can be used to retrieve the IP header in the packet. It
1619  also can be used to get the fragment that contains the byte used
1620  mainly by the library implementation itself.
1621
1622  @param[in]   Nbuf      The pointer to the net buffer.
1623  @param[in]   Offset    The offset of the byte.
1624  @param[out]  Index     Index of the NET_BLOCK_OP that contains the byte at
1625                         Offset.
1626
1627  @return       The pointer to the Offset'th byte of data in the net buffer, or NULL
1628                if there is no such data in the net buffer.
1629
1630**/
1631UINT8  *
1632EFIAPI
1633NetbufGetByte (
1634  IN  NET_BUF               *Nbuf,
1635  IN  UINT32                Offset,
1636  OUT UINT32                *Index  OPTIONAL
1637  );
1638
1639/**
1640  Create a copy of the net buffer that shares the associated net vector.
1641
1642  The reference count of the newly created net buffer is set to 1. The reference
1643  count of the associated net vector is increased by one.
1644
1645  @param[in]  Nbuf              The pointer to the net buffer to be cloned.
1646
1647  @return                       The pointer to the cloned net buffer, or NULL if the
1648                                allocation failed due to resource limitations.
1649
1650**/
1651NET_BUF *
1652EFIAPI
1653NetbufClone (
1654  IN NET_BUF                *Nbuf
1655  );
1656
1657/**
1658  Create a duplicated copy of the net buffer with data copied and HeadSpace
1659  bytes of head space reserved.
1660
1661  The duplicated net buffer will allocate its own memory to hold the data of the
1662  source net buffer.
1663
1664  @param[in]       Nbuf         The pointer to the net buffer to be duplicated from.
1665  @param[in, out]  Duplicate    The pointer to the net buffer to duplicate to. If
1666                                NULL, a new net buffer is allocated.
1667  @param[in]      HeadSpace     The length of the head space to reserve.
1668
1669  @return                       The pointer to the duplicated net buffer, or NULL if
1670                                the allocation failed due to resource limitations.
1671
1672**/
1673NET_BUF  *
1674EFIAPI
1675NetbufDuplicate (
1676  IN NET_BUF                *Nbuf,
1677  IN OUT NET_BUF            *Duplicate        OPTIONAL,
1678  IN UINT32                 HeadSpace
1679  );
1680
1681/**
1682  Create a NET_BUF structure which contains Len byte data of Nbuf starting from
1683  Offset.
1684
1685  A new NET_BUF structure will be created but the associated data in NET_VECTOR
1686  is shared. This function exists to perform IP packet fragmentation.
1687
1688  @param[in]  Nbuf         The pointer to the net buffer to be extracted.
1689  @param[in]  Offset       Starting point of the data to be included in the new
1690                           net buffer.
1691  @param[in]  Len          The bytes of data to be included in the new net buffer.
1692  @param[in]  HeadSpace    The bytes of the head space to reserve for the protocol header.
1693
1694  @return                  The pointer to the cloned net buffer, or NULL if the
1695                           allocation failed due to resource limitations.
1696
1697**/
1698NET_BUF  *
1699EFIAPI
1700NetbufGetFragment (
1701  IN NET_BUF                *Nbuf,
1702  IN UINT32                 Offset,
1703  IN UINT32                 Len,
1704  IN UINT32                 HeadSpace
1705  );
1706
1707/**
1708  Reserve some space in the header room of the net buffer.
1709
1710  Upon allocation, all the space is in the tail room of the buffer. Call this
1711  function to move space to the header room. This function is quite limited
1712  in that it can only reserve space from the first block of an empty NET_BUF not
1713  built from the external. However, it should be enough for the network stack.
1714
1715  @param[in, out]  Nbuf     The pointer to the net buffer.
1716  @param[in]       Len      The length of buffer to be reserved from the header.
1717
1718**/
1719VOID
1720EFIAPI
1721NetbufReserve (
1722  IN OUT NET_BUF            *Nbuf,
1723  IN UINT32                 Len
1724  );
1725
1726/**
1727  Allocate Len bytes of space from the header or tail of the buffer.
1728
1729  @param[in, out]  Nbuf       The pointer to the net buffer.
1730  @param[in]       Len        The length of the buffer to be allocated.
1731  @param[in]       FromHead   The flag to indicate whether to reserve the data
1732                              from head (TRUE) or tail (FALSE).
1733
1734  @return                     The pointer to the first byte of the allocated buffer,
1735                              or NULL, if there is no sufficient space.
1736
1737**/
1738UINT8*
1739EFIAPI
1740NetbufAllocSpace (
1741  IN OUT NET_BUF            *Nbuf,
1742  IN UINT32                 Len,
1743  IN BOOLEAN                FromHead
1744  );
1745
1746/**
1747  Trim Len bytes from the header or the tail of the net buffer.
1748
1749  @param[in, out]  Nbuf         The pointer to the net buffer.
1750  @param[in]       Len          The length of the data to be trimmed.
1751  @param[in]      FromHead      The flag to indicate whether trim data is from the
1752                                head (TRUE) or the tail (FALSE).
1753
1754  @return    The length of the actual trimmed data, which may be less
1755             than Len if the TotalSize of Nbuf is less than Len.
1756
1757**/
1758UINT32
1759EFIAPI
1760NetbufTrim (
1761  IN OUT NET_BUF            *Nbuf,
1762  IN UINT32                 Len,
1763  IN BOOLEAN                FromHead
1764  );
1765
1766/**
1767  Copy Len bytes of data from the specific offset of the net buffer to the
1768  destination memory.
1769
1770  The Len bytes of data may cross several fragments of the net buffer.
1771
1772  @param[in]   Nbuf         The pointer to the net buffer.
1773  @param[in]   Offset       The sequence number of the first byte to copy.
1774  @param[in]   Len          The length of the data to copy.
1775  @param[in]   Dest         The destination of the data to copy to.
1776
1777  @return           The length of the actual copied data, or 0 if the offset
1778                    specified exceeds the total size of net buffer.
1779
1780**/
1781UINT32
1782EFIAPI
1783NetbufCopy (
1784  IN NET_BUF                *Nbuf,
1785  IN UINT32                 Offset,
1786  IN UINT32                 Len,
1787  IN UINT8                  *Dest
1788  );
1789
1790/**
1791  Build a NET_BUF from external blocks.
1792
1793  A new NET_BUF structure will be created from external blocks. An additional block
1794  of memory will be allocated to hold reserved HeadSpace bytes of header room
1795  and existing HeadLen bytes of header, but the external blocks are shared by the
1796  net buffer to avoid data copying.
1797
1798  @param[in]  ExtFragment           The pointer to the data block.
1799  @param[in]  ExtNum                The number of the data blocks.
1800  @param[in]  HeadSpace             The head space to be reserved.
1801  @param[in]  HeadLen               The length of the protocol header. The function
1802                                    pulls this amount of data into a linear block.
1803  @param[in]  ExtFree               The pointer to the caller-provided free function.
1804  @param[in]  Arg                   The argument passed to ExtFree when ExtFree is
1805                                    called.
1806
1807  @return                  The pointer to the net buffer built from the data blocks,
1808                           or NULL if the allocation failed due to resource
1809                           limit.
1810
1811**/
1812NET_BUF  *
1813EFIAPI
1814NetbufFromExt (
1815  IN NET_FRAGMENT           *ExtFragment,
1816  IN UINT32                 ExtNum,
1817  IN UINT32                 HeadSpace,
1818  IN UINT32                 HeadLen,
1819  IN NET_VECTOR_EXT_FREE    ExtFree,
1820  IN VOID                   *Arg          OPTIONAL
1821  );
1822
1823/**
1824  Build a fragment table to contain the fragments in the net buffer. This is the
1825  opposite operation of the NetbufFromExt.
1826
1827  @param[in]       Nbuf                  Points to the net buffer.
1828  @param[in, out]  ExtFragment           The pointer to the data block.
1829  @param[in, out]  ExtNum                The number of the data blocks.
1830
1831  @retval EFI_BUFFER_TOO_SMALL  The number of non-empty blocks is bigger than
1832                                ExtNum.
1833  @retval EFI_SUCCESS           The fragment table was built successfully.
1834
1835**/
1836EFI_STATUS
1837EFIAPI
1838NetbufBuildExt (
1839  IN NET_BUF                *Nbuf,
1840  IN OUT NET_FRAGMENT       *ExtFragment,
1841  IN OUT UINT32             *ExtNum
1842  );
1843
1844/**
1845  Build a net buffer from a list of net buffers.
1846
1847  All the fragments will be collected from the list of NEW_BUF, and then a new
1848  net buffer will be created through NetbufFromExt.
1849
1850  @param[in]   BufList    A List of the net buffer.
1851  @param[in]   HeadSpace  The head space to be reserved.
1852  @param[in]   HeaderLen  The length of the protocol header. The function
1853                          pulls this amount of data into a linear block.
1854  @param[in]   ExtFree    The pointer to the caller provided free function.
1855  @param[in]   Arg        The argument passed to ExtFree when ExtFree is called.
1856
1857  @return                 The pointer to the net buffer built from the list of net
1858                          buffers.
1859
1860**/
1861NET_BUF  *
1862EFIAPI
1863NetbufFromBufList (
1864  IN LIST_ENTRY             *BufList,
1865  IN UINT32                 HeadSpace,
1866  IN UINT32                 HeaderLen,
1867  IN NET_VECTOR_EXT_FREE    ExtFree,
1868  IN VOID                   *Arg              OPTIONAL
1869  );
1870
1871/**
1872  Free a list of net buffers.
1873
1874  @param[in, out]  Head              The pointer to the head of linked net buffers.
1875
1876**/
1877VOID
1878EFIAPI
1879NetbufFreeList (
1880  IN OUT LIST_ENTRY         *Head
1881  );
1882
1883/**
1884  Initiate the net buffer queue.
1885
1886  @param[in, out]  NbufQue   The pointer to the net buffer queue to be initialized.
1887
1888**/
1889VOID
1890EFIAPI
1891NetbufQueInit (
1892  IN OUT NET_BUF_QUEUE          *NbufQue
1893  );
1894
1895/**
1896  Allocate and initialize a net buffer queue.
1897
1898  @return         The pointer to the allocated net buffer queue, or NULL if the
1899                  allocation failed due to resource limit.
1900
1901**/
1902NET_BUF_QUEUE  *
1903EFIAPI
1904NetbufQueAlloc (
1905  VOID
1906  );
1907
1908/**
1909  Free a net buffer queue.
1910
1911  Decrease the reference count of the net buffer queue by one. The real resource
1912  free operation isn't performed until the reference count of the net buffer
1913  queue is decreased to 0.
1914
1915  @param[in]  NbufQue               The pointer to the net buffer queue to be freed.
1916
1917**/
1918VOID
1919EFIAPI
1920NetbufQueFree (
1921  IN NET_BUF_QUEUE          *NbufQue
1922  );
1923
1924/**
1925  Remove a net buffer from the head in the specific queue and return it.
1926
1927  @param[in, out]  NbufQue               The pointer to the net buffer queue.
1928
1929  @return           The pointer to the net buffer removed from the specific queue,
1930                    or NULL if there is no net buffer in the specific queue.
1931
1932**/
1933NET_BUF  *
1934EFIAPI
1935NetbufQueRemove (
1936  IN OUT NET_BUF_QUEUE          *NbufQue
1937  );
1938
1939/**
1940  Append a net buffer to the net buffer queue.
1941
1942  @param[in, out]  NbufQue            The pointer to the net buffer queue.
1943  @param[in, out]  Nbuf               The pointer to the net buffer to be appended.
1944
1945**/
1946VOID
1947EFIAPI
1948NetbufQueAppend (
1949  IN OUT NET_BUF_QUEUE          *NbufQue,
1950  IN OUT NET_BUF                *Nbuf
1951  );
1952
1953/**
1954  Copy Len bytes of data from the net buffer queue at the specific offset to the
1955  destination memory.
1956
1957  The copying operation is the same as NetbufCopy, but applies to the net buffer
1958  queue instead of the net buffer.
1959
1960  @param[in]   NbufQue         The pointer to the net buffer queue.
1961  @param[in]   Offset          The sequence number of the first byte to copy.
1962  @param[in]   Len             The length of the data to copy.
1963  @param[out]  Dest            The destination of the data to copy to.
1964
1965  @return       The length of the actual copied data, or 0 if the offset
1966                specified exceeds the total size of net buffer queue.
1967
1968**/
1969UINT32
1970EFIAPI
1971NetbufQueCopy (
1972  IN NET_BUF_QUEUE          *NbufQue,
1973  IN UINT32                 Offset,
1974  IN UINT32                 Len,
1975  OUT UINT8                 *Dest
1976  );
1977
1978/**
1979  Trim Len bytes of data from the buffer queue and free any net buffer
1980  that is completely trimmed.
1981
1982  The trimming operation is the same as NetbufTrim but applies to the net buffer
1983  queue instead of the net buffer.
1984
1985  @param[in, out]  NbufQue               The pointer to the net buffer queue.
1986  @param[in]       Len                   The length of the data to trim.
1987
1988  @return   The actual length of the data trimmed.
1989
1990**/
1991UINT32
1992EFIAPI
1993NetbufQueTrim (
1994  IN OUT NET_BUF_QUEUE      *NbufQue,
1995  IN UINT32                 Len
1996  );
1997
1998
1999/**
2000  Flush the net buffer queue.
2001
2002  @param[in, out]  NbufQue               The pointer to the queue to be flushed.
2003
2004**/
2005VOID
2006EFIAPI
2007NetbufQueFlush (
2008  IN OUT NET_BUF_QUEUE          *NbufQue
2009  );
2010
2011/**
2012  Compute the checksum for a bulk of data.
2013
2014  @param[in]   Bulk                  The pointer to the data.
2015  @param[in]   Len                   The length of the data, in bytes.
2016
2017  @return    The computed checksum.
2018
2019**/
2020UINT16
2021EFIAPI
2022NetblockChecksum (
2023  IN UINT8                  *Bulk,
2024  IN UINT32                 Len
2025  );
2026
2027/**
2028  Add two checksums.
2029
2030  @param[in]   Checksum1             The first checksum to be added.
2031  @param[in]   Checksum2             The second checksum to be added.
2032
2033  @return         The new checksum.
2034
2035**/
2036UINT16
2037EFIAPI
2038NetAddChecksum (
2039  IN UINT16                 Checksum1,
2040  IN UINT16                 Checksum2
2041  );
2042
2043/**
2044  Compute the checksum for a NET_BUF.
2045
2046  @param[in]   Nbuf                  The pointer to the net buffer.
2047
2048  @return    The computed checksum.
2049
2050**/
2051UINT16
2052EFIAPI
2053NetbufChecksum (
2054  IN NET_BUF                *Nbuf
2055  );
2056
2057/**
2058  Compute the checksum for TCP/UDP pseudo header.
2059
2060  Src and Dst are in network byte order, and Len is in host byte order.
2061
2062  @param[in]   Src                   The source address of the packet.
2063  @param[in]   Dst                   The destination address of the packet.
2064  @param[in]   Proto                 The protocol type of the packet.
2065  @param[in]   Len                   The length of the packet.
2066
2067  @return   The computed checksum.
2068
2069**/
2070UINT16
2071EFIAPI
2072NetPseudoHeadChecksum (
2073  IN IP4_ADDR               Src,
2074  IN IP4_ADDR               Dst,
2075  IN UINT8                  Proto,
2076  IN UINT16                 Len
2077  );
2078
2079/**
2080  Compute the checksum for the TCP6/UDP6 pseudo header.
2081
2082  Src and Dst are in network byte order, and Len is in host byte order.
2083
2084  @param[in]   Src                   The source address of the packet.
2085  @param[in]   Dst                   The destination address of the packet.
2086  @param[in]   NextHeader            The protocol type of the packet.
2087  @param[in]   Len                   The length of the packet.
2088
2089  @return   The computed checksum.
2090
2091**/
2092UINT16
2093EFIAPI
2094NetIp6PseudoHeadChecksum (
2095  IN EFI_IPv6_ADDRESS       *Src,
2096  IN EFI_IPv6_ADDRESS       *Dst,
2097  IN UINT8                  NextHeader,
2098  IN UINT32                 Len
2099  );
2100
2101/**
2102  The function frees the net buffer which allocated by the IP protocol. It releases
2103  only the net buffer and doesn't call the external free function.
2104
2105  This function should be called after finishing the process of mIpSec->ProcessExt()
2106  for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new
2107  buffer for the ESP, so there needs a function to free the old net buffer.
2108
2109  @param[in]  Nbuf       The network buffer to be freed.
2110
2111**/
2112VOID
2113NetIpSecNetbufFree (
2114  NET_BUF   *Nbuf
2115  );
2116
2117/**
2118  This function obtains the system guid from the smbios table.
2119
2120  @param[out]  SystemGuid     The pointer of the returned system guid.
2121
2122  @retval EFI_SUCCESS         Successfully obtained the system guid.
2123  @retval EFI_NOT_FOUND       Did not find the SMBIOS table.
2124
2125**/
2126EFI_STATUS
2127EFIAPI
2128NetLibGetSystemGuid (
2129  OUT EFI_GUID              *SystemGuid
2130  );
2131
2132#endif
2133