1/** @file
2  Compute the logrithm of x.
3
4  Copyright (c) 2010 - 2011, Intel Corporation. All rights reserved.<BR>
5  This program and the accompanying materials are licensed and made available under
6  the terms and conditions of the BSD License that accompanies this distribution.
7  The full text of the license may be found at
8  http://opensource.org/licenses/bsd-license.
9
10  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 * ====================================================
14 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
15 *
16 * Developed at SunPro, a Sun Microsystems, Inc. business.
17 * Permission to use, copy, modify, and distribute this
18 * software is freely granted, provided that this notice
19 * is preserved.
20 * ====================================================
21
22  e_sqrt.c 5.1 93/09/24
23  NetBSD: e_sqrt.c,v 1.12 2002/05/26 22:01:52 wiz Exp
24**/
25#include  <LibConfig.h>
26#include  <sys/EfiCdefs.h>
27
28#include  <errno.h>
29#include "math.h"
30#include "math_private.h"
31
32#if defined(_MSC_VER)           /* Handle Microsoft VC++ compiler specifics. */
33// potential divide by 0 -- near line 129, (x-x)/(x-x) is on purpose
34#pragma warning ( disable : 4723 )
35#endif
36
37/* __ieee754_sqrt(x)
38 * Return correctly rounded sqrt.
39 *           ------------------------------------------
40 *       |  Use the hardware sqrt if you have one |
41 *           ------------------------------------------
42 * Method:
43 *   Bit by bit method using integer arithmetic. (Slow, but portable)
44 *   1. Normalization
45 *  Scale x to y in [1,4) with even powers of 2:
46 *  find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
47 *    sqrt(x) = 2^k * sqrt(y)
48 *   2. Bit by bit computation
49 *  Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
50 *       i               0
51 *                                     i+1         2
52 *      s  = 2*q , and  y  =  2   * ( y - q  ).   (1)
53 *       i      i            i                 i
54 *
55 *  To compute q    from q , one checks whether
56 *        i+1       i
57 *
58 *            -(i+1) 2
59 *      (q + 2      ) <= y.     (2)
60 *            i
61 *                    -(i+1)
62 *  If (2) is false, then q   = q ; otherwise q   = q  + 2      .
63 *             i+1   i             i+1   i
64 *
65 *  With some algebric manipulation, it is not difficult to see
66 *  that (2) is equivalent to
67 *                             -(i+1)
68 *      s  +  2       <= y      (3)
69 *       i                i
70 *
71 *  The advantage of (3) is that s  and y  can be computed by
72 *              i      i
73 *  the following recurrence formula:
74 *      if (3) is false
75 *
76 *      s     =  s  , y    = y   ;      (4)
77 *       i+1      i    i+1    i
78 *
79 *      otherwise,
80 *                         -i                     -(i+1)
81 *      s   =  s  + 2  ,  y    = y  -  s  - 2     (5)
82 *           i+1      i          i+1    i     i
83 *
84 *  One may easily use induction to prove (4) and (5).
85 *  Note. Since the left hand side of (3) contain only i+2 bits,
86 *        it does not necessary to do a full (53-bit) comparison
87 *        in (3).
88 *   3. Final rounding
89 *  After generating the 53 bits result, we compute one more bit.
90 *  Together with the remainder, we can decide whether the
91 *  result is exact, bigger than 1/2ulp, or less than 1/2ulp
92 *  (it will never equal to 1/2ulp).
93 *  The rounding mode can be detected by checking whether
94 *  huge + tiny is equal to huge, and whether huge - tiny is
95 *  equal to huge for some floating point number "huge" and "tiny".
96 *
97 * Special cases:
98 *  sqrt(+-0) = +-0   ... exact
99 *  sqrt(inf) = inf
100 *  sqrt(-ve) = NaN   ... with invalid signal
101 *  sqrt(NaN) = NaN   ... with invalid signal for signaling NaN
102 *
103 * Other methods : see the appended file at the end of the program below.
104 *---------------
105 */
106
107static  const double  one = 1.0, tiny=1.0e-300;
108
109double
110__ieee754_sqrt(double x)
111{
112  double z;
113  int32_t sign = (int)0x80000000;
114  int32_t ix0,s0,q,m,t,i;
115  u_int32_t r,t1,s1,ix1,q1;
116
117  EXTRACT_WORDS(ix0,ix1,x);
118
119    /* take care of Inf and NaN */
120  if((ix0&0x7ff00000)==0x7ff00000) {
121      return x*x+x;   /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
122             sqrt(-inf)=sNaN */
123  }
124    /* take care of zero */
125  if(ix0<=0) {
126      if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
127      else if(ix0<0) {
128        errno = EDOM;
129        return (x-x)/(x-x);   /* sqrt(-ve) = sNaN */
130      }
131  }
132    /* normalize x */
133  m = (ix0>>20);
134  if(m==0) {        /* subnormal x */
135      while(ix0==0) {
136    m -= 21;
137    ix0 |= (ix1>>11); ix1 <<= 21;
138      }
139      for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
140      m -= i-1;
141      ix0 |= (ix1>>(32-i));
142      ix1 <<= i;
143  }
144  m -= 1023;  /* unbias exponent */
145  ix0 = (ix0&0x000fffff)|0x00100000;
146  if(m&1){  /* odd m, double x to make it even */
147      ix0 += ix0 + ((ix1&sign)>>31);
148      ix1 += ix1;
149  }
150  m >>= 1;  /* m = [m/2] */
151
152    /* generate sqrt(x) bit by bit */
153  ix0 += ix0 + ((ix1&sign)>>31);
154  ix1 += ix1;
155  q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
156  r = 0x00200000;   /* r = moving bit from right to left */
157
158  while(r!=0) {
159      t = s0+r;
160      if(t<=ix0) {
161    s0   = t+r;
162    ix0 -= t;
163    q   += r;
164      }
165      ix0 += ix0 + ((ix1&sign)>>31);
166      ix1 += ix1;
167      r>>=1;
168  }
169
170  r = sign;
171  while(r!=0) {
172      t1 = s1+r;
173      t  = s0;
174      if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
175    s1  = t1+r;
176    if(((t1&sign)==(u_int32_t)sign)&&(s1&sign)==0) s0 += 1;
177    ix0 -= t;
178    if (ix1 < t1) ix0 -= 1;
179    ix1 -= t1;
180    q1  += r;
181      }
182      ix0 += ix0 + ((ix1&sign)>>31);
183      ix1 += ix1;
184      r>>=1;
185  }
186
187    /* use floating add to find out rounding direction */
188  if((ix0|ix1)!=0) {
189      z = one-tiny; /* trigger inexact flag */
190      if (z>=one) {
191          z = one+tiny;
192          if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
193    else if (z>one) {
194        if (q1==(u_int32_t)0xfffffffe) q+=1;
195        q1+=2;
196    } else
197              q1 += (q1&1);
198      }
199  }
200  ix0 = (q>>1)+0x3fe00000;
201  ix1 =  q1>>1;
202  if ((q&1)==1) ix1 |= sign;
203  ix0 += (m <<20);
204  INSERT_WORDS(z,ix0,ix1);
205  return z;
206}
207
208/*
209Other methods  (use floating-point arithmetic)
210-------------
211(This is a copy of a drafted paper by Prof W. Kahan
212and K.C. Ng, written in May, 1986)
213
214  Two algorithms are given here to implement sqrt(x)
215  (IEEE double precision arithmetic) in software.
216  Both supply sqrt(x) correctly rounded. The first algorithm (in
217  Section A) uses newton iterations and involves four divisions.
218  The second one uses reciproot iterations to avoid division, but
219  requires more multiplications. Both algorithms need the ability
220  to chop results of arithmetic operations instead of round them,
221  and the INEXACT flag to indicate when an arithmetic operation
222  is executed exactly with no roundoff error, all part of the
223  standard (IEEE 754-1985). The ability to perform shift, add,
224  subtract and logical AND operations upon 32-bit words is needed
225  too, though not part of the standard.
226
227A.  sqrt(x) by Newton Iteration
228
229   (1)  Initial approximation
230
231  Let x0 and x1 be the leading and the trailing 32-bit words of
232  a floating point number x (in IEEE double format) respectively
233
234      1    11        52         ...widths
235     ------------------------------------------------------
236  x: |s|    e     |       f       |
237     ------------------------------------------------------
238        msb    lsb  msb             lsb ...order
239
240
241       ------------------------        ------------------------
242  x0:  |s|   e    |    f1     |  x1: |          f2           |
243       ------------------------        ------------------------
244
245  By performing shifts and subtracts on x0 and x1 (both regarded
246  as integers), we obtain an 8-bit approximation of sqrt(x) as
247  follows.
248
249    k  := (x0>>1) + 0x1ff80000;
250    y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
251  Here k is a 32-bit integer and T1[] is an integer array containing
252  correction terms. Now magically the floating value of y (y's
253  leading 32-bit word is y0, the value of its trailing word is 0)
254  approximates sqrt(x) to almost 8-bit.
255
256  Value of T1:
257  static int T1[32]= {
258  0,  1024, 3062, 5746, 9193, 13348,  18162,  23592,
259  29598,  36145,  43202,  50740,  58733,  67158,  75992,  85215,
260  83599,  71378,  60428,  50647,  41945,  34246,  27478,  21581,
261  16499,  12183,  8588, 5674, 3403, 1742, 661,  130,};
262
263    (2) Iterative refinement
264
265  Apply Heron's rule three times to y, we have y approximates
266  sqrt(x) to within 1 ulp (Unit in the Last Place):
267
268    y := (y+x/y)/2    ... almost 17 sig. bits
269    y := (y+x/y)/2    ... almost 35 sig. bits
270    y := y-(y-x/y)/2  ... within 1 ulp
271
272
273  Remark 1.
274      Another way to improve y to within 1 ulp is:
275
276    y := (y+x/y)    ... almost 17 sig. bits to 2*sqrt(x)
277    y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
278
279        2
280          (x-y )*y
281    y := y + 2* ----------  ...within 1 ulp
282             2
283           3y  + x
284
285
286  This formula has one division fewer than the one above; however,
287  it requires more multiplications and additions. Also x must be
288  scaled in advance to avoid spurious overflow in evaluating the
289  expression 3y*y+x. Hence it is not recommended uless division
290  is slow. If division is very slow, then one should use the
291  reciproot algorithm given in section B.
292
293    (3) Final adjustment
294
295  By twiddling y's last bit it is possible to force y to be
296  correctly rounded according to the prevailing rounding mode
297  as follows. Let r and i be copies of the rounding mode and
298  inexact flag before entering the square root program. Also we
299  use the expression y+-ulp for the next representable floating
300  numbers (up and down) of y. Note that y+-ulp = either fixed
301  point y+-1, or multiply y by nextafter(1,+-inf) in chopped
302  mode.
303
304    I := FALSE; ... reset INEXACT flag I
305    R := RZ;  ... set rounding mode to round-toward-zero
306    z := x/y; ... chopped quotient, possibly inexact
307    If(not I) then {  ... if the quotient is exact
308        if(z=y) {
309            I := i;  ... restore inexact flag
310            R := r;  ... restore rounded mode
311            return sqrt(x):=y.
312        } else {
313      z := z - ulp; ... special rounding
314        }
315    }
316    i := TRUE;    ... sqrt(x) is inexact
317    If (r=RN) then z=z+ulp  ... rounded-to-nearest
318    If (r=RP) then {  ... round-toward-+inf
319        y = y+ulp; z=z+ulp;
320    }
321    y := y+z;   ... chopped sum
322    y0:=y0-0x00100000;  ... y := y/2 is correctly rounded.
323          I := i;     ... restore inexact flag
324          R := r;     ... restore rounded mode
325          return sqrt(x):=y.
326
327    (4) Special cases
328
329  Square root of +inf, +-0, or NaN is itself;
330  Square root of a negative number is NaN with invalid signal.
331
332
333B.  sqrt(x) by Reciproot Iteration
334
335   (1)  Initial approximation
336
337  Let x0 and x1 be the leading and the trailing 32-bit words of
338  a floating point number x (in IEEE double format) respectively
339  (see section A). By performing shifs and subtracts on x0 and y0,
340  we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
341
342      k := 0x5fe80000 - (x0>>1);
343      y0:= k - T2[63&(k>>14)].  ... y ~ 1/sqrt(x) to 7.8 bits
344
345  Here k is a 32-bit integer and T2[] is an integer array
346  containing correction terms. Now magically the floating
347  value of y (y's leading 32-bit word is y0, the value of
348  its trailing word y1 is set to zero) approximates 1/sqrt(x)
349  to almost 7.8-bit.
350
351  Value of T2:
352  static int T2[64]= {
353  0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
354  0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
355  0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
356  0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
357  0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
358  0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
359  0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
360  0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
361
362    (2) Iterative refinement
363
364  Apply Reciproot iteration three times to y and multiply the
365  result by x to get an approximation z that matches sqrt(x)
366  to about 1 ulp. To be exact, we will have
367    -1ulp < sqrt(x)-z<1.0625ulp.
368
369  ... set rounding mode to Round-to-nearest
370     y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
371     y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
372  ... special arrangement for better accuracy
373     z := x*y     ... 29 bits to sqrt(x), with z*y<1
374     z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
375
376  Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
377  (a) the term z*y in the final iteration is always less than 1;
378  (b) the error in the final result is biased upward so that
379    -1 ulp < sqrt(x) - z < 1.0625 ulp
380      instead of |sqrt(x)-z|<1.03125ulp.
381
382    (3) Final adjustment
383
384  By twiddling y's last bit it is possible to force y to be
385  correctly rounded according to the prevailing rounding mode
386  as follows. Let r and i be copies of the rounding mode and
387  inexact flag before entering the square root program. Also we
388  use the expression y+-ulp for the next representable floating
389  numbers (up and down) of y. Note that y+-ulp = either fixed
390  point y+-1, or multiply y by nextafter(1,+-inf) in chopped
391  mode.
392
393  R := RZ;    ... set rounding mode to round-toward-zero
394  switch(r) {
395      case RN:    ... round-to-nearest
396         if(x<= z*(z-ulp)...chopped) z = z - ulp; else
397         if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
398         break;
399      case RZ:case RM:  ... round-to-zero or round-to--inf
400         R:=RP;   ... reset rounding mod to round-to-+inf
401         if(x<z*z ... rounded up) z = z - ulp; else
402         if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
403         break;
404      case RP:    ... round-to-+inf
405         if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
406         if(x>z*z ...chopped) z = z+ulp;
407         break;
408  }
409
410  Remark 3. The above comparisons can be done in fixed point. For
411  example, to compare x and w=z*z chopped, it suffices to compare
412  x1 and w1 (the trailing parts of x and w), regarding them as
413  two's complement integers.
414
415  ...Is z an exact square root?
416  To determine whether z is an exact square root of x, let z1 be the
417  trailing part of z, and also let x0 and x1 be the leading and
418  trailing parts of x.
419
420  If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
421      I := 1;   ... Raise Inexact flag: z is not exact
422  else {
423      j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
424      k := z1 >> 26;    ... get z's 25-th and 26-th
425              fraction bits
426      I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
427  }
428  R:= r   ... restore rounded mode
429  return sqrt(x):=z.
430
431  If multiplication is cheaper than the foregoing red tape, the
432  Inexact flag can be evaluated by
433
434      I := i;
435      I := (z*z!=x) or I.
436
437  Note that z*z can overwrite I; this value must be sensed if it is
438  True.
439
440  Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
441  zero.
442
443        --------------------
444    z1: |        f2        |
445        --------------------
446    bit 31       bit 0
447
448  Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
449  or even of logb(x) have the following relations:
450
451  -------------------------------------------------
452  bit 27,26 of z1   bit 1,0 of x1 logb(x)
453  -------------------------------------------------
454  00      00    odd and even
455  01      01    even
456  10      10    odd
457  10      00    even
458  11      01    even
459  -------------------------------------------------
460
461    (4) Special cases (see (4) of Section A).
462
463 */
464
465