1/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements.  See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License.  You may obtain a copy of the License at
8 *
9 *      http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18package org.apache.commons.math.complex;
19
20import java.io.Serializable;
21import java.util.ArrayList;
22import java.util.List;
23
24import org.apache.commons.math.FieldElement;
25import org.apache.commons.math.MathRuntimeException;
26import org.apache.commons.math.exception.util.LocalizedFormats;
27import org.apache.commons.math.util.MathUtils;
28import org.apache.commons.math.util.FastMath;
29
30/**
31 * Representation of a Complex number - a number which has both a
32 * real and imaginary part.
33 * <p>
34 * Implementations of arithmetic operations handle <code>NaN</code> and
35 * infinite values according to the rules for {@link java.lang.Double}
36 * arithmetic, applying definitional formulas and returning <code>NaN</code> or
37 * infinite values in real or imaginary parts as these arise in computation.
38 * See individual method javadocs for details.</p>
39 * <p>
40 * {@link #equals} identifies all values with <code>NaN</code> in either real
41 * or imaginary part - e.g., <pre>
42 * <code>1 + NaNi  == NaN + i == NaN + NaNi.</code></pre></p>
43 *
44 * implements Serializable since 2.0
45 *
46 * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
47 */
48public class Complex implements FieldElement<Complex>, Serializable  {
49
50    /** The square root of -1. A number representing "0.0 + 1.0i" */
51    public static final Complex I = new Complex(0.0, 1.0);
52
53    // CHECKSTYLE: stop ConstantName
54    /** A complex number representing "NaN + NaNi" */
55    public static final Complex NaN = new Complex(Double.NaN, Double.NaN);
56    // CHECKSTYLE: resume ConstantName
57
58    /** A complex number representing "+INF + INFi" */
59    public static final Complex INF = new Complex(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY);
60
61    /** A complex number representing "1.0 + 0.0i" */
62    public static final Complex ONE = new Complex(1.0, 0.0);
63
64    /** A complex number representing "0.0 + 0.0i" */
65    public static final Complex ZERO = new Complex(0.0, 0.0);
66
67    /** Serializable version identifier */
68    private static final long serialVersionUID = -6195664516687396620L;
69
70    /** The imaginary part. */
71    private final double imaginary;
72
73    /** The real part. */
74    private final double real;
75
76    /** Record whether this complex number is equal to NaN. */
77    private final transient boolean isNaN;
78
79    /** Record whether this complex number is infinite. */
80    private final transient boolean isInfinite;
81
82    /**
83     * Create a complex number given the real and imaginary parts.
84     *
85     * @param real the real part
86     * @param imaginary the imaginary part
87     */
88    public Complex(double real, double imaginary) {
89        super();
90        this.real = real;
91        this.imaginary = imaginary;
92
93        isNaN = Double.isNaN(real) || Double.isNaN(imaginary);
94        isInfinite = !isNaN &&
95        (Double.isInfinite(real) || Double.isInfinite(imaginary));
96    }
97
98    /**
99     * Return the absolute value of this complex number.
100     * <p>
101     * Returns <code>NaN</code> if either real or imaginary part is
102     * <code>NaN</code> and <code>Double.POSITIVE_INFINITY</code> if
103     * neither part is <code>NaN</code>, but at least one part takes an infinite
104     * value.</p>
105     *
106     * @return the absolute value
107     */
108    public double abs() {
109        if (isNaN()) {
110            return Double.NaN;
111        }
112
113        if (isInfinite()) {
114            return Double.POSITIVE_INFINITY;
115        }
116
117        if (FastMath.abs(real) < FastMath.abs(imaginary)) {
118            if (imaginary == 0.0) {
119                return FastMath.abs(real);
120            }
121            double q = real / imaginary;
122            return FastMath.abs(imaginary) * FastMath.sqrt(1 + q * q);
123        } else {
124            if (real == 0.0) {
125                return FastMath.abs(imaginary);
126            }
127            double q = imaginary / real;
128            return FastMath.abs(real) * FastMath.sqrt(1 + q * q);
129        }
130    }
131
132    /**
133     * Return the sum of this complex number and the given complex number.
134     * <p>
135     * Uses the definitional formula
136     * <pre>
137     * (a + bi) + (c + di) = (a+c) + (b+d)i
138     * </pre></p>
139     * <p>
140     * If either this or <code>rhs</code> has a NaN value in either part,
141     * {@link #NaN} is returned; otherwise Inifinite and NaN values are
142     * returned in the parts of the result according to the rules for
143     * {@link java.lang.Double} arithmetic.</p>
144     *
145     * @param rhs the other complex number
146     * @return the complex number sum
147     * @throws NullPointerException if <code>rhs</code> is null
148     */
149    public Complex add(Complex rhs) {
150        return createComplex(real + rhs.getReal(),
151            imaginary + rhs.getImaginary());
152    }
153
154    /**
155     * Return the conjugate of this complex number. The conjugate of
156     * "A + Bi" is "A - Bi".
157     * <p>
158     * {@link #NaN} is returned if either the real or imaginary
159     * part of this Complex number equals <code>Double.NaN</code>.</p>
160     * <p>
161     * If the imaginary part is infinite, and the real part is not NaN,
162     * the returned value has infinite imaginary part of the opposite
163     * sign - e.g. the conjugate of <code>1 + POSITIVE_INFINITY i</code>
164     * is <code>1 - NEGATIVE_INFINITY i</code></p>
165     *
166     * @return the conjugate of this Complex object
167     */
168    public Complex conjugate() {
169        if (isNaN()) {
170            return NaN;
171        }
172        return createComplex(real, -imaginary);
173    }
174
175    /**
176     * Return the quotient of this complex number and the given complex number.
177     * <p>
178     * Implements the definitional formula
179     * <pre><code>
180     *    a + bi          ac + bd + (bc - ad)i
181     *    ----------- = -------------------------
182     *    c + di         c<sup>2</sup> + d<sup>2</sup>
183     * </code></pre>
184     * but uses
185     * <a href="http://doi.acm.org/10.1145/1039813.1039814">
186     * prescaling of operands</a> to limit the effects of overflows and
187     * underflows in the computation.</p>
188     * <p>
189     * Infinite and NaN values are handled / returned according to the
190     * following rules, applied in the order presented:
191     * <ul>
192     * <li>If either this or <code>rhs</code> has a NaN value in either part,
193     *  {@link #NaN} is returned.</li>
194     * <li>If <code>rhs</code> equals {@link #ZERO}, {@link #NaN} is returned.
195     * </li>
196     * <li>If this and <code>rhs</code> are both infinite,
197     * {@link #NaN} is returned.</li>
198     * <li>If this is finite (i.e., has no infinite or NaN parts) and
199     *  <code>rhs</code> is infinite (one or both parts infinite),
200     * {@link #ZERO} is returned.</li>
201     * <li>If this is infinite and <code>rhs</code> is finite, NaN values are
202     * returned in the parts of the result if the {@link java.lang.Double}
203     * rules applied to the definitional formula force NaN results.</li>
204     * </ul></p>
205     *
206     * @param rhs the other complex number
207     * @return the complex number quotient
208     * @throws NullPointerException if <code>rhs</code> is null
209     */
210    public Complex divide(Complex rhs) {
211        if (isNaN() || rhs.isNaN()) {
212            return NaN;
213        }
214
215        double c = rhs.getReal();
216        double d = rhs.getImaginary();
217        if (c == 0.0 && d == 0.0) {
218            return NaN;
219        }
220
221        if (rhs.isInfinite() && !isInfinite()) {
222            return ZERO;
223        }
224
225        if (FastMath.abs(c) < FastMath.abs(d)) {
226            double q = c / d;
227            double denominator = c * q + d;
228            return createComplex((real * q + imaginary) / denominator,
229                (imaginary * q - real) / denominator);
230        } else {
231            double q = d / c;
232            double denominator = d * q + c;
233            return createComplex((imaginary * q + real) / denominator,
234                (imaginary - real * q) / denominator);
235        }
236    }
237
238    /**
239     * Test for the equality of two Complex objects.
240     * <p>
241     * If both the real and imaginary parts of two Complex numbers
242     * are exactly the same, and neither is <code>Double.NaN</code>, the two
243     * Complex objects are considered to be equal.</p>
244     * <p>
245     * All <code>NaN</code> values are considered to be equal - i.e, if either
246     * (or both) real and imaginary parts of the complex number are equal
247     * to <code>Double.NaN</code>, the complex number is equal to
248     * <code>Complex.NaN</code>.</p>
249     *
250     * @param other Object to test for equality to this
251     * @return true if two Complex objects are equal, false if
252     *         object is null, not an instance of Complex, or
253     *         not equal to this Complex instance
254     *
255     */
256    @Override
257    public boolean equals(Object other) {
258        if (this == other) {
259            return true;
260        }
261        if (other instanceof Complex){
262            Complex rhs = (Complex)other;
263            if (rhs.isNaN()) {
264                return this.isNaN();
265            } else {
266                return (real == rhs.real) && (imaginary == rhs.imaginary);
267            }
268        }
269        return false;
270    }
271
272    /**
273     * Get a hashCode for the complex number.
274     * <p>
275     * All NaN values have the same hash code.</p>
276     *
277     * @return a hash code value for this object
278     */
279    @Override
280    public int hashCode() {
281        if (isNaN()) {
282            return 7;
283        }
284        return 37 * (17 * MathUtils.hash(imaginary) +
285            MathUtils.hash(real));
286    }
287
288    /**
289     * Access the imaginary part.
290     *
291     * @return the imaginary part
292     */
293    public double getImaginary() {
294        return imaginary;
295    }
296
297    /**
298     * Access the real part.
299     *
300     * @return the real part
301     */
302    public double getReal() {
303        return real;
304    }
305
306    /**
307     * Returns true if either or both parts of this complex number is NaN;
308     * false otherwise
309     *
310     * @return  true if either or both parts of this complex number is NaN;
311     * false otherwise
312     */
313    public boolean isNaN() {
314        return isNaN;
315    }
316
317    /**
318     * Returns true if either the real or imaginary part of this complex number
319     * takes an infinite value (either <code>Double.POSITIVE_INFINITY</code> or
320     * <code>Double.NEGATIVE_INFINITY</code>) and neither part
321     * is <code>NaN</code>.
322     *
323     * @return true if one or both parts of this complex number are infinite
324     * and neither part is <code>NaN</code>
325     */
326    public boolean isInfinite() {
327        return isInfinite;
328    }
329
330    /**
331     * Return the product of this complex number and the given complex number.
332     * <p>
333     * Implements preliminary checks for NaN and infinity followed by
334     * the definitional formula:
335     * <pre><code>
336     * (a + bi)(c + di) = (ac - bd) + (ad + bc)i
337     * </code></pre>
338     * </p>
339     * <p>
340     * Returns {@link #NaN} if either this or <code>rhs</code> has one or more
341     * NaN parts.
342     * </p>
343     * Returns {@link #INF} if neither this nor <code>rhs</code> has one or more
344     * NaN parts and if either this or <code>rhs</code> has one or more
345     * infinite parts (same result is returned regardless of the sign of the
346     * components).
347     * </p>
348     * <p>
349     * Returns finite values in components of the result per the
350     * definitional formula in all remaining cases.
351     *  </p>
352     *
353     * @param rhs the other complex number
354     * @return the complex number product
355     * @throws NullPointerException if <code>rhs</code> is null
356     */
357    public Complex multiply(Complex rhs) {
358        if (isNaN() || rhs.isNaN()) {
359            return NaN;
360        }
361        if (Double.isInfinite(real) || Double.isInfinite(imaginary) ||
362            Double.isInfinite(rhs.real)|| Double.isInfinite(rhs.imaginary)) {
363            // we don't use Complex.isInfinite() to avoid testing for NaN again
364            return INF;
365        }
366        return createComplex(real * rhs.real - imaginary * rhs.imaginary,
367                real * rhs.imaginary + imaginary * rhs.real);
368    }
369
370    /**
371     * Return the product of this complex number and the given scalar number.
372     * <p>
373     * Implements preliminary checks for NaN and infinity followed by
374     * the definitional formula:
375     * <pre><code>
376     * c(a + bi) = (ca) + (cb)i
377     * </code></pre>
378     * </p>
379     * <p>
380     * Returns {@link #NaN} if either this or <code>rhs</code> has one or more
381     * NaN parts.
382     * </p>
383     * Returns {@link #INF} if neither this nor <code>rhs</code> has one or more
384     * NaN parts and if either this or <code>rhs</code> has one or more
385     * infinite parts (same result is returned regardless of the sign of the
386     * components).
387     * </p>
388     * <p>
389     * Returns finite values in components of the result per the
390     * definitional formula in all remaining cases.
391     *  </p>
392     *
393     * @param rhs the scalar number
394     * @return the complex number product
395     */
396    public Complex multiply(double rhs) {
397        if (isNaN() || Double.isNaN(rhs)) {
398            return NaN;
399        }
400        if (Double.isInfinite(real) || Double.isInfinite(imaginary) ||
401            Double.isInfinite(rhs)) {
402            // we don't use Complex.isInfinite() to avoid testing for NaN again
403            return INF;
404        }
405        return createComplex(real * rhs, imaginary * rhs);
406    }
407
408    /**
409     * Return the additive inverse of this complex number.
410     * <p>
411     * Returns <code>Complex.NaN</code> if either real or imaginary
412     * part of this Complex number equals <code>Double.NaN</code>.</p>
413     *
414     * @return the negation of this complex number
415     */
416    public Complex negate() {
417        if (isNaN()) {
418            return NaN;
419        }
420
421        return createComplex(-real, -imaginary);
422    }
423
424    /**
425     * Return the difference between this complex number and the given complex
426     * number.
427      * <p>
428     * Uses the definitional formula
429     * <pre>
430     * (a + bi) - (c + di) = (a-c) + (b-d)i
431     * </pre></p>
432     * <p>
433     * If either this or <code>rhs</code> has a NaN value in either part,
434     * {@link #NaN} is returned; otherwise inifinite and NaN values are
435     * returned in the parts of the result according to the rules for
436     * {@link java.lang.Double} arithmetic. </p>
437     *
438     * @param rhs the other complex number
439     * @return the complex number difference
440     * @throws NullPointerException if <code>rhs</code> is null
441     */
442    public Complex subtract(Complex rhs) {
443        if (isNaN() || rhs.isNaN()) {
444            return NaN;
445        }
446
447        return createComplex(real - rhs.getReal(),
448            imaginary - rhs.getImaginary());
449    }
450
451    /**
452     * Compute the
453     * <a href="http://mathworld.wolfram.com/InverseCosine.html" TARGET="_top">
454     * inverse cosine</a> of this complex number.
455     * <p>
456     * Implements the formula: <pre>
457     * <code> acos(z) = -i (log(z + i (sqrt(1 - z<sup>2</sup>))))</code></pre></p>
458     * <p>
459     * Returns {@link Complex#NaN} if either real or imaginary part of the
460     * input argument is <code>NaN</code> or infinite.</p>
461     *
462     * @return the inverse cosine of this complex number
463     * @since 1.2
464     */
465    public Complex acos() {
466        if (isNaN()) {
467            return Complex.NaN;
468        }
469
470        return this.add(this.sqrt1z().multiply(Complex.I)).log()
471              .multiply(Complex.I.negate());
472    }
473
474    /**
475     * Compute the
476     * <a href="http://mathworld.wolfram.com/InverseSine.html" TARGET="_top">
477     * inverse sine</a> of this complex number.
478     * <p>
479     * Implements the formula: <pre>
480     * <code> asin(z) = -i (log(sqrt(1 - z<sup>2</sup>) + iz)) </code></pre></p>
481     * <p>
482     * Returns {@link Complex#NaN} if either real or imaginary part of the
483     * input argument is <code>NaN</code> or infinite.</p>
484     *
485     * @return the inverse sine of this complex number.
486     * @since 1.2
487     */
488    public Complex asin() {
489        if (isNaN()) {
490            return Complex.NaN;
491        }
492
493        return sqrt1z().add(this.multiply(Complex.I)).log()
494              .multiply(Complex.I.negate());
495    }
496
497    /**
498     * Compute the
499     * <a href="http://mathworld.wolfram.com/InverseTangent.html" TARGET="_top">
500     * inverse tangent</a> of this complex number.
501     * <p>
502     * Implements the formula: <pre>
503     * <code> atan(z) = (i/2) log((i + z)/(i - z)) </code></pre></p>
504     * <p>
505     * Returns {@link Complex#NaN} if either real or imaginary part of the
506     * input argument is <code>NaN</code> or infinite.</p>
507     *
508     * @return the inverse tangent of this complex number
509     * @since 1.2
510     */
511    public Complex atan() {
512        if (isNaN()) {
513            return Complex.NaN;
514        }
515
516        return this.add(Complex.I).divide(Complex.I.subtract(this)).log()
517            .multiply(Complex.I.divide(createComplex(2.0, 0.0)));
518    }
519
520    /**
521     * Compute the
522     * <a href="http://mathworld.wolfram.com/Cosine.html" TARGET="_top">
523     * cosine</a>
524     * of this complex number.
525     * <p>
526     * Implements the formula: <pre>
527     * <code> cos(a + bi) = cos(a)cosh(b) - sin(a)sinh(b)i</code></pre>
528     * where the (real) functions on the right-hand side are
529     * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
530     * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
531     * <p>
532     * Returns {@link Complex#NaN} if either real or imaginary part of the
533     * input argument is <code>NaN</code>.</p>
534     * <p>
535     * Infinite values in real or imaginary parts of the input may result in
536     * infinite or NaN values returned in parts of the result.<pre>
537     * Examples:
538     * <code>
539     * cos(1 &plusmn; INFINITY i) = 1 &#x2213; INFINITY i
540     * cos(&plusmn;INFINITY + i) = NaN + NaN i
541     * cos(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i</code></pre></p>
542     *
543     * @return the cosine of this complex number
544     * @since 1.2
545     */
546    public Complex cos() {
547        if (isNaN()) {
548            return Complex.NaN;
549        }
550
551        return createComplex(FastMath.cos(real) * MathUtils.cosh(imaginary),
552            -FastMath.sin(real) * MathUtils.sinh(imaginary));
553    }
554
555    /**
556     * Compute the
557     * <a href="http://mathworld.wolfram.com/HyperbolicCosine.html" TARGET="_top">
558     * hyperbolic cosine</a> of this complex number.
559     * <p>
560     * Implements the formula: <pre>
561     * <code> cosh(a + bi) = cosh(a)cos(b) + sinh(a)sin(b)i</code></pre>
562     * where the (real) functions on the right-hand side are
563     * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
564     * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
565     * <p>
566     * Returns {@link Complex#NaN} if either real or imaginary part of the
567     * input argument is <code>NaN</code>.</p>
568     * <p>
569     * Infinite values in real or imaginary parts of the input may result in
570     * infinite or NaN values returned in parts of the result.<pre>
571     * Examples:
572     * <code>
573     * cosh(1 &plusmn; INFINITY i) = NaN + NaN i
574     * cosh(&plusmn;INFINITY + i) = INFINITY &plusmn; INFINITY i
575     * cosh(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i</code></pre></p>
576     *
577     * @return the hyperbolic cosine of this complex number.
578     * @since 1.2
579     */
580    public Complex cosh() {
581        if (isNaN()) {
582            return Complex.NaN;
583        }
584
585        return createComplex(MathUtils.cosh(real) * FastMath.cos(imaginary),
586            MathUtils.sinh(real) * FastMath.sin(imaginary));
587    }
588
589    /**
590     * Compute the
591     * <a href="http://mathworld.wolfram.com/ExponentialFunction.html" TARGET="_top">
592     * exponential function</a> of this complex number.
593     * <p>
594     * Implements the formula: <pre>
595     * <code> exp(a + bi) = exp(a)cos(b) + exp(a)sin(b)i</code></pre>
596     * where the (real) functions on the right-hand side are
597     * {@link java.lang.Math#exp}, {@link java.lang.Math#cos}, and
598     * {@link java.lang.Math#sin}.</p>
599     * <p>
600     * Returns {@link Complex#NaN} if either real or imaginary part of the
601     * input argument is <code>NaN</code>.</p>
602     * <p>
603     * Infinite values in real or imaginary parts of the input may result in
604     * infinite or NaN values returned in parts of the result.<pre>
605     * Examples:
606     * <code>
607     * exp(1 &plusmn; INFINITY i) = NaN + NaN i
608     * exp(INFINITY + i) = INFINITY + INFINITY i
609     * exp(-INFINITY + i) = 0 + 0i
610     * exp(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i</code></pre></p>
611     *
612     * @return <i>e</i><sup><code>this</code></sup>
613     * @since 1.2
614     */
615    public Complex exp() {
616        if (isNaN()) {
617            return Complex.NaN;
618        }
619
620        double expReal = FastMath.exp(real);
621        return createComplex(expReal *  FastMath.cos(imaginary), expReal * FastMath.sin(imaginary));
622    }
623
624    /**
625     * Compute the
626     * <a href="http://mathworld.wolfram.com/NaturalLogarithm.html" TARGET="_top">
627     * natural logarithm</a> of this complex number.
628     * <p>
629     * Implements the formula: <pre>
630     * <code> log(a + bi) = ln(|a + bi|) + arg(a + bi)i</code></pre>
631     * where ln on the right hand side is {@link java.lang.Math#log},
632     * <code>|a + bi|</code> is the modulus, {@link Complex#abs},  and
633     * <code>arg(a + bi) = {@link java.lang.Math#atan2}(b, a)</code></p>
634     * <p>
635     * Returns {@link Complex#NaN} if either real or imaginary part of the
636     * input argument is <code>NaN</code>.</p>
637     * <p>
638     * Infinite (or critical) values in real or imaginary parts of the input may
639     * result in infinite or NaN values returned in parts of the result.<pre>
640     * Examples:
641     * <code>
642     * log(1 &plusmn; INFINITY i) = INFINITY &plusmn; (&pi;/2)i
643     * log(INFINITY + i) = INFINITY + 0i
644     * log(-INFINITY + i) = INFINITY + &pi;i
645     * log(INFINITY &plusmn; INFINITY i) = INFINITY &plusmn; (&pi;/4)i
646     * log(-INFINITY &plusmn; INFINITY i) = INFINITY &plusmn; (3&pi;/4)i
647     * log(0 + 0i) = -INFINITY + 0i
648     * </code></pre></p>
649     *
650     * @return ln of this complex number.
651     * @since 1.2
652     */
653    public Complex log() {
654        if (isNaN()) {
655            return Complex.NaN;
656        }
657
658        return createComplex(FastMath.log(abs()),
659            FastMath.atan2(imaginary, real));
660    }
661
662    /**
663     * Returns of value of this complex number raised to the power of <code>x</code>.
664     * <p>
665     * Implements the formula: <pre>
666     * <code> y<sup>x</sup> = exp(x&middot;log(y))</code></pre>
667     * where <code>exp</code> and <code>log</code> are {@link #exp} and
668     * {@link #log}, respectively.</p>
669     * <p>
670     * Returns {@link Complex#NaN} if either real or imaginary part of the
671     * input argument is <code>NaN</code> or infinite, or if <code>y</code>
672     * equals {@link Complex#ZERO}.</p>
673     *
674     * @param x the exponent.
675     * @return <code>this</code><sup><code>x</code></sup>
676     * @throws NullPointerException if x is null
677     * @since 1.2
678     */
679    public Complex pow(Complex x) {
680        if (x == null) {
681            throw new NullPointerException();
682        }
683        return this.log().multiply(x).exp();
684    }
685
686    /**
687     * Compute the
688     * <a href="http://mathworld.wolfram.com/Sine.html" TARGET="_top">
689     * sine</a>
690     * of this complex number.
691     * <p>
692     * Implements the formula: <pre>
693     * <code> sin(a + bi) = sin(a)cosh(b) - cos(a)sinh(b)i</code></pre>
694     * where the (real) functions on the right-hand side are
695     * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
696     * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
697     * <p>
698     * Returns {@link Complex#NaN} if either real or imaginary part of the
699     * input argument is <code>NaN</code>.</p>
700     * <p>
701     * Infinite values in real or imaginary parts of the input may result in
702     * infinite or NaN values returned in parts of the result.<pre>
703     * Examples:
704     * <code>
705     * sin(1 &plusmn; INFINITY i) = 1 &plusmn; INFINITY i
706     * sin(&plusmn;INFINITY + i) = NaN + NaN i
707     * sin(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i</code></pre></p>
708     *
709     * @return the sine of this complex number.
710     * @since 1.2
711     */
712    public Complex sin() {
713        if (isNaN()) {
714            return Complex.NaN;
715        }
716
717        return createComplex(FastMath.sin(real) * MathUtils.cosh(imaginary),
718            FastMath.cos(real) * MathUtils.sinh(imaginary));
719    }
720
721    /**
722     * Compute the
723     * <a href="http://mathworld.wolfram.com/HyperbolicSine.html" TARGET="_top">
724     * hyperbolic sine</a> of this complex number.
725     * <p>
726     * Implements the formula: <pre>
727     * <code> sinh(a + bi) = sinh(a)cos(b)) + cosh(a)sin(b)i</code></pre>
728     * where the (real) functions on the right-hand side are
729     * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
730     * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
731     * <p>
732     * Returns {@link Complex#NaN} if either real or imaginary part of the
733     * input argument is <code>NaN</code>.</p>
734     * <p>
735     * Infinite values in real or imaginary parts of the input may result in
736     * infinite or NaN values returned in parts of the result.<pre>
737     * Examples:
738     * <code>
739     * sinh(1 &plusmn; INFINITY i) = NaN + NaN i
740     * sinh(&plusmn;INFINITY + i) = &plusmn; INFINITY + INFINITY i
741     * sinh(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i</code></pre></p>
742     *
743     * @return the hyperbolic sine of this complex number
744     * @since 1.2
745     */
746    public Complex sinh() {
747        if (isNaN()) {
748            return Complex.NaN;
749        }
750
751        return createComplex(MathUtils.sinh(real) * FastMath.cos(imaginary),
752            MathUtils.cosh(real) * FastMath.sin(imaginary));
753    }
754
755    /**
756     * Compute the
757     * <a href="http://mathworld.wolfram.com/SquareRoot.html" TARGET="_top">
758     * square root</a> of this complex number.
759     * <p>
760     * Implements the following algorithm to compute <code>sqrt(a + bi)</code>:
761     * <ol><li>Let <code>t = sqrt((|a| + |a + bi|) / 2)</code></li>
762     * <li><pre>if <code> a &#8805; 0</code> return <code>t + (b/2t)i</code>
763     *  else return <code>|b|/2t + sign(b)t i </code></pre></li>
764     * </ol>
765     * where <ul>
766     * <li><code>|a| = {@link Math#abs}(a)</code></li>
767     * <li><code>|a + bi| = {@link Complex#abs}(a + bi) </code></li>
768     * <li><code>sign(b) =  {@link MathUtils#indicator}(b) </code>
769     * </ul></p>
770     * <p>
771     * Returns {@link Complex#NaN} if either real or imaginary part of the
772     * input argument is <code>NaN</code>.</p>
773     * <p>
774     * Infinite values in real or imaginary parts of the input may result in
775     * infinite or NaN values returned in parts of the result.<pre>
776     * Examples:
777     * <code>
778     * sqrt(1 &plusmn; INFINITY i) = INFINITY + NaN i
779     * sqrt(INFINITY + i) = INFINITY + 0i
780     * sqrt(-INFINITY + i) = 0 + INFINITY i
781     * sqrt(INFINITY &plusmn; INFINITY i) = INFINITY + NaN i
782     * sqrt(-INFINITY &plusmn; INFINITY i) = NaN &plusmn; INFINITY i
783     * </code></pre></p>
784     *
785     * @return the square root of this complex number
786     * @since 1.2
787     */
788    public Complex sqrt() {
789        if (isNaN()) {
790            return Complex.NaN;
791        }
792
793        if (real == 0.0 && imaginary == 0.0) {
794            return createComplex(0.0, 0.0);
795        }
796
797        double t = FastMath.sqrt((FastMath.abs(real) + abs()) / 2.0);
798        if (real >= 0.0) {
799            return createComplex(t, imaginary / (2.0 * t));
800        } else {
801            return createComplex(FastMath.abs(imaginary) / (2.0 * t),
802                MathUtils.indicator(imaginary) * t);
803        }
804    }
805
806    /**
807     * Compute the
808     * <a href="http://mathworld.wolfram.com/SquareRoot.html" TARGET="_top">
809     * square root</a> of 1 - <code>this</code><sup>2</sup> for this complex
810     * number.
811     * <p>
812     * Computes the result directly as
813     * <code>sqrt(Complex.ONE.subtract(z.multiply(z)))</code>.</p>
814     * <p>
815     * Returns {@link Complex#NaN} if either real or imaginary part of the
816     * input argument is <code>NaN</code>.</p>
817     * <p>
818     * Infinite values in real or imaginary parts of the input may result in
819     * infinite or NaN values returned in parts of the result.</p>
820     *
821     * @return the square root of 1 - <code>this</code><sup>2</sup>
822     * @since 1.2
823     */
824    public Complex sqrt1z() {
825        return createComplex(1.0, 0.0).subtract(this.multiply(this)).sqrt();
826    }
827
828    /**
829     * Compute the
830     * <a href="http://mathworld.wolfram.com/Tangent.html" TARGET="_top">
831     * tangent</a> of this complex number.
832     * <p>
833     * Implements the formula: <pre>
834     * <code>tan(a + bi) = sin(2a)/(cos(2a)+cosh(2b)) + [sinh(2b)/(cos(2a)+cosh(2b))]i</code></pre>
835     * where the (real) functions on the right-hand side are
836     * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
837     * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
838     * <p>
839     * Returns {@link Complex#NaN} if either real or imaginary part of the
840     * input argument is <code>NaN</code>.</p>
841     * <p>
842     * Infinite (or critical) values in real or imaginary parts of the input may
843     * result in infinite or NaN values returned in parts of the result.<pre>
844     * Examples:
845     * <code>
846     * tan(1 &plusmn; INFINITY i) = 0 + NaN i
847     * tan(&plusmn;INFINITY + i) = NaN + NaN i
848     * tan(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
849     * tan(&plusmn;&pi;/2 + 0 i) = &plusmn;INFINITY + NaN i</code></pre></p>
850     *
851     * @return the tangent of this complex number
852     * @since 1.2
853     */
854    public Complex tan() {
855        if (isNaN()) {
856            return Complex.NaN;
857        }
858
859        double real2 = 2.0 * real;
860        double imaginary2 = 2.0 * imaginary;
861        double d = FastMath.cos(real2) + MathUtils.cosh(imaginary2);
862
863        return createComplex(FastMath.sin(real2) / d, MathUtils.sinh(imaginary2) / d);
864    }
865
866    /**
867     * Compute the
868     * <a href="http://mathworld.wolfram.com/HyperbolicTangent.html" TARGET="_top">
869     * hyperbolic tangent</a> of this complex number.
870     * <p>
871     * Implements the formula: <pre>
872     * <code>tan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + [sin(2b)/(cosh(2a)+cos(2b))]i</code></pre>
873     * where the (real) functions on the right-hand side are
874     * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
875     * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
876     * <p>
877     * Returns {@link Complex#NaN} if either real or imaginary part of the
878     * input argument is <code>NaN</code>.</p>
879     * <p>
880     * Infinite values in real or imaginary parts of the input may result in
881     * infinite or NaN values returned in parts of the result.<pre>
882     * Examples:
883     * <code>
884     * tanh(1 &plusmn; INFINITY i) = NaN + NaN i
885     * tanh(&plusmn;INFINITY + i) = NaN + 0 i
886     * tanh(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
887     * tanh(0 + (&pi;/2)i) = NaN + INFINITY i</code></pre></p>
888     *
889     * @return the hyperbolic tangent of this complex number
890     * @since 1.2
891     */
892    public Complex tanh() {
893        if (isNaN()) {
894            return Complex.NaN;
895        }
896
897        double real2 = 2.0 * real;
898        double imaginary2 = 2.0 * imaginary;
899        double d = MathUtils.cosh(real2) + FastMath.cos(imaginary2);
900
901        return createComplex(MathUtils.sinh(real2) / d, FastMath.sin(imaginary2) / d);
902    }
903
904
905
906    /**
907     * <p>Compute the argument of this complex number.
908     * </p>
909     * <p>The argument is the angle phi between the positive real axis and the point
910     * representing this number in the complex plane. The value returned is between -PI (not inclusive)
911     * and PI (inclusive), with negative values returned for numbers with negative imaginary parts.
912     * </p>
913     * <p>If either real or imaginary part (or both) is NaN, NaN is returned.  Infinite parts are handled
914     * as java.Math.atan2 handles them, essentially treating finite parts as zero in the presence of
915     * an infinite coordinate and returning a multiple of pi/4 depending on the signs of the infinite
916     * parts.  See the javadoc for java.Math.atan2 for full details.</p>
917     *
918     * @return the argument of this complex number
919     */
920    public double getArgument() {
921        return FastMath.atan2(getImaginary(), getReal());
922    }
923
924    /**
925     * <p>Computes the n-th roots of this complex number.
926     * </p>
927     * <p>The nth roots are defined by the formula: <pre>
928     * <code> z<sub>k</sub> = abs<sup> 1/n</sup> (cos(phi + 2&pi;k/n) + i (sin(phi + 2&pi;k/n))</code></pre>
929     * for <i><code>k=0, 1, ..., n-1</code></i>, where <code>abs</code> and <code>phi</code> are
930     * respectively the {@link #abs() modulus} and {@link #getArgument() argument} of this complex number.
931     * </p>
932     * <p>If one or both parts of this complex number is NaN, a list with just one element,
933     *  {@link #NaN} is returned.</p>
934     * <p>if neither part is NaN, but at least one part is infinite, the result is a one-element
935     * list containing {@link #INF}.</p>
936     *
937     * @param n degree of root
938     * @return List<Complex> all nth roots of this complex number
939     * @throws IllegalArgumentException if parameter n is less than or equal to 0
940     * @since 2.0
941     */
942    public List<Complex> nthRoot(int n) throws IllegalArgumentException {
943
944        if (n <= 0) {
945            throw MathRuntimeException.createIllegalArgumentException(
946                    LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N,
947                    n);
948        }
949
950        List<Complex> result = new ArrayList<Complex>();
951
952        if (isNaN()) {
953            result.add(Complex.NaN);
954            return result;
955        }
956
957        if (isInfinite()) {
958            result.add(Complex.INF);
959            return result;
960        }
961
962        // nth root of abs -- faster / more accurate to use a solver here?
963        final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n);
964
965        // Compute nth roots of complex number with k = 0, 1, ... n-1
966        final double nthPhi = getArgument()/n;
967        final double slice = 2 * FastMath.PI / n;
968        double innerPart = nthPhi;
969        for (int k = 0; k < n ; k++) {
970            // inner part
971            final double realPart      = nthRootOfAbs *  FastMath.cos(innerPart);
972            final double imaginaryPart = nthRootOfAbs *  FastMath.sin(innerPart);
973            result.add(createComplex(realPart, imaginaryPart));
974            innerPart += slice;
975        }
976
977        return result;
978    }
979
980    /**
981     * Create a complex number given the real and imaginary parts.
982     *
983     * @param realPart the real part
984     * @param imaginaryPart the imaginary part
985     * @return a new complex number instance
986     * @since 1.2
987     */
988    protected Complex createComplex(double realPart, double imaginaryPart) {
989        return new Complex(realPart, imaginaryPart);
990    }
991
992    /**
993     * <p>Resolve the transient fields in a deserialized Complex Object.</p>
994     * <p>Subclasses will need to override {@link #createComplex} to deserialize properly</p>
995     * @return A Complex instance with all fields resolved.
996     * @since 2.0
997     */
998    protected final Object readResolve() {
999        return createComplex(real, imaginary);
1000    }
1001
1002    /** {@inheritDoc} */
1003    public ComplexField getField() {
1004        return ComplexField.getInstance();
1005    }
1006
1007}
1008