1/* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
2 * and Bodo Moeller for the OpenSSL project. */
3/* ====================================================================
4 * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in
15 *    the documentation and/or other materials provided with the
16 *    distribution.
17 *
18 * 3. All advertising materials mentioning features or use of this
19 *    software must display the following acknowledgment:
20 *    "This product includes software developed by the OpenSSL Project
21 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
22 *
23 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
24 *    endorse or promote products derived from this software without
25 *    prior written permission. For written permission, please contact
26 *    openssl-core@openssl.org.
27 *
28 * 5. Products derived from this software may not be called "OpenSSL"
29 *    nor may "OpenSSL" appear in their names without prior written
30 *    permission of the OpenSSL Project.
31 *
32 * 6. Redistributions of any form whatsoever must retain the following
33 *    acknowledgment:
34 *    "This product includes software developed by the OpenSSL Project
35 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
38 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
40 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
41 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
43 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
44 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
45 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
46 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
48 * OF THE POSSIBILITY OF SUCH DAMAGE.
49 * ====================================================================
50 *
51 * This product includes cryptographic software written by Eric Young
52 * (eay@cryptsoft.com).  This product includes software written by Tim
53 * Hudson (tjh@cryptsoft.com). */
54
55#include <openssl/bn.h>
56
57#include <openssl/err.h>
58
59
60BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
61  /* Compute a square root of |a| mod |p| using the Tonelli/Shanks algorithm
62   * (cf. Henri Cohen, "A Course in Algebraic Computational Number Theory",
63   * algorithm 1.5.1). |p| is assumed to be a prime. */
64
65  BIGNUM *ret = in;
66  int err = 1;
67  int r;
68  BIGNUM *A, *b, *q, *t, *x, *y;
69  int e, i, j;
70
71  if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
72    if (BN_abs_is_word(p, 2)) {
73      if (ret == NULL) {
74        ret = BN_new();
75      }
76      if (ret == NULL) {
77        goto end;
78      }
79      if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
80        if (ret != in) {
81          BN_free(ret);
82        }
83        return NULL;
84      }
85      return ret;
86    }
87
88    OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
89    return (NULL);
90  }
91
92  if (BN_is_zero(a) || BN_is_one(a)) {
93    if (ret == NULL) {
94      ret = BN_new();
95    }
96    if (ret == NULL) {
97      goto end;
98    }
99    if (!BN_set_word(ret, BN_is_one(a))) {
100      if (ret != in) {
101        BN_free(ret);
102      }
103      return NULL;
104    }
105    return ret;
106  }
107
108  BN_CTX_start(ctx);
109  A = BN_CTX_get(ctx);
110  b = BN_CTX_get(ctx);
111  q = BN_CTX_get(ctx);
112  t = BN_CTX_get(ctx);
113  x = BN_CTX_get(ctx);
114  y = BN_CTX_get(ctx);
115  if (y == NULL) {
116    goto end;
117  }
118
119  if (ret == NULL) {
120    ret = BN_new();
121  }
122  if (ret == NULL) {
123    goto end;
124  }
125
126  /* A = a mod p */
127  if (!BN_nnmod(A, a, p, ctx)) {
128    goto end;
129  }
130
131  /* now write  |p| - 1  as  2^e*q  where  q  is odd */
132  e = 1;
133  while (!BN_is_bit_set(p, e)) {
134    e++;
135  }
136  /* we'll set  q  later (if needed) */
137
138  if (e == 1) {
139    /* The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
140     * modulo  (|p|-1)/2,  and square roots can be computed
141     * directly by modular exponentiation.
142     * We have
143     *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
144     * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
145     */
146    if (!BN_rshift(q, p, 2)) {
147      goto end;
148    }
149    q->neg = 0;
150    if (!BN_add_word(q, 1) ||
151        !BN_mod_exp_mont(ret, A, q, p, ctx, NULL)) {
152      goto end;
153    }
154    err = 0;
155    goto vrfy;
156  }
157
158  if (e == 2) {
159    /* |p| == 5  (mod 8)
160     *
161     * In this case  2  is always a non-square since
162     * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
163     * So if  a  really is a square, then  2*a  is a non-square.
164     * Thus for
165     *      b := (2*a)^((|p|-5)/8),
166     *      i := (2*a)*b^2
167     * we have
168     *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
169     *         = (2*a)^((p-1)/2)
170     *         = -1;
171     * so if we set
172     *      x := a*b*(i-1),
173     * then
174     *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
175     *         = a^2 * b^2 * (-2*i)
176     *         = a*(-i)*(2*a*b^2)
177     *         = a*(-i)*i
178     *         = a.
179     *
180     * (This is due to A.O.L. Atkin,
181     * <URL:
182     *http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
183     * November 1992.)
184     */
185
186    /* t := 2*a */
187    if (!BN_mod_lshift1_quick(t, A, p)) {
188      goto end;
189    }
190
191    /* b := (2*a)^((|p|-5)/8) */
192    if (!BN_rshift(q, p, 3)) {
193      goto end;
194    }
195    q->neg = 0;
196    if (!BN_mod_exp_mont(b, t, q, p, ctx, NULL)) {
197      goto end;
198    }
199
200    /* y := b^2 */
201    if (!BN_mod_sqr(y, b, p, ctx)) {
202      goto end;
203    }
204
205    /* t := (2*a)*b^2 - 1*/
206    if (!BN_mod_mul(t, t, y, p, ctx) ||
207        !BN_sub_word(t, 1)) {
208      goto end;
209    }
210
211    /* x = a*b*t */
212    if (!BN_mod_mul(x, A, b, p, ctx) ||
213        !BN_mod_mul(x, x, t, p, ctx)) {
214      goto end;
215    }
216
217    if (!BN_copy(ret, x)) {
218      goto end;
219    }
220    err = 0;
221    goto vrfy;
222  }
223
224  /* e > 2, so we really have to use the Tonelli/Shanks algorithm.
225   * First, find some  y  that is not a square. */
226  if (!BN_copy(q, p)) {
227    goto end; /* use 'q' as temp */
228  }
229  q->neg = 0;
230  i = 2;
231  do {
232    /* For efficiency, try small numbers first;
233     * if this fails, try random numbers.
234     */
235    if (i < 22) {
236      if (!BN_set_word(y, i)) {
237        goto end;
238      }
239    } else {
240      if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) {
241        goto end;
242      }
243      if (BN_ucmp(y, p) >= 0) {
244        if (!(p->neg ? BN_add : BN_sub)(y, y, p)) {
245          goto end;
246        }
247      }
248      /* now 0 <= y < |p| */
249      if (BN_is_zero(y)) {
250        if (!BN_set_word(y, i)) {
251          goto end;
252        }
253      }
254    }
255
256    r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
257    if (r < -1) {
258      goto end;
259    }
260    if (r == 0) {
261      /* m divides p */
262      OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
263      goto end;
264    }
265  } while (r == 1 && ++i < 82);
266
267  if (r != -1) {
268    /* Many rounds and still no non-square -- this is more likely
269     * a bug than just bad luck.
270     * Even if  p  is not prime, we should have found some  y
271     * such that r == -1.
272     */
273    OPENSSL_PUT_ERROR(BN, BN_R_TOO_MANY_ITERATIONS);
274    goto end;
275  }
276
277  /* Here's our actual 'q': */
278  if (!BN_rshift(q, q, e)) {
279    goto end;
280  }
281
282  /* Now that we have some non-square, we can find an element
283   * of order  2^e  by computing its q'th power. */
284  if (!BN_mod_exp_mont(y, y, q, p, ctx, NULL)) {
285    goto end;
286  }
287  if (BN_is_one(y)) {
288    OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
289    goto end;
290  }
291
292  /* Now we know that (if  p  is indeed prime) there is an integer
293   * k,  0 <= k < 2^e,  such that
294   *
295   *      a^q * y^k == 1   (mod p).
296   *
297   * As  a^q  is a square and  y  is not,  k  must be even.
298   * q+1  is even, too, so there is an element
299   *
300   *     X := a^((q+1)/2) * y^(k/2),
301   *
302   * and it satisfies
303   *
304   *     X^2 = a^q * a     * y^k
305   *         = a,
306   *
307   * so it is the square root that we are looking for.
308   */
309
310  /* t := (q-1)/2  (note that  q  is odd) */
311  if (!BN_rshift1(t, q)) {
312    goto end;
313  }
314
315  /* x := a^((q-1)/2) */
316  if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
317  {
318    if (!BN_nnmod(t, A, p, ctx)) {
319      goto end;
320    }
321    if (BN_is_zero(t)) {
322      /* special case: a == 0  (mod p) */
323      BN_zero(ret);
324      err = 0;
325      goto end;
326    } else if (!BN_one(x)) {
327      goto end;
328    }
329  } else {
330    if (!BN_mod_exp_mont(x, A, t, p, ctx, NULL)) {
331      goto end;
332    }
333    if (BN_is_zero(x)) {
334      /* special case: a == 0  (mod p) */
335      BN_zero(ret);
336      err = 0;
337      goto end;
338    }
339  }
340
341  /* b := a*x^2  (= a^q) */
342  if (!BN_mod_sqr(b, x, p, ctx) ||
343      !BN_mod_mul(b, b, A, p, ctx)) {
344    goto end;
345  }
346
347  /* x := a*x    (= a^((q+1)/2)) */
348  if (!BN_mod_mul(x, x, A, p, ctx)) {
349    goto end;
350  }
351
352  while (1) {
353    /* Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
354     * where  E  refers to the original value of  e,  which we
355     * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
356     *
357     * We have  a*b = x^2,
358     *    y^2^(e-1) = -1,
359     *    b^2^(e-1) = 1.
360     */
361
362    if (BN_is_one(b)) {
363      if (!BN_copy(ret, x)) {
364        goto end;
365      }
366      err = 0;
367      goto vrfy;
368    }
369
370
371    /* find smallest  i  such that  b^(2^i) = 1 */
372    i = 1;
373    if (!BN_mod_sqr(t, b, p, ctx)) {
374      goto end;
375    }
376    while (!BN_is_one(t)) {
377      i++;
378      if (i == e) {
379        OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
380        goto end;
381      }
382      if (!BN_mod_mul(t, t, t, p, ctx)) {
383        goto end;
384      }
385    }
386
387
388    /* t := y^2^(e - i - 1) */
389    if (!BN_copy(t, y)) {
390      goto end;
391    }
392    for (j = e - i - 1; j > 0; j--) {
393      if (!BN_mod_sqr(t, t, p, ctx)) {
394        goto end;
395      }
396    }
397    if (!BN_mod_mul(y, t, t, p, ctx) ||
398        !BN_mod_mul(x, x, t, p, ctx) ||
399        !BN_mod_mul(b, b, y, p, ctx)) {
400      goto end;
401    }
402    e = i;
403  }
404
405vrfy:
406  if (!err) {
407    /* verify the result -- the input might have been not a square
408     * (test added in 0.9.8) */
409
410    if (!BN_mod_sqr(x, ret, p, ctx)) {
411      err = 1;
412    }
413
414    if (!err && 0 != BN_cmp(x, A)) {
415      OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
416      err = 1;
417    }
418  }
419
420end:
421  if (err) {
422    if (ret != in) {
423      BN_clear_free(ret);
424    }
425    ret = NULL;
426  }
427  BN_CTX_end(ctx);
428  return ret;
429}
430
431int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx) {
432  BIGNUM *estimate, *tmp, *delta, *last_delta, *tmp2;
433  int ok = 0, last_delta_valid = 0;
434
435  if (in->neg) {
436    OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
437    return 0;
438  }
439  if (BN_is_zero(in)) {
440    BN_zero(out_sqrt);
441    return 1;
442  }
443
444  BN_CTX_start(ctx);
445  if (out_sqrt == in) {
446    estimate = BN_CTX_get(ctx);
447  } else {
448    estimate = out_sqrt;
449  }
450  tmp = BN_CTX_get(ctx);
451  last_delta = BN_CTX_get(ctx);
452  delta = BN_CTX_get(ctx);
453  if (estimate == NULL || tmp == NULL || last_delta == NULL || delta == NULL) {
454    OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
455    goto err;
456  }
457
458  /* We estimate that the square root of an n-bit number is 2^{n/2}. */
459  if (!BN_lshift(estimate, BN_value_one(), BN_num_bits(in)/2)) {
460    goto err;
461  }
462
463  /* This is Newton's method for finding a root of the equation |estimate|^2 -
464   * |in| = 0. */
465  for (;;) {
466    /* |estimate| = 1/2 * (|estimate| + |in|/|estimate|) */
467    if (!BN_div(tmp, NULL, in, estimate, ctx) ||
468        !BN_add(tmp, tmp, estimate) ||
469        !BN_rshift1(estimate, tmp) ||
470        /* |tmp| = |estimate|^2 */
471        !BN_sqr(tmp, estimate, ctx) ||
472        /* |delta| = |in| - |tmp| */
473        !BN_sub(delta, in, tmp)) {
474      OPENSSL_PUT_ERROR(BN, ERR_R_BN_LIB);
475      goto err;
476    }
477
478    delta->neg = 0;
479    /* The difference between |in| and |estimate| squared is required to always
480     * decrease. This ensures that the loop always terminates, but I don't have
481     * a proof that it always finds the square root for a given square. */
482    if (last_delta_valid && BN_cmp(delta, last_delta) >= 0) {
483      break;
484    }
485
486    last_delta_valid = 1;
487
488    tmp2 = last_delta;
489    last_delta = delta;
490    delta = tmp2;
491  }
492
493  if (BN_cmp(tmp, in) != 0) {
494    OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
495    goto err;
496  }
497
498  ok = 1;
499
500err:
501  if (ok && out_sqrt == in && !BN_copy(out_sqrt, estimate)) {
502    ok = 0;
503  }
504  BN_CTX_end(ctx);
505  return ok;
506}
507