1/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to.  The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 *    notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 *    notice, this list of conditions and the following disclaimer in the
29 *    documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 *    must display the following acknowledgement:
32 *    "This product includes cryptographic software written by
33 *     Eric Young (eay@cryptsoft.com)"
34 *    The word 'cryptographic' can be left out if the rouines from the library
35 *    being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 *    the apps directory (application code) you must include an acknowledgement:
38 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57/* ====================================================================
58 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 *    notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 *    notice, this list of conditions and the following disclaimer in
69 *    the documentation and/or other materials provided with the
70 *    distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 *    software must display the following acknowledgment:
74 *    "This product includes software developed by the OpenSSL Project
75 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 *    endorse or promote products derived from this software without
79 *    prior written permission. For written permission, please contact
80 *    openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 *    nor may "OpenSSL" appear in their names without prior written
84 *    permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 *    acknowledgment:
88 *    "This product includes software developed by the OpenSSL Project
89 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com).  This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com). */
108
109#ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
110#define OPENSSL_HEADER_CRYPTO_INTERNAL_H
111
112#include <openssl/ex_data.h>
113#include <openssl/thread.h>
114
115#include <string.h>
116
117#if defined(_MSC_VER)
118#if !defined(__cplusplus) || _MSC_VER < 1900
119#define alignas(x) __declspec(align(x))
120#define alignof __alignof
121#endif
122#else
123#include <stdalign.h>
124#endif
125
126#if !defined(OPENSSL_NO_THREADS) && \
127    (!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
128#include <pthread.h>
129#define OPENSSL_PTHREADS
130#endif
131
132#if !defined(OPENSSL_NO_THREADS) && !defined(OPENSSL_PTHREADS) && \
133    defined(OPENSSL_WINDOWS)
134#define OPENSSL_WINDOWS_THREADS
135OPENSSL_MSVC_PRAGMA(warning(push, 3))
136#include <windows.h>
137OPENSSL_MSVC_PRAGMA(warning(pop))
138#endif
139
140#if defined(__cplusplus)
141extern "C" {
142#endif
143
144
145#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
146    defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
147/* OPENSSL_cpuid_setup initializes the platform-specific feature cache. */
148void OPENSSL_cpuid_setup(void);
149#endif
150
151
152#if !defined(_MSC_VER) && defined(OPENSSL_64_BIT)
153typedef __int128_t int128_t;
154typedef __uint128_t uint128_t;
155#endif
156
157#define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
158
159/* buffers_alias returns one if |a| and |b| alias and zero otherwise. */
160static inline int buffers_alias(const uint8_t *a, size_t a_len,
161                                const uint8_t *b, size_t b_len) {
162  /* Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
163   * objects are undefined whereas pointer to integer conversions are merely
164   * implementation-defined. We assume the implementation defined it in a sane
165   * way. */
166  uintptr_t a_u = (uintptr_t)a;
167  uintptr_t b_u = (uintptr_t)b;
168  return a_u + a_len > b_u && b_u + b_len > a_u;
169}
170
171
172/* Constant-time utility functions.
173 *
174 * The following methods return a bitmask of all ones (0xff...f) for true and 0
175 * for false. This is useful for choosing a value based on the result of a
176 * conditional in constant time. For example,
177 *
178 * if (a < b) {
179 *   c = a;
180 * } else {
181 *   c = b;
182 * }
183 *
184 * can be written as
185 *
186 * unsigned int lt = constant_time_lt(a, b);
187 * c = constant_time_select(lt, a, b); */
188
189/* constant_time_msb returns the given value with the MSB copied to all the
190 * other bits. */
191static inline unsigned int constant_time_msb(unsigned int a) {
192  return (unsigned int)((int)(a) >> (sizeof(int) * 8 - 1));
193}
194
195/* constant_time_lt returns 0xff..f if a < b and 0 otherwise. */
196static inline unsigned int constant_time_lt(unsigned int a, unsigned int b) {
197  /* Consider the two cases of the problem:
198   *   msb(a) == msb(b): a < b iff the MSB of a - b is set.
199   *   msb(a) != msb(b): a < b iff the MSB of b is set.
200   *
201   * If msb(a) == msb(b) then the following evaluates as:
202   *   msb(a^((a^b)|((a-b)^a))) ==
203   *   msb(a^((a-b) ^ a))       ==   (because msb(a^b) == 0)
204   *   msb(a^a^(a-b))           ==   (rearranging)
205   *   msb(a-b)                      (because ∀x. x^x == 0)
206   *
207   * Else, if msb(a) != msb(b) then the following evaluates as:
208   *   msb(a^((a^b)|((a-b)^a))) ==
209   *   msb(a^(�� | ((a-b)^a)))   ==   (because msb(a^b) == 1 and ��
210   *                                  represents a value s.t. msb(��) = 1)
211   *   msb(a^��)                 ==   (because ORing with 1 results in 1)
212   *   msb(b)
213   *
214   *
215   * Here is an SMT-LIB verification of this formula:
216   *
217   * (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
218   *   (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
219   * )
220   *
221   * (declare-fun a () (_ BitVec 32))
222   * (declare-fun b () (_ BitVec 32))
223   *
224   * (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
225   * (check-sat)
226   * (get-model)
227   */
228  return constant_time_msb(a^((a^b)|((a-b)^a)));
229}
230
231/* constant_time_lt_8 acts like |constant_time_lt| but returns an 8-bit mask. */
232static inline uint8_t constant_time_lt_8(unsigned int a, unsigned int b) {
233  return (uint8_t)(constant_time_lt(a, b));
234}
235
236/* constant_time_gt returns 0xff..f if a >= b and 0 otherwise. */
237static inline unsigned int constant_time_ge(unsigned int a, unsigned int b) {
238  return ~constant_time_lt(a, b);
239}
240
241/* constant_time_ge_8 acts like |constant_time_ge| but returns an 8-bit mask. */
242static inline uint8_t constant_time_ge_8(unsigned int a, unsigned int b) {
243  return (uint8_t)(constant_time_ge(a, b));
244}
245
246/* constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise. */
247static inline unsigned int constant_time_is_zero(unsigned int a) {
248  /* Here is an SMT-LIB verification of this formula:
249   *
250   * (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
251   *   (bvand (bvnot a) (bvsub a #x00000001))
252   * )
253   *
254   * (declare-fun a () (_ BitVec 32))
255   *
256   * (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
257   * (check-sat)
258   * (get-model)
259   */
260  return constant_time_msb(~a & (a - 1));
261}
262
263/* constant_time_is_zero_8 acts like constant_time_is_zero but returns an 8-bit
264 * mask. */
265static inline uint8_t constant_time_is_zero_8(unsigned int a) {
266  return (uint8_t)(constant_time_is_zero(a));
267}
268
269/* constant_time_eq returns 0xff..f if a == b and 0 otherwise. */
270static inline unsigned int constant_time_eq(unsigned int a, unsigned int b) {
271  return constant_time_is_zero(a ^ b);
272}
273
274/* constant_time_eq_8 acts like |constant_time_eq| but returns an 8-bit mask. */
275static inline uint8_t constant_time_eq_8(unsigned int a, unsigned int b) {
276  return (uint8_t)(constant_time_eq(a, b));
277}
278
279/* constant_time_eq_int acts like |constant_time_eq| but works on int values. */
280static inline unsigned int constant_time_eq_int(int a, int b) {
281  return constant_time_eq((unsigned)(a), (unsigned)(b));
282}
283
284/* constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
285 * mask. */
286static inline uint8_t constant_time_eq_int_8(int a, int b) {
287  return constant_time_eq_8((unsigned)(a), (unsigned)(b));
288}
289
290/* constant_time_select returns (mask & a) | (~mask & b). When |mask| is all 1s
291 * or all 0s (as returned by the methods above), the select methods return
292 * either |a| (if |mask| is nonzero) or |b| (if |mask| is zero). */
293static inline unsigned int constant_time_select(unsigned int mask,
294                                                unsigned int a, unsigned int b) {
295  return (mask & a) | (~mask & b);
296}
297
298/* constant_time_select_8 acts like |constant_time_select| but operates on
299 * 8-bit values. */
300static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
301                                             uint8_t b) {
302  return (uint8_t)(constant_time_select(mask, a, b));
303}
304
305/* constant_time_select_int acts like |constant_time_select| but operates on
306 * ints. */
307static inline int constant_time_select_int(unsigned int mask, int a, int b) {
308  return (int)(constant_time_select(mask, (unsigned)(a), (unsigned)(b)));
309}
310
311
312/* Thread-safe initialisation. */
313
314#if defined(OPENSSL_NO_THREADS)
315typedef uint32_t CRYPTO_once_t;
316#define CRYPTO_ONCE_INIT 0
317#elif defined(OPENSSL_WINDOWS_THREADS)
318typedef INIT_ONCE CRYPTO_once_t;
319#define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
320#elif defined(OPENSSL_PTHREADS)
321typedef pthread_once_t CRYPTO_once_t;
322#define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
323#else
324#error "Unknown threading library"
325#endif
326
327/* CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
328 * concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
329 * then they will block until |init| completes, but |init| will have only been
330 * called once.
331 *
332 * The |once| argument must be a |CRYPTO_once_t| that has been initialised with
333 * the value |CRYPTO_ONCE_INIT|. */
334OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
335
336
337/* Reference counting. */
338
339/* CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates. */
340#define CRYPTO_REFCOUNT_MAX 0xffffffff
341
342/* CRYPTO_refcount_inc atomically increments the value at |*count| unless the
343 * value would overflow. It's safe for multiple threads to concurrently call
344 * this or |CRYPTO_refcount_dec_and_test_zero| on the same
345 * |CRYPTO_refcount_t|. */
346OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
347
348/* CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
349 *   if it's zero, it crashes the address space.
350 *   if it's the maximum value, it returns zero.
351 *   otherwise, it atomically decrements it and returns one iff the resulting
352 *       value is zero.
353 *
354 * It's safe for multiple threads to concurrently call this or
355 * |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|. */
356OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
357
358
359/* Locks.
360 *
361 * Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
362 * structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
363 * a global lock. A global lock must be initialised to the value
364 * |CRYPTO_STATIC_MUTEX_INIT|.
365 *
366 * |CRYPTO_MUTEX| can appear in public structures and so is defined in
367 * thread.h as a structure large enough to fit the real type. The global lock is
368 * a different type so it may be initialized with platform initializer macros.*/
369
370#if defined(OPENSSL_NO_THREADS)
371struct CRYPTO_STATIC_MUTEX {
372  char padding;  /* Empty structs have different sizes in C and C++. */
373};
374#define CRYPTO_STATIC_MUTEX_INIT { 0 }
375#elif defined(OPENSSL_WINDOWS_THREADS)
376struct CRYPTO_STATIC_MUTEX {
377  SRWLOCK lock;
378};
379#define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
380#elif defined(OPENSSL_PTHREADS)
381struct CRYPTO_STATIC_MUTEX {
382  pthread_rwlock_t lock;
383};
384#define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
385#else
386#error "Unknown threading library"
387#endif
388
389/* CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
390 * |CRYPTO_STATIC_MUTEX|. */
391OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
392
393/* CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
394 * read lock, but none may have a write lock. */
395OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
396
397/* CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
398 * of lock on it. */
399OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
400
401/* CRYPTO_MUTEX_unlock_read unlocks |lock| for reading. */
402OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
403
404/* CRYPTO_MUTEX_unlock_write unlocks |lock| for writing. */
405OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
406
407/* CRYPTO_MUTEX_cleanup releases all resources held by |lock|. */
408OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
409
410/* CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
411 * have a read lock, but none may have a write lock. The |lock| variable does
412 * not need to be initialised by any function, but must have been statically
413 * initialised with |CRYPTO_STATIC_MUTEX_INIT|. */
414OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
415    struct CRYPTO_STATIC_MUTEX *lock);
416
417/* CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
418 * any type of lock on it.  The |lock| variable does not need to be initialised
419 * by any function, but must have been statically initialised with
420 * |CRYPTO_STATIC_MUTEX_INIT|. */
421OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
422    struct CRYPTO_STATIC_MUTEX *lock);
423
424/* CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading. */
425OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
426    struct CRYPTO_STATIC_MUTEX *lock);
427
428/* CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing. */
429OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
430    struct CRYPTO_STATIC_MUTEX *lock);
431
432
433/* Thread local storage. */
434
435/* thread_local_data_t enumerates the types of thread-local data that can be
436 * stored. */
437typedef enum {
438  OPENSSL_THREAD_LOCAL_ERR = 0,
439  OPENSSL_THREAD_LOCAL_RAND,
440  OPENSSL_THREAD_LOCAL_URANDOM_BUF,
441  OPENSSL_THREAD_LOCAL_TEST,
442  NUM_OPENSSL_THREAD_LOCALS,
443} thread_local_data_t;
444
445/* thread_local_destructor_t is the type of a destructor function that will be
446 * called when a thread exits and its thread-local storage needs to be freed. */
447typedef void (*thread_local_destructor_t)(void *);
448
449/* CRYPTO_get_thread_local gets the pointer value that is stored for the
450 * current thread for the given index, or NULL if none has been set. */
451OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
452
453/* CRYPTO_set_thread_local sets a pointer value for the current thread at the
454 * given index. This function should only be called once per thread for a given
455 * |index|: rather than update the pointer value itself, update the data that
456 * is pointed to.
457 *
458 * The destructor function will be called when a thread exits to free this
459 * thread-local data. All calls to |CRYPTO_set_thread_local| with the same
460 * |index| should have the same |destructor| argument. The destructor may be
461 * called with a NULL argument if a thread that never set a thread-local
462 * pointer for |index|, exits. The destructor may be called concurrently with
463 * different arguments.
464 *
465 * This function returns one on success or zero on error. If it returns zero
466 * then |destructor| has been called with |value| already. */
467OPENSSL_EXPORT int CRYPTO_set_thread_local(
468    thread_local_data_t index, void *value,
469    thread_local_destructor_t destructor);
470
471
472/* ex_data */
473
474typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
475
476/* CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
477 * supports ex_data. It should defined as a static global within the module
478 * which defines that type. */
479typedef struct {
480  struct CRYPTO_STATIC_MUTEX lock;
481  STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
482  /* num_reserved is one if the ex_data index zero is reserved for legacy
483   * |TYPE_get_app_data| functions. */
484  uint8_t num_reserved;
485} CRYPTO_EX_DATA_CLASS;
486
487#define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
488#define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
489    {CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
490
491/* CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
492 * it to |*out_index|. Each class of object should provide a wrapper function
493 * that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
494 * zero otherwise. */
495OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
496                                           int *out_index, long argl,
497                                           void *argp, CRYPTO_EX_dup *dup_func,
498                                           CRYPTO_EX_free *free_func);
499
500/* CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
501 * of object should provide a wrapper function. */
502OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
503
504/* CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
505 * if no such index exists. Each class of object should provide a wrapper
506 * function. */
507OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
508
509/* CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|. */
510OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
511
512/* CRYPTO_dup_ex_data duplicates |from| into a freshly allocated
513 * |CRYPTO_EX_DATA|, |to|. Both of which are inside objects of the given
514 * class. It returns one on success and zero otherwise. */
515OPENSSL_EXPORT int CRYPTO_dup_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
516                                      CRYPTO_EX_DATA *to,
517                                      const CRYPTO_EX_DATA *from);
518
519/* CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
520 * object of the given class. */
521OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
522                                        void *obj, CRYPTO_EX_DATA *ad);
523
524
525/* Language bug workarounds.
526 *
527 * Most C standard library functions are undefined if passed NULL, even when the
528 * corresponding length is zero. This gives them (and, in turn, all functions
529 * which call them) surprising behavior on empty arrays. Some compilers will
530 * miscompile code due to this rule. See also
531 * https://www.imperialviolet.org/2016/06/26/nonnull.html
532 *
533 * These wrapper functions behave the same as the corresponding C standard
534 * functions, but behave as expected when passed NULL if the length is zero.
535 *
536 * Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|. */
537
538/* C++ defines |memchr| as a const-correct overload. */
539#if defined(__cplusplus)
540extern "C++" {
541
542static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
543  if (n == 0) {
544    return NULL;
545  }
546
547  return memchr(s, c, n);
548}
549
550static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
551  if (n == 0) {
552    return NULL;
553  }
554
555  return memchr(s, c, n);
556}
557
558}  /* extern "C++" */
559#else  /* __cplusplus */
560
561static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
562  if (n == 0) {
563    return NULL;
564  }
565
566  return memchr(s, c, n);
567}
568
569#endif  /* __cplusplus */
570
571static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
572  if (n == 0) {
573    return 0;
574  }
575
576  return memcmp(s1, s2, n);
577}
578
579static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
580  if (n == 0) {
581    return dst;
582  }
583
584  return memcpy(dst, src, n);
585}
586
587static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
588  if (n == 0) {
589    return dst;
590  }
591
592  return memmove(dst, src, n);
593}
594
595static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
596  if (n == 0) {
597    return dst;
598  }
599
600  return memset(dst, c, n);
601}
602
603
604#if defined(__cplusplus)
605}  /* extern C */
606#endif
607
608#endif  /* OPENSSL_HEADER_CRYPTO_INTERNAL_H */
609