1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTVector.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/Stmt.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/Type.h"
25#include "clang/Basic/CharInfo.h"
26#include "clang/Basic/LangOptions.h"
27#include "clang/Basic/TypeTraits.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/APSInt.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringRef.h"
32#include "llvm/Support/AtomicOrdering.h"
33#include "llvm/Support/Compiler.h"
34
35namespace clang {
36  class APValue;
37  class ASTContext;
38  class BlockDecl;
39  class CXXBaseSpecifier;
40  class CXXMemberCallExpr;
41  class CXXOperatorCallExpr;
42  class CastExpr;
43  class Decl;
44  class IdentifierInfo;
45  class MaterializeTemporaryExpr;
46  class NamedDecl;
47  class ObjCPropertyRefExpr;
48  class OpaqueValueExpr;
49  class ParmVarDecl;
50  class StringLiteral;
51  class TargetInfo;
52  class ValueDecl;
53
54/// \brief A simple array of base specifiers.
55typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
56
57/// \brief An adjustment to be made to the temporary created when emitting a
58/// reference binding, which accesses a particular subobject of that temporary.
59struct SubobjectAdjustment {
60  enum {
61    DerivedToBaseAdjustment,
62    FieldAdjustment,
63    MemberPointerAdjustment
64  } Kind;
65
66  struct DTB {
67    const CastExpr *BasePath;
68    const CXXRecordDecl *DerivedClass;
69  };
70
71  struct P {
72    const MemberPointerType *MPT;
73    Expr *RHS;
74  };
75
76  union {
77    struct DTB DerivedToBase;
78    FieldDecl *Field;
79    struct P Ptr;
80  };
81
82  SubobjectAdjustment(const CastExpr *BasePath,
83                      const CXXRecordDecl *DerivedClass)
84    : Kind(DerivedToBaseAdjustment) {
85    DerivedToBase.BasePath = BasePath;
86    DerivedToBase.DerivedClass = DerivedClass;
87  }
88
89  SubobjectAdjustment(FieldDecl *Field)
90    : Kind(FieldAdjustment) {
91    this->Field = Field;
92  }
93
94  SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
95    : Kind(MemberPointerAdjustment) {
96    this->Ptr.MPT = MPT;
97    this->Ptr.RHS = RHS;
98  }
99};
100
101/// Expr - This represents one expression.  Note that Expr's are subclasses of
102/// Stmt.  This allows an expression to be transparently used any place a Stmt
103/// is required.
104///
105class Expr : public Stmt {
106  QualType TR;
107
108protected:
109  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
110       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
111    : Stmt(SC)
112  {
113    ExprBits.TypeDependent = TD;
114    ExprBits.ValueDependent = VD;
115    ExprBits.InstantiationDependent = ID;
116    ExprBits.ValueKind = VK;
117    ExprBits.ObjectKind = OK;
118    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
119    setType(T);
120  }
121
122  /// \brief Construct an empty expression.
123  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
124
125public:
126  QualType getType() const { return TR; }
127  void setType(QualType t) {
128    // In C++, the type of an expression is always adjusted so that it
129    // will not have reference type (C++ [expr]p6). Use
130    // QualType::getNonReferenceType() to retrieve the non-reference
131    // type. Additionally, inspect Expr::isLvalue to determine whether
132    // an expression that is adjusted in this manner should be
133    // considered an lvalue.
134    assert((t.isNull() || !t->isReferenceType()) &&
135           "Expressions can't have reference type");
136
137    TR = t;
138  }
139
140  /// isValueDependent - Determines whether this expression is
141  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
142  /// array bound of "Chars" in the following example is
143  /// value-dependent.
144  /// @code
145  /// template<int Size, char (&Chars)[Size]> struct meta_string;
146  /// @endcode
147  bool isValueDependent() const { return ExprBits.ValueDependent; }
148
149  /// \brief Set whether this expression is value-dependent or not.
150  void setValueDependent(bool VD) {
151    ExprBits.ValueDependent = VD;
152  }
153
154  /// isTypeDependent - Determines whether this expression is
155  /// type-dependent (C++ [temp.dep.expr]), which means that its type
156  /// could change from one template instantiation to the next. For
157  /// example, the expressions "x" and "x + y" are type-dependent in
158  /// the following code, but "y" is not type-dependent:
159  /// @code
160  /// template<typename T>
161  /// void add(T x, int y) {
162  ///   x + y;
163  /// }
164  /// @endcode
165  bool isTypeDependent() const { return ExprBits.TypeDependent; }
166
167  /// \brief Set whether this expression is type-dependent or not.
168  void setTypeDependent(bool TD) {
169    ExprBits.TypeDependent = TD;
170  }
171
172  /// \brief Whether this expression is instantiation-dependent, meaning that
173  /// it depends in some way on a template parameter, even if neither its type
174  /// nor (constant) value can change due to the template instantiation.
175  ///
176  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
177  /// instantiation-dependent (since it involves a template parameter \c T), but
178  /// is neither type- nor value-dependent, since the type of the inner
179  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
180  /// \c sizeof is known.
181  ///
182  /// \code
183  /// template<typename T>
184  /// void f(T x, T y) {
185  ///   sizeof(sizeof(T() + T());
186  /// }
187  /// \endcode
188  ///
189  bool isInstantiationDependent() const {
190    return ExprBits.InstantiationDependent;
191  }
192
193  /// \brief Set whether this expression is instantiation-dependent or not.
194  void setInstantiationDependent(bool ID) {
195    ExprBits.InstantiationDependent = ID;
196  }
197
198  /// \brief Whether this expression contains an unexpanded parameter
199  /// pack (for C++11 variadic templates).
200  ///
201  /// Given the following function template:
202  ///
203  /// \code
204  /// template<typename F, typename ...Types>
205  /// void forward(const F &f, Types &&...args) {
206  ///   f(static_cast<Types&&>(args)...);
207  /// }
208  /// \endcode
209  ///
210  /// The expressions \c args and \c static_cast<Types&&>(args) both
211  /// contain parameter packs.
212  bool containsUnexpandedParameterPack() const {
213    return ExprBits.ContainsUnexpandedParameterPack;
214  }
215
216  /// \brief Set the bit that describes whether this expression
217  /// contains an unexpanded parameter pack.
218  void setContainsUnexpandedParameterPack(bool PP = true) {
219    ExprBits.ContainsUnexpandedParameterPack = PP;
220  }
221
222  /// getExprLoc - Return the preferred location for the arrow when diagnosing
223  /// a problem with a generic expression.
224  SourceLocation getExprLoc() const LLVM_READONLY;
225
226  /// isUnusedResultAWarning - Return true if this immediate expression should
227  /// be warned about if the result is unused.  If so, fill in expr, location,
228  /// and ranges with expr to warn on and source locations/ranges appropriate
229  /// for a warning.
230  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
231                              SourceRange &R1, SourceRange &R2,
232                              ASTContext &Ctx) const;
233
234  /// isLValue - True if this expression is an "l-value" according to
235  /// the rules of the current language.  C and C++ give somewhat
236  /// different rules for this concept, but in general, the result of
237  /// an l-value expression identifies a specific object whereas the
238  /// result of an r-value expression is a value detached from any
239  /// specific storage.
240  ///
241  /// C++11 divides the concept of "r-value" into pure r-values
242  /// ("pr-values") and so-called expiring values ("x-values"), which
243  /// identify specific objects that can be safely cannibalized for
244  /// their resources.  This is an unfortunate abuse of terminology on
245  /// the part of the C++ committee.  In Clang, when we say "r-value",
246  /// we generally mean a pr-value.
247  bool isLValue() const { return getValueKind() == VK_LValue; }
248  bool isRValue() const { return getValueKind() == VK_RValue; }
249  bool isXValue() const { return getValueKind() == VK_XValue; }
250  bool isGLValue() const { return getValueKind() != VK_RValue; }
251
252  enum LValueClassification {
253    LV_Valid,
254    LV_NotObjectType,
255    LV_IncompleteVoidType,
256    LV_DuplicateVectorComponents,
257    LV_InvalidExpression,
258    LV_InvalidMessageExpression,
259    LV_MemberFunction,
260    LV_SubObjCPropertySetting,
261    LV_ClassTemporary,
262    LV_ArrayTemporary
263  };
264  /// Reasons why an expression might not be an l-value.
265  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
266
267  enum isModifiableLvalueResult {
268    MLV_Valid,
269    MLV_NotObjectType,
270    MLV_IncompleteVoidType,
271    MLV_DuplicateVectorComponents,
272    MLV_InvalidExpression,
273    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
274    MLV_IncompleteType,
275    MLV_ConstQualified,
276    MLV_ConstAddrSpace,
277    MLV_ArrayType,
278    MLV_NoSetterProperty,
279    MLV_MemberFunction,
280    MLV_SubObjCPropertySetting,
281    MLV_InvalidMessageExpression,
282    MLV_ClassTemporary,
283    MLV_ArrayTemporary
284  };
285  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
286  /// does not have an incomplete type, does not have a const-qualified type,
287  /// and if it is a structure or union, does not have any member (including,
288  /// recursively, any member or element of all contained aggregates or unions)
289  /// with a const-qualified type.
290  ///
291  /// \param Loc [in,out] - A source location which *may* be filled
292  /// in with the location of the expression making this a
293  /// non-modifiable lvalue, if specified.
294  isModifiableLvalueResult
295  isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = nullptr) const;
296
297  /// \brief The return type of classify(). Represents the C++11 expression
298  ///        taxonomy.
299  class Classification {
300  public:
301    /// \brief The various classification results. Most of these mean prvalue.
302    enum Kinds {
303      CL_LValue,
304      CL_XValue,
305      CL_Function, // Functions cannot be lvalues in C.
306      CL_Void, // Void cannot be an lvalue in C.
307      CL_AddressableVoid, // Void expression whose address can be taken in C.
308      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
309      CL_MemberFunction, // An expression referring to a member function
310      CL_SubObjCPropertySetting,
311      CL_ClassTemporary, // A temporary of class type, or subobject thereof.
312      CL_ArrayTemporary, // A temporary of array type.
313      CL_ObjCMessageRValue, // ObjC message is an rvalue
314      CL_PRValue // A prvalue for any other reason, of any other type
315    };
316    /// \brief The results of modification testing.
317    enum ModifiableType {
318      CM_Untested, // testModifiable was false.
319      CM_Modifiable,
320      CM_RValue, // Not modifiable because it's an rvalue
321      CM_Function, // Not modifiable because it's a function; C++ only
322      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
323      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
324      CM_ConstQualified,
325      CM_ConstAddrSpace,
326      CM_ArrayType,
327      CM_IncompleteType
328    };
329
330  private:
331    friend class Expr;
332
333    unsigned short Kind;
334    unsigned short Modifiable;
335
336    explicit Classification(Kinds k, ModifiableType m)
337      : Kind(k), Modifiable(m)
338    {}
339
340  public:
341    Classification() {}
342
343    Kinds getKind() const { return static_cast<Kinds>(Kind); }
344    ModifiableType getModifiable() const {
345      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
346      return static_cast<ModifiableType>(Modifiable);
347    }
348    bool isLValue() const { return Kind == CL_LValue; }
349    bool isXValue() const { return Kind == CL_XValue; }
350    bool isGLValue() const { return Kind <= CL_XValue; }
351    bool isPRValue() const { return Kind >= CL_Function; }
352    bool isRValue() const { return Kind >= CL_XValue; }
353    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
354
355    /// \brief Create a simple, modifiably lvalue
356    static Classification makeSimpleLValue() {
357      return Classification(CL_LValue, CM_Modifiable);
358    }
359
360  };
361  /// \brief Classify - Classify this expression according to the C++11
362  ///        expression taxonomy.
363  ///
364  /// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
365  /// old lvalue vs rvalue. This function determines the type of expression this
366  /// is. There are three expression types:
367  /// - lvalues are classical lvalues as in C++03.
368  /// - prvalues are equivalent to rvalues in C++03.
369  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
370  ///   function returning an rvalue reference.
371  /// lvalues and xvalues are collectively referred to as glvalues, while
372  /// prvalues and xvalues together form rvalues.
373  Classification Classify(ASTContext &Ctx) const {
374    return ClassifyImpl(Ctx, nullptr);
375  }
376
377  /// \brief ClassifyModifiable - Classify this expression according to the
378  ///        C++11 expression taxonomy, and see if it is valid on the left side
379  ///        of an assignment.
380  ///
381  /// This function extends classify in that it also tests whether the
382  /// expression is modifiable (C99 6.3.2.1p1).
383  /// \param Loc A source location that might be filled with a relevant location
384  ///            if the expression is not modifiable.
385  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
386    return ClassifyImpl(Ctx, &Loc);
387  }
388
389  /// getValueKindForType - Given a formal return or parameter type,
390  /// give its value kind.
391  static ExprValueKind getValueKindForType(QualType T) {
392    if (const ReferenceType *RT = T->getAs<ReferenceType>())
393      return (isa<LValueReferenceType>(RT)
394                ? VK_LValue
395                : (RT->getPointeeType()->isFunctionType()
396                     ? VK_LValue : VK_XValue));
397    return VK_RValue;
398  }
399
400  /// getValueKind - The value kind that this expression produces.
401  ExprValueKind getValueKind() const {
402    return static_cast<ExprValueKind>(ExprBits.ValueKind);
403  }
404
405  /// getObjectKind - The object kind that this expression produces.
406  /// Object kinds are meaningful only for expressions that yield an
407  /// l-value or x-value.
408  ExprObjectKind getObjectKind() const {
409    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
410  }
411
412  bool isOrdinaryOrBitFieldObject() const {
413    ExprObjectKind OK = getObjectKind();
414    return (OK == OK_Ordinary || OK == OK_BitField);
415  }
416
417  /// setValueKind - Set the value kind produced by this expression.
418  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
419
420  /// setObjectKind - Set the object kind produced by this expression.
421  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
422
423private:
424  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
425
426public:
427
428  /// \brief Returns true if this expression is a gl-value that
429  /// potentially refers to a bit-field.
430  ///
431  /// In C++, whether a gl-value refers to a bitfield is essentially
432  /// an aspect of the value-kind type system.
433  bool refersToBitField() const { return getObjectKind() == OK_BitField; }
434
435  /// \brief If this expression refers to a bit-field, retrieve the
436  /// declaration of that bit-field.
437  ///
438  /// Note that this returns a non-null pointer in subtly different
439  /// places than refersToBitField returns true.  In particular, this can
440  /// return a non-null pointer even for r-values loaded from
441  /// bit-fields, but it will return null for a conditional bit-field.
442  FieldDecl *getSourceBitField();
443
444  const FieldDecl *getSourceBitField() const {
445    return const_cast<Expr*>(this)->getSourceBitField();
446  }
447
448  /// \brief If this expression is an l-value for an Objective C
449  /// property, find the underlying property reference expression.
450  const ObjCPropertyRefExpr *getObjCProperty() const;
451
452  /// \brief Check if this expression is the ObjC 'self' implicit parameter.
453  bool isObjCSelfExpr() const;
454
455  /// \brief Returns whether this expression refers to a vector element.
456  bool refersToVectorElement() const;
457
458  /// \brief Returns whether this expression refers to a global register
459  /// variable.
460  bool refersToGlobalRegisterVar() const;
461
462  /// \brief Returns whether this expression has a placeholder type.
463  bool hasPlaceholderType() const {
464    return getType()->isPlaceholderType();
465  }
466
467  /// \brief Returns whether this expression has a specific placeholder type.
468  bool hasPlaceholderType(BuiltinType::Kind K) const {
469    assert(BuiltinType::isPlaceholderTypeKind(K));
470    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
471      return BT->getKind() == K;
472    return false;
473  }
474
475  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
476  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
477  /// but also int expressions which are produced by things like comparisons in
478  /// C.
479  bool isKnownToHaveBooleanValue() const;
480
481  /// isIntegerConstantExpr - Return true if this expression is a valid integer
482  /// constant expression, and, if so, return its value in Result.  If not a
483  /// valid i-c-e, return false and fill in Loc (if specified) with the location
484  /// of the invalid expression.
485  ///
486  /// Note: This does not perform the implicit conversions required by C++11
487  /// [expr.const]p5.
488  bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx,
489                             SourceLocation *Loc = nullptr,
490                             bool isEvaluated = true) const;
491  bool isIntegerConstantExpr(const ASTContext &Ctx,
492                             SourceLocation *Loc = nullptr) const;
493
494  /// isCXX98IntegralConstantExpr - Return true if this expression is an
495  /// integral constant expression in C++98. Can only be used in C++.
496  bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
497
498  /// isCXX11ConstantExpr - Return true if this expression is a constant
499  /// expression in C++11. Can only be used in C++.
500  ///
501  /// Note: This does not perform the implicit conversions required by C++11
502  /// [expr.const]p5.
503  bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = nullptr,
504                           SourceLocation *Loc = nullptr) const;
505
506  /// isPotentialConstantExpr - Return true if this function's definition
507  /// might be usable in a constant expression in C++11, if it were marked
508  /// constexpr. Return false if the function can never produce a constant
509  /// expression, along with diagnostics describing why not.
510  static bool isPotentialConstantExpr(const FunctionDecl *FD,
511                                      SmallVectorImpl<
512                                        PartialDiagnosticAt> &Diags);
513
514  /// isPotentialConstantExprUnevaluted - Return true if this expression might
515  /// be usable in a constant expression in C++11 in an unevaluated context, if
516  /// it were in function FD marked constexpr. Return false if the function can
517  /// never produce a constant expression, along with diagnostics describing
518  /// why not.
519  static bool isPotentialConstantExprUnevaluated(Expr *E,
520                                                 const FunctionDecl *FD,
521                                                 SmallVectorImpl<
522                                                   PartialDiagnosticAt> &Diags);
523
524  /// isConstantInitializer - Returns true if this expression can be emitted to
525  /// IR as a constant, and thus can be used as a constant initializer in C.
526  /// If this expression is not constant and Culprit is non-null,
527  /// it is used to store the address of first non constant expr.
528  bool isConstantInitializer(ASTContext &Ctx, bool ForRef,
529                             const Expr **Culprit = nullptr) const;
530
531  /// EvalStatus is a struct with detailed info about an evaluation in progress.
532  struct EvalStatus {
533    /// \brief Whether the evaluated expression has side effects.
534    /// For example, (f() && 0) can be folded, but it still has side effects.
535    bool HasSideEffects;
536
537    /// \brief Whether the evaluation hit undefined behavior.
538    /// For example, 1.0 / 0.0 can be folded to Inf, but has undefined behavior.
539    /// Likewise, INT_MAX + 1 can be folded to INT_MIN, but has UB.
540    bool HasUndefinedBehavior;
541
542    /// Diag - If this is non-null, it will be filled in with a stack of notes
543    /// indicating why evaluation failed (or why it failed to produce a constant
544    /// expression).
545    /// If the expression is unfoldable, the notes will indicate why it's not
546    /// foldable. If the expression is foldable, but not a constant expression,
547    /// the notes will describes why it isn't a constant expression. If the
548    /// expression *is* a constant expression, no notes will be produced.
549    SmallVectorImpl<PartialDiagnosticAt> *Diag;
550
551    EvalStatus()
552        : HasSideEffects(false), HasUndefinedBehavior(false), Diag(nullptr) {}
553
554    // hasSideEffects - Return true if the evaluated expression has
555    // side effects.
556    bool hasSideEffects() const {
557      return HasSideEffects;
558    }
559  };
560
561  /// EvalResult is a struct with detailed info about an evaluated expression.
562  struct EvalResult : EvalStatus {
563    /// Val - This is the value the expression can be folded to.
564    APValue Val;
565
566    // isGlobalLValue - Return true if the evaluated lvalue expression
567    // is global.
568    bool isGlobalLValue() const;
569  };
570
571  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
572  /// an rvalue using any crazy technique (that has nothing to do with language
573  /// standards) that we want to, even if the expression has side-effects. If
574  /// this function returns true, it returns the folded constant in Result. If
575  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
576  /// applied.
577  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
578
579  /// EvaluateAsBooleanCondition - Return true if this is a constant
580  /// which we we can fold and convert to a boolean condition using
581  /// any crazy technique that we want to, even if the expression has
582  /// side-effects.
583  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
584
585  enum SideEffectsKind {
586    SE_NoSideEffects,          ///< Strictly evaluate the expression.
587    SE_AllowUndefinedBehavior, ///< Allow UB that we can give a value, but not
588                               ///< arbitrary unmodeled side effects.
589    SE_AllowSideEffects        ///< Allow any unmodeled side effect.
590  };
591
592  /// EvaluateAsInt - Return true if this is a constant which we can fold and
593  /// convert to an integer, using any crazy technique that we want to.
594  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
595                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
596
597  /// EvaluateAsFloat - Return true if this is a constant which we can fold and
598  /// convert to a floating point value, using any crazy technique that we
599  /// want to.
600  bool
601  EvaluateAsFloat(llvm::APFloat &Result, const ASTContext &Ctx,
602                  SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
603
604  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
605  /// constant folded without side-effects, but discard the result.
606  bool isEvaluatable(const ASTContext &Ctx,
607                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
608
609  /// HasSideEffects - This routine returns true for all those expressions
610  /// which have any effect other than producing a value. Example is a function
611  /// call, volatile variable read, or throwing an exception. If
612  /// IncludePossibleEffects is false, this call treats certain expressions with
613  /// potential side effects (such as function call-like expressions,
614  /// instantiation-dependent expressions, or invocations from a macro) as not
615  /// having side effects.
616  bool HasSideEffects(const ASTContext &Ctx,
617                      bool IncludePossibleEffects = true) const;
618
619  /// \brief Determine whether this expression involves a call to any function
620  /// that is not trivial.
621  bool hasNonTrivialCall(const ASTContext &Ctx) const;
622
623  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
624  /// integer. This must be called on an expression that constant folds to an
625  /// integer.
626  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx,
627                    SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
628
629  void EvaluateForOverflow(const ASTContext &Ctx) const;
630
631  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
632  /// lvalue with link time known address, with no side-effects.
633  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
634
635  /// EvaluateAsInitializer - Evaluate an expression as if it were the
636  /// initializer of the given declaration. Returns true if the initializer
637  /// can be folded to a constant, and produces any relevant notes. In C++11,
638  /// notes will be produced if the expression is not a constant expression.
639  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
640                             const VarDecl *VD,
641                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
642
643  /// EvaluateWithSubstitution - Evaluate an expression as if from the context
644  /// of a call to the given function with the given arguments, inside an
645  /// unevaluated context. Returns true if the expression could be folded to a
646  /// constant.
647  bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
648                                const FunctionDecl *Callee,
649                                ArrayRef<const Expr*> Args) const;
650
651  /// \brief If the current Expr is a pointer, this will try to statically
652  /// determine the number of bytes available where the pointer is pointing.
653  /// Returns true if all of the above holds and we were able to figure out the
654  /// size, false otherwise.
655  ///
656  /// \param Type - How to evaluate the size of the Expr, as defined by the
657  /// "type" parameter of __builtin_object_size
658  bool tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
659                             unsigned Type) const;
660
661  /// \brief Enumeration used to describe the kind of Null pointer constant
662  /// returned from \c isNullPointerConstant().
663  enum NullPointerConstantKind {
664    /// \brief Expression is not a Null pointer constant.
665    NPCK_NotNull = 0,
666
667    /// \brief Expression is a Null pointer constant built from a zero integer
668    /// expression that is not a simple, possibly parenthesized, zero literal.
669    /// C++ Core Issue 903 will classify these expressions as "not pointers"
670    /// once it is adopted.
671    /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
672    NPCK_ZeroExpression,
673
674    /// \brief Expression is a Null pointer constant built from a literal zero.
675    NPCK_ZeroLiteral,
676
677    /// \brief Expression is a C++11 nullptr.
678    NPCK_CXX11_nullptr,
679
680    /// \brief Expression is a GNU-style __null constant.
681    NPCK_GNUNull
682  };
683
684  /// \brief Enumeration used to describe how \c isNullPointerConstant()
685  /// should cope with value-dependent expressions.
686  enum NullPointerConstantValueDependence {
687    /// \brief Specifies that the expression should never be value-dependent.
688    NPC_NeverValueDependent = 0,
689
690    /// \brief Specifies that a value-dependent expression of integral or
691    /// dependent type should be considered a null pointer constant.
692    NPC_ValueDependentIsNull,
693
694    /// \brief Specifies that a value-dependent expression should be considered
695    /// to never be a null pointer constant.
696    NPC_ValueDependentIsNotNull
697  };
698
699  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
700  /// a Null pointer constant. The return value can further distinguish the
701  /// kind of NULL pointer constant that was detected.
702  NullPointerConstantKind isNullPointerConstant(
703      ASTContext &Ctx,
704      NullPointerConstantValueDependence NPC) const;
705
706  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
707  /// write barrier.
708  bool isOBJCGCCandidate(ASTContext &Ctx) const;
709
710  /// \brief Returns true if this expression is a bound member function.
711  bool isBoundMemberFunction(ASTContext &Ctx) const;
712
713  /// \brief Given an expression of bound-member type, find the type
714  /// of the member.  Returns null if this is an *overloaded* bound
715  /// member expression.
716  static QualType findBoundMemberType(const Expr *expr);
717
718  /// IgnoreImpCasts - Skip past any implicit casts which might
719  /// surround this expression.  Only skips ImplicitCastExprs.
720  Expr *IgnoreImpCasts() LLVM_READONLY;
721
722  /// IgnoreImplicit - Skip past any implicit AST nodes which might
723  /// surround this expression.
724  Expr *IgnoreImplicit() LLVM_READONLY {
725    return cast<Expr>(Stmt::IgnoreImplicit());
726  }
727
728  const Expr *IgnoreImplicit() const LLVM_READONLY {
729    return const_cast<Expr*>(this)->IgnoreImplicit();
730  }
731
732  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
733  ///  its subexpression.  If that subexpression is also a ParenExpr,
734  ///  then this method recursively returns its subexpression, and so forth.
735  ///  Otherwise, the method returns the current Expr.
736  Expr *IgnoreParens() LLVM_READONLY;
737
738  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
739  /// or CastExprs, returning their operand.
740  Expr *IgnoreParenCasts() LLVM_READONLY;
741
742  /// Ignore casts.  Strip off any CastExprs, returning their operand.
743  Expr *IgnoreCasts() LLVM_READONLY;
744
745  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
746  /// any ParenExpr or ImplicitCastExprs, returning their operand.
747  Expr *IgnoreParenImpCasts() LLVM_READONLY;
748
749  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
750  /// call to a conversion operator, return the argument.
751  Expr *IgnoreConversionOperator() LLVM_READONLY;
752
753  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
754    return const_cast<Expr*>(this)->IgnoreConversionOperator();
755  }
756
757  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
758    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
759  }
760
761  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
762  /// CastExprs that represent lvalue casts, returning their operand.
763  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
764
765  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
766    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
767  }
768
769  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
770  /// value (including ptr->int casts of the same size).  Strip off any
771  /// ParenExpr or CastExprs, returning their operand.
772  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
773
774  /// Ignore parentheses and derived-to-base casts.
775  Expr *ignoreParenBaseCasts() LLVM_READONLY;
776
777  const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
778    return const_cast<Expr*>(this)->ignoreParenBaseCasts();
779  }
780
781  /// \brief Determine whether this expression is a default function argument.
782  ///
783  /// Default arguments are implicitly generated in the abstract syntax tree
784  /// by semantic analysis for function calls, object constructions, etc. in
785  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
786  /// this routine also looks through any implicit casts to determine whether
787  /// the expression is a default argument.
788  bool isDefaultArgument() const;
789
790  /// \brief Determine whether the result of this expression is a
791  /// temporary object of the given class type.
792  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
793
794  /// \brief Whether this expression is an implicit reference to 'this' in C++.
795  bool isImplicitCXXThis() const;
796
797  const Expr *IgnoreImpCasts() const LLVM_READONLY {
798    return const_cast<Expr*>(this)->IgnoreImpCasts();
799  }
800  const Expr *IgnoreParens() const LLVM_READONLY {
801    return const_cast<Expr*>(this)->IgnoreParens();
802  }
803  const Expr *IgnoreParenCasts() const LLVM_READONLY {
804    return const_cast<Expr*>(this)->IgnoreParenCasts();
805  }
806  /// Strip off casts, but keep parentheses.
807  const Expr *IgnoreCasts() const LLVM_READONLY {
808    return const_cast<Expr*>(this)->IgnoreCasts();
809  }
810
811  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
812    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
813  }
814
815  static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
816
817  /// \brief For an expression of class type or pointer to class type,
818  /// return the most derived class decl the expression is known to refer to.
819  ///
820  /// If this expression is a cast, this method looks through it to find the
821  /// most derived decl that can be inferred from the expression.
822  /// This is valid because derived-to-base conversions have undefined
823  /// behavior if the object isn't dynamically of the derived type.
824  const CXXRecordDecl *getBestDynamicClassType() const;
825
826  /// Walk outwards from an expression we want to bind a reference to and
827  /// find the expression whose lifetime needs to be extended. Record
828  /// the LHSs of comma expressions and adjustments needed along the path.
829  const Expr *skipRValueSubobjectAdjustments(
830      SmallVectorImpl<const Expr *> &CommaLHS,
831      SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
832
833  static bool classof(const Stmt *T) {
834    return T->getStmtClass() >= firstExprConstant &&
835           T->getStmtClass() <= lastExprConstant;
836  }
837};
838
839//===----------------------------------------------------------------------===//
840// Primary Expressions.
841//===----------------------------------------------------------------------===//
842
843/// OpaqueValueExpr - An expression referring to an opaque object of a
844/// fixed type and value class.  These don't correspond to concrete
845/// syntax; instead they're used to express operations (usually copy
846/// operations) on values whose source is generally obvious from
847/// context.
848class OpaqueValueExpr : public Expr {
849  friend class ASTStmtReader;
850  Expr *SourceExpr;
851  SourceLocation Loc;
852
853public:
854  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
855                  ExprObjectKind OK = OK_Ordinary,
856                  Expr *SourceExpr = nullptr)
857    : Expr(OpaqueValueExprClass, T, VK, OK,
858           T->isDependentType() ||
859           (SourceExpr && SourceExpr->isTypeDependent()),
860           T->isDependentType() ||
861           (SourceExpr && SourceExpr->isValueDependent()),
862           T->isInstantiationDependentType() ||
863           (SourceExpr && SourceExpr->isInstantiationDependent()),
864           false),
865      SourceExpr(SourceExpr), Loc(Loc) {
866  }
867
868  /// Given an expression which invokes a copy constructor --- i.e.  a
869  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
870  /// find the OpaqueValueExpr that's the source of the construction.
871  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
872
873  explicit OpaqueValueExpr(EmptyShell Empty)
874    : Expr(OpaqueValueExprClass, Empty) { }
875
876  /// \brief Retrieve the location of this expression.
877  SourceLocation getLocation() const { return Loc; }
878
879  SourceLocation getLocStart() const LLVM_READONLY {
880    return SourceExpr ? SourceExpr->getLocStart() : Loc;
881  }
882  SourceLocation getLocEnd() const LLVM_READONLY {
883    return SourceExpr ? SourceExpr->getLocEnd() : Loc;
884  }
885  SourceLocation getExprLoc() const LLVM_READONLY {
886    if (SourceExpr) return SourceExpr->getExprLoc();
887    return Loc;
888  }
889
890  child_range children() {
891    return child_range(child_iterator(), child_iterator());
892  }
893
894  /// The source expression of an opaque value expression is the
895  /// expression which originally generated the value.  This is
896  /// provided as a convenience for analyses that don't wish to
897  /// precisely model the execution behavior of the program.
898  ///
899  /// The source expression is typically set when building the
900  /// expression which binds the opaque value expression in the first
901  /// place.
902  Expr *getSourceExpr() const { return SourceExpr; }
903
904  static bool classof(const Stmt *T) {
905    return T->getStmtClass() == OpaqueValueExprClass;
906  }
907};
908
909/// \brief A reference to a declared variable, function, enum, etc.
910/// [C99 6.5.1p2]
911///
912/// This encodes all the information about how a declaration is referenced
913/// within an expression.
914///
915/// There are several optional constructs attached to DeclRefExprs only when
916/// they apply in order to conserve memory. These are laid out past the end of
917/// the object, and flags in the DeclRefExprBitfield track whether they exist:
918///
919///   DeclRefExprBits.HasQualifier:
920///       Specifies when this declaration reference expression has a C++
921///       nested-name-specifier.
922///   DeclRefExprBits.HasFoundDecl:
923///       Specifies when this declaration reference expression has a record of
924///       a NamedDecl (different from the referenced ValueDecl) which was found
925///       during name lookup and/or overload resolution.
926///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
927///       Specifies when this declaration reference expression has an explicit
928///       C++ template keyword and/or template argument list.
929///   DeclRefExprBits.RefersToEnclosingVariableOrCapture
930///       Specifies when this declaration reference expression (validly)
931///       refers to an enclosed local or a captured variable.
932class DeclRefExpr final
933    : public Expr,
934      private llvm::TrailingObjects<DeclRefExpr, NestedNameSpecifierLoc,
935                                    NamedDecl *, ASTTemplateKWAndArgsInfo,
936                                    TemplateArgumentLoc> {
937  /// \brief The declaration that we are referencing.
938  ValueDecl *D;
939
940  /// \brief The location of the declaration name itself.
941  SourceLocation Loc;
942
943  /// \brief Provides source/type location info for the declaration name
944  /// embedded in D.
945  DeclarationNameLoc DNLoc;
946
947  size_t numTrailingObjects(OverloadToken<NestedNameSpecifierLoc>) const {
948    return hasQualifier() ? 1 : 0;
949  }
950
951  size_t numTrailingObjects(OverloadToken<NamedDecl *>) const {
952    return hasFoundDecl() ? 1 : 0;
953  }
954
955  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
956    return hasTemplateKWAndArgsInfo() ? 1 : 0;
957  }
958
959  /// \brief Test whether there is a distinct FoundDecl attached to the end of
960  /// this DRE.
961  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
962
963  DeclRefExpr(const ASTContext &Ctx,
964              NestedNameSpecifierLoc QualifierLoc,
965              SourceLocation TemplateKWLoc,
966              ValueDecl *D, bool RefersToEnlosingVariableOrCapture,
967              const DeclarationNameInfo &NameInfo,
968              NamedDecl *FoundD,
969              const TemplateArgumentListInfo *TemplateArgs,
970              QualType T, ExprValueKind VK);
971
972  /// \brief Construct an empty declaration reference expression.
973  explicit DeclRefExpr(EmptyShell Empty)
974    : Expr(DeclRefExprClass, Empty) { }
975
976  /// \brief Computes the type- and value-dependence flags for this
977  /// declaration reference expression.
978  void computeDependence(const ASTContext &C);
979
980public:
981  DeclRefExpr(ValueDecl *D, bool RefersToEnclosingVariableOrCapture, QualType T,
982              ExprValueKind VK, SourceLocation L,
983              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
984    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
985      D(D), Loc(L), DNLoc(LocInfo) {
986    DeclRefExprBits.HasQualifier = 0;
987    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
988    DeclRefExprBits.HasFoundDecl = 0;
989    DeclRefExprBits.HadMultipleCandidates = 0;
990    DeclRefExprBits.RefersToEnclosingVariableOrCapture =
991        RefersToEnclosingVariableOrCapture;
992    computeDependence(D->getASTContext());
993  }
994
995  static DeclRefExpr *
996  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
997         SourceLocation TemplateKWLoc, ValueDecl *D,
998         bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc,
999         QualType T, ExprValueKind VK, NamedDecl *FoundD = nullptr,
1000         const TemplateArgumentListInfo *TemplateArgs = nullptr);
1001
1002  static DeclRefExpr *
1003  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
1004         SourceLocation TemplateKWLoc, ValueDecl *D,
1005         bool RefersToEnclosingVariableOrCapture,
1006         const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK,
1007         NamedDecl *FoundD = nullptr,
1008         const TemplateArgumentListInfo *TemplateArgs = nullptr);
1009
1010  /// \brief Construct an empty declaration reference expression.
1011  static DeclRefExpr *CreateEmpty(const ASTContext &Context,
1012                                  bool HasQualifier,
1013                                  bool HasFoundDecl,
1014                                  bool HasTemplateKWAndArgsInfo,
1015                                  unsigned NumTemplateArgs);
1016
1017  ValueDecl *getDecl() { return D; }
1018  const ValueDecl *getDecl() const { return D; }
1019  void setDecl(ValueDecl *NewD) { D = NewD; }
1020
1021  DeclarationNameInfo getNameInfo() const {
1022    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
1023  }
1024
1025  SourceLocation getLocation() const { return Loc; }
1026  void setLocation(SourceLocation L) { Loc = L; }
1027  SourceLocation getLocStart() const LLVM_READONLY;
1028  SourceLocation getLocEnd() const LLVM_READONLY;
1029
1030  /// \brief Determine whether this declaration reference was preceded by a
1031  /// C++ nested-name-specifier, e.g., \c N::foo.
1032  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
1033
1034  /// \brief If the name was qualified, retrieves the nested-name-specifier
1035  /// that precedes the name, with source-location information.
1036  NestedNameSpecifierLoc getQualifierLoc() const {
1037    if (!hasQualifier())
1038      return NestedNameSpecifierLoc();
1039    return *getTrailingObjects<NestedNameSpecifierLoc>();
1040  }
1041
1042  /// \brief If the name was qualified, retrieves the nested-name-specifier
1043  /// that precedes the name. Otherwise, returns NULL.
1044  NestedNameSpecifier *getQualifier() const {
1045    return getQualifierLoc().getNestedNameSpecifier();
1046  }
1047
1048  /// \brief Get the NamedDecl through which this reference occurred.
1049  ///
1050  /// This Decl may be different from the ValueDecl actually referred to in the
1051  /// presence of using declarations, etc. It always returns non-NULL, and may
1052  /// simple return the ValueDecl when appropriate.
1053
1054  NamedDecl *getFoundDecl() {
1055    return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
1056  }
1057
1058  /// \brief Get the NamedDecl through which this reference occurred.
1059  /// See non-const variant.
1060  const NamedDecl *getFoundDecl() const {
1061    return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
1062  }
1063
1064  bool hasTemplateKWAndArgsInfo() const {
1065    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
1066  }
1067
1068  /// \brief Retrieve the location of the template keyword preceding
1069  /// this name, if any.
1070  SourceLocation getTemplateKeywordLoc() const {
1071    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1072    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
1073  }
1074
1075  /// \brief Retrieve the location of the left angle bracket starting the
1076  /// explicit template argument list following the name, if any.
1077  SourceLocation getLAngleLoc() const {
1078    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1079    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
1080  }
1081
1082  /// \brief Retrieve the location of the right angle bracket ending the
1083  /// explicit template argument list following the name, if any.
1084  SourceLocation getRAngleLoc() const {
1085    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1086    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
1087  }
1088
1089  /// \brief Determines whether the name in this declaration reference
1090  /// was preceded by the template keyword.
1091  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
1092
1093  /// \brief Determines whether this declaration reference was followed by an
1094  /// explicit template argument list.
1095  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
1096
1097  /// \brief Copies the template arguments (if present) into the given
1098  /// structure.
1099  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1100    if (hasExplicitTemplateArgs())
1101      getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
1102          getTrailingObjects<TemplateArgumentLoc>(), List);
1103  }
1104
1105  /// \brief Retrieve the template arguments provided as part of this
1106  /// template-id.
1107  const TemplateArgumentLoc *getTemplateArgs() const {
1108    if (!hasExplicitTemplateArgs())
1109      return nullptr;
1110
1111    return getTrailingObjects<TemplateArgumentLoc>();
1112  }
1113
1114  /// \brief Retrieve the number of template arguments provided as part of this
1115  /// template-id.
1116  unsigned getNumTemplateArgs() const {
1117    if (!hasExplicitTemplateArgs())
1118      return 0;
1119
1120    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
1121  }
1122
1123  ArrayRef<TemplateArgumentLoc> template_arguments() const {
1124    return {getTemplateArgs(), getNumTemplateArgs()};
1125  }
1126
1127  /// \brief Returns true if this expression refers to a function that
1128  /// was resolved from an overloaded set having size greater than 1.
1129  bool hadMultipleCandidates() const {
1130    return DeclRefExprBits.HadMultipleCandidates;
1131  }
1132  /// \brief Sets the flag telling whether this expression refers to
1133  /// a function that was resolved from an overloaded set having size
1134  /// greater than 1.
1135  void setHadMultipleCandidates(bool V = true) {
1136    DeclRefExprBits.HadMultipleCandidates = V;
1137  }
1138
1139  /// \brief Does this DeclRefExpr refer to an enclosing local or a captured
1140  /// variable?
1141  bool refersToEnclosingVariableOrCapture() const {
1142    return DeclRefExprBits.RefersToEnclosingVariableOrCapture;
1143  }
1144
1145  static bool classof(const Stmt *T) {
1146    return T->getStmtClass() == DeclRefExprClass;
1147  }
1148
1149  // Iterators
1150  child_range children() {
1151    return child_range(child_iterator(), child_iterator());
1152  }
1153
1154  friend TrailingObjects;
1155  friend class ASTStmtReader;
1156  friend class ASTStmtWriter;
1157};
1158
1159/// \brief [C99 6.4.2.2] - A predefined identifier such as __func__.
1160class PredefinedExpr : public Expr {
1161public:
1162  enum IdentType {
1163    Func,
1164    Function,
1165    LFunction,  // Same as Function, but as wide string.
1166    FuncDName,
1167    FuncSig,
1168    PrettyFunction,
1169    /// \brief The same as PrettyFunction, except that the
1170    /// 'virtual' keyword is omitted for virtual member functions.
1171    PrettyFunctionNoVirtual
1172  };
1173
1174private:
1175  SourceLocation Loc;
1176  IdentType Type;
1177  Stmt *FnName;
1178
1179public:
1180  PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
1181                 StringLiteral *SL);
1182
1183  /// \brief Construct an empty predefined expression.
1184  explicit PredefinedExpr(EmptyShell Empty)
1185      : Expr(PredefinedExprClass, Empty), Loc(), Type(Func), FnName(nullptr) {}
1186
1187  IdentType getIdentType() const { return Type; }
1188
1189  SourceLocation getLocation() const { return Loc; }
1190  void setLocation(SourceLocation L) { Loc = L; }
1191
1192  StringLiteral *getFunctionName();
1193  const StringLiteral *getFunctionName() const {
1194    return const_cast<PredefinedExpr *>(this)->getFunctionName();
1195  }
1196
1197  static StringRef getIdentTypeName(IdentType IT);
1198  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1199
1200  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1201  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1202
1203  static bool classof(const Stmt *T) {
1204    return T->getStmtClass() == PredefinedExprClass;
1205  }
1206
1207  // Iterators
1208  child_range children() { return child_range(&FnName, &FnName + 1); }
1209
1210  friend class ASTStmtReader;
1211};
1212
1213/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1214/// leaking memory.
1215///
1216/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1217/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1218/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1219/// the APFloat/APInt values will never get freed. APNumericStorage uses
1220/// ASTContext's allocator for memory allocation.
1221class APNumericStorage {
1222  union {
1223    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1224    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1225  };
1226  unsigned BitWidth;
1227
1228  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1229
1230  APNumericStorage(const APNumericStorage &) = delete;
1231  void operator=(const APNumericStorage &) = delete;
1232
1233protected:
1234  APNumericStorage() : VAL(0), BitWidth(0) { }
1235
1236  llvm::APInt getIntValue() const {
1237    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1238    if (NumWords > 1)
1239      return llvm::APInt(BitWidth, NumWords, pVal);
1240    else
1241      return llvm::APInt(BitWidth, VAL);
1242  }
1243  void setIntValue(const ASTContext &C, const llvm::APInt &Val);
1244};
1245
1246class APIntStorage : private APNumericStorage {
1247public:
1248  llvm::APInt getValue() const { return getIntValue(); }
1249  void setValue(const ASTContext &C, const llvm::APInt &Val) {
1250    setIntValue(C, Val);
1251  }
1252};
1253
1254class APFloatStorage : private APNumericStorage {
1255public:
1256  llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
1257    return llvm::APFloat(Semantics, getIntValue());
1258  }
1259  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1260    setIntValue(C, Val.bitcastToAPInt());
1261  }
1262};
1263
1264class IntegerLiteral : public Expr, public APIntStorage {
1265  SourceLocation Loc;
1266
1267  /// \brief Construct an empty integer literal.
1268  explicit IntegerLiteral(EmptyShell Empty)
1269    : Expr(IntegerLiteralClass, Empty) { }
1270
1271public:
1272  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1273  // or UnsignedLongLongTy
1274  IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
1275                 SourceLocation l);
1276
1277  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1278  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1279  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1280  /// \param V - the value that the returned integer literal contains.
1281  static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
1282                                QualType type, SourceLocation l);
1283  /// \brief Returns a new empty integer literal.
1284  static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
1285
1286  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1287  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1288
1289  /// \brief Retrieve the location of the literal.
1290  SourceLocation getLocation() const { return Loc; }
1291
1292  void setLocation(SourceLocation Location) { Loc = Location; }
1293
1294  static bool classof(const Stmt *T) {
1295    return T->getStmtClass() == IntegerLiteralClass;
1296  }
1297
1298  // Iterators
1299  child_range children() {
1300    return child_range(child_iterator(), child_iterator());
1301  }
1302};
1303
1304class CharacterLiteral : public Expr {
1305public:
1306  enum CharacterKind {
1307    Ascii,
1308    Wide,
1309    UTF8,
1310    UTF16,
1311    UTF32
1312  };
1313
1314private:
1315  unsigned Value;
1316  SourceLocation Loc;
1317public:
1318  // type should be IntTy
1319  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1320                   SourceLocation l)
1321    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1322           false, false),
1323      Value(value), Loc(l) {
1324    CharacterLiteralBits.Kind = kind;
1325  }
1326
1327  /// \brief Construct an empty character literal.
1328  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1329
1330  SourceLocation getLocation() const { return Loc; }
1331  CharacterKind getKind() const {
1332    return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1333  }
1334
1335  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1336  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1337
1338  unsigned getValue() const { return Value; }
1339
1340  void setLocation(SourceLocation Location) { Loc = Location; }
1341  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1342  void setValue(unsigned Val) { Value = Val; }
1343
1344  static bool classof(const Stmt *T) {
1345    return T->getStmtClass() == CharacterLiteralClass;
1346  }
1347
1348  // Iterators
1349  child_range children() {
1350    return child_range(child_iterator(), child_iterator());
1351  }
1352};
1353
1354class FloatingLiteral : public Expr, private APFloatStorage {
1355  SourceLocation Loc;
1356
1357  FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
1358                  QualType Type, SourceLocation L);
1359
1360  /// \brief Construct an empty floating-point literal.
1361  explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
1362
1363public:
1364  static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
1365                                 bool isexact, QualType Type, SourceLocation L);
1366  static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
1367
1368  llvm::APFloat getValue() const {
1369    return APFloatStorage::getValue(getSemantics());
1370  }
1371  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1372    assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
1373    APFloatStorage::setValue(C, Val);
1374  }
1375
1376  /// Get a raw enumeration value representing the floating-point semantics of
1377  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1378  APFloatSemantics getRawSemantics() const {
1379    return static_cast<APFloatSemantics>(FloatingLiteralBits.Semantics);
1380  }
1381
1382  /// Set the raw enumeration value representing the floating-point semantics of
1383  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1384  void setRawSemantics(APFloatSemantics Sem) {
1385    FloatingLiteralBits.Semantics = Sem;
1386  }
1387
1388  /// Return the APFloat semantics this literal uses.
1389  const llvm::fltSemantics &getSemantics() const;
1390
1391  /// Set the APFloat semantics this literal uses.
1392  void setSemantics(const llvm::fltSemantics &Sem);
1393
1394  bool isExact() const { return FloatingLiteralBits.IsExact; }
1395  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1396
1397  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1398  /// double.  Note that this may cause loss of precision, but is useful for
1399  /// debugging dumps, etc.
1400  double getValueAsApproximateDouble() const;
1401
1402  SourceLocation getLocation() const { return Loc; }
1403  void setLocation(SourceLocation L) { Loc = L; }
1404
1405  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1406  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1407
1408  static bool classof(const Stmt *T) {
1409    return T->getStmtClass() == FloatingLiteralClass;
1410  }
1411
1412  // Iterators
1413  child_range children() {
1414    return child_range(child_iterator(), child_iterator());
1415  }
1416};
1417
1418/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1419/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1420/// IntegerLiteral classes.  Instances of this class always have a Complex type
1421/// whose element type matches the subexpression.
1422///
1423class ImaginaryLiteral : public Expr {
1424  Stmt *Val;
1425public:
1426  ImaginaryLiteral(Expr *val, QualType Ty)
1427    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1428           false, false),
1429      Val(val) {}
1430
1431  /// \brief Build an empty imaginary literal.
1432  explicit ImaginaryLiteral(EmptyShell Empty)
1433    : Expr(ImaginaryLiteralClass, Empty) { }
1434
1435  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1436  Expr *getSubExpr() { return cast<Expr>(Val); }
1437  void setSubExpr(Expr *E) { Val = E; }
1438
1439  SourceLocation getLocStart() const LLVM_READONLY { return Val->getLocStart(); }
1440  SourceLocation getLocEnd() const LLVM_READONLY { return Val->getLocEnd(); }
1441
1442  static bool classof(const Stmt *T) {
1443    return T->getStmtClass() == ImaginaryLiteralClass;
1444  }
1445
1446  // Iterators
1447  child_range children() { return child_range(&Val, &Val+1); }
1448};
1449
1450/// StringLiteral - This represents a string literal expression, e.g. "foo"
1451/// or L"bar" (wide strings).  The actual string is returned by getBytes()
1452/// is NOT null-terminated, and the length of the string is determined by
1453/// calling getByteLength().  The C type for a string is always a
1454/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1455/// not.
1456///
1457/// Note that strings in C can be formed by concatenation of multiple string
1458/// literal pptokens in translation phase #6.  This keeps track of the locations
1459/// of each of these pieces.
1460///
1461/// Strings in C can also be truncated and extended by assigning into arrays,
1462/// e.g. with constructs like:
1463///   char X[2] = "foobar";
1464/// In this case, getByteLength() will return 6, but the string literal will
1465/// have type "char[2]".
1466class StringLiteral : public Expr {
1467public:
1468  enum StringKind {
1469    Ascii,
1470    Wide,
1471    UTF8,
1472    UTF16,
1473    UTF32
1474  };
1475
1476private:
1477  friend class ASTStmtReader;
1478
1479  union {
1480    const char *asChar;
1481    const uint16_t *asUInt16;
1482    const uint32_t *asUInt32;
1483  } StrData;
1484  unsigned Length;
1485  unsigned CharByteWidth : 4;
1486  unsigned Kind : 3;
1487  unsigned IsPascal : 1;
1488  unsigned NumConcatenated;
1489  SourceLocation TokLocs[1];
1490
1491  StringLiteral(QualType Ty) :
1492    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1493         false) {}
1494
1495  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1496
1497public:
1498  /// This is the "fully general" constructor that allows representation of
1499  /// strings formed from multiple concatenated tokens.
1500  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1501                               StringKind Kind, bool Pascal, QualType Ty,
1502                               const SourceLocation *Loc, unsigned NumStrs);
1503
1504  /// Simple constructor for string literals made from one token.
1505  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1506                               StringKind Kind, bool Pascal, QualType Ty,
1507                               SourceLocation Loc) {
1508    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1509  }
1510
1511  /// \brief Construct an empty string literal.
1512  static StringLiteral *CreateEmpty(const ASTContext &C, unsigned NumStrs);
1513
1514  StringRef getString() const {
1515    assert(CharByteWidth==1
1516           && "This function is used in places that assume strings use char");
1517    return StringRef(StrData.asChar, getByteLength());
1518  }
1519
1520  /// Allow access to clients that need the byte representation, such as
1521  /// ASTWriterStmt::VisitStringLiteral().
1522  StringRef getBytes() const {
1523    // FIXME: StringRef may not be the right type to use as a result for this.
1524    if (CharByteWidth == 1)
1525      return StringRef(StrData.asChar, getByteLength());
1526    if (CharByteWidth == 4)
1527      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1528                       getByteLength());
1529    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1530    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1531                     getByteLength());
1532  }
1533
1534  void outputString(raw_ostream &OS) const;
1535
1536  uint32_t getCodeUnit(size_t i) const {
1537    assert(i < Length && "out of bounds access");
1538    if (CharByteWidth == 1)
1539      return static_cast<unsigned char>(StrData.asChar[i]);
1540    if (CharByteWidth == 4)
1541      return StrData.asUInt32[i];
1542    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1543    return StrData.asUInt16[i];
1544  }
1545
1546  unsigned getByteLength() const { return CharByteWidth*Length; }
1547  unsigned getLength() const { return Length; }
1548  unsigned getCharByteWidth() const { return CharByteWidth; }
1549
1550  /// \brief Sets the string data to the given string data.
1551  void setString(const ASTContext &C, StringRef Str,
1552                 StringKind Kind, bool IsPascal);
1553
1554  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1555
1556
1557  bool isAscii() const { return Kind == Ascii; }
1558  bool isWide() const { return Kind == Wide; }
1559  bool isUTF8() const { return Kind == UTF8; }
1560  bool isUTF16() const { return Kind == UTF16; }
1561  bool isUTF32() const { return Kind == UTF32; }
1562  bool isPascal() const { return IsPascal; }
1563
1564  bool containsNonAsciiOrNull() const {
1565    StringRef Str = getString();
1566    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1567      if (!isASCII(Str[i]) || !Str[i])
1568        return true;
1569    return false;
1570  }
1571
1572  /// getNumConcatenated - Get the number of string literal tokens that were
1573  /// concatenated in translation phase #6 to form this string literal.
1574  unsigned getNumConcatenated() const { return NumConcatenated; }
1575
1576  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1577    assert(TokNum < NumConcatenated && "Invalid tok number");
1578    return TokLocs[TokNum];
1579  }
1580  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1581    assert(TokNum < NumConcatenated && "Invalid tok number");
1582    TokLocs[TokNum] = L;
1583  }
1584
1585  /// getLocationOfByte - Return a source location that points to the specified
1586  /// byte of this string literal.
1587  ///
1588  /// Strings are amazingly complex.  They can be formed from multiple tokens
1589  /// and can have escape sequences in them in addition to the usual trigraph
1590  /// and escaped newline business.  This routine handles this complexity.
1591  ///
1592  SourceLocation
1593  getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1594                    const LangOptions &Features, const TargetInfo &Target,
1595                    unsigned *StartToken = nullptr,
1596                    unsigned *StartTokenByteOffset = nullptr) const;
1597
1598  typedef const SourceLocation *tokloc_iterator;
1599  tokloc_iterator tokloc_begin() const { return TokLocs; }
1600  tokloc_iterator tokloc_end() const { return TokLocs + NumConcatenated; }
1601
1602  SourceLocation getLocStart() const LLVM_READONLY { return TokLocs[0]; }
1603  SourceLocation getLocEnd() const LLVM_READONLY {
1604    return TokLocs[NumConcatenated - 1];
1605  }
1606
1607  static bool classof(const Stmt *T) {
1608    return T->getStmtClass() == StringLiteralClass;
1609  }
1610
1611  // Iterators
1612  child_range children() {
1613    return child_range(child_iterator(), child_iterator());
1614  }
1615};
1616
1617/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1618/// AST node is only formed if full location information is requested.
1619class ParenExpr : public Expr {
1620  SourceLocation L, R;
1621  Stmt *Val;
1622public:
1623  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1624    : Expr(ParenExprClass, val->getType(),
1625           val->getValueKind(), val->getObjectKind(),
1626           val->isTypeDependent(), val->isValueDependent(),
1627           val->isInstantiationDependent(),
1628           val->containsUnexpandedParameterPack()),
1629      L(l), R(r), Val(val) {}
1630
1631  /// \brief Construct an empty parenthesized expression.
1632  explicit ParenExpr(EmptyShell Empty)
1633    : Expr(ParenExprClass, Empty) { }
1634
1635  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1636  Expr *getSubExpr() { return cast<Expr>(Val); }
1637  void setSubExpr(Expr *E) { Val = E; }
1638
1639  SourceLocation getLocStart() const LLVM_READONLY { return L; }
1640  SourceLocation getLocEnd() const LLVM_READONLY { return R; }
1641
1642  /// \brief Get the location of the left parentheses '('.
1643  SourceLocation getLParen() const { return L; }
1644  void setLParen(SourceLocation Loc) { L = Loc; }
1645
1646  /// \brief Get the location of the right parentheses ')'.
1647  SourceLocation getRParen() const { return R; }
1648  void setRParen(SourceLocation Loc) { R = Loc; }
1649
1650  static bool classof(const Stmt *T) {
1651    return T->getStmtClass() == ParenExprClass;
1652  }
1653
1654  // Iterators
1655  child_range children() { return child_range(&Val, &Val+1); }
1656};
1657
1658/// UnaryOperator - This represents the unary-expression's (except sizeof and
1659/// alignof), the postinc/postdec operators from postfix-expression, and various
1660/// extensions.
1661///
1662/// Notes on various nodes:
1663///
1664/// Real/Imag - These return the real/imag part of a complex operand.  If
1665///   applied to a non-complex value, the former returns its operand and the
1666///   later returns zero in the type of the operand.
1667///
1668class UnaryOperator : public Expr {
1669public:
1670  typedef UnaryOperatorKind Opcode;
1671
1672private:
1673  unsigned Opc : 5;
1674  SourceLocation Loc;
1675  Stmt *Val;
1676public:
1677
1678  UnaryOperator(Expr *input, Opcode opc, QualType type,
1679                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1680    : Expr(UnaryOperatorClass, type, VK, OK,
1681           input->isTypeDependent() || type->isDependentType(),
1682           input->isValueDependent(),
1683           (input->isInstantiationDependent() ||
1684            type->isInstantiationDependentType()),
1685           input->containsUnexpandedParameterPack()),
1686      Opc(opc), Loc(l), Val(input) {}
1687
1688  /// \brief Build an empty unary operator.
1689  explicit UnaryOperator(EmptyShell Empty)
1690    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1691
1692  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1693  void setOpcode(Opcode O) { Opc = O; }
1694
1695  Expr *getSubExpr() const { return cast<Expr>(Val); }
1696  void setSubExpr(Expr *E) { Val = E; }
1697
1698  /// getOperatorLoc - Return the location of the operator.
1699  SourceLocation getOperatorLoc() const { return Loc; }
1700  void setOperatorLoc(SourceLocation L) { Loc = L; }
1701
1702  /// isPostfix - Return true if this is a postfix operation, like x++.
1703  static bool isPostfix(Opcode Op) {
1704    return Op == UO_PostInc || Op == UO_PostDec;
1705  }
1706
1707  /// isPrefix - Return true if this is a prefix operation, like --x.
1708  static bool isPrefix(Opcode Op) {
1709    return Op == UO_PreInc || Op == UO_PreDec;
1710  }
1711
1712  bool isPrefix() const { return isPrefix(getOpcode()); }
1713  bool isPostfix() const { return isPostfix(getOpcode()); }
1714
1715  static bool isIncrementOp(Opcode Op) {
1716    return Op == UO_PreInc || Op == UO_PostInc;
1717  }
1718  bool isIncrementOp() const {
1719    return isIncrementOp(getOpcode());
1720  }
1721
1722  static bool isDecrementOp(Opcode Op) {
1723    return Op == UO_PreDec || Op == UO_PostDec;
1724  }
1725  bool isDecrementOp() const {
1726    return isDecrementOp(getOpcode());
1727  }
1728
1729  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1730  bool isIncrementDecrementOp() const {
1731    return isIncrementDecrementOp(getOpcode());
1732  }
1733
1734  static bool isArithmeticOp(Opcode Op) {
1735    return Op >= UO_Plus && Op <= UO_LNot;
1736  }
1737  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1738
1739  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1740  /// corresponds to, e.g. "sizeof" or "[pre]++"
1741  static StringRef getOpcodeStr(Opcode Op);
1742
1743  /// \brief Retrieve the unary opcode that corresponds to the given
1744  /// overloaded operator.
1745  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1746
1747  /// \brief Retrieve the overloaded operator kind that corresponds to
1748  /// the given unary opcode.
1749  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1750
1751  SourceLocation getLocStart() const LLVM_READONLY {
1752    return isPostfix() ? Val->getLocStart() : Loc;
1753  }
1754  SourceLocation getLocEnd() const LLVM_READONLY {
1755    return isPostfix() ? Loc : Val->getLocEnd();
1756  }
1757  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1758
1759  static bool classof(const Stmt *T) {
1760    return T->getStmtClass() == UnaryOperatorClass;
1761  }
1762
1763  // Iterators
1764  child_range children() { return child_range(&Val, &Val+1); }
1765};
1766
1767/// Helper class for OffsetOfExpr.
1768
1769// __builtin_offsetof(type, identifier(.identifier|[expr])*)
1770class OffsetOfNode {
1771public:
1772  /// \brief The kind of offsetof node we have.
1773  enum Kind {
1774    /// \brief An index into an array.
1775    Array = 0x00,
1776    /// \brief A field.
1777    Field = 0x01,
1778    /// \brief A field in a dependent type, known only by its name.
1779    Identifier = 0x02,
1780    /// \brief An implicit indirection through a C++ base class, when the
1781    /// field found is in a base class.
1782    Base = 0x03
1783  };
1784
1785private:
1786  enum { MaskBits = 2, Mask = 0x03 };
1787
1788  /// \brief The source range that covers this part of the designator.
1789  SourceRange Range;
1790
1791  /// \brief The data describing the designator, which comes in three
1792  /// different forms, depending on the lower two bits.
1793  ///   - An unsigned index into the array of Expr*'s stored after this node
1794  ///     in memory, for [constant-expression] designators.
1795  ///   - A FieldDecl*, for references to a known field.
1796  ///   - An IdentifierInfo*, for references to a field with a given name
1797  ///     when the class type is dependent.
1798  ///   - A CXXBaseSpecifier*, for references that look at a field in a
1799  ///     base class.
1800  uintptr_t Data;
1801
1802public:
1803  /// \brief Create an offsetof node that refers to an array element.
1804  OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1805               SourceLocation RBracketLoc)
1806      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) {}
1807
1808  /// \brief Create an offsetof node that refers to a field.
1809  OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field, SourceLocation NameLoc)
1810      : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
1811        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) {}
1812
1813  /// \brief Create an offsetof node that refers to an identifier.
1814  OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1815               SourceLocation NameLoc)
1816      : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
1817        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) {}
1818
1819  /// \brief Create an offsetof node that refers into a C++ base class.
1820  explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1821      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1822
1823  /// \brief Determine what kind of offsetof node this is.
1824  Kind getKind() const { return static_cast<Kind>(Data & Mask); }
1825
1826  /// \brief For an array element node, returns the index into the array
1827  /// of expressions.
1828  unsigned getArrayExprIndex() const {
1829    assert(getKind() == Array);
1830    return Data >> 2;
1831  }
1832
1833  /// \brief For a field offsetof node, returns the field.
1834  FieldDecl *getField() const {
1835    assert(getKind() == Field);
1836    return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1837  }
1838
1839  /// \brief For a field or identifier offsetof node, returns the name of
1840  /// the field.
1841  IdentifierInfo *getFieldName() const;
1842
1843  /// \brief For a base class node, returns the base specifier.
1844  CXXBaseSpecifier *getBase() const {
1845    assert(getKind() == Base);
1846    return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1847  }
1848
1849  /// \brief Retrieve the source range that covers this offsetof node.
1850  ///
1851  /// For an array element node, the source range contains the locations of
1852  /// the square brackets. For a field or identifier node, the source range
1853  /// contains the location of the period (if there is one) and the
1854  /// identifier.
1855  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1856  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
1857  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
1858};
1859
1860/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1861/// offsetof(record-type, member-designator). For example, given:
1862/// @code
1863/// struct S {
1864///   float f;
1865///   double d;
1866/// };
1867/// struct T {
1868///   int i;
1869///   struct S s[10];
1870/// };
1871/// @endcode
1872/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1873
1874class OffsetOfExpr final
1875    : public Expr,
1876      private llvm::TrailingObjects<OffsetOfExpr, OffsetOfNode, Expr *> {
1877  SourceLocation OperatorLoc, RParenLoc;
1878  // Base type;
1879  TypeSourceInfo *TSInfo;
1880  // Number of sub-components (i.e. instances of OffsetOfNode).
1881  unsigned NumComps;
1882  // Number of sub-expressions (i.e. array subscript expressions).
1883  unsigned NumExprs;
1884
1885  size_t numTrailingObjects(OverloadToken<OffsetOfNode>) const {
1886    return NumComps;
1887  }
1888
1889  OffsetOfExpr(const ASTContext &C, QualType type,
1890               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1891               ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1892               SourceLocation RParenLoc);
1893
1894  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1895    : Expr(OffsetOfExprClass, EmptyShell()),
1896      TSInfo(nullptr), NumComps(numComps), NumExprs(numExprs) {}
1897
1898public:
1899
1900  static OffsetOfExpr *Create(const ASTContext &C, QualType type,
1901                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1902                              ArrayRef<OffsetOfNode> comps,
1903                              ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
1904
1905  static OffsetOfExpr *CreateEmpty(const ASTContext &C,
1906                                   unsigned NumComps, unsigned NumExprs);
1907
1908  /// getOperatorLoc - Return the location of the operator.
1909  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1910  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1911
1912  /// \brief Return the location of the right parentheses.
1913  SourceLocation getRParenLoc() const { return RParenLoc; }
1914  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1915
1916  TypeSourceInfo *getTypeSourceInfo() const {
1917    return TSInfo;
1918  }
1919  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1920    TSInfo = tsi;
1921  }
1922
1923  const OffsetOfNode &getComponent(unsigned Idx) const {
1924    assert(Idx < NumComps && "Subscript out of range");
1925    return getTrailingObjects<OffsetOfNode>()[Idx];
1926  }
1927
1928  void setComponent(unsigned Idx, OffsetOfNode ON) {
1929    assert(Idx < NumComps && "Subscript out of range");
1930    getTrailingObjects<OffsetOfNode>()[Idx] = ON;
1931  }
1932
1933  unsigned getNumComponents() const {
1934    return NumComps;
1935  }
1936
1937  Expr* getIndexExpr(unsigned Idx) {
1938    assert(Idx < NumExprs && "Subscript out of range");
1939    return getTrailingObjects<Expr *>()[Idx];
1940  }
1941
1942  const Expr *getIndexExpr(unsigned Idx) const {
1943    assert(Idx < NumExprs && "Subscript out of range");
1944    return getTrailingObjects<Expr *>()[Idx];
1945  }
1946
1947  void setIndexExpr(unsigned Idx, Expr* E) {
1948    assert(Idx < NumComps && "Subscript out of range");
1949    getTrailingObjects<Expr *>()[Idx] = E;
1950  }
1951
1952  unsigned getNumExpressions() const {
1953    return NumExprs;
1954  }
1955
1956  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
1957  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1958
1959  static bool classof(const Stmt *T) {
1960    return T->getStmtClass() == OffsetOfExprClass;
1961  }
1962
1963  // Iterators
1964  child_range children() {
1965    Stmt **begin = reinterpret_cast<Stmt **>(getTrailingObjects<Expr *>());
1966    return child_range(begin, begin + NumExprs);
1967  }
1968  friend TrailingObjects;
1969};
1970
1971/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1972/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1973/// vec_step (OpenCL 1.1 6.11.12).
1974class UnaryExprOrTypeTraitExpr : public Expr {
1975  union {
1976    TypeSourceInfo *Ty;
1977    Stmt *Ex;
1978  } Argument;
1979  SourceLocation OpLoc, RParenLoc;
1980
1981public:
1982  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1983                           QualType resultType, SourceLocation op,
1984                           SourceLocation rp) :
1985      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1986           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1987           // Value-dependent if the argument is type-dependent.
1988           TInfo->getType()->isDependentType(),
1989           TInfo->getType()->isInstantiationDependentType(),
1990           TInfo->getType()->containsUnexpandedParameterPack()),
1991      OpLoc(op), RParenLoc(rp) {
1992    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1993    UnaryExprOrTypeTraitExprBits.IsType = true;
1994    Argument.Ty = TInfo;
1995  }
1996
1997  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1998                           QualType resultType, SourceLocation op,
1999                           SourceLocation rp);
2000
2001  /// \brief Construct an empty sizeof/alignof expression.
2002  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
2003    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
2004
2005  UnaryExprOrTypeTrait getKind() const {
2006    return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
2007  }
2008  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
2009
2010  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
2011  QualType getArgumentType() const {
2012    return getArgumentTypeInfo()->getType();
2013  }
2014  TypeSourceInfo *getArgumentTypeInfo() const {
2015    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
2016    return Argument.Ty;
2017  }
2018  Expr *getArgumentExpr() {
2019    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
2020    return static_cast<Expr*>(Argument.Ex);
2021  }
2022  const Expr *getArgumentExpr() const {
2023    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
2024  }
2025
2026  void setArgument(Expr *E) {
2027    Argument.Ex = E;
2028    UnaryExprOrTypeTraitExprBits.IsType = false;
2029  }
2030  void setArgument(TypeSourceInfo *TInfo) {
2031    Argument.Ty = TInfo;
2032    UnaryExprOrTypeTraitExprBits.IsType = true;
2033  }
2034
2035  /// Gets the argument type, or the type of the argument expression, whichever
2036  /// is appropriate.
2037  QualType getTypeOfArgument() const {
2038    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
2039  }
2040
2041  SourceLocation getOperatorLoc() const { return OpLoc; }
2042  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2043
2044  SourceLocation getRParenLoc() const { return RParenLoc; }
2045  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2046
2047  SourceLocation getLocStart() const LLVM_READONLY { return OpLoc; }
2048  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2049
2050  static bool classof(const Stmt *T) {
2051    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
2052  }
2053
2054  // Iterators
2055  child_range children();
2056};
2057
2058//===----------------------------------------------------------------------===//
2059// Postfix Operators.
2060//===----------------------------------------------------------------------===//
2061
2062/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
2063class ArraySubscriptExpr : public Expr {
2064  enum { LHS, RHS, END_EXPR=2 };
2065  Stmt* SubExprs[END_EXPR];
2066  SourceLocation RBracketLoc;
2067public:
2068  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
2069                     ExprValueKind VK, ExprObjectKind OK,
2070                     SourceLocation rbracketloc)
2071  : Expr(ArraySubscriptExprClass, t, VK, OK,
2072         lhs->isTypeDependent() || rhs->isTypeDependent(),
2073         lhs->isValueDependent() || rhs->isValueDependent(),
2074         (lhs->isInstantiationDependent() ||
2075          rhs->isInstantiationDependent()),
2076         (lhs->containsUnexpandedParameterPack() ||
2077          rhs->containsUnexpandedParameterPack())),
2078    RBracketLoc(rbracketloc) {
2079    SubExprs[LHS] = lhs;
2080    SubExprs[RHS] = rhs;
2081  }
2082
2083  /// \brief Create an empty array subscript expression.
2084  explicit ArraySubscriptExpr(EmptyShell Shell)
2085    : Expr(ArraySubscriptExprClass, Shell) { }
2086
2087  /// An array access can be written A[4] or 4[A] (both are equivalent).
2088  /// - getBase() and getIdx() always present the normalized view: A[4].
2089  ///    In this case getBase() returns "A" and getIdx() returns "4".
2090  /// - getLHS() and getRHS() present the syntactic view. e.g. for
2091  ///    4[A] getLHS() returns "4".
2092  /// Note: Because vector element access is also written A[4] we must
2093  /// predicate the format conversion in getBase and getIdx only on the
2094  /// the type of the RHS, as it is possible for the LHS to be a vector of
2095  /// integer type
2096  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
2097  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2098  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2099
2100  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
2101  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2102  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2103
2104  Expr *getBase() {
2105    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2106  }
2107
2108  const Expr *getBase() const {
2109    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2110  }
2111
2112  Expr *getIdx() {
2113    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2114  }
2115
2116  const Expr *getIdx() const {
2117    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2118  }
2119
2120  SourceLocation getLocStart() const LLVM_READONLY {
2121    return getLHS()->getLocStart();
2122  }
2123  SourceLocation getLocEnd() const LLVM_READONLY { return RBracketLoc; }
2124
2125  SourceLocation getRBracketLoc() const { return RBracketLoc; }
2126  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
2127
2128  SourceLocation getExprLoc() const LLVM_READONLY {
2129    return getBase()->getExprLoc();
2130  }
2131
2132  static bool classof(const Stmt *T) {
2133    return T->getStmtClass() == ArraySubscriptExprClass;
2134  }
2135
2136  // Iterators
2137  child_range children() {
2138    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2139  }
2140};
2141
2142/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2143/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2144/// while its subclasses may represent alternative syntax that (semantically)
2145/// results in a function call. For example, CXXOperatorCallExpr is
2146/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2147/// "str1 + str2" to resolve to a function call.
2148class CallExpr : public Expr {
2149  enum { FN=0, PREARGS_START=1 };
2150  Stmt **SubExprs;
2151  unsigned NumArgs;
2152  SourceLocation RParenLoc;
2153
2154  void updateDependenciesFromArg(Expr *Arg);
2155
2156protected:
2157  // These versions of the constructor are for derived classes.
2158  CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
2159           ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t,
2160           ExprValueKind VK, SourceLocation rparenloc);
2161  CallExpr(const ASTContext &C, StmtClass SC, Expr *fn, ArrayRef<Expr *> args,
2162           QualType t, ExprValueKind VK, SourceLocation rparenloc);
2163  CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
2164           EmptyShell Empty);
2165
2166  Stmt *getPreArg(unsigned i) {
2167    assert(i < getNumPreArgs() && "Prearg access out of range!");
2168    return SubExprs[PREARGS_START+i];
2169  }
2170  const Stmt *getPreArg(unsigned i) const {
2171    assert(i < getNumPreArgs() && "Prearg access out of range!");
2172    return SubExprs[PREARGS_START+i];
2173  }
2174  void setPreArg(unsigned i, Stmt *PreArg) {
2175    assert(i < getNumPreArgs() && "Prearg access out of range!");
2176    SubExprs[PREARGS_START+i] = PreArg;
2177  }
2178
2179  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2180
2181public:
2182  CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
2183           ExprValueKind VK, SourceLocation rparenloc);
2184
2185  /// \brief Build an empty call expression.
2186  CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty);
2187
2188  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2189  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2190  void setCallee(Expr *F) { SubExprs[FN] = F; }
2191
2192  Decl *getCalleeDecl();
2193  const Decl *getCalleeDecl() const {
2194    return const_cast<CallExpr*>(this)->getCalleeDecl();
2195  }
2196
2197  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2198  FunctionDecl *getDirectCallee();
2199  const FunctionDecl *getDirectCallee() const {
2200    return const_cast<CallExpr*>(this)->getDirectCallee();
2201  }
2202
2203  /// getNumArgs - Return the number of actual arguments to this call.
2204  ///
2205  unsigned getNumArgs() const { return NumArgs; }
2206
2207  /// \brief Retrieve the call arguments.
2208  Expr **getArgs() {
2209    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2210  }
2211  const Expr *const *getArgs() const {
2212    return reinterpret_cast<Expr **>(SubExprs + getNumPreArgs() +
2213                                     PREARGS_START);
2214  }
2215
2216  /// getArg - Return the specified argument.
2217  Expr *getArg(unsigned Arg) {
2218    assert(Arg < NumArgs && "Arg access out of range!");
2219    return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
2220  }
2221  const Expr *getArg(unsigned Arg) const {
2222    assert(Arg < NumArgs && "Arg access out of range!");
2223    return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
2224  }
2225
2226  /// setArg - Set the specified argument.
2227  void setArg(unsigned Arg, Expr *ArgExpr) {
2228    assert(Arg < NumArgs && "Arg access out of range!");
2229    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2230  }
2231
2232  /// setNumArgs - This changes the number of arguments present in this call.
2233  /// Any orphaned expressions are deleted by this, and any new operands are set
2234  /// to null.
2235  void setNumArgs(const ASTContext& C, unsigned NumArgs);
2236
2237  typedef ExprIterator arg_iterator;
2238  typedef ConstExprIterator const_arg_iterator;
2239  typedef llvm::iterator_range<arg_iterator> arg_range;
2240  typedef llvm::iterator_range<const_arg_iterator> arg_const_range;
2241
2242  arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
2243  arg_const_range arguments() const {
2244    return arg_const_range(arg_begin(), arg_end());
2245  }
2246
2247  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2248  arg_iterator arg_end() {
2249    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2250  }
2251  const_arg_iterator arg_begin() const {
2252    return SubExprs+PREARGS_START+getNumPreArgs();
2253  }
2254  const_arg_iterator arg_end() const {
2255    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2256  }
2257
2258  /// This method provides fast access to all the subexpressions of
2259  /// a CallExpr without going through the slower virtual child_iterator
2260  /// interface.  This provides efficient reverse iteration of the
2261  /// subexpressions.  This is currently used for CFG construction.
2262  ArrayRef<Stmt*> getRawSubExprs() {
2263    return llvm::makeArrayRef(SubExprs,
2264                              getNumPreArgs() + PREARGS_START + getNumArgs());
2265  }
2266
2267  /// getNumCommas - Return the number of commas that must have been present in
2268  /// this function call.
2269  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2270
2271  /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID
2272  /// of the callee. If not, return 0.
2273  unsigned getBuiltinCallee() const;
2274
2275  /// \brief Returns \c true if this is a call to a builtin which does not
2276  /// evaluate side-effects within its arguments.
2277  bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const;
2278
2279  /// getCallReturnType - Get the return type of the call expr. This is not
2280  /// always the type of the expr itself, if the return type is a reference
2281  /// type.
2282  QualType getCallReturnType(const ASTContext &Ctx) const;
2283
2284  SourceLocation getRParenLoc() const { return RParenLoc; }
2285  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2286
2287  SourceLocation getLocStart() const LLVM_READONLY;
2288  SourceLocation getLocEnd() const LLVM_READONLY;
2289
2290  static bool classof(const Stmt *T) {
2291    return T->getStmtClass() >= firstCallExprConstant &&
2292           T->getStmtClass() <= lastCallExprConstant;
2293  }
2294
2295  // Iterators
2296  child_range children() {
2297    return child_range(&SubExprs[0],
2298                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2299  }
2300};
2301
2302/// Extra data stored in some MemberExpr objects.
2303struct MemberExprNameQualifier {
2304  /// \brief The nested-name-specifier that qualifies the name, including
2305  /// source-location information.
2306  NestedNameSpecifierLoc QualifierLoc;
2307
2308  /// \brief The DeclAccessPair through which the MemberDecl was found due to
2309  /// name qualifiers.
2310  DeclAccessPair FoundDecl;
2311};
2312
2313/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2314///
2315class MemberExpr final
2316    : public Expr,
2317      private llvm::TrailingObjects<MemberExpr, MemberExprNameQualifier,
2318                                    ASTTemplateKWAndArgsInfo,
2319                                    TemplateArgumentLoc> {
2320  /// Base - the expression for the base pointer or structure references.  In
2321  /// X.F, this is "X".
2322  Stmt *Base;
2323
2324  /// MemberDecl - This is the decl being referenced by the field/member name.
2325  /// In X.F, this is the decl referenced by F.
2326  ValueDecl *MemberDecl;
2327
2328  /// MemberDNLoc - Provides source/type location info for the
2329  /// declaration name embedded in MemberDecl.
2330  DeclarationNameLoc MemberDNLoc;
2331
2332  /// MemberLoc - This is the location of the member name.
2333  SourceLocation MemberLoc;
2334
2335  /// This is the location of the -> or . in the expression.
2336  SourceLocation OperatorLoc;
2337
2338  /// IsArrow - True if this is "X->F", false if this is "X.F".
2339  bool IsArrow : 1;
2340
2341  /// \brief True if this member expression used a nested-name-specifier to
2342  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2343  /// declaration.  When true, a MemberExprNameQualifier
2344  /// structure is allocated immediately after the MemberExpr.
2345  bool HasQualifierOrFoundDecl : 1;
2346
2347  /// \brief True if this member expression specified a template keyword
2348  /// and/or a template argument list explicitly, e.g., x->f<int>,
2349  /// x->template f, x->template f<int>.
2350  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2351  /// TemplateArguments (if any) are present.
2352  bool HasTemplateKWAndArgsInfo : 1;
2353
2354  /// \brief True if this member expression refers to a method that
2355  /// was resolved from an overloaded set having size greater than 1.
2356  bool HadMultipleCandidates : 1;
2357
2358  size_t numTrailingObjects(OverloadToken<MemberExprNameQualifier>) const {
2359    return HasQualifierOrFoundDecl ? 1 : 0;
2360  }
2361
2362  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
2363    return HasTemplateKWAndArgsInfo ? 1 : 0;
2364  }
2365
2366public:
2367  MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2368             ValueDecl *memberdecl, const DeclarationNameInfo &NameInfo,
2369             QualType ty, ExprValueKind VK, ExprObjectKind OK)
2370      : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2371             base->isValueDependent(), base->isInstantiationDependent(),
2372             base->containsUnexpandedParameterPack()),
2373        Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2374        MemberLoc(NameInfo.getLoc()), OperatorLoc(operatorloc),
2375        IsArrow(isarrow), HasQualifierOrFoundDecl(false),
2376        HasTemplateKWAndArgsInfo(false), HadMultipleCandidates(false) {
2377    assert(memberdecl->getDeclName() == NameInfo.getName());
2378  }
2379
2380  // NOTE: this constructor should be used only when it is known that
2381  // the member name can not provide additional syntactic info
2382  // (i.e., source locations for C++ operator names or type source info
2383  // for constructors, destructors and conversion operators).
2384  MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2385             ValueDecl *memberdecl, SourceLocation l, QualType ty,
2386             ExprValueKind VK, ExprObjectKind OK)
2387      : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2388             base->isValueDependent(), base->isInstantiationDependent(),
2389             base->containsUnexpandedParameterPack()),
2390        Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2391        OperatorLoc(operatorloc), IsArrow(isarrow),
2392        HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2393        HadMultipleCandidates(false) {}
2394
2395  static MemberExpr *Create(const ASTContext &C, Expr *base, bool isarrow,
2396                            SourceLocation OperatorLoc,
2397                            NestedNameSpecifierLoc QualifierLoc,
2398                            SourceLocation TemplateKWLoc, ValueDecl *memberdecl,
2399                            DeclAccessPair founddecl,
2400                            DeclarationNameInfo MemberNameInfo,
2401                            const TemplateArgumentListInfo *targs, QualType ty,
2402                            ExprValueKind VK, ExprObjectKind OK);
2403
2404  void setBase(Expr *E) { Base = E; }
2405  Expr *getBase() const { return cast<Expr>(Base); }
2406
2407  /// \brief Retrieve the member declaration to which this expression refers.
2408  ///
2409  /// The returned declaration will either be a FieldDecl or (in C++)
2410  /// a CXXMethodDecl.
2411  ValueDecl *getMemberDecl() const { return MemberDecl; }
2412  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2413
2414  /// \brief Retrieves the declaration found by lookup.
2415  DeclAccessPair getFoundDecl() const {
2416    if (!HasQualifierOrFoundDecl)
2417      return DeclAccessPair::make(getMemberDecl(),
2418                                  getMemberDecl()->getAccess());
2419    return getTrailingObjects<MemberExprNameQualifier>()->FoundDecl;
2420  }
2421
2422  /// \brief Determines whether this member expression actually had
2423  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2424  /// x->Base::foo.
2425  bool hasQualifier() const { return getQualifier() != nullptr; }
2426
2427  /// \brief If the member name was qualified, retrieves the
2428  /// nested-name-specifier that precedes the member name, with source-location
2429  /// information.
2430  NestedNameSpecifierLoc getQualifierLoc() const {
2431    if (!HasQualifierOrFoundDecl)
2432      return NestedNameSpecifierLoc();
2433
2434    return getTrailingObjects<MemberExprNameQualifier>()->QualifierLoc;
2435  }
2436
2437  /// \brief If the member name was qualified, retrieves the
2438  /// nested-name-specifier that precedes the member name. Otherwise, returns
2439  /// NULL.
2440  NestedNameSpecifier *getQualifier() const {
2441    return getQualifierLoc().getNestedNameSpecifier();
2442  }
2443
2444  /// \brief Retrieve the location of the template keyword preceding
2445  /// the member name, if any.
2446  SourceLocation getTemplateKeywordLoc() const {
2447    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2448    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
2449  }
2450
2451  /// \brief Retrieve the location of the left angle bracket starting the
2452  /// explicit template argument list following the member name, if any.
2453  SourceLocation getLAngleLoc() const {
2454    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2455    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
2456  }
2457
2458  /// \brief Retrieve the location of the right angle bracket ending the
2459  /// explicit template argument list following the member name, if any.
2460  SourceLocation getRAngleLoc() const {
2461    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2462    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
2463  }
2464
2465  /// Determines whether the member name was preceded by the template keyword.
2466  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2467
2468  /// \brief Determines whether the member name was followed by an
2469  /// explicit template argument list.
2470  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2471
2472  /// \brief Copies the template arguments (if present) into the given
2473  /// structure.
2474  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2475    if (hasExplicitTemplateArgs())
2476      getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
2477          getTrailingObjects<TemplateArgumentLoc>(), List);
2478  }
2479
2480  /// \brief Retrieve the template arguments provided as part of this
2481  /// template-id.
2482  const TemplateArgumentLoc *getTemplateArgs() const {
2483    if (!hasExplicitTemplateArgs())
2484      return nullptr;
2485
2486    return getTrailingObjects<TemplateArgumentLoc>();
2487  }
2488
2489  /// \brief Retrieve the number of template arguments provided as part of this
2490  /// template-id.
2491  unsigned getNumTemplateArgs() const {
2492    if (!hasExplicitTemplateArgs())
2493      return 0;
2494
2495    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
2496  }
2497
2498  ArrayRef<TemplateArgumentLoc> template_arguments() const {
2499    return {getTemplateArgs(), getNumTemplateArgs()};
2500  }
2501
2502  /// \brief Retrieve the member declaration name info.
2503  DeclarationNameInfo getMemberNameInfo() const {
2504    return DeclarationNameInfo(MemberDecl->getDeclName(),
2505                               MemberLoc, MemberDNLoc);
2506  }
2507
2508  SourceLocation getOperatorLoc() const LLVM_READONLY { return OperatorLoc; }
2509
2510  bool isArrow() const { return IsArrow; }
2511  void setArrow(bool A) { IsArrow = A; }
2512
2513  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2514  /// location of 'F'.
2515  SourceLocation getMemberLoc() const { return MemberLoc; }
2516  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2517
2518  SourceLocation getLocStart() const LLVM_READONLY;
2519  SourceLocation getLocEnd() const LLVM_READONLY;
2520
2521  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2522
2523  /// \brief Determine whether the base of this explicit is implicit.
2524  bool isImplicitAccess() const {
2525    return getBase() && getBase()->isImplicitCXXThis();
2526  }
2527
2528  /// \brief Returns true if this member expression refers to a method that
2529  /// was resolved from an overloaded set having size greater than 1.
2530  bool hadMultipleCandidates() const {
2531    return HadMultipleCandidates;
2532  }
2533  /// \brief Sets the flag telling whether this expression refers to
2534  /// a method that was resolved from an overloaded set having size
2535  /// greater than 1.
2536  void setHadMultipleCandidates(bool V = true) {
2537    HadMultipleCandidates = V;
2538  }
2539
2540  /// \brief Returns true if virtual dispatch is performed.
2541  /// If the member access is fully qualified, (i.e. X::f()), virtual
2542  /// dispatching is not performed. In -fapple-kext mode qualified
2543  /// calls to virtual method will still go through the vtable.
2544  bool performsVirtualDispatch(const LangOptions &LO) const {
2545    return LO.AppleKext || !hasQualifier();
2546  }
2547
2548  static bool classof(const Stmt *T) {
2549    return T->getStmtClass() == MemberExprClass;
2550  }
2551
2552  // Iterators
2553  child_range children() { return child_range(&Base, &Base+1); }
2554
2555  friend TrailingObjects;
2556  friend class ASTReader;
2557  friend class ASTStmtWriter;
2558};
2559
2560/// CompoundLiteralExpr - [C99 6.5.2.5]
2561///
2562class CompoundLiteralExpr : public Expr {
2563  /// LParenLoc - If non-null, this is the location of the left paren in a
2564  /// compound literal like "(int){4}".  This can be null if this is a
2565  /// synthesized compound expression.
2566  SourceLocation LParenLoc;
2567
2568  /// The type as written.  This can be an incomplete array type, in
2569  /// which case the actual expression type will be different.
2570  /// The int part of the pair stores whether this expr is file scope.
2571  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2572  Stmt *Init;
2573public:
2574  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2575                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2576    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2577           tinfo->getType()->isDependentType(),
2578           init->isValueDependent(),
2579           (init->isInstantiationDependent() ||
2580            tinfo->getType()->isInstantiationDependentType()),
2581           init->containsUnexpandedParameterPack()),
2582      LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2583
2584  /// \brief Construct an empty compound literal.
2585  explicit CompoundLiteralExpr(EmptyShell Empty)
2586    : Expr(CompoundLiteralExprClass, Empty) { }
2587
2588  const Expr *getInitializer() const { return cast<Expr>(Init); }
2589  Expr *getInitializer() { return cast<Expr>(Init); }
2590  void setInitializer(Expr *E) { Init = E; }
2591
2592  bool isFileScope() const { return TInfoAndScope.getInt(); }
2593  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2594
2595  SourceLocation getLParenLoc() const { return LParenLoc; }
2596  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2597
2598  TypeSourceInfo *getTypeSourceInfo() const {
2599    return TInfoAndScope.getPointer();
2600  }
2601  void setTypeSourceInfo(TypeSourceInfo *tinfo) {
2602    TInfoAndScope.setPointer(tinfo);
2603  }
2604
2605  SourceLocation getLocStart() const LLVM_READONLY {
2606    // FIXME: Init should never be null.
2607    if (!Init)
2608      return SourceLocation();
2609    if (LParenLoc.isInvalid())
2610      return Init->getLocStart();
2611    return LParenLoc;
2612  }
2613  SourceLocation getLocEnd() const LLVM_READONLY {
2614    // FIXME: Init should never be null.
2615    if (!Init)
2616      return SourceLocation();
2617    return Init->getLocEnd();
2618  }
2619
2620  static bool classof(const Stmt *T) {
2621    return T->getStmtClass() == CompoundLiteralExprClass;
2622  }
2623
2624  // Iterators
2625  child_range children() { return child_range(&Init, &Init+1); }
2626};
2627
2628/// CastExpr - Base class for type casts, including both implicit
2629/// casts (ImplicitCastExpr) and explicit casts that have some
2630/// representation in the source code (ExplicitCastExpr's derived
2631/// classes).
2632class CastExpr : public Expr {
2633private:
2634  Stmt *Op;
2635
2636  bool CastConsistency() const;
2637
2638  const CXXBaseSpecifier * const *path_buffer() const {
2639    return const_cast<CastExpr*>(this)->path_buffer();
2640  }
2641  CXXBaseSpecifier **path_buffer();
2642
2643  void setBasePathSize(unsigned basePathSize) {
2644    CastExprBits.BasePathSize = basePathSize;
2645    assert(CastExprBits.BasePathSize == basePathSize &&
2646           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2647  }
2648
2649protected:
2650  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK, const CastKind kind,
2651           Expr *op, unsigned BasePathSize)
2652      : Expr(SC, ty, VK, OK_Ordinary,
2653             // Cast expressions are type-dependent if the type is
2654             // dependent (C++ [temp.dep.expr]p3).
2655             ty->isDependentType(),
2656             // Cast expressions are value-dependent if the type is
2657             // dependent or if the subexpression is value-dependent.
2658             ty->isDependentType() || (op && op->isValueDependent()),
2659             (ty->isInstantiationDependentType() ||
2660              (op && op->isInstantiationDependent())),
2661             // An implicit cast expression doesn't (lexically) contain an
2662             // unexpanded pack, even if its target type does.
2663             ((SC != ImplicitCastExprClass &&
2664               ty->containsUnexpandedParameterPack()) ||
2665              (op && op->containsUnexpandedParameterPack()))),
2666        Op(op) {
2667    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2668    CastExprBits.Kind = kind;
2669    setBasePathSize(BasePathSize);
2670    assert(CastConsistency());
2671  }
2672
2673  /// \brief Construct an empty cast.
2674  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2675    : Expr(SC, Empty) {
2676    setBasePathSize(BasePathSize);
2677  }
2678
2679public:
2680  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2681  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2682  const char *getCastKindName() const;
2683
2684  Expr *getSubExpr() { return cast<Expr>(Op); }
2685  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2686  void setSubExpr(Expr *E) { Op = E; }
2687
2688  /// \brief Retrieve the cast subexpression as it was written in the source
2689  /// code, looking through any implicit casts or other intermediate nodes
2690  /// introduced by semantic analysis.
2691  Expr *getSubExprAsWritten();
2692  const Expr *getSubExprAsWritten() const {
2693    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2694  }
2695
2696  typedef CXXBaseSpecifier **path_iterator;
2697  typedef const CXXBaseSpecifier * const *path_const_iterator;
2698  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2699  unsigned path_size() const { return CastExprBits.BasePathSize; }
2700  path_iterator path_begin() { return path_buffer(); }
2701  path_iterator path_end() { return path_buffer() + path_size(); }
2702  path_const_iterator path_begin() const { return path_buffer(); }
2703  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2704
2705  static bool classof(const Stmt *T) {
2706    return T->getStmtClass() >= firstCastExprConstant &&
2707           T->getStmtClass() <= lastCastExprConstant;
2708  }
2709
2710  // Iterators
2711  child_range children() { return child_range(&Op, &Op+1); }
2712};
2713
2714/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2715/// conversions, which have no direct representation in the original
2716/// source code. For example: converting T[]->T*, void f()->void
2717/// (*f)(), float->double, short->int, etc.
2718///
2719/// In C, implicit casts always produce rvalues. However, in C++, an
2720/// implicit cast whose result is being bound to a reference will be
2721/// an lvalue or xvalue. For example:
2722///
2723/// @code
2724/// class Base { };
2725/// class Derived : public Base { };
2726/// Derived &&ref();
2727/// void f(Derived d) {
2728///   Base& b = d; // initializer is an ImplicitCastExpr
2729///                // to an lvalue of type Base
2730///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2731///                     // to an xvalue of type Base
2732/// }
2733/// @endcode
2734class ImplicitCastExpr final
2735    : public CastExpr,
2736      private llvm::TrailingObjects<ImplicitCastExpr, CXXBaseSpecifier *> {
2737private:
2738  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2739                   unsigned BasePathLength, ExprValueKind VK)
2740    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2741  }
2742
2743  /// \brief Construct an empty implicit cast.
2744  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2745    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2746
2747public:
2748  enum OnStack_t { OnStack };
2749  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2750                   ExprValueKind VK)
2751    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2752  }
2753
2754  static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
2755                                  CastKind Kind, Expr *Operand,
2756                                  const CXXCastPath *BasePath,
2757                                  ExprValueKind Cat);
2758
2759  static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
2760                                       unsigned PathSize);
2761
2762  SourceLocation getLocStart() const LLVM_READONLY {
2763    return getSubExpr()->getLocStart();
2764  }
2765  SourceLocation getLocEnd() const LLVM_READONLY {
2766    return getSubExpr()->getLocEnd();
2767  }
2768
2769  static bool classof(const Stmt *T) {
2770    return T->getStmtClass() == ImplicitCastExprClass;
2771  }
2772
2773  friend TrailingObjects;
2774  friend class CastExpr;
2775};
2776
2777inline Expr *Expr::IgnoreImpCasts() {
2778  Expr *e = this;
2779  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2780    e = ice->getSubExpr();
2781  return e;
2782}
2783
2784/// ExplicitCastExpr - An explicit cast written in the source
2785/// code.
2786///
2787/// This class is effectively an abstract class, because it provides
2788/// the basic representation of an explicitly-written cast without
2789/// specifying which kind of cast (C cast, functional cast, static
2790/// cast, etc.) was written; specific derived classes represent the
2791/// particular style of cast and its location information.
2792///
2793/// Unlike implicit casts, explicit cast nodes have two different
2794/// types: the type that was written into the source code, and the
2795/// actual type of the expression as determined by semantic
2796/// analysis. These types may differ slightly. For example, in C++ one
2797/// can cast to a reference type, which indicates that the resulting
2798/// expression will be an lvalue or xvalue. The reference type, however,
2799/// will not be used as the type of the expression.
2800class ExplicitCastExpr : public CastExpr {
2801  /// TInfo - Source type info for the (written) type
2802  /// this expression is casting to.
2803  TypeSourceInfo *TInfo;
2804
2805protected:
2806  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2807                   CastKind kind, Expr *op, unsigned PathSize,
2808                   TypeSourceInfo *writtenTy)
2809    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2810
2811  /// \brief Construct an empty explicit cast.
2812  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2813    : CastExpr(SC, Shell, PathSize) { }
2814
2815public:
2816  /// getTypeInfoAsWritten - Returns the type source info for the type
2817  /// that this expression is casting to.
2818  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2819  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2820
2821  /// getTypeAsWritten - Returns the type that this expression is
2822  /// casting to, as written in the source code.
2823  QualType getTypeAsWritten() const { return TInfo->getType(); }
2824
2825  static bool classof(const Stmt *T) {
2826     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2827            T->getStmtClass() <= lastExplicitCastExprConstant;
2828  }
2829};
2830
2831/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2832/// cast in C++ (C++ [expr.cast]), which uses the syntax
2833/// (Type)expr. For example: @c (int)f.
2834class CStyleCastExpr final
2835    : public ExplicitCastExpr,
2836      private llvm::TrailingObjects<CStyleCastExpr, CXXBaseSpecifier *> {
2837  SourceLocation LPLoc; // the location of the left paren
2838  SourceLocation RPLoc; // the location of the right paren
2839
2840  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2841                 unsigned PathSize, TypeSourceInfo *writtenTy,
2842                 SourceLocation l, SourceLocation r)
2843    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2844                       writtenTy), LPLoc(l), RPLoc(r) {}
2845
2846  /// \brief Construct an empty C-style explicit cast.
2847  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2848    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2849
2850public:
2851  static CStyleCastExpr *Create(const ASTContext &Context, QualType T,
2852                                ExprValueKind VK, CastKind K,
2853                                Expr *Op, const CXXCastPath *BasePath,
2854                                TypeSourceInfo *WrittenTy, SourceLocation L,
2855                                SourceLocation R);
2856
2857  static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
2858                                     unsigned PathSize);
2859
2860  SourceLocation getLParenLoc() const { return LPLoc; }
2861  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2862
2863  SourceLocation getRParenLoc() const { return RPLoc; }
2864  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2865
2866  SourceLocation getLocStart() const LLVM_READONLY { return LPLoc; }
2867  SourceLocation getLocEnd() const LLVM_READONLY {
2868    return getSubExpr()->getLocEnd();
2869  }
2870
2871  static bool classof(const Stmt *T) {
2872    return T->getStmtClass() == CStyleCastExprClass;
2873  }
2874
2875  friend TrailingObjects;
2876  friend class CastExpr;
2877};
2878
2879/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2880///
2881/// This expression node kind describes a builtin binary operation,
2882/// such as "x + y" for integer values "x" and "y". The operands will
2883/// already have been converted to appropriate types (e.g., by
2884/// performing promotions or conversions).
2885///
2886/// In C++, where operators may be overloaded, a different kind of
2887/// expression node (CXXOperatorCallExpr) is used to express the
2888/// invocation of an overloaded operator with operator syntax. Within
2889/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2890/// used to store an expression "x + y" depends on the subexpressions
2891/// for x and y. If neither x or y is type-dependent, and the "+"
2892/// operator resolves to a built-in operation, BinaryOperator will be
2893/// used to express the computation (x and y may still be
2894/// value-dependent). If either x or y is type-dependent, or if the
2895/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2896/// be used to express the computation.
2897class BinaryOperator : public Expr {
2898public:
2899  typedef BinaryOperatorKind Opcode;
2900
2901private:
2902  unsigned Opc : 6;
2903
2904  // Records the FP_CONTRACT pragma status at the point that this binary
2905  // operator was parsed. This bit is only meaningful for operations on
2906  // floating point types. For all other types it should default to
2907  // false.
2908  unsigned FPContractable : 1;
2909  SourceLocation OpLoc;
2910
2911  enum { LHS, RHS, END_EXPR };
2912  Stmt* SubExprs[END_EXPR];
2913public:
2914
2915  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2916                 ExprValueKind VK, ExprObjectKind OK,
2917                 SourceLocation opLoc, bool fpContractable)
2918    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2919           lhs->isTypeDependent() || rhs->isTypeDependent(),
2920           lhs->isValueDependent() || rhs->isValueDependent(),
2921           (lhs->isInstantiationDependent() ||
2922            rhs->isInstantiationDependent()),
2923           (lhs->containsUnexpandedParameterPack() ||
2924            rhs->containsUnexpandedParameterPack())),
2925      Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
2926    SubExprs[LHS] = lhs;
2927    SubExprs[RHS] = rhs;
2928    assert(!isCompoundAssignmentOp() &&
2929           "Use CompoundAssignOperator for compound assignments");
2930  }
2931
2932  /// \brief Construct an empty binary operator.
2933  explicit BinaryOperator(EmptyShell Empty)
2934    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2935
2936  SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
2937  SourceLocation getOperatorLoc() const { return OpLoc; }
2938  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2939
2940  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2941  void setOpcode(Opcode O) { Opc = O; }
2942
2943  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2944  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2945  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2946  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2947
2948  SourceLocation getLocStart() const LLVM_READONLY {
2949    return getLHS()->getLocStart();
2950  }
2951  SourceLocation getLocEnd() const LLVM_READONLY {
2952    return getRHS()->getLocEnd();
2953  }
2954
2955  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2956  /// corresponds to, e.g. "<<=".
2957  static StringRef getOpcodeStr(Opcode Op);
2958
2959  StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2960
2961  /// \brief Retrieve the binary opcode that corresponds to the given
2962  /// overloaded operator.
2963  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2964
2965  /// \brief Retrieve the overloaded operator kind that corresponds to
2966  /// the given binary opcode.
2967  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2968
2969  /// predicates to categorize the respective opcodes.
2970  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2971  static bool isMultiplicativeOp(Opcode Opc) {
2972    return Opc >= BO_Mul && Opc <= BO_Rem;
2973  }
2974  bool isMultiplicativeOp() const { return isMultiplicativeOp(getOpcode()); }
2975  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2976  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2977  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2978  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2979
2980  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2981  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2982
2983  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2984  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2985
2986  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2987  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2988
2989  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2990  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2991
2992  static Opcode negateComparisonOp(Opcode Opc) {
2993    switch (Opc) {
2994    default:
2995      llvm_unreachable("Not a comparsion operator.");
2996    case BO_LT: return BO_GE;
2997    case BO_GT: return BO_LE;
2998    case BO_LE: return BO_GT;
2999    case BO_GE: return BO_LT;
3000    case BO_EQ: return BO_NE;
3001    case BO_NE: return BO_EQ;
3002    }
3003  }
3004
3005  static Opcode reverseComparisonOp(Opcode Opc) {
3006    switch (Opc) {
3007    default:
3008      llvm_unreachable("Not a comparsion operator.");
3009    case BO_LT: return BO_GT;
3010    case BO_GT: return BO_LT;
3011    case BO_LE: return BO_GE;
3012    case BO_GE: return BO_LE;
3013    case BO_EQ:
3014    case BO_NE:
3015      return Opc;
3016    }
3017  }
3018
3019  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
3020  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
3021
3022  static bool isAssignmentOp(Opcode Opc) {
3023    return Opc >= BO_Assign && Opc <= BO_OrAssign;
3024  }
3025  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
3026
3027  static bool isCompoundAssignmentOp(Opcode Opc) {
3028    return Opc > BO_Assign && Opc <= BO_OrAssign;
3029  }
3030  bool isCompoundAssignmentOp() const {
3031    return isCompoundAssignmentOp(getOpcode());
3032  }
3033  static Opcode getOpForCompoundAssignment(Opcode Opc) {
3034    assert(isCompoundAssignmentOp(Opc));
3035    if (Opc >= BO_AndAssign)
3036      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
3037    else
3038      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
3039  }
3040
3041  static bool isShiftAssignOp(Opcode Opc) {
3042    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
3043  }
3044  bool isShiftAssignOp() const {
3045    return isShiftAssignOp(getOpcode());
3046  }
3047
3048  static bool classof(const Stmt *S) {
3049    return S->getStmtClass() >= firstBinaryOperatorConstant &&
3050           S->getStmtClass() <= lastBinaryOperatorConstant;
3051  }
3052
3053  // Iterators
3054  child_range children() {
3055    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3056  }
3057
3058  // Set the FP contractability status of this operator. Only meaningful for
3059  // operations on floating point types.
3060  void setFPContractable(bool FPC) { FPContractable = FPC; }
3061
3062  // Get the FP contractability status of this operator. Only meaningful for
3063  // operations on floating point types.
3064  bool isFPContractable() const { return FPContractable; }
3065
3066protected:
3067  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3068                 ExprValueKind VK, ExprObjectKind OK,
3069                 SourceLocation opLoc, bool fpContractable, bool dead2)
3070    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
3071           lhs->isTypeDependent() || rhs->isTypeDependent(),
3072           lhs->isValueDependent() || rhs->isValueDependent(),
3073           (lhs->isInstantiationDependent() ||
3074            rhs->isInstantiationDependent()),
3075           (lhs->containsUnexpandedParameterPack() ||
3076            rhs->containsUnexpandedParameterPack())),
3077      Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
3078    SubExprs[LHS] = lhs;
3079    SubExprs[RHS] = rhs;
3080  }
3081
3082  BinaryOperator(StmtClass SC, EmptyShell Empty)
3083    : Expr(SC, Empty), Opc(BO_MulAssign) { }
3084};
3085
3086/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
3087/// track of the type the operation is performed in.  Due to the semantics of
3088/// these operators, the operands are promoted, the arithmetic performed, an
3089/// implicit conversion back to the result type done, then the assignment takes
3090/// place.  This captures the intermediate type which the computation is done
3091/// in.
3092class CompoundAssignOperator : public BinaryOperator {
3093  QualType ComputationLHSType;
3094  QualType ComputationResultType;
3095public:
3096  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
3097                         ExprValueKind VK, ExprObjectKind OK,
3098                         QualType CompLHSType, QualType CompResultType,
3099                         SourceLocation OpLoc, bool fpContractable)
3100    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, fpContractable,
3101                     true),
3102      ComputationLHSType(CompLHSType),
3103      ComputationResultType(CompResultType) {
3104    assert(isCompoundAssignmentOp() &&
3105           "Only should be used for compound assignments");
3106  }
3107
3108  /// \brief Build an empty compound assignment operator expression.
3109  explicit CompoundAssignOperator(EmptyShell Empty)
3110    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
3111
3112  // The two computation types are the type the LHS is converted
3113  // to for the computation and the type of the result; the two are
3114  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
3115  QualType getComputationLHSType() const { return ComputationLHSType; }
3116  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
3117
3118  QualType getComputationResultType() const { return ComputationResultType; }
3119  void setComputationResultType(QualType T) { ComputationResultType = T; }
3120
3121  static bool classof(const Stmt *S) {
3122    return S->getStmtClass() == CompoundAssignOperatorClass;
3123  }
3124};
3125
3126/// AbstractConditionalOperator - An abstract base class for
3127/// ConditionalOperator and BinaryConditionalOperator.
3128class AbstractConditionalOperator : public Expr {
3129  SourceLocation QuestionLoc, ColonLoc;
3130  friend class ASTStmtReader;
3131
3132protected:
3133  AbstractConditionalOperator(StmtClass SC, QualType T,
3134                              ExprValueKind VK, ExprObjectKind OK,
3135                              bool TD, bool VD, bool ID,
3136                              bool ContainsUnexpandedParameterPack,
3137                              SourceLocation qloc,
3138                              SourceLocation cloc)
3139    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
3140      QuestionLoc(qloc), ColonLoc(cloc) {}
3141
3142  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
3143    : Expr(SC, Empty) { }
3144
3145public:
3146  // getCond - Return the expression representing the condition for
3147  //   the ?: operator.
3148  Expr *getCond() const;
3149
3150  // getTrueExpr - Return the subexpression representing the value of
3151  //   the expression if the condition evaluates to true.
3152  Expr *getTrueExpr() const;
3153
3154  // getFalseExpr - Return the subexpression representing the value of
3155  //   the expression if the condition evaluates to false.  This is
3156  //   the same as getRHS.
3157  Expr *getFalseExpr() const;
3158
3159  SourceLocation getQuestionLoc() const { return QuestionLoc; }
3160  SourceLocation getColonLoc() const { return ColonLoc; }
3161
3162  static bool classof(const Stmt *T) {
3163    return T->getStmtClass() == ConditionalOperatorClass ||
3164           T->getStmtClass() == BinaryConditionalOperatorClass;
3165  }
3166};
3167
3168/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
3169/// middle" extension is a BinaryConditionalOperator.
3170class ConditionalOperator : public AbstractConditionalOperator {
3171  enum { COND, LHS, RHS, END_EXPR };
3172  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3173
3174  friend class ASTStmtReader;
3175public:
3176  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
3177                      SourceLocation CLoc, Expr *rhs,
3178                      QualType t, ExprValueKind VK, ExprObjectKind OK)
3179    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3180           // FIXME: the type of the conditional operator doesn't
3181           // depend on the type of the conditional, but the standard
3182           // seems to imply that it could. File a bug!
3183           (lhs->isTypeDependent() || rhs->isTypeDependent()),
3184           (cond->isValueDependent() || lhs->isValueDependent() ||
3185            rhs->isValueDependent()),
3186           (cond->isInstantiationDependent() ||
3187            lhs->isInstantiationDependent() ||
3188            rhs->isInstantiationDependent()),
3189           (cond->containsUnexpandedParameterPack() ||
3190            lhs->containsUnexpandedParameterPack() ||
3191            rhs->containsUnexpandedParameterPack()),
3192                                  QLoc, CLoc) {
3193    SubExprs[COND] = cond;
3194    SubExprs[LHS] = lhs;
3195    SubExprs[RHS] = rhs;
3196  }
3197
3198  /// \brief Build an empty conditional operator.
3199  explicit ConditionalOperator(EmptyShell Empty)
3200    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3201
3202  // getCond - Return the expression representing the condition for
3203  //   the ?: operator.
3204  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3205
3206  // getTrueExpr - Return the subexpression representing the value of
3207  //   the expression if the condition evaluates to true.
3208  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3209
3210  // getFalseExpr - Return the subexpression representing the value of
3211  //   the expression if the condition evaluates to false.  This is
3212  //   the same as getRHS.
3213  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3214
3215  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3216  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3217
3218  SourceLocation getLocStart() const LLVM_READONLY {
3219    return getCond()->getLocStart();
3220  }
3221  SourceLocation getLocEnd() const LLVM_READONLY {
3222    return getRHS()->getLocEnd();
3223  }
3224
3225  static bool classof(const Stmt *T) {
3226    return T->getStmtClass() == ConditionalOperatorClass;
3227  }
3228
3229  // Iterators
3230  child_range children() {
3231    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3232  }
3233};
3234
3235/// BinaryConditionalOperator - The GNU extension to the conditional
3236/// operator which allows the middle operand to be omitted.
3237///
3238/// This is a different expression kind on the assumption that almost
3239/// every client ends up needing to know that these are different.
3240class BinaryConditionalOperator : public AbstractConditionalOperator {
3241  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3242
3243  /// - the common condition/left-hand-side expression, which will be
3244  ///   evaluated as the opaque value
3245  /// - the condition, expressed in terms of the opaque value
3246  /// - the left-hand-side, expressed in terms of the opaque value
3247  /// - the right-hand-side
3248  Stmt *SubExprs[NUM_SUBEXPRS];
3249  OpaqueValueExpr *OpaqueValue;
3250
3251  friend class ASTStmtReader;
3252public:
3253  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3254                            Expr *cond, Expr *lhs, Expr *rhs,
3255                            SourceLocation qloc, SourceLocation cloc,
3256                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3257    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3258           (common->isTypeDependent() || rhs->isTypeDependent()),
3259           (common->isValueDependent() || rhs->isValueDependent()),
3260           (common->isInstantiationDependent() ||
3261            rhs->isInstantiationDependent()),
3262           (common->containsUnexpandedParameterPack() ||
3263            rhs->containsUnexpandedParameterPack()),
3264                                  qloc, cloc),
3265      OpaqueValue(opaqueValue) {
3266    SubExprs[COMMON] = common;
3267    SubExprs[COND] = cond;
3268    SubExprs[LHS] = lhs;
3269    SubExprs[RHS] = rhs;
3270    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3271  }
3272
3273  /// \brief Build an empty conditional operator.
3274  explicit BinaryConditionalOperator(EmptyShell Empty)
3275    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3276
3277  /// \brief getCommon - Return the common expression, written to the
3278  ///   left of the condition.  The opaque value will be bound to the
3279  ///   result of this expression.
3280  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3281
3282  /// \brief getOpaqueValue - Return the opaque value placeholder.
3283  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3284
3285  /// \brief getCond - Return the condition expression; this is defined
3286  ///   in terms of the opaque value.
3287  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3288
3289  /// \brief getTrueExpr - Return the subexpression which will be
3290  ///   evaluated if the condition evaluates to true;  this is defined
3291  ///   in terms of the opaque value.
3292  Expr *getTrueExpr() const {
3293    return cast<Expr>(SubExprs[LHS]);
3294  }
3295
3296  /// \brief getFalseExpr - Return the subexpression which will be
3297  ///   evaluated if the condnition evaluates to false; this is
3298  ///   defined in terms of the opaque value.
3299  Expr *getFalseExpr() const {
3300    return cast<Expr>(SubExprs[RHS]);
3301  }
3302
3303  SourceLocation getLocStart() const LLVM_READONLY {
3304    return getCommon()->getLocStart();
3305  }
3306  SourceLocation getLocEnd() const LLVM_READONLY {
3307    return getFalseExpr()->getLocEnd();
3308  }
3309
3310  static bool classof(const Stmt *T) {
3311    return T->getStmtClass() == BinaryConditionalOperatorClass;
3312  }
3313
3314  // Iterators
3315  child_range children() {
3316    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3317  }
3318};
3319
3320inline Expr *AbstractConditionalOperator::getCond() const {
3321  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3322    return co->getCond();
3323  return cast<BinaryConditionalOperator>(this)->getCond();
3324}
3325
3326inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3327  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3328    return co->getTrueExpr();
3329  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3330}
3331
3332inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3333  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3334    return co->getFalseExpr();
3335  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3336}
3337
3338/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3339class AddrLabelExpr : public Expr {
3340  SourceLocation AmpAmpLoc, LabelLoc;
3341  LabelDecl *Label;
3342public:
3343  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3344                QualType t)
3345    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3346           false),
3347      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3348
3349  /// \brief Build an empty address of a label expression.
3350  explicit AddrLabelExpr(EmptyShell Empty)
3351    : Expr(AddrLabelExprClass, Empty) { }
3352
3353  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3354  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3355  SourceLocation getLabelLoc() const { return LabelLoc; }
3356  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3357
3358  SourceLocation getLocStart() const LLVM_READONLY { return AmpAmpLoc; }
3359  SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
3360
3361  LabelDecl *getLabel() const { return Label; }
3362  void setLabel(LabelDecl *L) { Label = L; }
3363
3364  static bool classof(const Stmt *T) {
3365    return T->getStmtClass() == AddrLabelExprClass;
3366  }
3367
3368  // Iterators
3369  child_range children() {
3370    return child_range(child_iterator(), child_iterator());
3371  }
3372};
3373
3374/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3375/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3376/// takes the value of the last subexpression.
3377///
3378/// A StmtExpr is always an r-value; values "returned" out of a
3379/// StmtExpr will be copied.
3380class StmtExpr : public Expr {
3381  Stmt *SubStmt;
3382  SourceLocation LParenLoc, RParenLoc;
3383public:
3384  // FIXME: Does type-dependence need to be computed differently?
3385  // FIXME: Do we need to compute instantiation instantiation-dependence for
3386  // statements? (ugh!)
3387  StmtExpr(CompoundStmt *substmt, QualType T,
3388           SourceLocation lp, SourceLocation rp) :
3389    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3390         T->isDependentType(), false, false, false),
3391    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3392
3393  /// \brief Build an empty statement expression.
3394  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3395
3396  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3397  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3398  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3399
3400  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
3401  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3402
3403  SourceLocation getLParenLoc() const { return LParenLoc; }
3404  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3405  SourceLocation getRParenLoc() const { return RParenLoc; }
3406  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3407
3408  static bool classof(const Stmt *T) {
3409    return T->getStmtClass() == StmtExprClass;
3410  }
3411
3412  // Iterators
3413  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3414};
3415
3416/// ShuffleVectorExpr - clang-specific builtin-in function
3417/// __builtin_shufflevector.
3418/// This AST node represents a operator that does a constant
3419/// shuffle, similar to LLVM's shufflevector instruction. It takes
3420/// two vectors and a variable number of constant indices,
3421/// and returns the appropriately shuffled vector.
3422class ShuffleVectorExpr : public Expr {
3423  SourceLocation BuiltinLoc, RParenLoc;
3424
3425  // SubExprs - the list of values passed to the __builtin_shufflevector
3426  // function. The first two are vectors, and the rest are constant
3427  // indices.  The number of values in this list is always
3428  // 2+the number of indices in the vector type.
3429  Stmt **SubExprs;
3430  unsigned NumExprs;
3431
3432public:
3433  ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, QualType Type,
3434                    SourceLocation BLoc, SourceLocation RP);
3435
3436  /// \brief Build an empty vector-shuffle expression.
3437  explicit ShuffleVectorExpr(EmptyShell Empty)
3438    : Expr(ShuffleVectorExprClass, Empty), SubExprs(nullptr) { }
3439
3440  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3441  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3442
3443  SourceLocation getRParenLoc() const { return RParenLoc; }
3444  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3445
3446  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3447  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3448
3449  static bool classof(const Stmt *T) {
3450    return T->getStmtClass() == ShuffleVectorExprClass;
3451  }
3452
3453  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3454  /// constant expression, the actual arguments passed in, and the function
3455  /// pointers.
3456  unsigned getNumSubExprs() const { return NumExprs; }
3457
3458  /// \brief Retrieve the array of expressions.
3459  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3460
3461  /// getExpr - Return the Expr at the specified index.
3462  Expr *getExpr(unsigned Index) {
3463    assert((Index < NumExprs) && "Arg access out of range!");
3464    return cast<Expr>(SubExprs[Index]);
3465  }
3466  const Expr *getExpr(unsigned Index) const {
3467    assert((Index < NumExprs) && "Arg access out of range!");
3468    return cast<Expr>(SubExprs[Index]);
3469  }
3470
3471  void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
3472
3473  llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
3474    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3475    return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
3476  }
3477
3478  // Iterators
3479  child_range children() {
3480    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3481  }
3482};
3483
3484/// ConvertVectorExpr - Clang builtin function __builtin_convertvector
3485/// This AST node provides support for converting a vector type to another
3486/// vector type of the same arity.
3487class ConvertVectorExpr : public Expr {
3488private:
3489  Stmt *SrcExpr;
3490  TypeSourceInfo *TInfo;
3491  SourceLocation BuiltinLoc, RParenLoc;
3492
3493  friend class ASTReader;
3494  friend class ASTStmtReader;
3495  explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
3496
3497public:
3498  ConvertVectorExpr(Expr* SrcExpr, TypeSourceInfo *TI, QualType DstType,
3499             ExprValueKind VK, ExprObjectKind OK,
3500             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
3501    : Expr(ConvertVectorExprClass, DstType, VK, OK,
3502           DstType->isDependentType(),
3503           DstType->isDependentType() || SrcExpr->isValueDependent(),
3504           (DstType->isInstantiationDependentType() ||
3505            SrcExpr->isInstantiationDependent()),
3506           (DstType->containsUnexpandedParameterPack() ||
3507            SrcExpr->containsUnexpandedParameterPack())),
3508  SrcExpr(SrcExpr), TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
3509
3510  /// getSrcExpr - Return the Expr to be converted.
3511  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
3512
3513  /// getTypeSourceInfo - Return the destination type.
3514  TypeSourceInfo *getTypeSourceInfo() const {
3515    return TInfo;
3516  }
3517  void setTypeSourceInfo(TypeSourceInfo *ti) {
3518    TInfo = ti;
3519  }
3520
3521  /// getBuiltinLoc - Return the location of the __builtin_convertvector token.
3522  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3523
3524  /// getRParenLoc - Return the location of final right parenthesis.
3525  SourceLocation getRParenLoc() const { return RParenLoc; }
3526
3527  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3528  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3529
3530  static bool classof(const Stmt *T) {
3531    return T->getStmtClass() == ConvertVectorExprClass;
3532  }
3533
3534  // Iterators
3535  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
3536};
3537
3538/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3539/// This AST node is similar to the conditional operator (?:) in C, with
3540/// the following exceptions:
3541/// - the test expression must be a integer constant expression.
3542/// - the expression returned acts like the chosen subexpression in every
3543///   visible way: the type is the same as that of the chosen subexpression,
3544///   and all predicates (whether it's an l-value, whether it's an integer
3545///   constant expression, etc.) return the same result as for the chosen
3546///   sub-expression.
3547class ChooseExpr : public Expr {
3548  enum { COND, LHS, RHS, END_EXPR };
3549  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3550  SourceLocation BuiltinLoc, RParenLoc;
3551  bool CondIsTrue;
3552public:
3553  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3554             QualType t, ExprValueKind VK, ExprObjectKind OK,
3555             SourceLocation RP, bool condIsTrue,
3556             bool TypeDependent, bool ValueDependent)
3557    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3558           (cond->isInstantiationDependent() ||
3559            lhs->isInstantiationDependent() ||
3560            rhs->isInstantiationDependent()),
3561           (cond->containsUnexpandedParameterPack() ||
3562            lhs->containsUnexpandedParameterPack() ||
3563            rhs->containsUnexpandedParameterPack())),
3564      BuiltinLoc(BLoc), RParenLoc(RP), CondIsTrue(condIsTrue) {
3565      SubExprs[COND] = cond;
3566      SubExprs[LHS] = lhs;
3567      SubExprs[RHS] = rhs;
3568    }
3569
3570  /// \brief Build an empty __builtin_choose_expr.
3571  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3572
3573  /// isConditionTrue - Return whether the condition is true (i.e. not
3574  /// equal to zero).
3575  bool isConditionTrue() const {
3576    assert(!isConditionDependent() &&
3577           "Dependent condition isn't true or false");
3578    return CondIsTrue;
3579  }
3580  void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
3581
3582  bool isConditionDependent() const {
3583    return getCond()->isTypeDependent() || getCond()->isValueDependent();
3584  }
3585
3586  /// getChosenSubExpr - Return the subexpression chosen according to the
3587  /// condition.
3588  Expr *getChosenSubExpr() const {
3589    return isConditionTrue() ? getLHS() : getRHS();
3590  }
3591
3592  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3593  void setCond(Expr *E) { SubExprs[COND] = E; }
3594  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3595  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3596  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3597  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3598
3599  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3600  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3601
3602  SourceLocation getRParenLoc() const { return RParenLoc; }
3603  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3604
3605  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3606  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3607
3608  static bool classof(const Stmt *T) {
3609    return T->getStmtClass() == ChooseExprClass;
3610  }
3611
3612  // Iterators
3613  child_range children() {
3614    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3615  }
3616};
3617
3618/// GNUNullExpr - Implements the GNU __null extension, which is a name
3619/// for a null pointer constant that has integral type (e.g., int or
3620/// long) and is the same size and alignment as a pointer. The __null
3621/// extension is typically only used by system headers, which define
3622/// NULL as __null in C++ rather than using 0 (which is an integer
3623/// that may not match the size of a pointer).
3624class GNUNullExpr : public Expr {
3625  /// TokenLoc - The location of the __null keyword.
3626  SourceLocation TokenLoc;
3627
3628public:
3629  GNUNullExpr(QualType Ty, SourceLocation Loc)
3630    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3631           false),
3632      TokenLoc(Loc) { }
3633
3634  /// \brief Build an empty GNU __null expression.
3635  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3636
3637  /// getTokenLocation - The location of the __null token.
3638  SourceLocation getTokenLocation() const { return TokenLoc; }
3639  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3640
3641  SourceLocation getLocStart() const LLVM_READONLY { return TokenLoc; }
3642  SourceLocation getLocEnd() const LLVM_READONLY { return TokenLoc; }
3643
3644  static bool classof(const Stmt *T) {
3645    return T->getStmtClass() == GNUNullExprClass;
3646  }
3647
3648  // Iterators
3649  child_range children() {
3650    return child_range(child_iterator(), child_iterator());
3651  }
3652};
3653
3654/// Represents a call to the builtin function \c __builtin_va_arg.
3655class VAArgExpr : public Expr {
3656  Stmt *Val;
3657  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfo;
3658  SourceLocation BuiltinLoc, RParenLoc;
3659public:
3660  VAArgExpr(SourceLocation BLoc, Expr *e, TypeSourceInfo *TInfo,
3661            SourceLocation RPLoc, QualType t, bool IsMS)
3662      : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary, t->isDependentType(),
3663             false, (TInfo->getType()->isInstantiationDependentType() ||
3664                     e->isInstantiationDependent()),
3665             (TInfo->getType()->containsUnexpandedParameterPack() ||
3666              e->containsUnexpandedParameterPack())),
3667        Val(e), TInfo(TInfo, IsMS), BuiltinLoc(BLoc), RParenLoc(RPLoc) {}
3668
3669  /// Create an empty __builtin_va_arg expression.
3670  explicit VAArgExpr(EmptyShell Empty)
3671      : Expr(VAArgExprClass, Empty), Val(nullptr), TInfo(nullptr, false) {}
3672
3673  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3674  Expr *getSubExpr() { return cast<Expr>(Val); }
3675  void setSubExpr(Expr *E) { Val = E; }
3676
3677  /// Returns whether this is really a Win64 ABI va_arg expression.
3678  bool isMicrosoftABI() const { return TInfo.getInt(); }
3679  void setIsMicrosoftABI(bool IsMS) { TInfo.setInt(IsMS); }
3680
3681  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo.getPointer(); }
3682  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo.setPointer(TI); }
3683
3684  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3685  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3686
3687  SourceLocation getRParenLoc() const { return RParenLoc; }
3688  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3689
3690  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3691  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3692
3693  static bool classof(const Stmt *T) {
3694    return T->getStmtClass() == VAArgExprClass;
3695  }
3696
3697  // Iterators
3698  child_range children() { return child_range(&Val, &Val+1); }
3699};
3700
3701/// @brief Describes an C or C++ initializer list.
3702///
3703/// InitListExpr describes an initializer list, which can be used to
3704/// initialize objects of different types, including
3705/// struct/class/union types, arrays, and vectors. For example:
3706///
3707/// @code
3708/// struct foo x = { 1, { 2, 3 } };
3709/// @endcode
3710///
3711/// Prior to semantic analysis, an initializer list will represent the
3712/// initializer list as written by the user, but will have the
3713/// placeholder type "void". This initializer list is called the
3714/// syntactic form of the initializer, and may contain C99 designated
3715/// initializers (represented as DesignatedInitExprs), initializations
3716/// of subobject members without explicit braces, and so on. Clients
3717/// interested in the original syntax of the initializer list should
3718/// use the syntactic form of the initializer list.
3719///
3720/// After semantic analysis, the initializer list will represent the
3721/// semantic form of the initializer, where the initializations of all
3722/// subobjects are made explicit with nested InitListExpr nodes and
3723/// C99 designators have been eliminated by placing the designated
3724/// initializations into the subobject they initialize. Additionally,
3725/// any "holes" in the initialization, where no initializer has been
3726/// specified for a particular subobject, will be replaced with
3727/// implicitly-generated ImplicitValueInitExpr expressions that
3728/// value-initialize the subobjects. Note, however, that the
3729/// initializer lists may still have fewer initializers than there are
3730/// elements to initialize within the object.
3731///
3732/// After semantic analysis has completed, given an initializer list,
3733/// method isSemanticForm() returns true if and only if this is the
3734/// semantic form of the initializer list (note: the same AST node
3735/// may at the same time be the syntactic form).
3736/// Given the semantic form of the initializer list, one can retrieve
3737/// the syntactic form of that initializer list (when different)
3738/// using method getSyntacticForm(); the method returns null if applied
3739/// to a initializer list which is already in syntactic form.
3740/// Similarly, given the syntactic form (i.e., an initializer list such
3741/// that isSemanticForm() returns false), one can retrieve the semantic
3742/// form using method getSemanticForm().
3743/// Since many initializer lists have the same syntactic and semantic forms,
3744/// getSyntacticForm() may return NULL, indicating that the current
3745/// semantic initializer list also serves as its syntactic form.
3746class InitListExpr : public Expr {
3747  // FIXME: Eliminate this vector in favor of ASTContext allocation
3748  typedef ASTVector<Stmt *> InitExprsTy;
3749  InitExprsTy InitExprs;
3750  SourceLocation LBraceLoc, RBraceLoc;
3751
3752  /// The alternative form of the initializer list (if it exists).
3753  /// The int part of the pair stores whether this initializer list is
3754  /// in semantic form. If not null, the pointer points to:
3755  ///   - the syntactic form, if this is in semantic form;
3756  ///   - the semantic form, if this is in syntactic form.
3757  llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
3758
3759  /// \brief Either:
3760  ///  If this initializer list initializes an array with more elements than
3761  ///  there are initializers in the list, specifies an expression to be used
3762  ///  for value initialization of the rest of the elements.
3763  /// Or
3764  ///  If this initializer list initializes a union, specifies which
3765  ///  field within the union will be initialized.
3766  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3767
3768public:
3769  InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
3770               ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
3771
3772  /// \brief Build an empty initializer list.
3773  explicit InitListExpr(EmptyShell Empty)
3774    : Expr(InitListExprClass, Empty) { }
3775
3776  unsigned getNumInits() const { return InitExprs.size(); }
3777
3778  /// \brief Retrieve the set of initializers.
3779  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3780
3781  ArrayRef<Expr *> inits() {
3782    return llvm::makeArrayRef(getInits(), getNumInits());
3783  }
3784
3785  const Expr *getInit(unsigned Init) const {
3786    assert(Init < getNumInits() && "Initializer access out of range!");
3787    return cast_or_null<Expr>(InitExprs[Init]);
3788  }
3789
3790  Expr *getInit(unsigned Init) {
3791    assert(Init < getNumInits() && "Initializer access out of range!");
3792    return cast_or_null<Expr>(InitExprs[Init]);
3793  }
3794
3795  void setInit(unsigned Init, Expr *expr) {
3796    assert(Init < getNumInits() && "Initializer access out of range!");
3797    InitExprs[Init] = expr;
3798
3799    if (expr) {
3800      ExprBits.TypeDependent |= expr->isTypeDependent();
3801      ExprBits.ValueDependent |= expr->isValueDependent();
3802      ExprBits.InstantiationDependent |= expr->isInstantiationDependent();
3803      ExprBits.ContainsUnexpandedParameterPack |=
3804          expr->containsUnexpandedParameterPack();
3805    }
3806  }
3807
3808  /// \brief Reserve space for some number of initializers.
3809  void reserveInits(const ASTContext &C, unsigned NumInits);
3810
3811  /// @brief Specify the number of initializers
3812  ///
3813  /// If there are more than @p NumInits initializers, the remaining
3814  /// initializers will be destroyed. If there are fewer than @p
3815  /// NumInits initializers, NULL expressions will be added for the
3816  /// unknown initializers.
3817  void resizeInits(const ASTContext &Context, unsigned NumInits);
3818
3819  /// @brief Updates the initializer at index @p Init with the new
3820  /// expression @p expr, and returns the old expression at that
3821  /// location.
3822  ///
3823  /// When @p Init is out of range for this initializer list, the
3824  /// initializer list will be extended with NULL expressions to
3825  /// accommodate the new entry.
3826  Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
3827
3828  /// \brief If this initializer list initializes an array with more elements
3829  /// than there are initializers in the list, specifies an expression to be
3830  /// used for value initialization of the rest of the elements.
3831  Expr *getArrayFiller() {
3832    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3833  }
3834  const Expr *getArrayFiller() const {
3835    return const_cast<InitListExpr *>(this)->getArrayFiller();
3836  }
3837  void setArrayFiller(Expr *filler);
3838
3839  /// \brief Return true if this is an array initializer and its array "filler"
3840  /// has been set.
3841  bool hasArrayFiller() const { return getArrayFiller(); }
3842
3843  /// \brief If this initializes a union, specifies which field in the
3844  /// union to initialize.
3845  ///
3846  /// Typically, this field is the first named field within the
3847  /// union. However, a designated initializer can specify the
3848  /// initialization of a different field within the union.
3849  FieldDecl *getInitializedFieldInUnion() {
3850    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3851  }
3852  const FieldDecl *getInitializedFieldInUnion() const {
3853    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3854  }
3855  void setInitializedFieldInUnion(FieldDecl *FD) {
3856    assert((FD == nullptr
3857            || getInitializedFieldInUnion() == nullptr
3858            || getInitializedFieldInUnion() == FD)
3859           && "Only one field of a union may be initialized at a time!");
3860    ArrayFillerOrUnionFieldInit = FD;
3861  }
3862
3863  // Explicit InitListExpr's originate from source code (and have valid source
3864  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3865  bool isExplicit() {
3866    return LBraceLoc.isValid() && RBraceLoc.isValid();
3867  }
3868
3869  // Is this an initializer for an array of characters, initialized by a string
3870  // literal or an @encode?
3871  bool isStringLiteralInit() const;
3872
3873  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3874  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3875  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3876  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3877
3878  bool isSemanticForm() const { return AltForm.getInt(); }
3879  InitListExpr *getSemanticForm() const {
3880    return isSemanticForm() ? nullptr : AltForm.getPointer();
3881  }
3882  InitListExpr *getSyntacticForm() const {
3883    return isSemanticForm() ? AltForm.getPointer() : nullptr;
3884  }
3885
3886  void setSyntacticForm(InitListExpr *Init) {
3887    AltForm.setPointer(Init);
3888    AltForm.setInt(true);
3889    Init->AltForm.setPointer(this);
3890    Init->AltForm.setInt(false);
3891  }
3892
3893  bool hadArrayRangeDesignator() const {
3894    return InitListExprBits.HadArrayRangeDesignator != 0;
3895  }
3896  void sawArrayRangeDesignator(bool ARD = true) {
3897    InitListExprBits.HadArrayRangeDesignator = ARD;
3898  }
3899
3900  SourceLocation getLocStart() const LLVM_READONLY;
3901  SourceLocation getLocEnd() const LLVM_READONLY;
3902
3903  static bool classof(const Stmt *T) {
3904    return T->getStmtClass() == InitListExprClass;
3905  }
3906
3907  // Iterators
3908  child_range children() {
3909    // FIXME: This does not include the array filler expression.
3910    if (InitExprs.empty())
3911      return child_range(child_iterator(), child_iterator());
3912    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3913  }
3914
3915  typedef InitExprsTy::iterator iterator;
3916  typedef InitExprsTy::const_iterator const_iterator;
3917  typedef InitExprsTy::reverse_iterator reverse_iterator;
3918  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3919
3920  iterator begin() { return InitExprs.begin(); }
3921  const_iterator begin() const { return InitExprs.begin(); }
3922  iterator end() { return InitExprs.end(); }
3923  const_iterator end() const { return InitExprs.end(); }
3924  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3925  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3926  reverse_iterator rend() { return InitExprs.rend(); }
3927  const_reverse_iterator rend() const { return InitExprs.rend(); }
3928
3929  friend class ASTStmtReader;
3930  friend class ASTStmtWriter;
3931};
3932
3933/// @brief Represents a C99 designated initializer expression.
3934///
3935/// A designated initializer expression (C99 6.7.8) contains one or
3936/// more designators (which can be field designators, array
3937/// designators, or GNU array-range designators) followed by an
3938/// expression that initializes the field or element(s) that the
3939/// designators refer to. For example, given:
3940///
3941/// @code
3942/// struct point {
3943///   double x;
3944///   double y;
3945/// };
3946/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3947/// @endcode
3948///
3949/// The InitListExpr contains three DesignatedInitExprs, the first of
3950/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3951/// designators, one array designator for @c [2] followed by one field
3952/// designator for @c .y. The initialization expression will be 1.0.
3953class DesignatedInitExpr final
3954    : public Expr,
3955      private llvm::TrailingObjects<DesignatedInitExpr, Stmt *> {
3956public:
3957  /// \brief Forward declaration of the Designator class.
3958  class Designator;
3959
3960private:
3961  /// The location of the '=' or ':' prior to the actual initializer
3962  /// expression.
3963  SourceLocation EqualOrColonLoc;
3964
3965  /// Whether this designated initializer used the GNU deprecated
3966  /// syntax rather than the C99 '=' syntax.
3967  unsigned GNUSyntax : 1;
3968
3969  /// The number of designators in this initializer expression.
3970  unsigned NumDesignators : 15;
3971
3972  /// The number of subexpressions of this initializer expression,
3973  /// which contains both the initializer and any additional
3974  /// expressions used by array and array-range designators.
3975  unsigned NumSubExprs : 16;
3976
3977  /// \brief The designators in this designated initialization
3978  /// expression.
3979  Designator *Designators;
3980
3981  DesignatedInitExpr(const ASTContext &C, QualType Ty,
3982                     llvm::ArrayRef<Designator> Designators,
3983                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3984                     ArrayRef<Expr *> IndexExprs, Expr *Init);
3985
3986  explicit DesignatedInitExpr(unsigned NumSubExprs)
3987    : Expr(DesignatedInitExprClass, EmptyShell()),
3988      NumDesignators(0), NumSubExprs(NumSubExprs), Designators(nullptr) { }
3989
3990public:
3991  /// A field designator, e.g., ".x".
3992  struct FieldDesignator {
3993    /// Refers to the field that is being initialized. The low bit
3994    /// of this field determines whether this is actually a pointer
3995    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3996    /// initially constructed, a field designator will store an
3997    /// IdentifierInfo*. After semantic analysis has resolved that
3998    /// name, the field designator will instead store a FieldDecl*.
3999    uintptr_t NameOrField;
4000
4001    /// The location of the '.' in the designated initializer.
4002    unsigned DotLoc;
4003
4004    /// The location of the field name in the designated initializer.
4005    unsigned FieldLoc;
4006  };
4007
4008  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4009  struct ArrayOrRangeDesignator {
4010    /// Location of the first index expression within the designated
4011    /// initializer expression's list of subexpressions.
4012    unsigned Index;
4013    /// The location of the '[' starting the array range designator.
4014    unsigned LBracketLoc;
4015    /// The location of the ellipsis separating the start and end
4016    /// indices. Only valid for GNU array-range designators.
4017    unsigned EllipsisLoc;
4018    /// The location of the ']' terminating the array range designator.
4019    unsigned RBracketLoc;
4020  };
4021
4022  /// @brief Represents a single C99 designator.
4023  ///
4024  /// @todo This class is infuriatingly similar to clang::Designator,
4025  /// but minor differences (storing indices vs. storing pointers)
4026  /// keep us from reusing it. Try harder, later, to rectify these
4027  /// differences.
4028  class Designator {
4029    /// @brief The kind of designator this describes.
4030    enum {
4031      FieldDesignator,
4032      ArrayDesignator,
4033      ArrayRangeDesignator
4034    } Kind;
4035
4036    union {
4037      /// A field designator, e.g., ".x".
4038      struct FieldDesignator Field;
4039      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4040      struct ArrayOrRangeDesignator ArrayOrRange;
4041    };
4042    friend class DesignatedInitExpr;
4043
4044  public:
4045    Designator() {}
4046
4047    /// @brief Initializes a field designator.
4048    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
4049               SourceLocation FieldLoc)
4050      : Kind(FieldDesignator) {
4051      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
4052      Field.DotLoc = DotLoc.getRawEncoding();
4053      Field.FieldLoc = FieldLoc.getRawEncoding();
4054    }
4055
4056    /// @brief Initializes an array designator.
4057    Designator(unsigned Index, SourceLocation LBracketLoc,
4058               SourceLocation RBracketLoc)
4059      : Kind(ArrayDesignator) {
4060      ArrayOrRange.Index = Index;
4061      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4062      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
4063      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4064    }
4065
4066    /// @brief Initializes a GNU array-range designator.
4067    Designator(unsigned Index, SourceLocation LBracketLoc,
4068               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
4069      : Kind(ArrayRangeDesignator) {
4070      ArrayOrRange.Index = Index;
4071      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4072      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
4073      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4074    }
4075
4076    bool isFieldDesignator() const { return Kind == FieldDesignator; }
4077    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
4078    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
4079
4080    IdentifierInfo *getFieldName() const;
4081
4082    FieldDecl *getField() const {
4083      assert(Kind == FieldDesignator && "Only valid on a field designator");
4084      if (Field.NameOrField & 0x01)
4085        return nullptr;
4086      else
4087        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
4088    }
4089
4090    void setField(FieldDecl *FD) {
4091      assert(Kind == FieldDesignator && "Only valid on a field designator");
4092      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
4093    }
4094
4095    SourceLocation getDotLoc() const {
4096      assert(Kind == FieldDesignator && "Only valid on a field designator");
4097      return SourceLocation::getFromRawEncoding(Field.DotLoc);
4098    }
4099
4100    SourceLocation getFieldLoc() const {
4101      assert(Kind == FieldDesignator && "Only valid on a field designator");
4102      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
4103    }
4104
4105    SourceLocation getLBracketLoc() const {
4106      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4107             "Only valid on an array or array-range designator");
4108      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
4109    }
4110
4111    SourceLocation getRBracketLoc() const {
4112      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4113             "Only valid on an array or array-range designator");
4114      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
4115    }
4116
4117    SourceLocation getEllipsisLoc() const {
4118      assert(Kind == ArrayRangeDesignator &&
4119             "Only valid on an array-range designator");
4120      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
4121    }
4122
4123    unsigned getFirstExprIndex() const {
4124      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4125             "Only valid on an array or array-range designator");
4126      return ArrayOrRange.Index;
4127    }
4128
4129    SourceLocation getLocStart() const LLVM_READONLY {
4130      if (Kind == FieldDesignator)
4131        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
4132      else
4133        return getLBracketLoc();
4134    }
4135    SourceLocation getLocEnd() const LLVM_READONLY {
4136      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
4137    }
4138    SourceRange getSourceRange() const LLVM_READONLY {
4139      return SourceRange(getLocStart(), getLocEnd());
4140    }
4141  };
4142
4143  static DesignatedInitExpr *Create(const ASTContext &C,
4144                                    llvm::ArrayRef<Designator> Designators,
4145                                    ArrayRef<Expr*> IndexExprs,
4146                                    SourceLocation EqualOrColonLoc,
4147                                    bool GNUSyntax, Expr *Init);
4148
4149  static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
4150                                         unsigned NumIndexExprs);
4151
4152  /// @brief Returns the number of designators in this initializer.
4153  unsigned size() const { return NumDesignators; }
4154
4155  // Iterator access to the designators.
4156  llvm::MutableArrayRef<Designator> designators() {
4157    return {Designators, NumDesignators};
4158  }
4159
4160  llvm::ArrayRef<Designator> designators() const {
4161    return {Designators, NumDesignators};
4162  }
4163
4164  Designator *getDesignator(unsigned Idx) { return &designators()[Idx]; }
4165
4166  void setDesignators(const ASTContext &C, const Designator *Desigs,
4167                      unsigned NumDesigs);
4168
4169  Expr *getArrayIndex(const Designator &D) const;
4170  Expr *getArrayRangeStart(const Designator &D) const;
4171  Expr *getArrayRangeEnd(const Designator &D) const;
4172
4173  /// @brief Retrieve the location of the '=' that precedes the
4174  /// initializer value itself, if present.
4175  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
4176  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
4177
4178  /// @brief Determines whether this designated initializer used the
4179  /// deprecated GNU syntax for designated initializers.
4180  bool usesGNUSyntax() const { return GNUSyntax; }
4181  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
4182
4183  /// @brief Retrieve the initializer value.
4184  Expr *getInit() const {
4185    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
4186  }
4187
4188  void setInit(Expr *init) {
4189    *child_begin() = init;
4190  }
4191
4192  /// \brief Retrieve the total number of subexpressions in this
4193  /// designated initializer expression, including the actual
4194  /// initialized value and any expressions that occur within array
4195  /// and array-range designators.
4196  unsigned getNumSubExprs() const { return NumSubExprs; }
4197
4198  Expr *getSubExpr(unsigned Idx) const {
4199    assert(Idx < NumSubExprs && "Subscript out of range");
4200    return cast<Expr>(getTrailingObjects<Stmt *>()[Idx]);
4201  }
4202
4203  void setSubExpr(unsigned Idx, Expr *E) {
4204    assert(Idx < NumSubExprs && "Subscript out of range");
4205    getTrailingObjects<Stmt *>()[Idx] = E;
4206  }
4207
4208  /// \brief Replaces the designator at index @p Idx with the series
4209  /// of designators in [First, Last).
4210  void ExpandDesignator(const ASTContext &C, unsigned Idx,
4211                        const Designator *First, const Designator *Last);
4212
4213  SourceRange getDesignatorsSourceRange() const;
4214
4215  SourceLocation getLocStart() const LLVM_READONLY;
4216  SourceLocation getLocEnd() const LLVM_READONLY;
4217
4218  static bool classof(const Stmt *T) {
4219    return T->getStmtClass() == DesignatedInitExprClass;
4220  }
4221
4222  // Iterators
4223  child_range children() {
4224    Stmt **begin = getTrailingObjects<Stmt *>();
4225    return child_range(begin, begin + NumSubExprs);
4226  }
4227
4228  friend TrailingObjects;
4229};
4230
4231/// \brief Represents a place-holder for an object not to be initialized by
4232/// anything.
4233///
4234/// This only makes sense when it appears as part of an updater of a
4235/// DesignatedInitUpdateExpr (see below). The base expression of a DIUE
4236/// initializes a big object, and the NoInitExpr's mark the spots within the
4237/// big object not to be overwritten by the updater.
4238///
4239/// \see DesignatedInitUpdateExpr
4240class NoInitExpr : public Expr {
4241public:
4242  explicit NoInitExpr(QualType ty)
4243    : Expr(NoInitExprClass, ty, VK_RValue, OK_Ordinary,
4244           false, false, ty->isInstantiationDependentType(), false) { }
4245
4246  explicit NoInitExpr(EmptyShell Empty)
4247    : Expr(NoInitExprClass, Empty) { }
4248
4249  static bool classof(const Stmt *T) {
4250    return T->getStmtClass() == NoInitExprClass;
4251  }
4252
4253  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4254  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4255
4256  // Iterators
4257  child_range children() {
4258    return child_range(child_iterator(), child_iterator());
4259  }
4260};
4261
4262// In cases like:
4263//   struct Q { int a, b, c; };
4264//   Q *getQ();
4265//   void foo() {
4266//     struct A { Q q; } a = { *getQ(), .q.b = 3 };
4267//   }
4268//
4269// We will have an InitListExpr for a, with type A, and then a
4270// DesignatedInitUpdateExpr for "a.q" with type Q. The "base" for this DIUE
4271// is the call expression *getQ(); the "updater" for the DIUE is ".q.b = 3"
4272//
4273class DesignatedInitUpdateExpr : public Expr {
4274  // BaseAndUpdaterExprs[0] is the base expression;
4275  // BaseAndUpdaterExprs[1] is an InitListExpr overwriting part of the base.
4276  Stmt *BaseAndUpdaterExprs[2];
4277
4278public:
4279  DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc,
4280                           Expr *baseExprs, SourceLocation rBraceLoc);
4281
4282  explicit DesignatedInitUpdateExpr(EmptyShell Empty)
4283    : Expr(DesignatedInitUpdateExprClass, Empty) { }
4284
4285  SourceLocation getLocStart() const LLVM_READONLY;
4286  SourceLocation getLocEnd() const LLVM_READONLY;
4287
4288  static bool classof(const Stmt *T) {
4289    return T->getStmtClass() == DesignatedInitUpdateExprClass;
4290  }
4291
4292  Expr *getBase() const { return cast<Expr>(BaseAndUpdaterExprs[0]); }
4293  void setBase(Expr *Base) { BaseAndUpdaterExprs[0] = Base; }
4294
4295  InitListExpr *getUpdater() const {
4296    return cast<InitListExpr>(BaseAndUpdaterExprs[1]);
4297  }
4298  void setUpdater(Expr *Updater) { BaseAndUpdaterExprs[1] = Updater; }
4299
4300  // Iterators
4301  // children = the base and the updater
4302  child_range children() {
4303    return child_range(&BaseAndUpdaterExprs[0], &BaseAndUpdaterExprs[0] + 2);
4304  }
4305};
4306
4307/// \brief Represents an implicitly-generated value initialization of
4308/// an object of a given type.
4309///
4310/// Implicit value initializations occur within semantic initializer
4311/// list expressions (InitListExpr) as placeholders for subobject
4312/// initializations not explicitly specified by the user.
4313///
4314/// \see InitListExpr
4315class ImplicitValueInitExpr : public Expr {
4316public:
4317  explicit ImplicitValueInitExpr(QualType ty)
4318    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4319           false, false, ty->isInstantiationDependentType(), false) { }
4320
4321  /// \brief Construct an empty implicit value initialization.
4322  explicit ImplicitValueInitExpr(EmptyShell Empty)
4323    : Expr(ImplicitValueInitExprClass, Empty) { }
4324
4325  static bool classof(const Stmt *T) {
4326    return T->getStmtClass() == ImplicitValueInitExprClass;
4327  }
4328
4329  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4330  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4331
4332  // Iterators
4333  child_range children() {
4334    return child_range(child_iterator(), child_iterator());
4335  }
4336};
4337
4338class ParenListExpr : public Expr {
4339  Stmt **Exprs;
4340  unsigned NumExprs;
4341  SourceLocation LParenLoc, RParenLoc;
4342
4343public:
4344  ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
4345                ArrayRef<Expr*> exprs, SourceLocation rparenloc);
4346
4347  /// \brief Build an empty paren list.
4348  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4349
4350  unsigned getNumExprs() const { return NumExprs; }
4351
4352  const Expr* getExpr(unsigned Init) const {
4353    assert(Init < getNumExprs() && "Initializer access out of range!");
4354    return cast_or_null<Expr>(Exprs[Init]);
4355  }
4356
4357  Expr* getExpr(unsigned Init) {
4358    assert(Init < getNumExprs() && "Initializer access out of range!");
4359    return cast_or_null<Expr>(Exprs[Init]);
4360  }
4361
4362  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4363
4364  ArrayRef<Expr *> exprs() {
4365    return llvm::makeArrayRef(getExprs(), getNumExprs());
4366  }
4367
4368  SourceLocation getLParenLoc() const { return LParenLoc; }
4369  SourceLocation getRParenLoc() const { return RParenLoc; }
4370
4371  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
4372  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4373
4374  static bool classof(const Stmt *T) {
4375    return T->getStmtClass() == ParenListExprClass;
4376  }
4377
4378  // Iterators
4379  child_range children() {
4380    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4381  }
4382
4383  friend class ASTStmtReader;
4384  friend class ASTStmtWriter;
4385};
4386
4387/// \brief Represents a C11 generic selection.
4388///
4389/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4390/// expression, followed by one or more generic associations.  Each generic
4391/// association specifies a type name and an expression, or "default" and an
4392/// expression (in which case it is known as a default generic association).
4393/// The type and value of the generic selection are identical to those of its
4394/// result expression, which is defined as the expression in the generic
4395/// association with a type name that is compatible with the type of the
4396/// controlling expression, or the expression in the default generic association
4397/// if no types are compatible.  For example:
4398///
4399/// @code
4400/// _Generic(X, double: 1, float: 2, default: 3)
4401/// @endcode
4402///
4403/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4404/// or 3 if "hello".
4405///
4406/// As an extension, generic selections are allowed in C++, where the following
4407/// additional semantics apply:
4408///
4409/// Any generic selection whose controlling expression is type-dependent or
4410/// which names a dependent type in its association list is result-dependent,
4411/// which means that the choice of result expression is dependent.
4412/// Result-dependent generic associations are both type- and value-dependent.
4413class GenericSelectionExpr : public Expr {
4414  enum { CONTROLLING, END_EXPR };
4415  TypeSourceInfo **AssocTypes;
4416  Stmt **SubExprs;
4417  unsigned NumAssocs, ResultIndex;
4418  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4419
4420public:
4421  GenericSelectionExpr(const ASTContext &Context,
4422                       SourceLocation GenericLoc, Expr *ControllingExpr,
4423                       ArrayRef<TypeSourceInfo*> AssocTypes,
4424                       ArrayRef<Expr*> AssocExprs,
4425                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4426                       bool ContainsUnexpandedParameterPack,
4427                       unsigned ResultIndex);
4428
4429  /// This constructor is used in the result-dependent case.
4430  GenericSelectionExpr(const ASTContext &Context,
4431                       SourceLocation GenericLoc, Expr *ControllingExpr,
4432                       ArrayRef<TypeSourceInfo*> AssocTypes,
4433                       ArrayRef<Expr*> AssocExprs,
4434                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4435                       bool ContainsUnexpandedParameterPack);
4436
4437  explicit GenericSelectionExpr(EmptyShell Empty)
4438    : Expr(GenericSelectionExprClass, Empty) { }
4439
4440  unsigned getNumAssocs() const { return NumAssocs; }
4441
4442  SourceLocation getGenericLoc() const { return GenericLoc; }
4443  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4444  SourceLocation getRParenLoc() const { return RParenLoc; }
4445
4446  const Expr *getAssocExpr(unsigned i) const {
4447    return cast<Expr>(SubExprs[END_EXPR+i]);
4448  }
4449  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4450
4451  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4452    return AssocTypes[i];
4453  }
4454  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4455
4456  QualType getAssocType(unsigned i) const {
4457    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4458      return TS->getType();
4459    else
4460      return QualType();
4461  }
4462
4463  const Expr *getControllingExpr() const {
4464    return cast<Expr>(SubExprs[CONTROLLING]);
4465  }
4466  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4467
4468  /// Whether this generic selection is result-dependent.
4469  bool isResultDependent() const { return ResultIndex == -1U; }
4470
4471  /// The zero-based index of the result expression's generic association in
4472  /// the generic selection's association list.  Defined only if the
4473  /// generic selection is not result-dependent.
4474  unsigned getResultIndex() const {
4475    assert(!isResultDependent() && "Generic selection is result-dependent");
4476    return ResultIndex;
4477  }
4478
4479  /// The generic selection's result expression.  Defined only if the
4480  /// generic selection is not result-dependent.
4481  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4482  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4483
4484  SourceLocation getLocStart() const LLVM_READONLY { return GenericLoc; }
4485  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4486
4487  static bool classof(const Stmt *T) {
4488    return T->getStmtClass() == GenericSelectionExprClass;
4489  }
4490
4491  child_range children() {
4492    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4493  }
4494
4495  friend class ASTStmtReader;
4496};
4497
4498//===----------------------------------------------------------------------===//
4499// Clang Extensions
4500//===----------------------------------------------------------------------===//
4501
4502/// ExtVectorElementExpr - This represents access to specific elements of a
4503/// vector, and may occur on the left hand side or right hand side.  For example
4504/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4505///
4506/// Note that the base may have either vector or pointer to vector type, just
4507/// like a struct field reference.
4508///
4509class ExtVectorElementExpr : public Expr {
4510  Stmt *Base;
4511  IdentifierInfo *Accessor;
4512  SourceLocation AccessorLoc;
4513public:
4514  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4515                       IdentifierInfo &accessor, SourceLocation loc)
4516    : Expr(ExtVectorElementExprClass, ty, VK,
4517           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4518           base->isTypeDependent(), base->isValueDependent(),
4519           base->isInstantiationDependent(),
4520           base->containsUnexpandedParameterPack()),
4521      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4522
4523  /// \brief Build an empty vector element expression.
4524  explicit ExtVectorElementExpr(EmptyShell Empty)
4525    : Expr(ExtVectorElementExprClass, Empty) { }
4526
4527  const Expr *getBase() const { return cast<Expr>(Base); }
4528  Expr *getBase() { return cast<Expr>(Base); }
4529  void setBase(Expr *E) { Base = E; }
4530
4531  IdentifierInfo &getAccessor() const { return *Accessor; }
4532  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4533
4534  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4535  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4536
4537  /// getNumElements - Get the number of components being selected.
4538  unsigned getNumElements() const;
4539
4540  /// containsDuplicateElements - Return true if any element access is
4541  /// repeated.
4542  bool containsDuplicateElements() const;
4543
4544  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4545  /// aggregate Constant of ConstantInt(s).
4546  void getEncodedElementAccess(SmallVectorImpl<uint32_t> &Elts) const;
4547
4548  SourceLocation getLocStart() const LLVM_READONLY {
4549    return getBase()->getLocStart();
4550  }
4551  SourceLocation getLocEnd() const LLVM_READONLY { return AccessorLoc; }
4552
4553  /// isArrow - Return true if the base expression is a pointer to vector,
4554  /// return false if the base expression is a vector.
4555  bool isArrow() const;
4556
4557  static bool classof(const Stmt *T) {
4558    return T->getStmtClass() == ExtVectorElementExprClass;
4559  }
4560
4561  // Iterators
4562  child_range children() { return child_range(&Base, &Base+1); }
4563};
4564
4565/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4566/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4567class BlockExpr : public Expr {
4568protected:
4569  BlockDecl *TheBlock;
4570public:
4571  BlockExpr(BlockDecl *BD, QualType ty)
4572    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4573           ty->isDependentType(), ty->isDependentType(),
4574           ty->isInstantiationDependentType() || BD->isDependentContext(),
4575           false),
4576      TheBlock(BD) {}
4577
4578  /// \brief Build an empty block expression.
4579  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4580
4581  const BlockDecl *getBlockDecl() const { return TheBlock; }
4582  BlockDecl *getBlockDecl() { return TheBlock; }
4583  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4584
4585  // Convenience functions for probing the underlying BlockDecl.
4586  SourceLocation getCaretLocation() const;
4587  const Stmt *getBody() const;
4588  Stmt *getBody();
4589
4590  SourceLocation getLocStart() const LLVM_READONLY { return getCaretLocation(); }
4591  SourceLocation getLocEnd() const LLVM_READONLY { return getBody()->getLocEnd(); }
4592
4593  /// getFunctionType - Return the underlying function type for this block.
4594  const FunctionProtoType *getFunctionType() const;
4595
4596  static bool classof(const Stmt *T) {
4597    return T->getStmtClass() == BlockExprClass;
4598  }
4599
4600  // Iterators
4601  child_range children() {
4602    return child_range(child_iterator(), child_iterator());
4603  }
4604};
4605
4606/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4607/// This AST node provides support for reinterpreting a type to another
4608/// type of the same size.
4609class AsTypeExpr : public Expr {
4610private:
4611  Stmt *SrcExpr;
4612  SourceLocation BuiltinLoc, RParenLoc;
4613
4614  friend class ASTReader;
4615  friend class ASTStmtReader;
4616  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4617
4618public:
4619  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4620             ExprValueKind VK, ExprObjectKind OK,
4621             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4622    : Expr(AsTypeExprClass, DstType, VK, OK,
4623           DstType->isDependentType(),
4624           DstType->isDependentType() || SrcExpr->isValueDependent(),
4625           (DstType->isInstantiationDependentType() ||
4626            SrcExpr->isInstantiationDependent()),
4627           (DstType->containsUnexpandedParameterPack() ||
4628            SrcExpr->containsUnexpandedParameterPack())),
4629  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4630
4631  /// getSrcExpr - Return the Expr to be converted.
4632  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4633
4634  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4635  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4636
4637  /// getRParenLoc - Return the location of final right parenthesis.
4638  SourceLocation getRParenLoc() const { return RParenLoc; }
4639
4640  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
4641  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4642
4643  static bool classof(const Stmt *T) {
4644    return T->getStmtClass() == AsTypeExprClass;
4645  }
4646
4647  // Iterators
4648  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4649};
4650
4651/// PseudoObjectExpr - An expression which accesses a pseudo-object
4652/// l-value.  A pseudo-object is an abstract object, accesses to which
4653/// are translated to calls.  The pseudo-object expression has a
4654/// syntactic form, which shows how the expression was actually
4655/// written in the source code, and a semantic form, which is a series
4656/// of expressions to be executed in order which detail how the
4657/// operation is actually evaluated.  Optionally, one of the semantic
4658/// forms may also provide a result value for the expression.
4659///
4660/// If any of the semantic-form expressions is an OpaqueValueExpr,
4661/// that OVE is required to have a source expression, and it is bound
4662/// to the result of that source expression.  Such OVEs may appear
4663/// only in subsequent semantic-form expressions and as
4664/// sub-expressions of the syntactic form.
4665///
4666/// PseudoObjectExpr should be used only when an operation can be
4667/// usefully described in terms of fairly simple rewrite rules on
4668/// objects and functions that are meant to be used by end-developers.
4669/// For example, under the Itanium ABI, dynamic casts are implemented
4670/// as a call to a runtime function called __dynamic_cast; using this
4671/// class to describe that would be inappropriate because that call is
4672/// not really part of the user-visible semantics, and instead the
4673/// cast is properly reflected in the AST and IR-generation has been
4674/// taught to generate the call as necessary.  In contrast, an
4675/// Objective-C property access is semantically defined to be
4676/// equivalent to a particular message send, and this is very much
4677/// part of the user model.  The name of this class encourages this
4678/// modelling design.
4679class PseudoObjectExpr final
4680    : public Expr,
4681      private llvm::TrailingObjects<PseudoObjectExpr, Expr *> {
4682  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4683  // Always at least two, because the first sub-expression is the
4684  // syntactic form.
4685
4686  // PseudoObjectExprBits.ResultIndex - The index of the
4687  // sub-expression holding the result.  0 means the result is void,
4688  // which is unambiguous because it's the index of the syntactic
4689  // form.  Note that this is therefore 1 higher than the value passed
4690  // in to Create, which is an index within the semantic forms.
4691  // Note also that ASTStmtWriter assumes this encoding.
4692
4693  Expr **getSubExprsBuffer() { return getTrailingObjects<Expr *>(); }
4694  const Expr * const *getSubExprsBuffer() const {
4695    return getTrailingObjects<Expr *>();
4696  }
4697
4698  PseudoObjectExpr(QualType type, ExprValueKind VK,
4699                   Expr *syntactic, ArrayRef<Expr*> semantic,
4700                   unsigned resultIndex);
4701
4702  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4703
4704  unsigned getNumSubExprs() const {
4705    return PseudoObjectExprBits.NumSubExprs;
4706  }
4707
4708public:
4709  /// NoResult - A value for the result index indicating that there is
4710  /// no semantic result.
4711  enum : unsigned { NoResult = ~0U };
4712
4713  static PseudoObjectExpr *Create(const ASTContext &Context, Expr *syntactic,
4714                                  ArrayRef<Expr*> semantic,
4715                                  unsigned resultIndex);
4716
4717  static PseudoObjectExpr *Create(const ASTContext &Context, EmptyShell shell,
4718                                  unsigned numSemanticExprs);
4719
4720  /// Return the syntactic form of this expression, i.e. the
4721  /// expression it actually looks like.  Likely to be expressed in
4722  /// terms of OpaqueValueExprs bound in the semantic form.
4723  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4724  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4725
4726  /// Return the index of the result-bearing expression into the semantics
4727  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4728  unsigned getResultExprIndex() const {
4729    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4730    return PseudoObjectExprBits.ResultIndex - 1;
4731  }
4732
4733  /// Return the result-bearing expression, or null if there is none.
4734  Expr *getResultExpr() {
4735    if (PseudoObjectExprBits.ResultIndex == 0)
4736      return nullptr;
4737    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4738  }
4739  const Expr *getResultExpr() const {
4740    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4741  }
4742
4743  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4744
4745  typedef Expr * const *semantics_iterator;
4746  typedef const Expr * const *const_semantics_iterator;
4747  semantics_iterator semantics_begin() {
4748    return getSubExprsBuffer() + 1;
4749  }
4750  const_semantics_iterator semantics_begin() const {
4751    return getSubExprsBuffer() + 1;
4752  }
4753  semantics_iterator semantics_end() {
4754    return getSubExprsBuffer() + getNumSubExprs();
4755  }
4756  const_semantics_iterator semantics_end() const {
4757    return getSubExprsBuffer() + getNumSubExprs();
4758  }
4759
4760  llvm::iterator_range<semantics_iterator> semantics() {
4761    return llvm::make_range(semantics_begin(), semantics_end());
4762  }
4763  llvm::iterator_range<const_semantics_iterator> semantics() const {
4764    return llvm::make_range(semantics_begin(), semantics_end());
4765  }
4766
4767  Expr *getSemanticExpr(unsigned index) {
4768    assert(index + 1 < getNumSubExprs());
4769    return getSubExprsBuffer()[index + 1];
4770  }
4771  const Expr *getSemanticExpr(unsigned index) const {
4772    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4773  }
4774
4775  SourceLocation getExprLoc() const LLVM_READONLY {
4776    return getSyntacticForm()->getExprLoc();
4777  }
4778
4779  SourceLocation getLocStart() const LLVM_READONLY {
4780    return getSyntacticForm()->getLocStart();
4781  }
4782  SourceLocation getLocEnd() const LLVM_READONLY {
4783    return getSyntacticForm()->getLocEnd();
4784  }
4785
4786  child_range children() {
4787    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4788    return child_range(cs, cs + getNumSubExprs());
4789  }
4790
4791  static bool classof(const Stmt *T) {
4792    return T->getStmtClass() == PseudoObjectExprClass;
4793  }
4794
4795  friend TrailingObjects;
4796  friend class ASTStmtReader;
4797};
4798
4799/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4800/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4801/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
4802/// All of these instructions take one primary pointer and at least one memory
4803/// order.
4804class AtomicExpr : public Expr {
4805public:
4806  enum AtomicOp {
4807#define BUILTIN(ID, TYPE, ATTRS)
4808#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
4809#include "clang/Basic/Builtins.def"
4810    // Avoid trailing comma
4811    BI_First = 0
4812  };
4813
4814private:
4815  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
4816  Stmt* SubExprs[END_EXPR];
4817  unsigned NumSubExprs;
4818  SourceLocation BuiltinLoc, RParenLoc;
4819  AtomicOp Op;
4820
4821  friend class ASTStmtReader;
4822
4823public:
4824  AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
4825             AtomicOp op, SourceLocation RP);
4826
4827  /// \brief Determine the number of arguments the specified atomic builtin
4828  /// should have.
4829  static unsigned getNumSubExprs(AtomicOp Op);
4830
4831  /// \brief Build an empty AtomicExpr.
4832  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4833
4834  Expr *getPtr() const {
4835    return cast<Expr>(SubExprs[PTR]);
4836  }
4837  Expr *getOrder() const {
4838    return cast<Expr>(SubExprs[ORDER]);
4839  }
4840  Expr *getVal1() const {
4841    if (Op == AO__c11_atomic_init)
4842      return cast<Expr>(SubExprs[ORDER]);
4843    assert(NumSubExprs > VAL1);
4844    return cast<Expr>(SubExprs[VAL1]);
4845  }
4846  Expr *getOrderFail() const {
4847    assert(NumSubExprs > ORDER_FAIL);
4848    return cast<Expr>(SubExprs[ORDER_FAIL]);
4849  }
4850  Expr *getVal2() const {
4851    if (Op == AO__atomic_exchange)
4852      return cast<Expr>(SubExprs[ORDER_FAIL]);
4853    assert(NumSubExprs > VAL2);
4854    return cast<Expr>(SubExprs[VAL2]);
4855  }
4856  Expr *getWeak() const {
4857    assert(NumSubExprs > WEAK);
4858    return cast<Expr>(SubExprs[WEAK]);
4859  }
4860
4861  AtomicOp getOp() const { return Op; }
4862  unsigned getNumSubExprs() const { return NumSubExprs; }
4863
4864  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4865  const Expr * const *getSubExprs() const {
4866    return reinterpret_cast<Expr * const *>(SubExprs);
4867  }
4868
4869  bool isVolatile() const {
4870    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4871  }
4872
4873  bool isCmpXChg() const {
4874    return getOp() == AO__c11_atomic_compare_exchange_strong ||
4875           getOp() == AO__c11_atomic_compare_exchange_weak ||
4876           getOp() == AO__atomic_compare_exchange ||
4877           getOp() == AO__atomic_compare_exchange_n;
4878  }
4879
4880  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4881  SourceLocation getRParenLoc() const { return RParenLoc; }
4882
4883  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
4884  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4885
4886  static bool classof(const Stmt *T) {
4887    return T->getStmtClass() == AtomicExprClass;
4888  }
4889
4890  // Iterators
4891  child_range children() {
4892    return child_range(SubExprs, SubExprs+NumSubExprs);
4893  }
4894};
4895
4896/// TypoExpr - Internal placeholder for expressions where typo correction
4897/// still needs to be performed and/or an error diagnostic emitted.
4898class TypoExpr : public Expr {
4899public:
4900  TypoExpr(QualType T)
4901      : Expr(TypoExprClass, T, VK_LValue, OK_Ordinary,
4902             /*isTypeDependent*/ true,
4903             /*isValueDependent*/ true,
4904             /*isInstantiationDependent*/ true,
4905             /*containsUnexpandedParameterPack*/ false) {
4906    assert(T->isDependentType() && "TypoExpr given a non-dependent type");
4907  }
4908
4909  child_range children() {
4910    return child_range(child_iterator(), child_iterator());
4911  }
4912  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4913  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4914
4915  static bool classof(const Stmt *T) {
4916    return T->getStmtClass() == TypoExprClass;
4917  }
4918
4919};
4920} // end namespace clang
4921
4922#endif // LLVM_CLANG_AST_EXPR_H
4923