1//===--- Stmt.h - Classes for representing statements -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Stmt interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_STMT_H
15#define LLVM_CLANG_AST_STMT_H
16
17#include "clang/AST/DeclGroup.h"
18#include "clang/AST/StmtIterator.h"
19#include "clang/Basic/CapturedStmt.h"
20#include "clang/Basic/IdentifierTable.h"
21#include "clang/Basic/LLVM.h"
22#include "clang/Basic/SourceLocation.h"
23#include "llvm/ADT/ArrayRef.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/ErrorHandling.h"
28#include <string>
29
30namespace llvm {
31  class FoldingSetNodeID;
32}
33
34namespace clang {
35  class ASTContext;
36  class Attr;
37  class CapturedDecl;
38  class Decl;
39  class Expr;
40  class IdentifierInfo;
41  class LabelDecl;
42  class ParmVarDecl;
43  class PrinterHelper;
44  struct PrintingPolicy;
45  class QualType;
46  class RecordDecl;
47  class SourceManager;
48  class StringLiteral;
49  class SwitchStmt;
50  class Token;
51  class VarDecl;
52
53//===----------------------------------------------------------------------===//
54// AST classes for statements.
55//===----------------------------------------------------------------------===//
56
57/// Stmt - This represents one statement.
58///
59class LLVM_ALIGNAS(LLVM_PTR_SIZE) Stmt {
60public:
61  enum StmtClass {
62    NoStmtClass = 0,
63#define STMT(CLASS, PARENT) CLASS##Class,
64#define STMT_RANGE(BASE, FIRST, LAST) \
65        first##BASE##Constant=FIRST##Class, last##BASE##Constant=LAST##Class,
66#define LAST_STMT_RANGE(BASE, FIRST, LAST) \
67        first##BASE##Constant=FIRST##Class, last##BASE##Constant=LAST##Class
68#define ABSTRACT_STMT(STMT)
69#include "clang/AST/StmtNodes.inc"
70  };
71
72  // Make vanilla 'new' and 'delete' illegal for Stmts.
73protected:
74  void *operator new(size_t bytes) LLVM_NOEXCEPT {
75    llvm_unreachable("Stmts cannot be allocated with regular 'new'.");
76  }
77  void operator delete(void *data) LLVM_NOEXCEPT {
78    llvm_unreachable("Stmts cannot be released with regular 'delete'.");
79  }
80
81  class StmtBitfields {
82    friend class Stmt;
83
84    /// \brief The statement class.
85    unsigned sClass : 8;
86  };
87  enum { NumStmtBits = 8 };
88
89  class CompoundStmtBitfields {
90    friend class CompoundStmt;
91    unsigned : NumStmtBits;
92
93    unsigned NumStmts : 32 - NumStmtBits;
94  };
95
96  class IfStmtBitfields {
97    friend class IfStmt;
98    unsigned : NumStmtBits;
99
100    unsigned IsConstexpr : 1;
101  };
102
103  class ExprBitfields {
104    friend class Expr;
105    friend class DeclRefExpr; // computeDependence
106    friend class InitListExpr; // ctor
107    friend class DesignatedInitExpr; // ctor
108    friend class BlockDeclRefExpr; // ctor
109    friend class ASTStmtReader; // deserialization
110    friend class CXXNewExpr; // ctor
111    friend class DependentScopeDeclRefExpr; // ctor
112    friend class CXXConstructExpr; // ctor
113    friend class CallExpr; // ctor
114    friend class OffsetOfExpr; // ctor
115    friend class ObjCMessageExpr; // ctor
116    friend class ObjCArrayLiteral; // ctor
117    friend class ObjCDictionaryLiteral; // ctor
118    friend class ShuffleVectorExpr; // ctor
119    friend class ParenListExpr; // ctor
120    friend class CXXUnresolvedConstructExpr; // ctor
121    friend class CXXDependentScopeMemberExpr; // ctor
122    friend class OverloadExpr; // ctor
123    friend class PseudoObjectExpr; // ctor
124    friend class AtomicExpr; // ctor
125    friend class OpaqueValueExpr; // ctor
126    unsigned : NumStmtBits;
127
128    unsigned ValueKind : 2;
129    unsigned ObjectKind : 2;
130    unsigned TypeDependent : 1;
131    unsigned ValueDependent : 1;
132    unsigned InstantiationDependent : 1;
133    unsigned ContainsUnexpandedParameterPack : 1;
134  };
135  enum { NumExprBits = 16 };
136
137  class CharacterLiteralBitfields {
138    friend class CharacterLiteral;
139    unsigned : NumExprBits;
140
141    unsigned Kind : 3;
142  };
143
144  enum APFloatSemantics {
145    IEEEhalf,
146    IEEEsingle,
147    IEEEdouble,
148    x87DoubleExtended,
149    IEEEquad,
150    PPCDoubleDouble
151  };
152
153  class FloatingLiteralBitfields {
154    friend class FloatingLiteral;
155    unsigned : NumExprBits;
156
157    unsigned Semantics : 3; // Provides semantics for APFloat construction
158    unsigned IsExact : 1;
159  };
160
161  class UnaryExprOrTypeTraitExprBitfields {
162    friend class UnaryExprOrTypeTraitExpr;
163    unsigned : NumExprBits;
164
165    unsigned Kind : 2;
166    unsigned IsType : 1; // true if operand is a type, false if an expression.
167  };
168
169  class DeclRefExprBitfields {
170    friend class DeclRefExpr;
171    friend class ASTStmtReader; // deserialization
172    unsigned : NumExprBits;
173
174    unsigned HasQualifier : 1;
175    unsigned HasTemplateKWAndArgsInfo : 1;
176    unsigned HasFoundDecl : 1;
177    unsigned HadMultipleCandidates : 1;
178    unsigned RefersToEnclosingVariableOrCapture : 1;
179  };
180
181  class CastExprBitfields {
182    friend class CastExpr;
183    unsigned : NumExprBits;
184
185    unsigned Kind : 6;
186    unsigned BasePathSize : 32 - 6 - NumExprBits;
187  };
188
189  class CallExprBitfields {
190    friend class CallExpr;
191    unsigned : NumExprBits;
192
193    unsigned NumPreArgs : 1;
194  };
195
196  class ExprWithCleanupsBitfields {
197    friend class ExprWithCleanups;
198    friend class ASTStmtReader; // deserialization
199
200    unsigned : NumExprBits;
201
202    // When false, it must not have side effects.
203    unsigned CleanupsHaveSideEffects : 1;
204
205    unsigned NumObjects : 32 - 1 - NumExprBits;
206  };
207
208  class PseudoObjectExprBitfields {
209    friend class PseudoObjectExpr;
210    friend class ASTStmtReader; // deserialization
211
212    unsigned : NumExprBits;
213
214    // These don't need to be particularly wide, because they're
215    // strictly limited by the forms of expressions we permit.
216    unsigned NumSubExprs : 8;
217    unsigned ResultIndex : 32 - 8 - NumExprBits;
218  };
219
220  class ObjCIndirectCopyRestoreExprBitfields {
221    friend class ObjCIndirectCopyRestoreExpr;
222    unsigned : NumExprBits;
223
224    unsigned ShouldCopy : 1;
225  };
226
227  class InitListExprBitfields {
228    friend class InitListExpr;
229
230    unsigned : NumExprBits;
231
232    /// Whether this initializer list originally had a GNU array-range
233    /// designator in it. This is a temporary marker used by CodeGen.
234    unsigned HadArrayRangeDesignator : 1;
235  };
236
237  class TypeTraitExprBitfields {
238    friend class TypeTraitExpr;
239    friend class ASTStmtReader;
240    friend class ASTStmtWriter;
241
242    unsigned : NumExprBits;
243
244    /// \brief The kind of type trait, which is a value of a TypeTrait enumerator.
245    unsigned Kind : 8;
246
247    /// \brief If this expression is not value-dependent, this indicates whether
248    /// the trait evaluated true or false.
249    unsigned Value : 1;
250
251    /// \brief The number of arguments to this type trait.
252    unsigned NumArgs : 32 - 8 - 1 - NumExprBits;
253  };
254
255  union {
256    StmtBitfields StmtBits;
257    CompoundStmtBitfields CompoundStmtBits;
258    IfStmtBitfields IfStmtBits;
259    ExprBitfields ExprBits;
260    CharacterLiteralBitfields CharacterLiteralBits;
261    FloatingLiteralBitfields FloatingLiteralBits;
262    UnaryExprOrTypeTraitExprBitfields UnaryExprOrTypeTraitExprBits;
263    DeclRefExprBitfields DeclRefExprBits;
264    CastExprBitfields CastExprBits;
265    CallExprBitfields CallExprBits;
266    ExprWithCleanupsBitfields ExprWithCleanupsBits;
267    PseudoObjectExprBitfields PseudoObjectExprBits;
268    ObjCIndirectCopyRestoreExprBitfields ObjCIndirectCopyRestoreExprBits;
269    InitListExprBitfields InitListExprBits;
270    TypeTraitExprBitfields TypeTraitExprBits;
271  };
272
273  friend class ASTStmtReader;
274  friend class ASTStmtWriter;
275
276public:
277  // Only allow allocation of Stmts using the allocator in ASTContext
278  // or by doing a placement new.
279  void* operator new(size_t bytes, const ASTContext& C,
280                     unsigned alignment = 8);
281
282  void* operator new(size_t bytes, const ASTContext* C,
283                     unsigned alignment = 8) {
284    return operator new(bytes, *C, alignment);
285  }
286
287  void *operator new(size_t bytes, void *mem) LLVM_NOEXCEPT { return mem; }
288
289  void operator delete(void *, const ASTContext &, unsigned) LLVM_NOEXCEPT {}
290  void operator delete(void *, const ASTContext *, unsigned) LLVM_NOEXCEPT {}
291  void operator delete(void *, size_t) LLVM_NOEXCEPT {}
292  void operator delete(void *, void *) LLVM_NOEXCEPT {}
293
294public:
295  /// \brief A placeholder type used to construct an empty shell of a
296  /// type, that will be filled in later (e.g., by some
297  /// de-serialization).
298  struct EmptyShell { };
299
300protected:
301  /// Iterator for iterating over Stmt * arrays that contain only Expr *
302  ///
303  /// This is needed because AST nodes use Stmt* arrays to store
304  /// references to children (to be compatible with StmtIterator).
305  struct ExprIterator
306      : llvm::iterator_adaptor_base<ExprIterator, Stmt **,
307                                    std::random_access_iterator_tag, Expr *> {
308    ExprIterator() : iterator_adaptor_base(nullptr) {}
309    ExprIterator(Stmt **I) : iterator_adaptor_base(I) {}
310
311    reference operator*() const {
312      assert((*I)->getStmtClass() >= firstExprConstant &&
313             (*I)->getStmtClass() <= lastExprConstant);
314      return *reinterpret_cast<Expr **>(I);
315    }
316  };
317
318  /// Const iterator for iterating over Stmt * arrays that contain only Expr *
319  struct ConstExprIterator
320      : llvm::iterator_adaptor_base<ConstExprIterator, const Stmt *const *,
321                                    std::random_access_iterator_tag,
322                                    const Expr *const> {
323    ConstExprIterator() : iterator_adaptor_base(nullptr) {}
324    ConstExprIterator(const Stmt *const *I) : iterator_adaptor_base(I) {}
325
326    reference operator*() const {
327      assert((*I)->getStmtClass() >= firstExprConstant &&
328             (*I)->getStmtClass() <= lastExprConstant);
329      return *reinterpret_cast<const Expr *const *>(I);
330    }
331  };
332
333private:
334  /// \brief Whether statistic collection is enabled.
335  static bool StatisticsEnabled;
336
337protected:
338  /// \brief Construct an empty statement.
339  explicit Stmt(StmtClass SC, EmptyShell) : Stmt(SC) {}
340
341public:
342  Stmt(StmtClass SC) {
343    static_assert(sizeof(*this) % llvm::AlignOf<void *>::Alignment == 0,
344                  "Insufficient alignment!");
345    StmtBits.sClass = SC;
346    if (StatisticsEnabled) Stmt::addStmtClass(SC);
347  }
348
349  StmtClass getStmtClass() const {
350    return static_cast<StmtClass>(StmtBits.sClass);
351  }
352  const char *getStmtClassName() const;
353
354  /// SourceLocation tokens are not useful in isolation - they are low level
355  /// value objects created/interpreted by SourceManager. We assume AST
356  /// clients will have a pointer to the respective SourceManager.
357  SourceRange getSourceRange() const LLVM_READONLY;
358  SourceLocation getLocStart() const LLVM_READONLY;
359  SourceLocation getLocEnd() const LLVM_READONLY;
360
361  // global temp stats (until we have a per-module visitor)
362  static void addStmtClass(const StmtClass s);
363  static void EnableStatistics();
364  static void PrintStats();
365
366  /// \brief Dumps the specified AST fragment and all subtrees to
367  /// \c llvm::errs().
368  void dump() const;
369  void dump(SourceManager &SM) const;
370  void dump(raw_ostream &OS, SourceManager &SM) const;
371  void dump(raw_ostream &OS) const;
372
373  /// dumpColor - same as dump(), but forces color highlighting.
374  void dumpColor() const;
375
376  /// dumpPretty/printPretty - These two methods do a "pretty print" of the AST
377  /// back to its original source language syntax.
378  void dumpPretty(const ASTContext &Context) const;
379  void printPretty(raw_ostream &OS, PrinterHelper *Helper,
380                   const PrintingPolicy &Policy,
381                   unsigned Indentation = 0) const;
382
383  /// viewAST - Visualize an AST rooted at this Stmt* using GraphViz.  Only
384  ///   works on systems with GraphViz (Mac OS X) or dot+gv installed.
385  void viewAST() const;
386
387  /// Skip past any implicit AST nodes which might surround this
388  /// statement, such as ExprWithCleanups or ImplicitCastExpr nodes.
389  Stmt *IgnoreImplicit();
390
391  /// \brief Skip no-op (attributed, compound) container stmts and skip captured
392  /// stmt at the top, if \a IgnoreCaptured is true.
393  Stmt *IgnoreContainers(bool IgnoreCaptured = false);
394
395  const Stmt *stripLabelLikeStatements() const;
396  Stmt *stripLabelLikeStatements() {
397    return const_cast<Stmt*>(
398      const_cast<const Stmt*>(this)->stripLabelLikeStatements());
399  }
400
401  /// Child Iterators: All subclasses must implement 'children'
402  /// to permit easy iteration over the substatements/subexpessions of an
403  /// AST node.  This permits easy iteration over all nodes in the AST.
404  typedef StmtIterator       child_iterator;
405  typedef ConstStmtIterator  const_child_iterator;
406
407  typedef llvm::iterator_range<child_iterator> child_range;
408  typedef llvm::iterator_range<const_child_iterator> const_child_range;
409
410  child_range children();
411  const_child_range children() const {
412    auto Children = const_cast<Stmt *>(this)->children();
413    return const_child_range(Children.begin(), Children.end());
414  }
415
416  child_iterator child_begin() { return children().begin(); }
417  child_iterator child_end() { return children().end(); }
418
419  const_child_iterator child_begin() const { return children().begin(); }
420  const_child_iterator child_end() const { return children().end(); }
421
422  /// \brief Produce a unique representation of the given statement.
423  ///
424  /// \param ID once the profiling operation is complete, will contain
425  /// the unique representation of the given statement.
426  ///
427  /// \param Context the AST context in which the statement resides
428  ///
429  /// \param Canonical whether the profile should be based on the canonical
430  /// representation of this statement (e.g., where non-type template
431  /// parameters are identified by index/level rather than their
432  /// declaration pointers) or the exact representation of the statement as
433  /// written in the source.
434  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
435               bool Canonical) const;
436};
437
438/// DeclStmt - Adaptor class for mixing declarations with statements and
439/// expressions. For example, CompoundStmt mixes statements, expressions
440/// and declarations (variables, types). Another example is ForStmt, where
441/// the first statement can be an expression or a declaration.
442///
443class DeclStmt : public Stmt {
444  DeclGroupRef DG;
445  SourceLocation StartLoc, EndLoc;
446
447public:
448  DeclStmt(DeclGroupRef dg, SourceLocation startLoc,
449           SourceLocation endLoc) : Stmt(DeclStmtClass), DG(dg),
450                                    StartLoc(startLoc), EndLoc(endLoc) {}
451
452  /// \brief Build an empty declaration statement.
453  explicit DeclStmt(EmptyShell Empty) : Stmt(DeclStmtClass, Empty) { }
454
455  /// isSingleDecl - This method returns true if this DeclStmt refers
456  /// to a single Decl.
457  bool isSingleDecl() const {
458    return DG.isSingleDecl();
459  }
460
461  const Decl *getSingleDecl() const { return DG.getSingleDecl(); }
462  Decl *getSingleDecl() { return DG.getSingleDecl(); }
463
464  const DeclGroupRef getDeclGroup() const { return DG; }
465  DeclGroupRef getDeclGroup() { return DG; }
466  void setDeclGroup(DeclGroupRef DGR) { DG = DGR; }
467
468  SourceLocation getStartLoc() const { return StartLoc; }
469  void setStartLoc(SourceLocation L) { StartLoc = L; }
470  SourceLocation getEndLoc() const { return EndLoc; }
471  void setEndLoc(SourceLocation L) { EndLoc = L; }
472
473  SourceLocation getLocStart() const LLVM_READONLY { return StartLoc; }
474  SourceLocation getLocEnd() const LLVM_READONLY { return EndLoc; }
475
476  static bool classof(const Stmt *T) {
477    return T->getStmtClass() == DeclStmtClass;
478  }
479
480  // Iterators over subexpressions.
481  child_range children() {
482    return child_range(child_iterator(DG.begin(), DG.end()),
483                       child_iterator(DG.end(), DG.end()));
484  }
485
486  typedef DeclGroupRef::iterator decl_iterator;
487  typedef DeclGroupRef::const_iterator const_decl_iterator;
488  typedef llvm::iterator_range<decl_iterator> decl_range;
489  typedef llvm::iterator_range<const_decl_iterator> decl_const_range;
490
491  decl_range decls() { return decl_range(decl_begin(), decl_end()); }
492  decl_const_range decls() const {
493    return decl_const_range(decl_begin(), decl_end());
494  }
495  decl_iterator decl_begin() { return DG.begin(); }
496  decl_iterator decl_end() { return DG.end(); }
497  const_decl_iterator decl_begin() const { return DG.begin(); }
498  const_decl_iterator decl_end() const { return DG.end(); }
499
500  typedef std::reverse_iterator<decl_iterator> reverse_decl_iterator;
501  reverse_decl_iterator decl_rbegin() {
502    return reverse_decl_iterator(decl_end());
503  }
504  reverse_decl_iterator decl_rend() {
505    return reverse_decl_iterator(decl_begin());
506  }
507};
508
509/// NullStmt - This is the null statement ";": C99 6.8.3p3.
510///
511class NullStmt : public Stmt {
512  SourceLocation SemiLoc;
513
514  /// \brief True if the null statement was preceded by an empty macro, e.g:
515  /// @code
516  ///   #define CALL(x)
517  ///   CALL(0);
518  /// @endcode
519  bool HasLeadingEmptyMacro;
520public:
521  NullStmt(SourceLocation L, bool hasLeadingEmptyMacro = false)
522    : Stmt(NullStmtClass), SemiLoc(L),
523      HasLeadingEmptyMacro(hasLeadingEmptyMacro) {}
524
525  /// \brief Build an empty null statement.
526  explicit NullStmt(EmptyShell Empty) : Stmt(NullStmtClass, Empty),
527      HasLeadingEmptyMacro(false) { }
528
529  SourceLocation getSemiLoc() const { return SemiLoc; }
530  void setSemiLoc(SourceLocation L) { SemiLoc = L; }
531
532  bool hasLeadingEmptyMacro() const { return HasLeadingEmptyMacro; }
533
534  SourceLocation getLocStart() const LLVM_READONLY { return SemiLoc; }
535  SourceLocation getLocEnd() const LLVM_READONLY { return SemiLoc; }
536
537  static bool classof(const Stmt *T) {
538    return T->getStmtClass() == NullStmtClass;
539  }
540
541  child_range children() {
542    return child_range(child_iterator(), child_iterator());
543  }
544
545  friend class ASTStmtReader;
546  friend class ASTStmtWriter;
547};
548
549/// CompoundStmt - This represents a group of statements like { stmt stmt }.
550///
551class CompoundStmt : public Stmt {
552  Stmt** Body;
553  SourceLocation LBraceLoc, RBraceLoc;
554
555  friend class ASTStmtReader;
556
557public:
558  CompoundStmt(const ASTContext &C, ArrayRef<Stmt*> Stmts,
559               SourceLocation LB, SourceLocation RB);
560
561  // \brief Build an empty compound statement with a location.
562  explicit CompoundStmt(SourceLocation Loc)
563    : Stmt(CompoundStmtClass), Body(nullptr), LBraceLoc(Loc), RBraceLoc(Loc) {
564    CompoundStmtBits.NumStmts = 0;
565  }
566
567  // \brief Build an empty compound statement.
568  explicit CompoundStmt(EmptyShell Empty)
569    : Stmt(CompoundStmtClass, Empty), Body(nullptr) {
570    CompoundStmtBits.NumStmts = 0;
571  }
572
573  void setStmts(const ASTContext &C, ArrayRef<Stmt *> Stmts);
574
575  bool body_empty() const { return CompoundStmtBits.NumStmts == 0; }
576  unsigned size() const { return CompoundStmtBits.NumStmts; }
577
578  typedef Stmt** body_iterator;
579  typedef llvm::iterator_range<body_iterator> body_range;
580
581  body_range body() { return body_range(body_begin(), body_end()); }
582  body_iterator body_begin() { return Body; }
583  body_iterator body_end() { return Body + size(); }
584  Stmt *body_front() { return !body_empty() ? Body[0] : nullptr; }
585  Stmt *body_back() { return !body_empty() ? Body[size()-1] : nullptr; }
586
587  void setLastStmt(Stmt *S) {
588    assert(!body_empty() && "setLastStmt");
589    Body[size()-1] = S;
590  }
591
592  typedef Stmt* const * const_body_iterator;
593  typedef llvm::iterator_range<const_body_iterator> body_const_range;
594
595  body_const_range body() const {
596    return body_const_range(body_begin(), body_end());
597  }
598  const_body_iterator body_begin() const { return Body; }
599  const_body_iterator body_end() const { return Body + size(); }
600  const Stmt *body_front() const {
601    return !body_empty() ? Body[0] : nullptr;
602  }
603  const Stmt *body_back() const {
604    return !body_empty() ? Body[size() - 1] : nullptr;
605  }
606
607  typedef std::reverse_iterator<body_iterator> reverse_body_iterator;
608  reverse_body_iterator body_rbegin() {
609    return reverse_body_iterator(body_end());
610  }
611  reverse_body_iterator body_rend() {
612    return reverse_body_iterator(body_begin());
613  }
614
615  typedef std::reverse_iterator<const_body_iterator>
616          const_reverse_body_iterator;
617
618  const_reverse_body_iterator body_rbegin() const {
619    return const_reverse_body_iterator(body_end());
620  }
621
622  const_reverse_body_iterator body_rend() const {
623    return const_reverse_body_iterator(body_begin());
624  }
625
626  SourceLocation getLocStart() const LLVM_READONLY { return LBraceLoc; }
627  SourceLocation getLocEnd() const LLVM_READONLY { return RBraceLoc; }
628
629  SourceLocation getLBracLoc() const { return LBraceLoc; }
630  SourceLocation getRBracLoc() const { return RBraceLoc; }
631
632  static bool classof(const Stmt *T) {
633    return T->getStmtClass() == CompoundStmtClass;
634  }
635
636  // Iterators
637  child_range children() {
638    return child_range(Body, Body + CompoundStmtBits.NumStmts);
639  }
640
641  const_child_range children() const {
642    return const_child_range(child_iterator(Body),
643                             child_iterator(Body + CompoundStmtBits.NumStmts));
644  }
645};
646
647// SwitchCase is the base class for CaseStmt and DefaultStmt,
648class SwitchCase : public Stmt {
649protected:
650  // A pointer to the following CaseStmt or DefaultStmt class,
651  // used by SwitchStmt.
652  SwitchCase *NextSwitchCase;
653  SourceLocation KeywordLoc;
654  SourceLocation ColonLoc;
655
656  SwitchCase(StmtClass SC, SourceLocation KWLoc, SourceLocation ColonLoc)
657    : Stmt(SC), NextSwitchCase(nullptr), KeywordLoc(KWLoc), ColonLoc(ColonLoc) {
658  }
659
660  SwitchCase(StmtClass SC, EmptyShell)
661    : Stmt(SC), NextSwitchCase(nullptr) {}
662
663public:
664  const SwitchCase *getNextSwitchCase() const { return NextSwitchCase; }
665
666  SwitchCase *getNextSwitchCase() { return NextSwitchCase; }
667
668  void setNextSwitchCase(SwitchCase *SC) { NextSwitchCase = SC; }
669
670  SourceLocation getKeywordLoc() const { return KeywordLoc; }
671  void setKeywordLoc(SourceLocation L) { KeywordLoc = L; }
672  SourceLocation getColonLoc() const { return ColonLoc; }
673  void setColonLoc(SourceLocation L) { ColonLoc = L; }
674
675  Stmt *getSubStmt();
676  const Stmt *getSubStmt() const {
677    return const_cast<SwitchCase*>(this)->getSubStmt();
678  }
679
680  SourceLocation getLocStart() const LLVM_READONLY { return KeywordLoc; }
681  SourceLocation getLocEnd() const LLVM_READONLY;
682
683  static bool classof(const Stmt *T) {
684    return T->getStmtClass() == CaseStmtClass ||
685           T->getStmtClass() == DefaultStmtClass;
686  }
687};
688
689class CaseStmt : public SwitchCase {
690  SourceLocation EllipsisLoc;
691  enum { LHS, RHS, SUBSTMT, END_EXPR };
692  Stmt* SubExprs[END_EXPR];  // The expression for the RHS is Non-null for
693                             // GNU "case 1 ... 4" extension
694public:
695  CaseStmt(Expr *lhs, Expr *rhs, SourceLocation caseLoc,
696           SourceLocation ellipsisLoc, SourceLocation colonLoc)
697    : SwitchCase(CaseStmtClass, caseLoc, colonLoc) {
698    SubExprs[SUBSTMT] = nullptr;
699    SubExprs[LHS] = reinterpret_cast<Stmt*>(lhs);
700    SubExprs[RHS] = reinterpret_cast<Stmt*>(rhs);
701    EllipsisLoc = ellipsisLoc;
702  }
703
704  /// \brief Build an empty switch case statement.
705  explicit CaseStmt(EmptyShell Empty) : SwitchCase(CaseStmtClass, Empty) { }
706
707  SourceLocation getCaseLoc() const { return KeywordLoc; }
708  void setCaseLoc(SourceLocation L) { KeywordLoc = L; }
709  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
710  void setEllipsisLoc(SourceLocation L) { EllipsisLoc = L; }
711  SourceLocation getColonLoc() const { return ColonLoc; }
712  void setColonLoc(SourceLocation L) { ColonLoc = L; }
713
714  Expr *getLHS() { return reinterpret_cast<Expr*>(SubExprs[LHS]); }
715  Expr *getRHS() { return reinterpret_cast<Expr*>(SubExprs[RHS]); }
716  Stmt *getSubStmt() { return SubExprs[SUBSTMT]; }
717
718  const Expr *getLHS() const {
719    return reinterpret_cast<const Expr*>(SubExprs[LHS]);
720  }
721  const Expr *getRHS() const {
722    return reinterpret_cast<const Expr*>(SubExprs[RHS]);
723  }
724  const Stmt *getSubStmt() const { return SubExprs[SUBSTMT]; }
725
726  void setSubStmt(Stmt *S) { SubExprs[SUBSTMT] = S; }
727  void setLHS(Expr *Val) { SubExprs[LHS] = reinterpret_cast<Stmt*>(Val); }
728  void setRHS(Expr *Val) { SubExprs[RHS] = reinterpret_cast<Stmt*>(Val); }
729
730  SourceLocation getLocStart() const LLVM_READONLY { return KeywordLoc; }
731  SourceLocation getLocEnd() const LLVM_READONLY {
732    // Handle deeply nested case statements with iteration instead of recursion.
733    const CaseStmt *CS = this;
734    while (const CaseStmt *CS2 = dyn_cast<CaseStmt>(CS->getSubStmt()))
735      CS = CS2;
736
737    return CS->getSubStmt()->getLocEnd();
738  }
739
740  static bool classof(const Stmt *T) {
741    return T->getStmtClass() == CaseStmtClass;
742  }
743
744  // Iterators
745  child_range children() {
746    return child_range(&SubExprs[0], &SubExprs[END_EXPR]);
747  }
748};
749
750class DefaultStmt : public SwitchCase {
751  Stmt* SubStmt;
752public:
753  DefaultStmt(SourceLocation DL, SourceLocation CL, Stmt *substmt) :
754    SwitchCase(DefaultStmtClass, DL, CL), SubStmt(substmt) {}
755
756  /// \brief Build an empty default statement.
757  explicit DefaultStmt(EmptyShell Empty)
758    : SwitchCase(DefaultStmtClass, Empty) { }
759
760  Stmt *getSubStmt() { return SubStmt; }
761  const Stmt *getSubStmt() const { return SubStmt; }
762  void setSubStmt(Stmt *S) { SubStmt = S; }
763
764  SourceLocation getDefaultLoc() const { return KeywordLoc; }
765  void setDefaultLoc(SourceLocation L) { KeywordLoc = L; }
766  SourceLocation getColonLoc() const { return ColonLoc; }
767  void setColonLoc(SourceLocation L) { ColonLoc = L; }
768
769  SourceLocation getLocStart() const LLVM_READONLY { return KeywordLoc; }
770  SourceLocation getLocEnd() const LLVM_READONLY { return SubStmt->getLocEnd();}
771
772  static bool classof(const Stmt *T) {
773    return T->getStmtClass() == DefaultStmtClass;
774  }
775
776  // Iterators
777  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
778};
779
780inline SourceLocation SwitchCase::getLocEnd() const {
781  if (const CaseStmt *CS = dyn_cast<CaseStmt>(this))
782    return CS->getLocEnd();
783  return cast<DefaultStmt>(this)->getLocEnd();
784}
785
786/// LabelStmt - Represents a label, which has a substatement.  For example:
787///    foo: return;
788///
789class LabelStmt : public Stmt {
790  SourceLocation IdentLoc;
791  LabelDecl *TheDecl;
792  Stmt *SubStmt;
793
794public:
795  LabelStmt(SourceLocation IL, LabelDecl *D, Stmt *substmt)
796      : Stmt(LabelStmtClass), IdentLoc(IL), TheDecl(D), SubStmt(substmt) {
797    static_assert(sizeof(LabelStmt) ==
798                      2 * sizeof(SourceLocation) + 2 * sizeof(void *),
799                  "LabelStmt too big");
800  }
801
802  // \brief Build an empty label statement.
803  explicit LabelStmt(EmptyShell Empty) : Stmt(LabelStmtClass, Empty) { }
804
805  SourceLocation getIdentLoc() const { return IdentLoc; }
806  LabelDecl *getDecl() const { return TheDecl; }
807  void setDecl(LabelDecl *D) { TheDecl = D; }
808  const char *getName() const;
809  Stmt *getSubStmt() { return SubStmt; }
810  const Stmt *getSubStmt() const { return SubStmt; }
811  void setIdentLoc(SourceLocation L) { IdentLoc = L; }
812  void setSubStmt(Stmt *SS) { SubStmt = SS; }
813
814  SourceLocation getLocStart() const LLVM_READONLY { return IdentLoc; }
815  SourceLocation getLocEnd() const LLVM_READONLY { return SubStmt->getLocEnd();}
816
817  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
818
819  static bool classof(const Stmt *T) {
820    return T->getStmtClass() == LabelStmtClass;
821  }
822};
823
824
825/// \brief Represents an attribute applied to a statement.
826///
827/// Represents an attribute applied to a statement. For example:
828///   [[omp::for(...)]] for (...) { ... }
829///
830class AttributedStmt : public Stmt {
831  Stmt *SubStmt;
832  SourceLocation AttrLoc;
833  unsigned NumAttrs;
834
835  friend class ASTStmtReader;
836
837  AttributedStmt(SourceLocation Loc, ArrayRef<const Attr*> Attrs, Stmt *SubStmt)
838    : Stmt(AttributedStmtClass), SubStmt(SubStmt), AttrLoc(Loc),
839      NumAttrs(Attrs.size()) {
840    std::copy(Attrs.begin(), Attrs.end(), getAttrArrayPtr());
841  }
842
843  explicit AttributedStmt(EmptyShell Empty, unsigned NumAttrs)
844    : Stmt(AttributedStmtClass, Empty), NumAttrs(NumAttrs) {
845    std::fill_n(getAttrArrayPtr(), NumAttrs, nullptr);
846  }
847
848  const Attr *const *getAttrArrayPtr() const {
849    return reinterpret_cast<const Attr *const *>(this + 1);
850  }
851  const Attr **getAttrArrayPtr() {
852    return reinterpret_cast<const Attr **>(this + 1);
853  }
854
855public:
856  static AttributedStmt *Create(const ASTContext &C, SourceLocation Loc,
857                                ArrayRef<const Attr*> Attrs, Stmt *SubStmt);
858  // \brief Build an empty attributed statement.
859  static AttributedStmt *CreateEmpty(const ASTContext &C, unsigned NumAttrs);
860
861  SourceLocation getAttrLoc() const { return AttrLoc; }
862  ArrayRef<const Attr*> getAttrs() const {
863    return llvm::makeArrayRef(getAttrArrayPtr(), NumAttrs);
864  }
865  Stmt *getSubStmt() { return SubStmt; }
866  const Stmt *getSubStmt() const { return SubStmt; }
867
868  SourceLocation getLocStart() const LLVM_READONLY { return AttrLoc; }
869  SourceLocation getLocEnd() const LLVM_READONLY { return SubStmt->getLocEnd();}
870
871  child_range children() { return child_range(&SubStmt, &SubStmt + 1); }
872
873  static bool classof(const Stmt *T) {
874    return T->getStmtClass() == AttributedStmtClass;
875  }
876};
877
878
879/// IfStmt - This represents an if/then/else.
880///
881class IfStmt : public Stmt {
882  enum { INIT, VAR, COND, THEN, ELSE, END_EXPR };
883  Stmt* SubExprs[END_EXPR];
884
885  SourceLocation IfLoc;
886  SourceLocation ElseLoc;
887
888public:
889  IfStmt(const ASTContext &C, SourceLocation IL,
890         bool IsConstexpr, Stmt *init, VarDecl *var, Expr *cond,
891         Stmt *then, SourceLocation EL = SourceLocation(),
892         Stmt *elsev = nullptr);
893
894  /// \brief Build an empty if/then/else statement
895  explicit IfStmt(EmptyShell Empty) : Stmt(IfStmtClass, Empty) { }
896
897  /// \brief Retrieve the variable declared in this "if" statement, if any.
898  ///
899  /// In the following example, "x" is the condition variable.
900  /// \code
901  /// if (int x = foo()) {
902  ///   printf("x is %d", x);
903  /// }
904  /// \endcode
905  VarDecl *getConditionVariable() const;
906  void setConditionVariable(const ASTContext &C, VarDecl *V);
907
908  /// If this IfStmt has a condition variable, return the faux DeclStmt
909  /// associated with the creation of that condition variable.
910  const DeclStmt *getConditionVariableDeclStmt() const {
911    return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
912  }
913
914  Stmt *getInit() { return SubExprs[INIT]; }
915  const Stmt *getInit() const { return SubExprs[INIT]; }
916  void setInit(Stmt *S) { SubExprs[INIT] = S; }
917  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
918  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
919  const Stmt *getThen() const { return SubExprs[THEN]; }
920  void setThen(Stmt *S) { SubExprs[THEN] = S; }
921  const Stmt *getElse() const { return SubExprs[ELSE]; }
922  void setElse(Stmt *S) { SubExprs[ELSE] = S; }
923
924  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
925  Stmt *getThen() { return SubExprs[THEN]; }
926  Stmt *getElse() { return SubExprs[ELSE]; }
927
928  SourceLocation getIfLoc() const { return IfLoc; }
929  void setIfLoc(SourceLocation L) { IfLoc = L; }
930  SourceLocation getElseLoc() const { return ElseLoc; }
931  void setElseLoc(SourceLocation L) { ElseLoc = L; }
932
933  bool isConstexpr() const { return IfStmtBits.IsConstexpr; }
934  void setConstexpr(bool C) { IfStmtBits.IsConstexpr = C; }
935
936  SourceLocation getLocStart() const LLVM_READONLY { return IfLoc; }
937  SourceLocation getLocEnd() const LLVM_READONLY {
938    if (SubExprs[ELSE])
939      return SubExprs[ELSE]->getLocEnd();
940    else
941      return SubExprs[THEN]->getLocEnd();
942  }
943
944  // Iterators over subexpressions.  The iterators will include iterating
945  // over the initialization expression referenced by the condition variable.
946  child_range children() {
947    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
948  }
949
950  static bool classof(const Stmt *T) {
951    return T->getStmtClass() == IfStmtClass;
952  }
953};
954
955/// SwitchStmt - This represents a 'switch' stmt.
956///
957class SwitchStmt : public Stmt {
958  SourceLocation SwitchLoc;
959  enum { INIT, VAR, COND, BODY, END_EXPR };
960  Stmt* SubExprs[END_EXPR];
961  // This points to a linked list of case and default statements and, if the
962  // SwitchStmt is a switch on an enum value, records whether all the enum
963  // values were covered by CaseStmts.  The coverage information value is meant
964  // to be a hint for possible clients.
965  llvm::PointerIntPair<SwitchCase *, 1, bool> FirstCase;
966
967public:
968  SwitchStmt(const ASTContext &C, Stmt *Init, VarDecl *Var, Expr *cond);
969
970  /// \brief Build a empty switch statement.
971  explicit SwitchStmt(EmptyShell Empty) : Stmt(SwitchStmtClass, Empty) { }
972
973  /// \brief Retrieve the variable declared in this "switch" statement, if any.
974  ///
975  /// In the following example, "x" is the condition variable.
976  /// \code
977  /// switch (int x = foo()) {
978  ///   case 0: break;
979  ///   // ...
980  /// }
981  /// \endcode
982  VarDecl *getConditionVariable() const;
983  void setConditionVariable(const ASTContext &C, VarDecl *V);
984
985  /// If this SwitchStmt has a condition variable, return the faux DeclStmt
986  /// associated with the creation of that condition variable.
987  const DeclStmt *getConditionVariableDeclStmt() const {
988    return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
989  }
990
991  Stmt *getInit() { return SubExprs[INIT]; }
992  const Stmt *getInit() const { return SubExprs[INIT]; }
993  void setInit(Stmt *S) { SubExprs[INIT] = S; }
994  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
995  const Stmt *getBody() const { return SubExprs[BODY]; }
996  const SwitchCase *getSwitchCaseList() const { return FirstCase.getPointer(); }
997
998  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]);}
999  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
1000  Stmt *getBody() { return SubExprs[BODY]; }
1001  void setBody(Stmt *S) { SubExprs[BODY] = S; }
1002  SwitchCase *getSwitchCaseList() { return FirstCase.getPointer(); }
1003
1004  /// \brief Set the case list for this switch statement.
1005  void setSwitchCaseList(SwitchCase *SC) { FirstCase.setPointer(SC); }
1006
1007  SourceLocation getSwitchLoc() const { return SwitchLoc; }
1008  void setSwitchLoc(SourceLocation L) { SwitchLoc = L; }
1009
1010  void setBody(Stmt *S, SourceLocation SL) {
1011    SubExprs[BODY] = S;
1012    SwitchLoc = SL;
1013  }
1014  void addSwitchCase(SwitchCase *SC) {
1015    assert(!SC->getNextSwitchCase()
1016           && "case/default already added to a switch");
1017    SC->setNextSwitchCase(FirstCase.getPointer());
1018    FirstCase.setPointer(SC);
1019  }
1020
1021  /// Set a flag in the SwitchStmt indicating that if the 'switch (X)' is a
1022  /// switch over an enum value then all cases have been explicitly covered.
1023  void setAllEnumCasesCovered() { FirstCase.setInt(true); }
1024
1025  /// Returns true if the SwitchStmt is a switch of an enum value and all cases
1026  /// have been explicitly covered.
1027  bool isAllEnumCasesCovered() const { return FirstCase.getInt(); }
1028
1029  SourceLocation getLocStart() const LLVM_READONLY { return SwitchLoc; }
1030  SourceLocation getLocEnd() const LLVM_READONLY {
1031    return SubExprs[BODY] ? SubExprs[BODY]->getLocEnd() : SubExprs[COND]->getLocEnd();
1032  }
1033
1034  // Iterators
1035  child_range children() {
1036    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1037  }
1038
1039  static bool classof(const Stmt *T) {
1040    return T->getStmtClass() == SwitchStmtClass;
1041  }
1042};
1043
1044
1045/// WhileStmt - This represents a 'while' stmt.
1046///
1047class WhileStmt : public Stmt {
1048  SourceLocation WhileLoc;
1049  enum { VAR, COND, BODY, END_EXPR };
1050  Stmt* SubExprs[END_EXPR];
1051public:
1052  WhileStmt(const ASTContext &C, VarDecl *Var, Expr *cond, Stmt *body,
1053            SourceLocation WL);
1054
1055  /// \brief Build an empty while statement.
1056  explicit WhileStmt(EmptyShell Empty) : Stmt(WhileStmtClass, Empty) { }
1057
1058  /// \brief Retrieve the variable declared in this "while" statement, if any.
1059  ///
1060  /// In the following example, "x" is the condition variable.
1061  /// \code
1062  /// while (int x = random()) {
1063  ///   // ...
1064  /// }
1065  /// \endcode
1066  VarDecl *getConditionVariable() const;
1067  void setConditionVariable(const ASTContext &C, VarDecl *V);
1068
1069  /// If this WhileStmt has a condition variable, return the faux DeclStmt
1070  /// associated with the creation of that condition variable.
1071  const DeclStmt *getConditionVariableDeclStmt() const {
1072    return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
1073  }
1074
1075  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
1076  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
1077  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
1078  Stmt *getBody() { return SubExprs[BODY]; }
1079  const Stmt *getBody() const { return SubExprs[BODY]; }
1080  void setBody(Stmt *S) { SubExprs[BODY] = S; }
1081
1082  SourceLocation getWhileLoc() const { return WhileLoc; }
1083  void setWhileLoc(SourceLocation L) { WhileLoc = L; }
1084
1085  SourceLocation getLocStart() const LLVM_READONLY { return WhileLoc; }
1086  SourceLocation getLocEnd() const LLVM_READONLY {
1087    return SubExprs[BODY]->getLocEnd();
1088  }
1089
1090  static bool classof(const Stmt *T) {
1091    return T->getStmtClass() == WhileStmtClass;
1092  }
1093
1094  // Iterators
1095  child_range children() {
1096    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1097  }
1098};
1099
1100/// DoStmt - This represents a 'do/while' stmt.
1101///
1102class DoStmt : public Stmt {
1103  SourceLocation DoLoc;
1104  enum { BODY, COND, END_EXPR };
1105  Stmt* SubExprs[END_EXPR];
1106  SourceLocation WhileLoc;
1107  SourceLocation RParenLoc;  // Location of final ')' in do stmt condition.
1108
1109public:
1110  DoStmt(Stmt *body, Expr *cond, SourceLocation DL, SourceLocation WL,
1111         SourceLocation RP)
1112    : Stmt(DoStmtClass), DoLoc(DL), WhileLoc(WL), RParenLoc(RP) {
1113    SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
1114    SubExprs[BODY] = body;
1115  }
1116
1117  /// \brief Build an empty do-while statement.
1118  explicit DoStmt(EmptyShell Empty) : Stmt(DoStmtClass, Empty) { }
1119
1120  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
1121  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
1122  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
1123  Stmt *getBody() { return SubExprs[BODY]; }
1124  const Stmt *getBody() const { return SubExprs[BODY]; }
1125  void setBody(Stmt *S) { SubExprs[BODY] = S; }
1126
1127  SourceLocation getDoLoc() const { return DoLoc; }
1128  void setDoLoc(SourceLocation L) { DoLoc = L; }
1129  SourceLocation getWhileLoc() const { return WhileLoc; }
1130  void setWhileLoc(SourceLocation L) { WhileLoc = L; }
1131
1132  SourceLocation getRParenLoc() const { return RParenLoc; }
1133  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1134
1135  SourceLocation getLocStart() const LLVM_READONLY { return DoLoc; }
1136  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1137
1138  static bool classof(const Stmt *T) {
1139    return T->getStmtClass() == DoStmtClass;
1140  }
1141
1142  // Iterators
1143  child_range children() {
1144    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1145  }
1146};
1147
1148
1149/// ForStmt - This represents a 'for (init;cond;inc)' stmt.  Note that any of
1150/// the init/cond/inc parts of the ForStmt will be null if they were not
1151/// specified in the source.
1152///
1153class ForStmt : public Stmt {
1154  SourceLocation ForLoc;
1155  enum { INIT, CONDVAR, COND, INC, BODY, END_EXPR };
1156  Stmt* SubExprs[END_EXPR]; // SubExprs[INIT] is an expression or declstmt.
1157  SourceLocation LParenLoc, RParenLoc;
1158
1159public:
1160  ForStmt(const ASTContext &C, Stmt *Init, Expr *Cond, VarDecl *condVar,
1161          Expr *Inc, Stmt *Body, SourceLocation FL, SourceLocation LP,
1162          SourceLocation RP);
1163
1164  /// \brief Build an empty for statement.
1165  explicit ForStmt(EmptyShell Empty) : Stmt(ForStmtClass, Empty) { }
1166
1167  Stmt *getInit() { return SubExprs[INIT]; }
1168
1169  /// \brief Retrieve the variable declared in this "for" statement, if any.
1170  ///
1171  /// In the following example, "y" is the condition variable.
1172  /// \code
1173  /// for (int x = random(); int y = mangle(x); ++x) {
1174  ///   // ...
1175  /// }
1176  /// \endcode
1177  VarDecl *getConditionVariable() const;
1178  void setConditionVariable(const ASTContext &C, VarDecl *V);
1179
1180  /// If this ForStmt has a condition variable, return the faux DeclStmt
1181  /// associated with the creation of that condition variable.
1182  const DeclStmt *getConditionVariableDeclStmt() const {
1183    return reinterpret_cast<DeclStmt*>(SubExprs[CONDVAR]);
1184  }
1185
1186  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
1187  Expr *getInc()  { return reinterpret_cast<Expr*>(SubExprs[INC]); }
1188  Stmt *getBody() { return SubExprs[BODY]; }
1189
1190  const Stmt *getInit() const { return SubExprs[INIT]; }
1191  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
1192  const Expr *getInc()  const { return reinterpret_cast<Expr*>(SubExprs[INC]); }
1193  const Stmt *getBody() const { return SubExprs[BODY]; }
1194
1195  void setInit(Stmt *S) { SubExprs[INIT] = S; }
1196  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
1197  void setInc(Expr *E) { SubExprs[INC] = reinterpret_cast<Stmt*>(E); }
1198  void setBody(Stmt *S) { SubExprs[BODY] = S; }
1199
1200  SourceLocation getForLoc() const { return ForLoc; }
1201  void setForLoc(SourceLocation L) { ForLoc = L; }
1202  SourceLocation getLParenLoc() const { return LParenLoc; }
1203  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1204  SourceLocation getRParenLoc() const { return RParenLoc; }
1205  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1206
1207  SourceLocation getLocStart() const LLVM_READONLY { return ForLoc; }
1208  SourceLocation getLocEnd() const LLVM_READONLY {
1209    return SubExprs[BODY]->getLocEnd();
1210  }
1211
1212  static bool classof(const Stmt *T) {
1213    return T->getStmtClass() == ForStmtClass;
1214  }
1215
1216  // Iterators
1217  child_range children() {
1218    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1219  }
1220};
1221
1222/// GotoStmt - This represents a direct goto.
1223///
1224class GotoStmt : public Stmt {
1225  LabelDecl *Label;
1226  SourceLocation GotoLoc;
1227  SourceLocation LabelLoc;
1228public:
1229  GotoStmt(LabelDecl *label, SourceLocation GL, SourceLocation LL)
1230    : Stmt(GotoStmtClass), Label(label), GotoLoc(GL), LabelLoc(LL) {}
1231
1232  /// \brief Build an empty goto statement.
1233  explicit GotoStmt(EmptyShell Empty) : Stmt(GotoStmtClass, Empty) { }
1234
1235  LabelDecl *getLabel() const { return Label; }
1236  void setLabel(LabelDecl *D) { Label = D; }
1237
1238  SourceLocation getGotoLoc() const { return GotoLoc; }
1239  void setGotoLoc(SourceLocation L) { GotoLoc = L; }
1240  SourceLocation getLabelLoc() const { return LabelLoc; }
1241  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
1242
1243  SourceLocation getLocStart() const LLVM_READONLY { return GotoLoc; }
1244  SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
1245
1246  static bool classof(const Stmt *T) {
1247    return T->getStmtClass() == GotoStmtClass;
1248  }
1249
1250  // Iterators
1251  child_range children() {
1252    return child_range(child_iterator(), child_iterator());
1253  }
1254};
1255
1256/// IndirectGotoStmt - This represents an indirect goto.
1257///
1258class IndirectGotoStmt : public Stmt {
1259  SourceLocation GotoLoc;
1260  SourceLocation StarLoc;
1261  Stmt *Target;
1262public:
1263  IndirectGotoStmt(SourceLocation gotoLoc, SourceLocation starLoc,
1264                   Expr *target)
1265    : Stmt(IndirectGotoStmtClass), GotoLoc(gotoLoc), StarLoc(starLoc),
1266      Target((Stmt*)target) {}
1267
1268  /// \brief Build an empty indirect goto statement.
1269  explicit IndirectGotoStmt(EmptyShell Empty)
1270    : Stmt(IndirectGotoStmtClass, Empty) { }
1271
1272  void setGotoLoc(SourceLocation L) { GotoLoc = L; }
1273  SourceLocation getGotoLoc() const { return GotoLoc; }
1274  void setStarLoc(SourceLocation L) { StarLoc = L; }
1275  SourceLocation getStarLoc() const { return StarLoc; }
1276
1277  Expr *getTarget() { return reinterpret_cast<Expr*>(Target); }
1278  const Expr *getTarget() const {return reinterpret_cast<const Expr*>(Target);}
1279  void setTarget(Expr *E) { Target = reinterpret_cast<Stmt*>(E); }
1280
1281  /// getConstantTarget - Returns the fixed target of this indirect
1282  /// goto, if one exists.
1283  LabelDecl *getConstantTarget();
1284  const LabelDecl *getConstantTarget() const {
1285    return const_cast<IndirectGotoStmt*>(this)->getConstantTarget();
1286  }
1287
1288  SourceLocation getLocStart() const LLVM_READONLY { return GotoLoc; }
1289  SourceLocation getLocEnd() const LLVM_READONLY { return Target->getLocEnd(); }
1290
1291  static bool classof(const Stmt *T) {
1292    return T->getStmtClass() == IndirectGotoStmtClass;
1293  }
1294
1295  // Iterators
1296  child_range children() { return child_range(&Target, &Target+1); }
1297};
1298
1299
1300/// ContinueStmt - This represents a continue.
1301///
1302class ContinueStmt : public Stmt {
1303  SourceLocation ContinueLoc;
1304public:
1305  ContinueStmt(SourceLocation CL) : Stmt(ContinueStmtClass), ContinueLoc(CL) {}
1306
1307  /// \brief Build an empty continue statement.
1308  explicit ContinueStmt(EmptyShell Empty) : Stmt(ContinueStmtClass, Empty) { }
1309
1310  SourceLocation getContinueLoc() const { return ContinueLoc; }
1311  void setContinueLoc(SourceLocation L) { ContinueLoc = L; }
1312
1313  SourceLocation getLocStart() const LLVM_READONLY { return ContinueLoc; }
1314  SourceLocation getLocEnd() const LLVM_READONLY { return ContinueLoc; }
1315
1316  static bool classof(const Stmt *T) {
1317    return T->getStmtClass() == ContinueStmtClass;
1318  }
1319
1320  // Iterators
1321  child_range children() {
1322    return child_range(child_iterator(), child_iterator());
1323  }
1324};
1325
1326/// BreakStmt - This represents a break.
1327///
1328class BreakStmt : public Stmt {
1329  SourceLocation BreakLoc;
1330
1331public:
1332  BreakStmt(SourceLocation BL) : Stmt(BreakStmtClass), BreakLoc(BL) {
1333    static_assert(sizeof(BreakStmt) == 2 * sizeof(SourceLocation),
1334                  "BreakStmt too large");
1335  }
1336
1337  /// \brief Build an empty break statement.
1338  explicit BreakStmt(EmptyShell Empty) : Stmt(BreakStmtClass, Empty) { }
1339
1340  SourceLocation getBreakLoc() const { return BreakLoc; }
1341  void setBreakLoc(SourceLocation L) { BreakLoc = L; }
1342
1343  SourceLocation getLocStart() const LLVM_READONLY { return BreakLoc; }
1344  SourceLocation getLocEnd() const LLVM_READONLY { return BreakLoc; }
1345
1346  static bool classof(const Stmt *T) {
1347    return T->getStmtClass() == BreakStmtClass;
1348  }
1349
1350  // Iterators
1351  child_range children() {
1352    return child_range(child_iterator(), child_iterator());
1353  }
1354};
1355
1356
1357/// ReturnStmt - This represents a return, optionally of an expression:
1358///   return;
1359///   return 4;
1360///
1361/// Note that GCC allows return with no argument in a function declared to
1362/// return a value, and it allows returning a value in functions declared to
1363/// return void.  We explicitly model this in the AST, which means you can't
1364/// depend on the return type of the function and the presence of an argument.
1365///
1366class ReturnStmt : public Stmt {
1367  SourceLocation RetLoc;
1368  Stmt *RetExpr;
1369  const VarDecl *NRVOCandidate;
1370
1371public:
1372  explicit ReturnStmt(SourceLocation RL) : ReturnStmt(RL, nullptr, nullptr) {}
1373
1374  ReturnStmt(SourceLocation RL, Expr *E, const VarDecl *NRVOCandidate)
1375      : Stmt(ReturnStmtClass), RetLoc(RL), RetExpr((Stmt *)E),
1376        NRVOCandidate(NRVOCandidate) {}
1377
1378  /// \brief Build an empty return expression.
1379  explicit ReturnStmt(EmptyShell Empty) : Stmt(ReturnStmtClass, Empty) { }
1380
1381  const Expr *getRetValue() const;
1382  Expr *getRetValue();
1383  void setRetValue(Expr *E) { RetExpr = reinterpret_cast<Stmt*>(E); }
1384
1385  SourceLocation getReturnLoc() const { return RetLoc; }
1386  void setReturnLoc(SourceLocation L) { RetLoc = L; }
1387
1388  /// \brief Retrieve the variable that might be used for the named return
1389  /// value optimization.
1390  ///
1391  /// The optimization itself can only be performed if the variable is
1392  /// also marked as an NRVO object.
1393  const VarDecl *getNRVOCandidate() const { return NRVOCandidate; }
1394  void setNRVOCandidate(const VarDecl *Var) { NRVOCandidate = Var; }
1395
1396  SourceLocation getLocStart() const LLVM_READONLY { return RetLoc; }
1397  SourceLocation getLocEnd() const LLVM_READONLY {
1398    return RetExpr ? RetExpr->getLocEnd() : RetLoc;
1399  }
1400
1401  static bool classof(const Stmt *T) {
1402    return T->getStmtClass() == ReturnStmtClass;
1403  }
1404
1405  // Iterators
1406  child_range children() {
1407    if (RetExpr) return child_range(&RetExpr, &RetExpr+1);
1408    return child_range(child_iterator(), child_iterator());
1409  }
1410};
1411
1412/// AsmStmt is the base class for GCCAsmStmt and MSAsmStmt.
1413///
1414class AsmStmt : public Stmt {
1415protected:
1416  SourceLocation AsmLoc;
1417  /// \brief True if the assembly statement does not have any input or output
1418  /// operands.
1419  bool IsSimple;
1420
1421  /// \brief If true, treat this inline assembly as having side effects.
1422  /// This assembly statement should not be optimized, deleted or moved.
1423  bool IsVolatile;
1424
1425  unsigned NumOutputs;
1426  unsigned NumInputs;
1427  unsigned NumClobbers;
1428
1429  Stmt **Exprs;
1430
1431  AsmStmt(StmtClass SC, SourceLocation asmloc, bool issimple, bool isvolatile,
1432          unsigned numoutputs, unsigned numinputs, unsigned numclobbers) :
1433    Stmt (SC), AsmLoc(asmloc), IsSimple(issimple), IsVolatile(isvolatile),
1434    NumOutputs(numoutputs), NumInputs(numinputs), NumClobbers(numclobbers) { }
1435
1436  friend class ASTStmtReader;
1437
1438public:
1439  /// \brief Build an empty inline-assembly statement.
1440  explicit AsmStmt(StmtClass SC, EmptyShell Empty) :
1441    Stmt(SC, Empty), Exprs(nullptr) { }
1442
1443  SourceLocation getAsmLoc() const { return AsmLoc; }
1444  void setAsmLoc(SourceLocation L) { AsmLoc = L; }
1445
1446  bool isSimple() const { return IsSimple; }
1447  void setSimple(bool V) { IsSimple = V; }
1448
1449  bool isVolatile() const { return IsVolatile; }
1450  void setVolatile(bool V) { IsVolatile = V; }
1451
1452  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
1453  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
1454
1455  //===--- Asm String Analysis ---===//
1456
1457  /// Assemble final IR asm string.
1458  std::string generateAsmString(const ASTContext &C) const;
1459
1460  //===--- Output operands ---===//
1461
1462  unsigned getNumOutputs() const { return NumOutputs; }
1463
1464  /// getOutputConstraint - Return the constraint string for the specified
1465  /// output operand.  All output constraints are known to be non-empty (either
1466  /// '=' or '+').
1467  StringRef getOutputConstraint(unsigned i) const;
1468
1469  /// isOutputPlusConstraint - Return true if the specified output constraint
1470  /// is a "+" constraint (which is both an input and an output) or false if it
1471  /// is an "=" constraint (just an output).
1472  bool isOutputPlusConstraint(unsigned i) const {
1473    return getOutputConstraint(i)[0] == '+';
1474  }
1475
1476  const Expr *getOutputExpr(unsigned i) const;
1477
1478  /// getNumPlusOperands - Return the number of output operands that have a "+"
1479  /// constraint.
1480  unsigned getNumPlusOperands() const;
1481
1482  //===--- Input operands ---===//
1483
1484  unsigned getNumInputs() const { return NumInputs; }
1485
1486  /// getInputConstraint - Return the specified input constraint.  Unlike output
1487  /// constraints, these can be empty.
1488  StringRef getInputConstraint(unsigned i) const;
1489
1490  const Expr *getInputExpr(unsigned i) const;
1491
1492  //===--- Other ---===//
1493
1494  unsigned getNumClobbers() const { return NumClobbers; }
1495  StringRef getClobber(unsigned i) const;
1496
1497  static bool classof(const Stmt *T) {
1498    return T->getStmtClass() == GCCAsmStmtClass ||
1499      T->getStmtClass() == MSAsmStmtClass;
1500  }
1501
1502  // Input expr iterators.
1503
1504  typedef ExprIterator inputs_iterator;
1505  typedef ConstExprIterator const_inputs_iterator;
1506  typedef llvm::iterator_range<inputs_iterator> inputs_range;
1507  typedef llvm::iterator_range<const_inputs_iterator> inputs_const_range;
1508
1509  inputs_iterator begin_inputs() {
1510    return &Exprs[0] + NumOutputs;
1511  }
1512
1513  inputs_iterator end_inputs() {
1514    return &Exprs[0] + NumOutputs + NumInputs;
1515  }
1516
1517  inputs_range inputs() { return inputs_range(begin_inputs(), end_inputs()); }
1518
1519  const_inputs_iterator begin_inputs() const {
1520    return &Exprs[0] + NumOutputs;
1521  }
1522
1523  const_inputs_iterator end_inputs() const {
1524    return &Exprs[0] + NumOutputs + NumInputs;
1525  }
1526
1527  inputs_const_range inputs() const {
1528    return inputs_const_range(begin_inputs(), end_inputs());
1529  }
1530
1531  // Output expr iterators.
1532
1533  typedef ExprIterator outputs_iterator;
1534  typedef ConstExprIterator const_outputs_iterator;
1535  typedef llvm::iterator_range<outputs_iterator> outputs_range;
1536  typedef llvm::iterator_range<const_outputs_iterator> outputs_const_range;
1537
1538  outputs_iterator begin_outputs() {
1539    return &Exprs[0];
1540  }
1541  outputs_iterator end_outputs() {
1542    return &Exprs[0] + NumOutputs;
1543  }
1544  outputs_range outputs() {
1545    return outputs_range(begin_outputs(), end_outputs());
1546  }
1547
1548  const_outputs_iterator begin_outputs() const {
1549    return &Exprs[0];
1550  }
1551  const_outputs_iterator end_outputs() const {
1552    return &Exprs[0] + NumOutputs;
1553  }
1554  outputs_const_range outputs() const {
1555    return outputs_const_range(begin_outputs(), end_outputs());
1556  }
1557
1558  child_range children() {
1559    return child_range(&Exprs[0], &Exprs[0] + NumOutputs + NumInputs);
1560  }
1561};
1562
1563/// This represents a GCC inline-assembly statement extension.
1564///
1565class GCCAsmStmt : public AsmStmt {
1566  SourceLocation RParenLoc;
1567  StringLiteral *AsmStr;
1568
1569  // FIXME: If we wanted to, we could allocate all of these in one big array.
1570  StringLiteral **Constraints;
1571  StringLiteral **Clobbers;
1572  IdentifierInfo **Names;
1573
1574  friend class ASTStmtReader;
1575
1576public:
1577  GCCAsmStmt(const ASTContext &C, SourceLocation asmloc, bool issimple,
1578             bool isvolatile, unsigned numoutputs, unsigned numinputs,
1579             IdentifierInfo **names, StringLiteral **constraints, Expr **exprs,
1580             StringLiteral *asmstr, unsigned numclobbers,
1581             StringLiteral **clobbers, SourceLocation rparenloc);
1582
1583  /// \brief Build an empty inline-assembly statement.
1584  explicit GCCAsmStmt(EmptyShell Empty) : AsmStmt(GCCAsmStmtClass, Empty),
1585    Constraints(nullptr), Clobbers(nullptr), Names(nullptr) { }
1586
1587  SourceLocation getRParenLoc() const { return RParenLoc; }
1588  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1589
1590  //===--- Asm String Analysis ---===//
1591
1592  const StringLiteral *getAsmString() const { return AsmStr; }
1593  StringLiteral *getAsmString() { return AsmStr; }
1594  void setAsmString(StringLiteral *E) { AsmStr = E; }
1595
1596  /// AsmStringPiece - this is part of a decomposed asm string specification
1597  /// (for use with the AnalyzeAsmString function below).  An asm string is
1598  /// considered to be a concatenation of these parts.
1599  class AsmStringPiece {
1600  public:
1601    enum Kind {
1602      String,  // String in .ll asm string form, "$" -> "$$" and "%%" -> "%".
1603      Operand  // Operand reference, with optional modifier %c4.
1604    };
1605  private:
1606    Kind MyKind;
1607    std::string Str;
1608    unsigned OperandNo;
1609
1610    // Source range for operand references.
1611    CharSourceRange Range;
1612  public:
1613    AsmStringPiece(const std::string &S) : MyKind(String), Str(S) {}
1614    AsmStringPiece(unsigned OpNo, const std::string &S, SourceLocation Begin,
1615                   SourceLocation End)
1616      : MyKind(Operand), Str(S), OperandNo(OpNo),
1617        Range(CharSourceRange::getCharRange(Begin, End)) {
1618    }
1619
1620    bool isString() const { return MyKind == String; }
1621    bool isOperand() const { return MyKind == Operand; }
1622
1623    const std::string &getString() const {
1624      return Str;
1625    }
1626
1627    unsigned getOperandNo() const {
1628      assert(isOperand());
1629      return OperandNo;
1630    }
1631
1632    CharSourceRange getRange() const {
1633      assert(isOperand() && "Range is currently used only for Operands.");
1634      return Range;
1635    }
1636
1637    /// getModifier - Get the modifier for this operand, if present.  This
1638    /// returns '\0' if there was no modifier.
1639    char getModifier() const;
1640  };
1641
1642  /// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing
1643  /// it into pieces.  If the asm string is erroneous, emit errors and return
1644  /// true, otherwise return false.  This handles canonicalization and
1645  /// translation of strings from GCC syntax to LLVM IR syntax, and handles
1646  //// flattening of named references like %[foo] to Operand AsmStringPiece's.
1647  unsigned AnalyzeAsmString(SmallVectorImpl<AsmStringPiece> &Pieces,
1648                            const ASTContext &C, unsigned &DiagOffs) const;
1649
1650  /// Assemble final IR asm string.
1651  std::string generateAsmString(const ASTContext &C) const;
1652
1653  //===--- Output operands ---===//
1654
1655  IdentifierInfo *getOutputIdentifier(unsigned i) const {
1656    return Names[i];
1657  }
1658
1659  StringRef getOutputName(unsigned i) const {
1660    if (IdentifierInfo *II = getOutputIdentifier(i))
1661      return II->getName();
1662
1663    return StringRef();
1664  }
1665
1666  StringRef getOutputConstraint(unsigned i) const;
1667
1668  const StringLiteral *getOutputConstraintLiteral(unsigned i) const {
1669    return Constraints[i];
1670  }
1671  StringLiteral *getOutputConstraintLiteral(unsigned i) {
1672    return Constraints[i];
1673  }
1674
1675  Expr *getOutputExpr(unsigned i);
1676
1677  const Expr *getOutputExpr(unsigned i) const {
1678    return const_cast<GCCAsmStmt*>(this)->getOutputExpr(i);
1679  }
1680
1681  //===--- Input operands ---===//
1682
1683  IdentifierInfo *getInputIdentifier(unsigned i) const {
1684    return Names[i + NumOutputs];
1685  }
1686
1687  StringRef getInputName(unsigned i) const {
1688    if (IdentifierInfo *II = getInputIdentifier(i))
1689      return II->getName();
1690
1691    return StringRef();
1692  }
1693
1694  StringRef getInputConstraint(unsigned i) const;
1695
1696  const StringLiteral *getInputConstraintLiteral(unsigned i) const {
1697    return Constraints[i + NumOutputs];
1698  }
1699  StringLiteral *getInputConstraintLiteral(unsigned i) {
1700    return Constraints[i + NumOutputs];
1701  }
1702
1703  Expr *getInputExpr(unsigned i);
1704  void setInputExpr(unsigned i, Expr *E);
1705
1706  const Expr *getInputExpr(unsigned i) const {
1707    return const_cast<GCCAsmStmt*>(this)->getInputExpr(i);
1708  }
1709
1710private:
1711  void setOutputsAndInputsAndClobbers(const ASTContext &C,
1712                                      IdentifierInfo **Names,
1713                                      StringLiteral **Constraints,
1714                                      Stmt **Exprs,
1715                                      unsigned NumOutputs,
1716                                      unsigned NumInputs,
1717                                      StringLiteral **Clobbers,
1718                                      unsigned NumClobbers);
1719public:
1720
1721  //===--- Other ---===//
1722
1723  /// getNamedOperand - Given a symbolic operand reference like %[foo],
1724  /// translate this into a numeric value needed to reference the same operand.
1725  /// This returns -1 if the operand name is invalid.
1726  int getNamedOperand(StringRef SymbolicName) const;
1727
1728  StringRef getClobber(unsigned i) const;
1729  StringLiteral *getClobberStringLiteral(unsigned i) { return Clobbers[i]; }
1730  const StringLiteral *getClobberStringLiteral(unsigned i) const {
1731    return Clobbers[i];
1732  }
1733
1734  SourceLocation getLocStart() const LLVM_READONLY { return AsmLoc; }
1735  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1736
1737  static bool classof(const Stmt *T) {
1738    return T->getStmtClass() == GCCAsmStmtClass;
1739  }
1740};
1741
1742/// This represents a Microsoft inline-assembly statement extension.
1743///
1744class MSAsmStmt : public AsmStmt {
1745  SourceLocation LBraceLoc, EndLoc;
1746  StringRef AsmStr;
1747
1748  unsigned NumAsmToks;
1749
1750  Token *AsmToks;
1751  StringRef *Constraints;
1752  StringRef *Clobbers;
1753
1754  friend class ASTStmtReader;
1755
1756public:
1757  MSAsmStmt(const ASTContext &C, SourceLocation asmloc,
1758            SourceLocation lbraceloc, bool issimple, bool isvolatile,
1759            ArrayRef<Token> asmtoks, unsigned numoutputs, unsigned numinputs,
1760            ArrayRef<StringRef> constraints,
1761            ArrayRef<Expr*> exprs, StringRef asmstr,
1762            ArrayRef<StringRef> clobbers, SourceLocation endloc);
1763
1764  /// \brief Build an empty MS-style inline-assembly statement.
1765  explicit MSAsmStmt(EmptyShell Empty) : AsmStmt(MSAsmStmtClass, Empty),
1766    NumAsmToks(0), AsmToks(nullptr), Constraints(nullptr), Clobbers(nullptr) { }
1767
1768  SourceLocation getLBraceLoc() const { return LBraceLoc; }
1769  void setLBraceLoc(SourceLocation L) { LBraceLoc = L; }
1770  SourceLocation getEndLoc() const { return EndLoc; }
1771  void setEndLoc(SourceLocation L) { EndLoc = L; }
1772
1773  bool hasBraces() const { return LBraceLoc.isValid(); }
1774
1775  unsigned getNumAsmToks() { return NumAsmToks; }
1776  Token *getAsmToks() { return AsmToks; }
1777
1778  //===--- Asm String Analysis ---===//
1779  StringRef getAsmString() const { return AsmStr; }
1780
1781  /// Assemble final IR asm string.
1782  std::string generateAsmString(const ASTContext &C) const;
1783
1784  //===--- Output operands ---===//
1785
1786  StringRef getOutputConstraint(unsigned i) const {
1787    assert(i < NumOutputs);
1788    return Constraints[i];
1789  }
1790
1791  Expr *getOutputExpr(unsigned i);
1792
1793  const Expr *getOutputExpr(unsigned i) const {
1794    return const_cast<MSAsmStmt*>(this)->getOutputExpr(i);
1795  }
1796
1797  //===--- Input operands ---===//
1798
1799  StringRef getInputConstraint(unsigned i) const {
1800    assert(i < NumInputs);
1801    return Constraints[i + NumOutputs];
1802  }
1803
1804  Expr *getInputExpr(unsigned i);
1805  void setInputExpr(unsigned i, Expr *E);
1806
1807  const Expr *getInputExpr(unsigned i) const {
1808    return const_cast<MSAsmStmt*>(this)->getInputExpr(i);
1809  }
1810
1811  //===--- Other ---===//
1812
1813  ArrayRef<StringRef> getAllConstraints() const {
1814    return llvm::makeArrayRef(Constraints, NumInputs + NumOutputs);
1815  }
1816  ArrayRef<StringRef> getClobbers() const {
1817    return llvm::makeArrayRef(Clobbers, NumClobbers);
1818  }
1819  ArrayRef<Expr*> getAllExprs() const {
1820    return llvm::makeArrayRef(reinterpret_cast<Expr**>(Exprs),
1821                              NumInputs + NumOutputs);
1822  }
1823
1824  StringRef getClobber(unsigned i) const { return getClobbers()[i]; }
1825
1826private:
1827  void initialize(const ASTContext &C, StringRef AsmString,
1828                  ArrayRef<Token> AsmToks, ArrayRef<StringRef> Constraints,
1829                  ArrayRef<Expr*> Exprs, ArrayRef<StringRef> Clobbers);
1830public:
1831
1832  SourceLocation getLocStart() const LLVM_READONLY { return AsmLoc; }
1833  SourceLocation getLocEnd() const LLVM_READONLY { return EndLoc; }
1834
1835  static bool classof(const Stmt *T) {
1836    return T->getStmtClass() == MSAsmStmtClass;
1837  }
1838
1839  child_range children() {
1840    return child_range(&Exprs[0], &Exprs[NumInputs + NumOutputs]);
1841  }
1842};
1843
1844class SEHExceptStmt : public Stmt {
1845  SourceLocation  Loc;
1846  Stmt           *Children[2];
1847
1848  enum { FILTER_EXPR, BLOCK };
1849
1850  SEHExceptStmt(SourceLocation Loc,
1851                Expr *FilterExpr,
1852                Stmt *Block);
1853
1854  friend class ASTReader;
1855  friend class ASTStmtReader;
1856  explicit SEHExceptStmt(EmptyShell E) : Stmt(SEHExceptStmtClass, E) { }
1857
1858public:
1859  static SEHExceptStmt* Create(const ASTContext &C,
1860                               SourceLocation ExceptLoc,
1861                               Expr *FilterExpr,
1862                               Stmt *Block);
1863
1864  SourceLocation getLocStart() const LLVM_READONLY { return getExceptLoc(); }
1865  SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
1866
1867  SourceLocation getExceptLoc() const { return Loc; }
1868  SourceLocation getEndLoc() const { return getBlock()->getLocEnd(); }
1869
1870  Expr *getFilterExpr() const {
1871    return reinterpret_cast<Expr*>(Children[FILTER_EXPR]);
1872  }
1873
1874  CompoundStmt *getBlock() const {
1875    return cast<CompoundStmt>(Children[BLOCK]);
1876  }
1877
1878  child_range children() {
1879    return child_range(Children,Children+2);
1880  }
1881
1882  static bool classof(const Stmt *T) {
1883    return T->getStmtClass() == SEHExceptStmtClass;
1884  }
1885
1886};
1887
1888class SEHFinallyStmt : public Stmt {
1889  SourceLocation  Loc;
1890  Stmt           *Block;
1891
1892  SEHFinallyStmt(SourceLocation Loc,
1893                 Stmt *Block);
1894
1895  friend class ASTReader;
1896  friend class ASTStmtReader;
1897  explicit SEHFinallyStmt(EmptyShell E) : Stmt(SEHFinallyStmtClass, E) { }
1898
1899public:
1900  static SEHFinallyStmt* Create(const ASTContext &C,
1901                                SourceLocation FinallyLoc,
1902                                Stmt *Block);
1903
1904  SourceLocation getLocStart() const LLVM_READONLY { return getFinallyLoc(); }
1905  SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
1906
1907  SourceLocation getFinallyLoc() const { return Loc; }
1908  SourceLocation getEndLoc() const { return Block->getLocEnd(); }
1909
1910  CompoundStmt *getBlock() const { return cast<CompoundStmt>(Block); }
1911
1912  child_range children() {
1913    return child_range(&Block,&Block+1);
1914  }
1915
1916  static bool classof(const Stmt *T) {
1917    return T->getStmtClass() == SEHFinallyStmtClass;
1918  }
1919
1920};
1921
1922class SEHTryStmt : public Stmt {
1923  bool            IsCXXTry;
1924  SourceLocation  TryLoc;
1925  Stmt           *Children[2];
1926
1927  enum { TRY = 0, HANDLER = 1 };
1928
1929  SEHTryStmt(bool isCXXTry, // true if 'try' otherwise '__try'
1930             SourceLocation TryLoc,
1931             Stmt *TryBlock,
1932             Stmt *Handler);
1933
1934  friend class ASTReader;
1935  friend class ASTStmtReader;
1936  explicit SEHTryStmt(EmptyShell E) : Stmt(SEHTryStmtClass, E) { }
1937
1938public:
1939  static SEHTryStmt* Create(const ASTContext &C, bool isCXXTry,
1940                            SourceLocation TryLoc, Stmt *TryBlock,
1941                            Stmt *Handler);
1942
1943  SourceLocation getLocStart() const LLVM_READONLY { return getTryLoc(); }
1944  SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
1945
1946  SourceLocation getTryLoc() const { return TryLoc; }
1947  SourceLocation getEndLoc() const { return Children[HANDLER]->getLocEnd(); }
1948
1949  bool getIsCXXTry() const { return IsCXXTry; }
1950
1951  CompoundStmt* getTryBlock() const {
1952    return cast<CompoundStmt>(Children[TRY]);
1953  }
1954
1955  Stmt *getHandler() const { return Children[HANDLER]; }
1956
1957  /// Returns 0 if not defined
1958  SEHExceptStmt  *getExceptHandler() const;
1959  SEHFinallyStmt *getFinallyHandler() const;
1960
1961  child_range children() {
1962    return child_range(Children,Children+2);
1963  }
1964
1965  static bool classof(const Stmt *T) {
1966    return T->getStmtClass() == SEHTryStmtClass;
1967  }
1968};
1969
1970/// Represents a __leave statement.
1971///
1972class SEHLeaveStmt : public Stmt {
1973  SourceLocation LeaveLoc;
1974public:
1975  explicit SEHLeaveStmt(SourceLocation LL)
1976      : Stmt(SEHLeaveStmtClass), LeaveLoc(LL) {}
1977
1978  /// \brief Build an empty __leave statement.
1979  explicit SEHLeaveStmt(EmptyShell Empty) : Stmt(SEHLeaveStmtClass, Empty) { }
1980
1981  SourceLocation getLeaveLoc() const { return LeaveLoc; }
1982  void setLeaveLoc(SourceLocation L) { LeaveLoc = L; }
1983
1984  SourceLocation getLocStart() const LLVM_READONLY { return LeaveLoc; }
1985  SourceLocation getLocEnd() const LLVM_READONLY { return LeaveLoc; }
1986
1987  static bool classof(const Stmt *T) {
1988    return T->getStmtClass() == SEHLeaveStmtClass;
1989  }
1990
1991  // Iterators
1992  child_range children() {
1993    return child_range(child_iterator(), child_iterator());
1994  }
1995};
1996
1997/// \brief This captures a statement into a function. For example, the following
1998/// pragma annotated compound statement can be represented as a CapturedStmt,
1999/// and this compound statement is the body of an anonymous outlined function.
2000/// @code
2001/// #pragma omp parallel
2002/// {
2003///   compute();
2004/// }
2005/// @endcode
2006class CapturedStmt : public Stmt {
2007public:
2008  /// \brief The different capture forms: by 'this', by reference, capture for
2009  /// variable-length array type etc.
2010  enum VariableCaptureKind {
2011    VCK_This,
2012    VCK_ByRef,
2013    VCK_ByCopy,
2014    VCK_VLAType,
2015  };
2016
2017  /// \brief Describes the capture of either a variable, or 'this', or
2018  /// variable-length array type.
2019  class Capture {
2020    llvm::PointerIntPair<VarDecl *, 2, VariableCaptureKind> VarAndKind;
2021    SourceLocation Loc;
2022
2023  public:
2024    /// \brief Create a new capture.
2025    ///
2026    /// \param Loc The source location associated with this capture.
2027    ///
2028    /// \param Kind The kind of capture (this, ByRef, ...).
2029    ///
2030    /// \param Var The variable being captured, or null if capturing this.
2031    ///
2032    Capture(SourceLocation Loc, VariableCaptureKind Kind,
2033            VarDecl *Var = nullptr);
2034
2035    /// \brief Determine the kind of capture.
2036    VariableCaptureKind getCaptureKind() const;
2037
2038    /// \brief Retrieve the source location at which the variable or 'this' was
2039    /// first used.
2040    SourceLocation getLocation() const { return Loc; }
2041
2042    /// \brief Determine whether this capture handles the C++ 'this' pointer.
2043    bool capturesThis() const { return getCaptureKind() == VCK_This; }
2044
2045    /// \brief Determine whether this capture handles a variable (by reference).
2046    bool capturesVariable() const { return getCaptureKind() == VCK_ByRef; }
2047
2048    /// \brief Determine whether this capture handles a variable by copy.
2049    bool capturesVariableByCopy() const {
2050      return getCaptureKind() == VCK_ByCopy;
2051    }
2052
2053    /// \brief Determine whether this capture handles a variable-length array
2054    /// type.
2055    bool capturesVariableArrayType() const {
2056      return getCaptureKind() == VCK_VLAType;
2057    }
2058
2059    /// \brief Retrieve the declaration of the variable being captured.
2060    ///
2061    /// This operation is only valid if this capture captures a variable.
2062    VarDecl *getCapturedVar() const;
2063
2064    friend class ASTStmtReader;
2065  };
2066
2067private:
2068  /// \brief The number of variable captured, including 'this'.
2069  unsigned NumCaptures;
2070
2071  /// \brief The pointer part is the implicit the outlined function and the
2072  /// int part is the captured region kind, 'CR_Default' etc.
2073  llvm::PointerIntPair<CapturedDecl *, 1, CapturedRegionKind> CapDeclAndKind;
2074
2075  /// \brief The record for captured variables, a RecordDecl or CXXRecordDecl.
2076  RecordDecl *TheRecordDecl;
2077
2078  /// \brief Construct a captured statement.
2079  CapturedStmt(Stmt *S, CapturedRegionKind Kind, ArrayRef<Capture> Captures,
2080               ArrayRef<Expr *> CaptureInits, CapturedDecl *CD, RecordDecl *RD);
2081
2082  /// \brief Construct an empty captured statement.
2083  CapturedStmt(EmptyShell Empty, unsigned NumCaptures);
2084
2085  Stmt **getStoredStmts() { return reinterpret_cast<Stmt **>(this + 1); }
2086
2087  Stmt *const *getStoredStmts() const {
2088    return reinterpret_cast<Stmt *const *>(this + 1);
2089  }
2090
2091  Capture *getStoredCaptures() const;
2092
2093  void setCapturedStmt(Stmt *S) { getStoredStmts()[NumCaptures] = S; }
2094
2095public:
2096  static CapturedStmt *Create(const ASTContext &Context, Stmt *S,
2097                              CapturedRegionKind Kind,
2098                              ArrayRef<Capture> Captures,
2099                              ArrayRef<Expr *> CaptureInits,
2100                              CapturedDecl *CD, RecordDecl *RD);
2101
2102  static CapturedStmt *CreateDeserialized(const ASTContext &Context,
2103                                          unsigned NumCaptures);
2104
2105  /// \brief Retrieve the statement being captured.
2106  Stmt *getCapturedStmt() { return getStoredStmts()[NumCaptures]; }
2107  const Stmt *getCapturedStmt() const { return getStoredStmts()[NumCaptures]; }
2108
2109  /// \brief Retrieve the outlined function declaration.
2110  CapturedDecl *getCapturedDecl();
2111  const CapturedDecl *getCapturedDecl() const;
2112
2113  /// \brief Set the outlined function declaration.
2114  void setCapturedDecl(CapturedDecl *D);
2115
2116  /// \brief Retrieve the captured region kind.
2117  CapturedRegionKind getCapturedRegionKind() const;
2118
2119  /// \brief Set the captured region kind.
2120  void setCapturedRegionKind(CapturedRegionKind Kind);
2121
2122  /// \brief Retrieve the record declaration for captured variables.
2123  const RecordDecl *getCapturedRecordDecl() const { return TheRecordDecl; }
2124
2125  /// \brief Set the record declaration for captured variables.
2126  void setCapturedRecordDecl(RecordDecl *D) {
2127    assert(D && "null RecordDecl");
2128    TheRecordDecl = D;
2129  }
2130
2131  /// \brief True if this variable has been captured.
2132  bool capturesVariable(const VarDecl *Var) const;
2133
2134  /// \brief An iterator that walks over the captures.
2135  typedef Capture *capture_iterator;
2136  typedef const Capture *const_capture_iterator;
2137  typedef llvm::iterator_range<capture_iterator> capture_range;
2138  typedef llvm::iterator_range<const_capture_iterator> capture_const_range;
2139
2140  capture_range captures() {
2141    return capture_range(capture_begin(), capture_end());
2142  }
2143  capture_const_range captures() const {
2144    return capture_const_range(capture_begin(), capture_end());
2145  }
2146
2147  /// \brief Retrieve an iterator pointing to the first capture.
2148  capture_iterator capture_begin() { return getStoredCaptures(); }
2149  const_capture_iterator capture_begin() const { return getStoredCaptures(); }
2150
2151  /// \brief Retrieve an iterator pointing past the end of the sequence of
2152  /// captures.
2153  capture_iterator capture_end() const {
2154    return getStoredCaptures() + NumCaptures;
2155  }
2156
2157  /// \brief Retrieve the number of captures, including 'this'.
2158  unsigned capture_size() const { return NumCaptures; }
2159
2160  /// \brief Iterator that walks over the capture initialization arguments.
2161  typedef Expr **capture_init_iterator;
2162  typedef llvm::iterator_range<capture_init_iterator> capture_init_range;
2163
2164  /// \brief Const iterator that walks over the capture initialization
2165  /// arguments.
2166  typedef Expr *const *const_capture_init_iterator;
2167  typedef llvm::iterator_range<const_capture_init_iterator>
2168      const_capture_init_range;
2169
2170  capture_init_range capture_inits() {
2171    return capture_init_range(capture_init_begin(), capture_init_end());
2172  }
2173
2174  const_capture_init_range capture_inits() const {
2175    return const_capture_init_range(capture_init_begin(), capture_init_end());
2176  }
2177
2178  /// \brief Retrieve the first initialization argument.
2179  capture_init_iterator capture_init_begin() {
2180    return reinterpret_cast<Expr **>(getStoredStmts());
2181  }
2182
2183  const_capture_init_iterator capture_init_begin() const {
2184    return reinterpret_cast<Expr *const *>(getStoredStmts());
2185  }
2186
2187  /// \brief Retrieve the iterator pointing one past the last initialization
2188  /// argument.
2189  capture_init_iterator capture_init_end() {
2190    return capture_init_begin() + NumCaptures;
2191  }
2192
2193  const_capture_init_iterator capture_init_end() const {
2194    return capture_init_begin() + NumCaptures;
2195  }
2196
2197  SourceLocation getLocStart() const LLVM_READONLY {
2198    return getCapturedStmt()->getLocStart();
2199  }
2200  SourceLocation getLocEnd() const LLVM_READONLY {
2201    return getCapturedStmt()->getLocEnd();
2202  }
2203  SourceRange getSourceRange() const LLVM_READONLY {
2204    return getCapturedStmt()->getSourceRange();
2205  }
2206
2207  static bool classof(const Stmt *T) {
2208    return T->getStmtClass() == CapturedStmtClass;
2209  }
2210
2211  child_range children();
2212
2213  friend class ASTStmtReader;
2214};
2215
2216}  // end namespace clang
2217
2218#endif
2219