1//===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code dealing with generation of the layout of virtual tables.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/VTableBuilder.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTDiagnostic.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Basic/TargetInfo.h"
20#include "llvm/ADT/SetOperations.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/Support/Format.h"
23#include "llvm/Support/raw_ostream.h"
24#include <algorithm>
25#include <cstdio>
26
27using namespace clang;
28
29#define DUMP_OVERRIDERS 0
30
31namespace {
32
33/// BaseOffset - Represents an offset from a derived class to a direct or
34/// indirect base class.
35struct BaseOffset {
36  /// DerivedClass - The derived class.
37  const CXXRecordDecl *DerivedClass;
38
39  /// VirtualBase - If the path from the derived class to the base class
40  /// involves virtual base classes, this holds the declaration of the last
41  /// virtual base in this path (i.e. closest to the base class).
42  const CXXRecordDecl *VirtualBase;
43
44  /// NonVirtualOffset - The offset from the derived class to the base class.
45  /// (Or the offset from the virtual base class to the base class, if the
46  /// path from the derived class to the base class involves a virtual base
47  /// class.
48  CharUnits NonVirtualOffset;
49
50  BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
51                 NonVirtualOffset(CharUnits::Zero()) { }
52  BaseOffset(const CXXRecordDecl *DerivedClass,
53             const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
54    : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
55    NonVirtualOffset(NonVirtualOffset) { }
56
57  bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
58};
59
60/// FinalOverriders - Contains the final overrider member functions for all
61/// member functions in the base subobjects of a class.
62class FinalOverriders {
63public:
64  /// OverriderInfo - Information about a final overrider.
65  struct OverriderInfo {
66    /// Method - The method decl of the overrider.
67    const CXXMethodDecl *Method;
68
69    /// VirtualBase - The virtual base class subobject of this overrider.
70    /// Note that this records the closest derived virtual base class subobject.
71    const CXXRecordDecl *VirtualBase;
72
73    /// Offset - the base offset of the overrider's parent in the layout class.
74    CharUnits Offset;
75
76    OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
77                      Offset(CharUnits::Zero()) { }
78  };
79
80private:
81  /// MostDerivedClass - The most derived class for which the final overriders
82  /// are stored.
83  const CXXRecordDecl *MostDerivedClass;
84
85  /// MostDerivedClassOffset - If we're building final overriders for a
86  /// construction vtable, this holds the offset from the layout class to the
87  /// most derived class.
88  const CharUnits MostDerivedClassOffset;
89
90  /// LayoutClass - The class we're using for layout information. Will be
91  /// different than the most derived class if the final overriders are for a
92  /// construction vtable.
93  const CXXRecordDecl *LayoutClass;
94
95  ASTContext &Context;
96
97  /// MostDerivedClassLayout - the AST record layout of the most derived class.
98  const ASTRecordLayout &MostDerivedClassLayout;
99
100  /// MethodBaseOffsetPairTy - Uniquely identifies a member function
101  /// in a base subobject.
102  typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
103
104  typedef llvm::DenseMap<MethodBaseOffsetPairTy,
105                         OverriderInfo> OverridersMapTy;
106
107  /// OverridersMap - The final overriders for all virtual member functions of
108  /// all the base subobjects of the most derived class.
109  OverridersMapTy OverridersMap;
110
111  /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
112  /// as a record decl and a subobject number) and its offsets in the most
113  /// derived class as well as the layout class.
114  typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
115                         CharUnits> SubobjectOffsetMapTy;
116
117  typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
118
119  /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
120  /// given base.
121  void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
122                          CharUnits OffsetInLayoutClass,
123                          SubobjectOffsetMapTy &SubobjectOffsets,
124                          SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
125                          SubobjectCountMapTy &SubobjectCounts);
126
127  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
128
129  /// dump - dump the final overriders for a base subobject, and all its direct
130  /// and indirect base subobjects.
131  void dump(raw_ostream &Out, BaseSubobject Base,
132            VisitedVirtualBasesSetTy& VisitedVirtualBases);
133
134public:
135  FinalOverriders(const CXXRecordDecl *MostDerivedClass,
136                  CharUnits MostDerivedClassOffset,
137                  const CXXRecordDecl *LayoutClass);
138
139  /// getOverrider - Get the final overrider for the given method declaration in
140  /// the subobject with the given base offset.
141  OverriderInfo getOverrider(const CXXMethodDecl *MD,
142                             CharUnits BaseOffset) const {
143    assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
144           "Did not find overrider!");
145
146    return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
147  }
148
149  /// dump - dump the final overriders.
150  void dump() {
151    VisitedVirtualBasesSetTy VisitedVirtualBases;
152    dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
153         VisitedVirtualBases);
154  }
155
156};
157
158FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
159                                 CharUnits MostDerivedClassOffset,
160                                 const CXXRecordDecl *LayoutClass)
161  : MostDerivedClass(MostDerivedClass),
162  MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
163  Context(MostDerivedClass->getASTContext()),
164  MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
165
166  // Compute base offsets.
167  SubobjectOffsetMapTy SubobjectOffsets;
168  SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
169  SubobjectCountMapTy SubobjectCounts;
170  ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
171                     /*IsVirtual=*/false,
172                     MostDerivedClassOffset,
173                     SubobjectOffsets, SubobjectLayoutClassOffsets,
174                     SubobjectCounts);
175
176  // Get the final overriders.
177  CXXFinalOverriderMap FinalOverriders;
178  MostDerivedClass->getFinalOverriders(FinalOverriders);
179
180  for (const auto &Overrider : FinalOverriders) {
181    const CXXMethodDecl *MD = Overrider.first;
182    const OverridingMethods &Methods = Overrider.second;
183
184    for (const auto &M : Methods) {
185      unsigned SubobjectNumber = M.first;
186      assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
187                                                   SubobjectNumber)) &&
188             "Did not find subobject offset!");
189
190      CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
191                                                            SubobjectNumber)];
192
193      assert(M.second.size() == 1 && "Final overrider is not unique!");
194      const UniqueVirtualMethod &Method = M.second.front();
195
196      const CXXRecordDecl *OverriderRD = Method.Method->getParent();
197      assert(SubobjectLayoutClassOffsets.count(
198             std::make_pair(OverriderRD, Method.Subobject))
199             && "Did not find subobject offset!");
200      CharUnits OverriderOffset =
201        SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
202                                                   Method.Subobject)];
203
204      OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
205      assert(!Overrider.Method && "Overrider should not exist yet!");
206
207      Overrider.Offset = OverriderOffset;
208      Overrider.Method = Method.Method;
209      Overrider.VirtualBase = Method.InVirtualSubobject;
210    }
211  }
212
213#if DUMP_OVERRIDERS
214  // And dump them (for now).
215  dump();
216#endif
217}
218
219static BaseOffset ComputeBaseOffset(const ASTContext &Context,
220                                    const CXXRecordDecl *DerivedRD,
221                                    const CXXBasePath &Path) {
222  CharUnits NonVirtualOffset = CharUnits::Zero();
223
224  unsigned NonVirtualStart = 0;
225  const CXXRecordDecl *VirtualBase = nullptr;
226
227  // First, look for the virtual base class.
228  for (int I = Path.size(), E = 0; I != E; --I) {
229    const CXXBasePathElement &Element = Path[I - 1];
230
231    if (Element.Base->isVirtual()) {
232      NonVirtualStart = I;
233      QualType VBaseType = Element.Base->getType();
234      VirtualBase = VBaseType->getAsCXXRecordDecl();
235      break;
236    }
237  }
238
239  // Now compute the non-virtual offset.
240  for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
241    const CXXBasePathElement &Element = Path[I];
242
243    // Check the base class offset.
244    const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
245
246    const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
247
248    NonVirtualOffset += Layout.getBaseClassOffset(Base);
249  }
250
251  // FIXME: This should probably use CharUnits or something. Maybe we should
252  // even change the base offsets in ASTRecordLayout to be specified in
253  // CharUnits.
254  return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
255
256}
257
258static BaseOffset ComputeBaseOffset(const ASTContext &Context,
259                                    const CXXRecordDecl *BaseRD,
260                                    const CXXRecordDecl *DerivedRD) {
261  CXXBasePaths Paths(/*FindAmbiguities=*/false,
262                     /*RecordPaths=*/true, /*DetectVirtual=*/false);
263
264  if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
265    llvm_unreachable("Class must be derived from the passed in base class!");
266
267  return ComputeBaseOffset(Context, DerivedRD, Paths.front());
268}
269
270static BaseOffset
271ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
272                                  const CXXMethodDecl *DerivedMD,
273                                  const CXXMethodDecl *BaseMD) {
274  const FunctionType *BaseFT = BaseMD->getType()->getAs<FunctionType>();
275  const FunctionType *DerivedFT = DerivedMD->getType()->getAs<FunctionType>();
276
277  // Canonicalize the return types.
278  CanQualType CanDerivedReturnType =
279      Context.getCanonicalType(DerivedFT->getReturnType());
280  CanQualType CanBaseReturnType =
281      Context.getCanonicalType(BaseFT->getReturnType());
282
283  assert(CanDerivedReturnType->getTypeClass() ==
284         CanBaseReturnType->getTypeClass() &&
285         "Types must have same type class!");
286
287  if (CanDerivedReturnType == CanBaseReturnType) {
288    // No adjustment needed.
289    return BaseOffset();
290  }
291
292  if (isa<ReferenceType>(CanDerivedReturnType)) {
293    CanDerivedReturnType =
294      CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
295    CanBaseReturnType =
296      CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
297  } else if (isa<PointerType>(CanDerivedReturnType)) {
298    CanDerivedReturnType =
299      CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
300    CanBaseReturnType =
301      CanBaseReturnType->getAs<PointerType>()->getPointeeType();
302  } else {
303    llvm_unreachable("Unexpected return type!");
304  }
305
306  // We need to compare unqualified types here; consider
307  //   const T *Base::foo();
308  //   T *Derived::foo();
309  if (CanDerivedReturnType.getUnqualifiedType() ==
310      CanBaseReturnType.getUnqualifiedType()) {
311    // No adjustment needed.
312    return BaseOffset();
313  }
314
315  const CXXRecordDecl *DerivedRD =
316    cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
317
318  const CXXRecordDecl *BaseRD =
319    cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
320
321  return ComputeBaseOffset(Context, BaseRD, DerivedRD);
322}
323
324void
325FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
326                              CharUnits OffsetInLayoutClass,
327                              SubobjectOffsetMapTy &SubobjectOffsets,
328                              SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
329                              SubobjectCountMapTy &SubobjectCounts) {
330  const CXXRecordDecl *RD = Base.getBase();
331
332  unsigned SubobjectNumber = 0;
333  if (!IsVirtual)
334    SubobjectNumber = ++SubobjectCounts[RD];
335
336  // Set up the subobject to offset mapping.
337  assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
338         && "Subobject offset already exists!");
339  assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
340         && "Subobject offset already exists!");
341
342  SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
343  SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
344    OffsetInLayoutClass;
345
346  // Traverse our bases.
347  for (const auto &B : RD->bases()) {
348    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
349
350    CharUnits BaseOffset;
351    CharUnits BaseOffsetInLayoutClass;
352    if (B.isVirtual()) {
353      // Check if we've visited this virtual base before.
354      if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
355        continue;
356
357      const ASTRecordLayout &LayoutClassLayout =
358        Context.getASTRecordLayout(LayoutClass);
359
360      BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
361      BaseOffsetInLayoutClass =
362        LayoutClassLayout.getVBaseClassOffset(BaseDecl);
363    } else {
364      const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
365      CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
366
367      BaseOffset = Base.getBaseOffset() + Offset;
368      BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
369    }
370
371    ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
372                       B.isVirtual(), BaseOffsetInLayoutClass,
373                       SubobjectOffsets, SubobjectLayoutClassOffsets,
374                       SubobjectCounts);
375  }
376}
377
378void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
379                           VisitedVirtualBasesSetTy &VisitedVirtualBases) {
380  const CXXRecordDecl *RD = Base.getBase();
381  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
382
383  for (const auto &B : RD->bases()) {
384    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
385
386    // Ignore bases that don't have any virtual member functions.
387    if (!BaseDecl->isPolymorphic())
388      continue;
389
390    CharUnits BaseOffset;
391    if (B.isVirtual()) {
392      if (!VisitedVirtualBases.insert(BaseDecl).second) {
393        // We've visited this base before.
394        continue;
395      }
396
397      BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
398    } else {
399      BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
400    }
401
402    dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
403  }
404
405  Out << "Final overriders for (";
406  RD->printQualifiedName(Out);
407  Out << ", ";
408  Out << Base.getBaseOffset().getQuantity() << ")\n";
409
410  // Now dump the overriders for this base subobject.
411  for (const auto *MD : RD->methods()) {
412    if (!MD->isVirtual())
413      continue;
414    MD = MD->getCanonicalDecl();
415
416    OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
417
418    Out << "  ";
419    MD->printQualifiedName(Out);
420    Out << " - (";
421    Overrider.Method->printQualifiedName(Out);
422    Out << ", " << Overrider.Offset.getQuantity() << ')';
423
424    BaseOffset Offset;
425    if (!Overrider.Method->isPure())
426      Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
427
428    if (!Offset.isEmpty()) {
429      Out << " [ret-adj: ";
430      if (Offset.VirtualBase) {
431        Offset.VirtualBase->printQualifiedName(Out);
432        Out << " vbase, ";
433      }
434
435      Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
436    }
437
438    Out << "\n";
439  }
440}
441
442/// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
443struct VCallOffsetMap {
444
445  typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
446
447  /// Offsets - Keeps track of methods and their offsets.
448  // FIXME: This should be a real map and not a vector.
449  SmallVector<MethodAndOffsetPairTy, 16> Offsets;
450
451  /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
452  /// can share the same vcall offset.
453  static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
454                                         const CXXMethodDecl *RHS);
455
456public:
457  /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
458  /// add was successful, or false if there was already a member function with
459  /// the same signature in the map.
460  bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
461
462  /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
463  /// vtable address point) for the given virtual member function.
464  CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
465
466  // empty - Return whether the offset map is empty or not.
467  bool empty() const { return Offsets.empty(); }
468};
469
470static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
471                                    const CXXMethodDecl *RHS) {
472  const FunctionProtoType *LT =
473    cast<FunctionProtoType>(LHS->getType().getCanonicalType());
474  const FunctionProtoType *RT =
475    cast<FunctionProtoType>(RHS->getType().getCanonicalType());
476
477  // Fast-path matches in the canonical types.
478  if (LT == RT) return true;
479
480  // Force the signatures to match.  We can't rely on the overrides
481  // list here because there isn't necessarily an inheritance
482  // relationship between the two methods.
483  if (LT->getTypeQuals() != RT->getTypeQuals())
484    return false;
485  return LT->getParamTypes() == RT->getParamTypes();
486}
487
488bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
489                                                const CXXMethodDecl *RHS) {
490  assert(LHS->isVirtual() && "LHS must be virtual!");
491  assert(RHS->isVirtual() && "LHS must be virtual!");
492
493  // A destructor can share a vcall offset with another destructor.
494  if (isa<CXXDestructorDecl>(LHS))
495    return isa<CXXDestructorDecl>(RHS);
496
497  // FIXME: We need to check more things here.
498
499  // The methods must have the same name.
500  DeclarationName LHSName = LHS->getDeclName();
501  DeclarationName RHSName = RHS->getDeclName();
502  if (LHSName != RHSName)
503    return false;
504
505  // And the same signatures.
506  return HasSameVirtualSignature(LHS, RHS);
507}
508
509bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
510                                    CharUnits OffsetOffset) {
511  // Check if we can reuse an offset.
512  for (const auto &OffsetPair : Offsets) {
513    if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
514      return false;
515  }
516
517  // Add the offset.
518  Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
519  return true;
520}
521
522CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
523  // Look for an offset.
524  for (const auto &OffsetPair : Offsets) {
525    if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
526      return OffsetPair.second;
527  }
528
529  llvm_unreachable("Should always find a vcall offset offset!");
530}
531
532/// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
533class VCallAndVBaseOffsetBuilder {
534public:
535  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
536    VBaseOffsetOffsetsMapTy;
537
538private:
539  /// MostDerivedClass - The most derived class for which we're building vcall
540  /// and vbase offsets.
541  const CXXRecordDecl *MostDerivedClass;
542
543  /// LayoutClass - The class we're using for layout information. Will be
544  /// different than the most derived class if we're building a construction
545  /// vtable.
546  const CXXRecordDecl *LayoutClass;
547
548  /// Context - The ASTContext which we will use for layout information.
549  ASTContext &Context;
550
551  /// Components - vcall and vbase offset components
552  typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
553  VTableComponentVectorTy Components;
554
555  /// VisitedVirtualBases - Visited virtual bases.
556  llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
557
558  /// VCallOffsets - Keeps track of vcall offsets.
559  VCallOffsetMap VCallOffsets;
560
561
562  /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
563  /// relative to the address point.
564  VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
565
566  /// FinalOverriders - The final overriders of the most derived class.
567  /// (Can be null when we're not building a vtable of the most derived class).
568  const FinalOverriders *Overriders;
569
570  /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
571  /// given base subobject.
572  void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
573                               CharUnits RealBaseOffset);
574
575  /// AddVCallOffsets - Add vcall offsets for the given base subobject.
576  void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
577
578  /// AddVBaseOffsets - Add vbase offsets for the given class.
579  void AddVBaseOffsets(const CXXRecordDecl *Base,
580                       CharUnits OffsetInLayoutClass);
581
582  /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
583  /// chars, relative to the vtable address point.
584  CharUnits getCurrentOffsetOffset() const;
585
586public:
587  VCallAndVBaseOffsetBuilder(const CXXRecordDecl *MostDerivedClass,
588                             const CXXRecordDecl *LayoutClass,
589                             const FinalOverriders *Overriders,
590                             BaseSubobject Base, bool BaseIsVirtual,
591                             CharUnits OffsetInLayoutClass)
592    : MostDerivedClass(MostDerivedClass), LayoutClass(LayoutClass),
593    Context(MostDerivedClass->getASTContext()), Overriders(Overriders) {
594
595    // Add vcall and vbase offsets.
596    AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
597  }
598
599  /// Methods for iterating over the components.
600  typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
601  const_iterator components_begin() const { return Components.rbegin(); }
602  const_iterator components_end() const { return Components.rend(); }
603
604  const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
605  const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
606    return VBaseOffsetOffsets;
607  }
608};
609
610void
611VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
612                                                    bool BaseIsVirtual,
613                                                    CharUnits RealBaseOffset) {
614  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
615
616  // Itanium C++ ABI 2.5.2:
617  //   ..in classes sharing a virtual table with a primary base class, the vcall
618  //   and vbase offsets added by the derived class all come before the vcall
619  //   and vbase offsets required by the base class, so that the latter may be
620  //   laid out as required by the base class without regard to additions from
621  //   the derived class(es).
622
623  // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
624  // emit them for the primary base first).
625  if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
626    bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
627
628    CharUnits PrimaryBaseOffset;
629
630    // Get the base offset of the primary base.
631    if (PrimaryBaseIsVirtual) {
632      assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
633             "Primary vbase should have a zero offset!");
634
635      const ASTRecordLayout &MostDerivedClassLayout =
636        Context.getASTRecordLayout(MostDerivedClass);
637
638      PrimaryBaseOffset =
639        MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
640    } else {
641      assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
642             "Primary base should have a zero offset!");
643
644      PrimaryBaseOffset = Base.getBaseOffset();
645    }
646
647    AddVCallAndVBaseOffsets(
648      BaseSubobject(PrimaryBase,PrimaryBaseOffset),
649      PrimaryBaseIsVirtual, RealBaseOffset);
650  }
651
652  AddVBaseOffsets(Base.getBase(), RealBaseOffset);
653
654  // We only want to add vcall offsets for virtual bases.
655  if (BaseIsVirtual)
656    AddVCallOffsets(Base, RealBaseOffset);
657}
658
659CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
660  // OffsetIndex is the index of this vcall or vbase offset, relative to the
661  // vtable address point. (We subtract 3 to account for the information just
662  // above the address point, the RTTI info, the offset to top, and the
663  // vcall offset itself).
664  int64_t OffsetIndex = -(int64_t)(3 + Components.size());
665
666  CharUnits PointerWidth =
667    Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
668  CharUnits OffsetOffset = PointerWidth * OffsetIndex;
669  return OffsetOffset;
670}
671
672void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
673                                                 CharUnits VBaseOffset) {
674  const CXXRecordDecl *RD = Base.getBase();
675  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
676
677  const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
678
679  // Handle the primary base first.
680  // We only want to add vcall offsets if the base is non-virtual; a virtual
681  // primary base will have its vcall and vbase offsets emitted already.
682  if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
683    // Get the base offset of the primary base.
684    assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
685           "Primary base should have a zero offset!");
686
687    AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
688                    VBaseOffset);
689  }
690
691  // Add the vcall offsets.
692  for (const auto *MD : RD->methods()) {
693    if (!MD->isVirtual())
694      continue;
695    MD = MD->getCanonicalDecl();
696
697    CharUnits OffsetOffset = getCurrentOffsetOffset();
698
699    // Don't add a vcall offset if we already have one for this member function
700    // signature.
701    if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
702      continue;
703
704    CharUnits Offset = CharUnits::Zero();
705
706    if (Overriders) {
707      // Get the final overrider.
708      FinalOverriders::OverriderInfo Overrider =
709        Overriders->getOverrider(MD, Base.getBaseOffset());
710
711      /// The vcall offset is the offset from the virtual base to the object
712      /// where the function was overridden.
713      Offset = Overrider.Offset - VBaseOffset;
714    }
715
716    Components.push_back(
717      VTableComponent::MakeVCallOffset(Offset));
718  }
719
720  // And iterate over all non-virtual bases (ignoring the primary base).
721  for (const auto &B : RD->bases()) {
722    if (B.isVirtual())
723      continue;
724
725    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
726    if (BaseDecl == PrimaryBase)
727      continue;
728
729    // Get the base offset of this base.
730    CharUnits BaseOffset = Base.getBaseOffset() +
731      Layout.getBaseClassOffset(BaseDecl);
732
733    AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
734                    VBaseOffset);
735  }
736}
737
738void
739VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
740                                            CharUnits OffsetInLayoutClass) {
741  const ASTRecordLayout &LayoutClassLayout =
742    Context.getASTRecordLayout(LayoutClass);
743
744  // Add vbase offsets.
745  for (const auto &B : RD->bases()) {
746    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
747
748    // Check if this is a virtual base that we haven't visited before.
749    if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
750      CharUnits Offset =
751        LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
752
753      // Add the vbase offset offset.
754      assert(!VBaseOffsetOffsets.count(BaseDecl) &&
755             "vbase offset offset already exists!");
756
757      CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
758      VBaseOffsetOffsets.insert(
759          std::make_pair(BaseDecl, VBaseOffsetOffset));
760
761      Components.push_back(
762          VTableComponent::MakeVBaseOffset(Offset));
763    }
764
765    // Check the base class looking for more vbase offsets.
766    AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
767  }
768}
769
770/// ItaniumVTableBuilder - Class for building vtable layout information.
771class ItaniumVTableBuilder {
772public:
773  /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
774  /// primary bases.
775  typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
776    PrimaryBasesSetVectorTy;
777
778  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
779    VBaseOffsetOffsetsMapTy;
780
781  typedef llvm::DenseMap<BaseSubobject, uint64_t>
782    AddressPointsMapTy;
783
784  typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
785
786private:
787  /// VTables - Global vtable information.
788  ItaniumVTableContext &VTables;
789
790  /// MostDerivedClass - The most derived class for which we're building this
791  /// vtable.
792  const CXXRecordDecl *MostDerivedClass;
793
794  /// MostDerivedClassOffset - If we're building a construction vtable, this
795  /// holds the offset from the layout class to the most derived class.
796  const CharUnits MostDerivedClassOffset;
797
798  /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
799  /// base. (This only makes sense when building a construction vtable).
800  bool MostDerivedClassIsVirtual;
801
802  /// LayoutClass - The class we're using for layout information. Will be
803  /// different than the most derived class if we're building a construction
804  /// vtable.
805  const CXXRecordDecl *LayoutClass;
806
807  /// Context - The ASTContext which we will use for layout information.
808  ASTContext &Context;
809
810  /// FinalOverriders - The final overriders of the most derived class.
811  const FinalOverriders Overriders;
812
813  /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
814  /// bases in this vtable.
815  llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
816
817  /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
818  /// the most derived class.
819  VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
820
821  /// Components - The components of the vtable being built.
822  SmallVector<VTableComponent, 64> Components;
823
824  /// AddressPoints - Address points for the vtable being built.
825  AddressPointsMapTy AddressPoints;
826
827  /// MethodInfo - Contains information about a method in a vtable.
828  /// (Used for computing 'this' pointer adjustment thunks.
829  struct MethodInfo {
830    /// BaseOffset - The base offset of this method.
831    const CharUnits BaseOffset;
832
833    /// BaseOffsetInLayoutClass - The base offset in the layout class of this
834    /// method.
835    const CharUnits BaseOffsetInLayoutClass;
836
837    /// VTableIndex - The index in the vtable that this method has.
838    /// (For destructors, this is the index of the complete destructor).
839    const uint64_t VTableIndex;
840
841    MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
842               uint64_t VTableIndex)
843      : BaseOffset(BaseOffset),
844      BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
845      VTableIndex(VTableIndex) { }
846
847    MethodInfo()
848      : BaseOffset(CharUnits::Zero()),
849      BaseOffsetInLayoutClass(CharUnits::Zero()),
850      VTableIndex(0) { }
851  };
852
853  typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
854
855  /// MethodInfoMap - The information for all methods in the vtable we're
856  /// currently building.
857  MethodInfoMapTy MethodInfoMap;
858
859  /// MethodVTableIndices - Contains the index (relative to the vtable address
860  /// point) where the function pointer for a virtual function is stored.
861  MethodVTableIndicesTy MethodVTableIndices;
862
863  typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
864
865  /// VTableThunks - The thunks by vtable index in the vtable currently being
866  /// built.
867  VTableThunksMapTy VTableThunks;
868
869  typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
870  typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
871
872  /// Thunks - A map that contains all the thunks needed for all methods in the
873  /// most derived class for which the vtable is currently being built.
874  ThunksMapTy Thunks;
875
876  /// AddThunk - Add a thunk for the given method.
877  void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
878
879  /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
880  /// part of the vtable we're currently building.
881  void ComputeThisAdjustments();
882
883  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
884
885  /// PrimaryVirtualBases - All known virtual bases who are a primary base of
886  /// some other base.
887  VisitedVirtualBasesSetTy PrimaryVirtualBases;
888
889  /// ComputeReturnAdjustment - Compute the return adjustment given a return
890  /// adjustment base offset.
891  ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
892
893  /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
894  /// the 'this' pointer from the base subobject to the derived subobject.
895  BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
896                                             BaseSubobject Derived) const;
897
898  /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
899  /// given virtual member function, its offset in the layout class and its
900  /// final overrider.
901  ThisAdjustment
902  ComputeThisAdjustment(const CXXMethodDecl *MD,
903                        CharUnits BaseOffsetInLayoutClass,
904                        FinalOverriders::OverriderInfo Overrider);
905
906  /// AddMethod - Add a single virtual member function to the vtable
907  /// components vector.
908  void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
909
910  /// IsOverriderUsed - Returns whether the overrider will ever be used in this
911  /// part of the vtable.
912  ///
913  /// Itanium C++ ABI 2.5.2:
914  ///
915  ///   struct A { virtual void f(); };
916  ///   struct B : virtual public A { int i; };
917  ///   struct C : virtual public A { int j; };
918  ///   struct D : public B, public C {};
919  ///
920  ///   When B and C are declared, A is a primary base in each case, so although
921  ///   vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
922  ///   adjustment is required and no thunk is generated. However, inside D
923  ///   objects, A is no longer a primary base of C, so if we allowed calls to
924  ///   C::f() to use the copy of A's vtable in the C subobject, we would need
925  ///   to adjust this from C* to B::A*, which would require a third-party
926  ///   thunk. Since we require that a call to C::f() first convert to A*,
927  ///   C-in-D's copy of A's vtable is never referenced, so this is not
928  ///   necessary.
929  bool IsOverriderUsed(const CXXMethodDecl *Overrider,
930                       CharUnits BaseOffsetInLayoutClass,
931                       const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
932                       CharUnits FirstBaseOffsetInLayoutClass) const;
933
934
935  /// AddMethods - Add the methods of this base subobject and all its
936  /// primary bases to the vtable components vector.
937  void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
938                  const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
939                  CharUnits FirstBaseOffsetInLayoutClass,
940                  PrimaryBasesSetVectorTy &PrimaryBases);
941
942  // LayoutVTable - Layout the vtable for the given base class, including its
943  // secondary vtables and any vtables for virtual bases.
944  void LayoutVTable();
945
946  /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
947  /// given base subobject, as well as all its secondary vtables.
948  ///
949  /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
950  /// or a direct or indirect base of a virtual base.
951  ///
952  /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
953  /// in the layout class.
954  void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
955                                        bool BaseIsMorallyVirtual,
956                                        bool BaseIsVirtualInLayoutClass,
957                                        CharUnits OffsetInLayoutClass);
958
959  /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
960  /// subobject.
961  ///
962  /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
963  /// or a direct or indirect base of a virtual base.
964  void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
965                              CharUnits OffsetInLayoutClass);
966
967  /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
968  /// class hierarchy.
969  void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
970                                    CharUnits OffsetInLayoutClass,
971                                    VisitedVirtualBasesSetTy &VBases);
972
973  /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
974  /// given base (excluding any primary bases).
975  void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
976                                    VisitedVirtualBasesSetTy &VBases);
977
978  /// isBuildingConstructionVTable - Return whether this vtable builder is
979  /// building a construction vtable.
980  bool isBuildingConstructorVTable() const {
981    return MostDerivedClass != LayoutClass;
982  }
983
984public:
985  ItaniumVTableBuilder(ItaniumVTableContext &VTables,
986                       const CXXRecordDecl *MostDerivedClass,
987                       CharUnits MostDerivedClassOffset,
988                       bool MostDerivedClassIsVirtual,
989                       const CXXRecordDecl *LayoutClass)
990      : VTables(VTables), MostDerivedClass(MostDerivedClass),
991        MostDerivedClassOffset(MostDerivedClassOffset),
992        MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
993        LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
994        Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
995    assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
996
997    LayoutVTable();
998
999    if (Context.getLangOpts().DumpVTableLayouts)
1000      dumpLayout(llvm::outs());
1001  }
1002
1003  uint64_t getNumThunks() const {
1004    return Thunks.size();
1005  }
1006
1007  ThunksMapTy::const_iterator thunks_begin() const {
1008    return Thunks.begin();
1009  }
1010
1011  ThunksMapTy::const_iterator thunks_end() const {
1012    return Thunks.end();
1013  }
1014
1015  const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
1016    return VBaseOffsetOffsets;
1017  }
1018
1019  const AddressPointsMapTy &getAddressPoints() const {
1020    return AddressPoints;
1021  }
1022
1023  MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
1024    return MethodVTableIndices.begin();
1025  }
1026
1027  MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
1028    return MethodVTableIndices.end();
1029  }
1030
1031  /// getNumVTableComponents - Return the number of components in the vtable
1032  /// currently built.
1033  uint64_t getNumVTableComponents() const {
1034    return Components.size();
1035  }
1036
1037  const VTableComponent *vtable_component_begin() const {
1038    return Components.begin();
1039  }
1040
1041  const VTableComponent *vtable_component_end() const {
1042    return Components.end();
1043  }
1044
1045  AddressPointsMapTy::const_iterator address_points_begin() const {
1046    return AddressPoints.begin();
1047  }
1048
1049  AddressPointsMapTy::const_iterator address_points_end() const {
1050    return AddressPoints.end();
1051  }
1052
1053  VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
1054    return VTableThunks.begin();
1055  }
1056
1057  VTableThunksMapTy::const_iterator vtable_thunks_end() const {
1058    return VTableThunks.end();
1059  }
1060
1061  /// dumpLayout - Dump the vtable layout.
1062  void dumpLayout(raw_ostream&);
1063};
1064
1065void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
1066                                    const ThunkInfo &Thunk) {
1067  assert(!isBuildingConstructorVTable() &&
1068         "Can't add thunks for construction vtable");
1069
1070  SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
1071
1072  // Check if we have this thunk already.
1073  if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
1074      ThunksVector.end())
1075    return;
1076
1077  ThunksVector.push_back(Thunk);
1078}
1079
1080typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
1081
1082/// Visit all the methods overridden by the given method recursively,
1083/// in a depth-first pre-order. The Visitor's visitor method returns a bool
1084/// indicating whether to continue the recursion for the given overridden
1085/// method (i.e. returning false stops the iteration).
1086template <class VisitorTy>
1087static void
1088visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1089  assert(MD->isVirtual() && "Method is not virtual!");
1090
1091  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1092       E = MD->end_overridden_methods(); I != E; ++I) {
1093    const CXXMethodDecl *OverriddenMD = *I;
1094    if (!Visitor(OverriddenMD))
1095      continue;
1096    visitAllOverriddenMethods(OverriddenMD, Visitor);
1097  }
1098}
1099
1100/// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
1101/// the overridden methods that the function decl overrides.
1102static void
1103ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
1104                            OverriddenMethodsSetTy& OverriddenMethods) {
1105  auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) {
1106    // Don't recurse on this method if we've already collected it.
1107    return OverriddenMethods.insert(MD).second;
1108  };
1109  visitAllOverriddenMethods(MD, OverriddenMethodsCollector);
1110}
1111
1112void ItaniumVTableBuilder::ComputeThisAdjustments() {
1113  // Now go through the method info map and see if any of the methods need
1114  // 'this' pointer adjustments.
1115  for (const auto &MI : MethodInfoMap) {
1116    const CXXMethodDecl *MD = MI.first;
1117    const MethodInfo &MethodInfo = MI.second;
1118
1119    // Ignore adjustments for unused function pointers.
1120    uint64_t VTableIndex = MethodInfo.VTableIndex;
1121    if (Components[VTableIndex].getKind() ==
1122        VTableComponent::CK_UnusedFunctionPointer)
1123      continue;
1124
1125    // Get the final overrider for this method.
1126    FinalOverriders::OverriderInfo Overrider =
1127      Overriders.getOverrider(MD, MethodInfo.BaseOffset);
1128
1129    // Check if we need an adjustment at all.
1130    if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
1131      // When a return thunk is needed by a derived class that overrides a
1132      // virtual base, gcc uses a virtual 'this' adjustment as well.
1133      // While the thunk itself might be needed by vtables in subclasses or
1134      // in construction vtables, there doesn't seem to be a reason for using
1135      // the thunk in this vtable. Still, we do so to match gcc.
1136      if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
1137        continue;
1138    }
1139
1140    ThisAdjustment ThisAdjustment =
1141      ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
1142
1143    if (ThisAdjustment.isEmpty())
1144      continue;
1145
1146    // Add it.
1147    VTableThunks[VTableIndex].This = ThisAdjustment;
1148
1149    if (isa<CXXDestructorDecl>(MD)) {
1150      // Add an adjustment for the deleting destructor as well.
1151      VTableThunks[VTableIndex + 1].This = ThisAdjustment;
1152    }
1153  }
1154
1155  /// Clear the method info map.
1156  MethodInfoMap.clear();
1157
1158  if (isBuildingConstructorVTable()) {
1159    // We don't need to store thunk information for construction vtables.
1160    return;
1161  }
1162
1163  for (const auto &TI : VTableThunks) {
1164    const VTableComponent &Component = Components[TI.first];
1165    const ThunkInfo &Thunk = TI.second;
1166    const CXXMethodDecl *MD;
1167
1168    switch (Component.getKind()) {
1169    default:
1170      llvm_unreachable("Unexpected vtable component kind!");
1171    case VTableComponent::CK_FunctionPointer:
1172      MD = Component.getFunctionDecl();
1173      break;
1174    case VTableComponent::CK_CompleteDtorPointer:
1175      MD = Component.getDestructorDecl();
1176      break;
1177    case VTableComponent::CK_DeletingDtorPointer:
1178      // We've already added the thunk when we saw the complete dtor pointer.
1179      continue;
1180    }
1181
1182    if (MD->getParent() == MostDerivedClass)
1183      AddThunk(MD, Thunk);
1184  }
1185}
1186
1187ReturnAdjustment
1188ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
1189  ReturnAdjustment Adjustment;
1190
1191  if (!Offset.isEmpty()) {
1192    if (Offset.VirtualBase) {
1193      // Get the virtual base offset offset.
1194      if (Offset.DerivedClass == MostDerivedClass) {
1195        // We can get the offset offset directly from our map.
1196        Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1197          VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
1198      } else {
1199        Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1200          VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
1201                                             Offset.VirtualBase).getQuantity();
1202      }
1203    }
1204
1205    Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1206  }
1207
1208  return Adjustment;
1209}
1210
1211BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
1212    BaseSubobject Base, BaseSubobject Derived) const {
1213  const CXXRecordDecl *BaseRD = Base.getBase();
1214  const CXXRecordDecl *DerivedRD = Derived.getBase();
1215
1216  CXXBasePaths Paths(/*FindAmbiguities=*/true,
1217                     /*RecordPaths=*/true, /*DetectVirtual=*/true);
1218
1219  if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
1220    llvm_unreachable("Class must be derived from the passed in base class!");
1221
1222  // We have to go through all the paths, and see which one leads us to the
1223  // right base subobject.
1224  for (const CXXBasePath &Path : Paths) {
1225    BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path);
1226
1227    CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
1228
1229    if (Offset.VirtualBase) {
1230      // If we have a virtual base class, the non-virtual offset is relative
1231      // to the virtual base class offset.
1232      const ASTRecordLayout &LayoutClassLayout =
1233        Context.getASTRecordLayout(LayoutClass);
1234
1235      /// Get the virtual base offset, relative to the most derived class
1236      /// layout.
1237      OffsetToBaseSubobject +=
1238        LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
1239    } else {
1240      // Otherwise, the non-virtual offset is relative to the derived class
1241      // offset.
1242      OffsetToBaseSubobject += Derived.getBaseOffset();
1243    }
1244
1245    // Check if this path gives us the right base subobject.
1246    if (OffsetToBaseSubobject == Base.getBaseOffset()) {
1247      // Since we're going from the base class _to_ the derived class, we'll
1248      // invert the non-virtual offset here.
1249      Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
1250      return Offset;
1251    }
1252  }
1253
1254  return BaseOffset();
1255}
1256
1257ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
1258    const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
1259    FinalOverriders::OverriderInfo Overrider) {
1260  // Ignore adjustments for pure virtual member functions.
1261  if (Overrider.Method->isPure())
1262    return ThisAdjustment();
1263
1264  BaseSubobject OverriddenBaseSubobject(MD->getParent(),
1265                                        BaseOffsetInLayoutClass);
1266
1267  BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
1268                                       Overrider.Offset);
1269
1270  // Compute the adjustment offset.
1271  BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
1272                                                      OverriderBaseSubobject);
1273  if (Offset.isEmpty())
1274    return ThisAdjustment();
1275
1276  ThisAdjustment Adjustment;
1277
1278  if (Offset.VirtualBase) {
1279    // Get the vcall offset map for this virtual base.
1280    VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
1281
1282    if (VCallOffsets.empty()) {
1283      // We don't have vcall offsets for this virtual base, go ahead and
1284      // build them.
1285      VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, MostDerivedClass,
1286                                         /*FinalOverriders=*/nullptr,
1287                                         BaseSubobject(Offset.VirtualBase,
1288                                                       CharUnits::Zero()),
1289                                         /*BaseIsVirtual=*/true,
1290                                         /*OffsetInLayoutClass=*/
1291                                             CharUnits::Zero());
1292
1293      VCallOffsets = Builder.getVCallOffsets();
1294    }
1295
1296    Adjustment.Virtual.Itanium.VCallOffsetOffset =
1297      VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
1298  }
1299
1300  // Set the non-virtual part of the adjustment.
1301  Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1302
1303  return Adjustment;
1304}
1305
1306void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
1307                                     ReturnAdjustment ReturnAdjustment) {
1308  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1309    assert(ReturnAdjustment.isEmpty() &&
1310           "Destructor can't have return adjustment!");
1311
1312    // Add both the complete destructor and the deleting destructor.
1313    Components.push_back(VTableComponent::MakeCompleteDtor(DD));
1314    Components.push_back(VTableComponent::MakeDeletingDtor(DD));
1315  } else {
1316    // Add the return adjustment if necessary.
1317    if (!ReturnAdjustment.isEmpty())
1318      VTableThunks[Components.size()].Return = ReturnAdjustment;
1319
1320    // Add the function.
1321    Components.push_back(VTableComponent::MakeFunction(MD));
1322  }
1323}
1324
1325/// OverridesIndirectMethodInBase - Return whether the given member function
1326/// overrides any methods in the set of given bases.
1327/// Unlike OverridesMethodInBase, this checks "overriders of overriders".
1328/// For example, if we have:
1329///
1330/// struct A { virtual void f(); }
1331/// struct B : A { virtual void f(); }
1332/// struct C : B { virtual void f(); }
1333///
1334/// OverridesIndirectMethodInBase will return true if given C::f as the method
1335/// and { A } as the set of bases.
1336static bool OverridesIndirectMethodInBases(
1337    const CXXMethodDecl *MD,
1338    ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1339  if (Bases.count(MD->getParent()))
1340    return true;
1341
1342  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1343       E = MD->end_overridden_methods(); I != E; ++I) {
1344    const CXXMethodDecl *OverriddenMD = *I;
1345
1346    // Check "indirect overriders".
1347    if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
1348      return true;
1349  }
1350
1351  return false;
1352}
1353
1354bool ItaniumVTableBuilder::IsOverriderUsed(
1355    const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
1356    const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1357    CharUnits FirstBaseOffsetInLayoutClass) const {
1358  // If the base and the first base in the primary base chain have the same
1359  // offsets, then this overrider will be used.
1360  if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
1361   return true;
1362
1363  // We know now that Base (or a direct or indirect base of it) is a primary
1364  // base in part of the class hierarchy, but not a primary base in the most
1365  // derived class.
1366
1367  // If the overrider is the first base in the primary base chain, we know
1368  // that the overrider will be used.
1369  if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
1370    return true;
1371
1372  ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
1373
1374  const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
1375  PrimaryBases.insert(RD);
1376
1377  // Now traverse the base chain, starting with the first base, until we find
1378  // the base that is no longer a primary base.
1379  while (true) {
1380    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1381    const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1382
1383    if (!PrimaryBase)
1384      break;
1385
1386    if (Layout.isPrimaryBaseVirtual()) {
1387      assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1388             "Primary base should always be at offset 0!");
1389
1390      const ASTRecordLayout &LayoutClassLayout =
1391        Context.getASTRecordLayout(LayoutClass);
1392
1393      // Now check if this is the primary base that is not a primary base in the
1394      // most derived class.
1395      if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1396          FirstBaseOffsetInLayoutClass) {
1397        // We found it, stop walking the chain.
1398        break;
1399      }
1400    } else {
1401      assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1402             "Primary base should always be at offset 0!");
1403    }
1404
1405    if (!PrimaryBases.insert(PrimaryBase))
1406      llvm_unreachable("Found a duplicate primary base!");
1407
1408    RD = PrimaryBase;
1409  }
1410
1411  // If the final overrider is an override of one of the primary bases,
1412  // then we know that it will be used.
1413  return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
1414}
1415
1416typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
1417
1418/// FindNearestOverriddenMethod - Given a method, returns the overridden method
1419/// from the nearest base. Returns null if no method was found.
1420/// The Bases are expected to be sorted in a base-to-derived order.
1421static const CXXMethodDecl *
1422FindNearestOverriddenMethod(const CXXMethodDecl *MD,
1423                            BasesSetVectorTy &Bases) {
1424  OverriddenMethodsSetTy OverriddenMethods;
1425  ComputeAllOverriddenMethods(MD, OverriddenMethods);
1426
1427  for (const CXXRecordDecl *PrimaryBase :
1428       llvm::make_range(Bases.rbegin(), Bases.rend())) {
1429    // Now check the overridden methods.
1430    for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) {
1431      // We found our overridden method.
1432      if (OverriddenMD->getParent() == PrimaryBase)
1433        return OverriddenMD;
1434    }
1435  }
1436
1437  return nullptr;
1438}
1439
1440void ItaniumVTableBuilder::AddMethods(
1441    BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1442    const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1443    CharUnits FirstBaseOffsetInLayoutClass,
1444    PrimaryBasesSetVectorTy &PrimaryBases) {
1445  // Itanium C++ ABI 2.5.2:
1446  //   The order of the virtual function pointers in a virtual table is the
1447  //   order of declaration of the corresponding member functions in the class.
1448  //
1449  //   There is an entry for any virtual function declared in a class,
1450  //   whether it is a new function or overrides a base class function,
1451  //   unless it overrides a function from the primary base, and conversion
1452  //   between their return types does not require an adjustment.
1453
1454  const CXXRecordDecl *RD = Base.getBase();
1455  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1456
1457  if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1458    CharUnits PrimaryBaseOffset;
1459    CharUnits PrimaryBaseOffsetInLayoutClass;
1460    if (Layout.isPrimaryBaseVirtual()) {
1461      assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1462             "Primary vbase should have a zero offset!");
1463
1464      const ASTRecordLayout &MostDerivedClassLayout =
1465        Context.getASTRecordLayout(MostDerivedClass);
1466
1467      PrimaryBaseOffset =
1468        MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
1469
1470      const ASTRecordLayout &LayoutClassLayout =
1471        Context.getASTRecordLayout(LayoutClass);
1472
1473      PrimaryBaseOffsetInLayoutClass =
1474        LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1475    } else {
1476      assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1477             "Primary base should have a zero offset!");
1478
1479      PrimaryBaseOffset = Base.getBaseOffset();
1480      PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
1481    }
1482
1483    AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
1484               PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
1485               FirstBaseOffsetInLayoutClass, PrimaryBases);
1486
1487    if (!PrimaryBases.insert(PrimaryBase))
1488      llvm_unreachable("Found a duplicate primary base!");
1489  }
1490
1491  const CXXDestructorDecl *ImplicitVirtualDtor = nullptr;
1492
1493  typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
1494  NewVirtualFunctionsTy NewVirtualFunctions;
1495
1496  // Now go through all virtual member functions and add them.
1497  for (const auto *MD : RD->methods()) {
1498    if (!MD->isVirtual())
1499      continue;
1500    MD = MD->getCanonicalDecl();
1501
1502    // Get the final overrider.
1503    FinalOverriders::OverriderInfo Overrider =
1504      Overriders.getOverrider(MD, Base.getBaseOffset());
1505
1506    // Check if this virtual member function overrides a method in a primary
1507    // base. If this is the case, and the return type doesn't require adjustment
1508    // then we can just use the member function from the primary base.
1509    if (const CXXMethodDecl *OverriddenMD =
1510          FindNearestOverriddenMethod(MD, PrimaryBases)) {
1511      if (ComputeReturnAdjustmentBaseOffset(Context, MD,
1512                                            OverriddenMD).isEmpty()) {
1513        // Replace the method info of the overridden method with our own
1514        // method.
1515        assert(MethodInfoMap.count(OverriddenMD) &&
1516               "Did not find the overridden method!");
1517        MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
1518
1519        MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1520                              OverriddenMethodInfo.VTableIndex);
1521
1522        assert(!MethodInfoMap.count(MD) &&
1523               "Should not have method info for this method yet!");
1524
1525        MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1526        MethodInfoMap.erase(OverriddenMD);
1527
1528        // If the overridden method exists in a virtual base class or a direct
1529        // or indirect base class of a virtual base class, we need to emit a
1530        // thunk if we ever have a class hierarchy where the base class is not
1531        // a primary base in the complete object.
1532        if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
1533          // Compute the this adjustment.
1534          ThisAdjustment ThisAdjustment =
1535            ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
1536                                  Overrider);
1537
1538          if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
1539              Overrider.Method->getParent() == MostDerivedClass) {
1540
1541            // There's no return adjustment from OverriddenMD and MD,
1542            // but that doesn't mean there isn't one between MD and
1543            // the final overrider.
1544            BaseOffset ReturnAdjustmentOffset =
1545              ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
1546            ReturnAdjustment ReturnAdjustment =
1547              ComputeReturnAdjustment(ReturnAdjustmentOffset);
1548
1549            // This is a virtual thunk for the most derived class, add it.
1550            AddThunk(Overrider.Method,
1551                     ThunkInfo(ThisAdjustment, ReturnAdjustment));
1552          }
1553        }
1554
1555        continue;
1556      }
1557    }
1558
1559    if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1560      if (MD->isImplicit()) {
1561        // Itanium C++ ABI 2.5.2:
1562        //   If a class has an implicitly-defined virtual destructor,
1563        //   its entries come after the declared virtual function pointers.
1564
1565        assert(!ImplicitVirtualDtor &&
1566               "Did already see an implicit virtual dtor!");
1567        ImplicitVirtualDtor = DD;
1568        continue;
1569      }
1570    }
1571
1572    NewVirtualFunctions.push_back(MD);
1573  }
1574
1575  if (ImplicitVirtualDtor)
1576    NewVirtualFunctions.push_back(ImplicitVirtualDtor);
1577
1578  for (const CXXMethodDecl *MD : NewVirtualFunctions) {
1579    // Get the final overrider.
1580    FinalOverriders::OverriderInfo Overrider =
1581      Overriders.getOverrider(MD, Base.getBaseOffset());
1582
1583    // Insert the method info for this method.
1584    MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1585                          Components.size());
1586
1587    assert(!MethodInfoMap.count(MD) &&
1588           "Should not have method info for this method yet!");
1589    MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1590
1591    // Check if this overrider is going to be used.
1592    const CXXMethodDecl *OverriderMD = Overrider.Method;
1593    if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
1594                         FirstBaseInPrimaryBaseChain,
1595                         FirstBaseOffsetInLayoutClass)) {
1596      Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
1597      continue;
1598    }
1599
1600    // Check if this overrider needs a return adjustment.
1601    // We don't want to do this for pure virtual member functions.
1602    BaseOffset ReturnAdjustmentOffset;
1603    if (!OverriderMD->isPure()) {
1604      ReturnAdjustmentOffset =
1605        ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
1606    }
1607
1608    ReturnAdjustment ReturnAdjustment =
1609      ComputeReturnAdjustment(ReturnAdjustmentOffset);
1610
1611    AddMethod(Overrider.Method, ReturnAdjustment);
1612  }
1613}
1614
1615void ItaniumVTableBuilder::LayoutVTable() {
1616  LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
1617                                                 CharUnits::Zero()),
1618                                   /*BaseIsMorallyVirtual=*/false,
1619                                   MostDerivedClassIsVirtual,
1620                                   MostDerivedClassOffset);
1621
1622  VisitedVirtualBasesSetTy VBases;
1623
1624  // Determine the primary virtual bases.
1625  DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
1626                               VBases);
1627  VBases.clear();
1628
1629  LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
1630
1631  // -fapple-kext adds an extra entry at end of vtbl.
1632  bool IsAppleKext = Context.getLangOpts().AppleKext;
1633  if (IsAppleKext)
1634    Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
1635}
1636
1637void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
1638    BaseSubobject Base, bool BaseIsMorallyVirtual,
1639    bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
1640  assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
1641
1642  // Add vcall and vbase offsets for this vtable.
1643  VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, LayoutClass, &Overriders,
1644                                     Base, BaseIsVirtualInLayoutClass,
1645                                     OffsetInLayoutClass);
1646  Components.append(Builder.components_begin(), Builder.components_end());
1647
1648  // Check if we need to add these vcall offsets.
1649  if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
1650    VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
1651
1652    if (VCallOffsets.empty())
1653      VCallOffsets = Builder.getVCallOffsets();
1654  }
1655
1656  // If we're laying out the most derived class we want to keep track of the
1657  // virtual base class offset offsets.
1658  if (Base.getBase() == MostDerivedClass)
1659    VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
1660
1661  // Add the offset to top.
1662  CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
1663  Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
1664
1665  // Next, add the RTTI.
1666  Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
1667
1668  uint64_t AddressPoint = Components.size();
1669
1670  // Now go through all virtual member functions and add them.
1671  PrimaryBasesSetVectorTy PrimaryBases;
1672  AddMethods(Base, OffsetInLayoutClass,
1673             Base.getBase(), OffsetInLayoutClass,
1674             PrimaryBases);
1675
1676  const CXXRecordDecl *RD = Base.getBase();
1677  if (RD == MostDerivedClass) {
1678    assert(MethodVTableIndices.empty());
1679    for (const auto &I : MethodInfoMap) {
1680      const CXXMethodDecl *MD = I.first;
1681      const MethodInfo &MI = I.second;
1682      if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1683        MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
1684            = MI.VTableIndex - AddressPoint;
1685        MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
1686            = MI.VTableIndex + 1 - AddressPoint;
1687      } else {
1688        MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
1689      }
1690    }
1691  }
1692
1693  // Compute 'this' pointer adjustments.
1694  ComputeThisAdjustments();
1695
1696  // Add all address points.
1697  while (true) {
1698    AddressPoints.insert(std::make_pair(
1699      BaseSubobject(RD, OffsetInLayoutClass),
1700      AddressPoint));
1701
1702    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1703    const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1704
1705    if (!PrimaryBase)
1706      break;
1707
1708    if (Layout.isPrimaryBaseVirtual()) {
1709      // Check if this virtual primary base is a primary base in the layout
1710      // class. If it's not, we don't want to add it.
1711      const ASTRecordLayout &LayoutClassLayout =
1712        Context.getASTRecordLayout(LayoutClass);
1713
1714      if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1715          OffsetInLayoutClass) {
1716        // We don't want to add this class (or any of its primary bases).
1717        break;
1718      }
1719    }
1720
1721    RD = PrimaryBase;
1722  }
1723
1724  // Layout secondary vtables.
1725  LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
1726}
1727
1728void
1729ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
1730                                             bool BaseIsMorallyVirtual,
1731                                             CharUnits OffsetInLayoutClass) {
1732  // Itanium C++ ABI 2.5.2:
1733  //   Following the primary virtual table of a derived class are secondary
1734  //   virtual tables for each of its proper base classes, except any primary
1735  //   base(s) with which it shares its primary virtual table.
1736
1737  const CXXRecordDecl *RD = Base.getBase();
1738  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1739  const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1740
1741  for (const auto &B : RD->bases()) {
1742    // Ignore virtual bases, we'll emit them later.
1743    if (B.isVirtual())
1744      continue;
1745
1746    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1747
1748    // Ignore bases that don't have a vtable.
1749    if (!BaseDecl->isDynamicClass())
1750      continue;
1751
1752    if (isBuildingConstructorVTable()) {
1753      // Itanium C++ ABI 2.6.4:
1754      //   Some of the base class subobjects may not need construction virtual
1755      //   tables, which will therefore not be present in the construction
1756      //   virtual table group, even though the subobject virtual tables are
1757      //   present in the main virtual table group for the complete object.
1758      if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
1759        continue;
1760    }
1761
1762    // Get the base offset of this base.
1763    CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
1764    CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
1765
1766    CharUnits BaseOffsetInLayoutClass =
1767      OffsetInLayoutClass + RelativeBaseOffset;
1768
1769    // Don't emit a secondary vtable for a primary base. We might however want
1770    // to emit secondary vtables for other bases of this base.
1771    if (BaseDecl == PrimaryBase) {
1772      LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
1773                             BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
1774      continue;
1775    }
1776
1777    // Layout the primary vtable (and any secondary vtables) for this base.
1778    LayoutPrimaryAndSecondaryVTables(
1779      BaseSubobject(BaseDecl, BaseOffset),
1780      BaseIsMorallyVirtual,
1781      /*BaseIsVirtualInLayoutClass=*/false,
1782      BaseOffsetInLayoutClass);
1783  }
1784}
1785
1786void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
1787    const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
1788    VisitedVirtualBasesSetTy &VBases) {
1789  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1790
1791  // Check if this base has a primary base.
1792  if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1793
1794    // Check if it's virtual.
1795    if (Layout.isPrimaryBaseVirtual()) {
1796      bool IsPrimaryVirtualBase = true;
1797
1798      if (isBuildingConstructorVTable()) {
1799        // Check if the base is actually a primary base in the class we use for
1800        // layout.
1801        const ASTRecordLayout &LayoutClassLayout =
1802          Context.getASTRecordLayout(LayoutClass);
1803
1804        CharUnits PrimaryBaseOffsetInLayoutClass =
1805          LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1806
1807        // We know that the base is not a primary base in the layout class if
1808        // the base offsets are different.
1809        if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
1810          IsPrimaryVirtualBase = false;
1811      }
1812
1813      if (IsPrimaryVirtualBase)
1814        PrimaryVirtualBases.insert(PrimaryBase);
1815    }
1816  }
1817
1818  // Traverse bases, looking for more primary virtual bases.
1819  for (const auto &B : RD->bases()) {
1820    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1821
1822    CharUnits BaseOffsetInLayoutClass;
1823
1824    if (B.isVirtual()) {
1825      if (!VBases.insert(BaseDecl).second)
1826        continue;
1827
1828      const ASTRecordLayout &LayoutClassLayout =
1829        Context.getASTRecordLayout(LayoutClass);
1830
1831      BaseOffsetInLayoutClass =
1832        LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1833    } else {
1834      BaseOffsetInLayoutClass =
1835        OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
1836    }
1837
1838    DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
1839  }
1840}
1841
1842void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
1843    const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
1844  // Itanium C++ ABI 2.5.2:
1845  //   Then come the virtual base virtual tables, also in inheritance graph
1846  //   order, and again excluding primary bases (which share virtual tables with
1847  //   the classes for which they are primary).
1848  for (const auto &B : RD->bases()) {
1849    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1850
1851    // Check if this base needs a vtable. (If it's virtual, not a primary base
1852    // of some other class, and we haven't visited it before).
1853    if (B.isVirtual() && BaseDecl->isDynamicClass() &&
1854        !PrimaryVirtualBases.count(BaseDecl) &&
1855        VBases.insert(BaseDecl).second) {
1856      const ASTRecordLayout &MostDerivedClassLayout =
1857        Context.getASTRecordLayout(MostDerivedClass);
1858      CharUnits BaseOffset =
1859        MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
1860
1861      const ASTRecordLayout &LayoutClassLayout =
1862        Context.getASTRecordLayout(LayoutClass);
1863      CharUnits BaseOffsetInLayoutClass =
1864        LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1865
1866      LayoutPrimaryAndSecondaryVTables(
1867        BaseSubobject(BaseDecl, BaseOffset),
1868        /*BaseIsMorallyVirtual=*/true,
1869        /*BaseIsVirtualInLayoutClass=*/true,
1870        BaseOffsetInLayoutClass);
1871    }
1872
1873    // We only need to check the base for virtual base vtables if it actually
1874    // has virtual bases.
1875    if (BaseDecl->getNumVBases())
1876      LayoutVTablesForVirtualBases(BaseDecl, VBases);
1877  }
1878}
1879
1880/// dumpLayout - Dump the vtable layout.
1881void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
1882  // FIXME: write more tests that actually use the dumpLayout output to prevent
1883  // ItaniumVTableBuilder regressions.
1884
1885  if (isBuildingConstructorVTable()) {
1886    Out << "Construction vtable for ('";
1887    MostDerivedClass->printQualifiedName(Out);
1888    Out << "', ";
1889    Out << MostDerivedClassOffset.getQuantity() << ") in '";
1890    LayoutClass->printQualifiedName(Out);
1891  } else {
1892    Out << "Vtable for '";
1893    MostDerivedClass->printQualifiedName(Out);
1894  }
1895  Out << "' (" << Components.size() << " entries).\n";
1896
1897  // Iterate through the address points and insert them into a new map where
1898  // they are keyed by the index and not the base object.
1899  // Since an address point can be shared by multiple subobjects, we use an
1900  // STL multimap.
1901  std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
1902  for (const auto &AP : AddressPoints) {
1903    const BaseSubobject &Base = AP.first;
1904    uint64_t Index = AP.second;
1905
1906    AddressPointsByIndex.insert(std::make_pair(Index, Base));
1907  }
1908
1909  for (unsigned I = 0, E = Components.size(); I != E; ++I) {
1910    uint64_t Index = I;
1911
1912    Out << llvm::format("%4d | ", I);
1913
1914    const VTableComponent &Component = Components[I];
1915
1916    // Dump the component.
1917    switch (Component.getKind()) {
1918
1919    case VTableComponent::CK_VCallOffset:
1920      Out << "vcall_offset ("
1921          << Component.getVCallOffset().getQuantity()
1922          << ")";
1923      break;
1924
1925    case VTableComponent::CK_VBaseOffset:
1926      Out << "vbase_offset ("
1927          << Component.getVBaseOffset().getQuantity()
1928          << ")";
1929      break;
1930
1931    case VTableComponent::CK_OffsetToTop:
1932      Out << "offset_to_top ("
1933          << Component.getOffsetToTop().getQuantity()
1934          << ")";
1935      break;
1936
1937    case VTableComponent::CK_RTTI:
1938      Component.getRTTIDecl()->printQualifiedName(Out);
1939      Out << " RTTI";
1940      break;
1941
1942    case VTableComponent::CK_FunctionPointer: {
1943      const CXXMethodDecl *MD = Component.getFunctionDecl();
1944
1945      std::string Str =
1946        PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
1947                                    MD);
1948      Out << Str;
1949      if (MD->isPure())
1950        Out << " [pure]";
1951
1952      if (MD->isDeleted())
1953        Out << " [deleted]";
1954
1955      ThunkInfo Thunk = VTableThunks.lookup(I);
1956      if (!Thunk.isEmpty()) {
1957        // If this function pointer has a return adjustment, dump it.
1958        if (!Thunk.Return.isEmpty()) {
1959          Out << "\n       [return adjustment: ";
1960          Out << Thunk.Return.NonVirtual << " non-virtual";
1961
1962          if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
1963            Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
1964            Out << " vbase offset offset";
1965          }
1966
1967          Out << ']';
1968        }
1969
1970        // If this function pointer has a 'this' pointer adjustment, dump it.
1971        if (!Thunk.This.isEmpty()) {
1972          Out << "\n       [this adjustment: ";
1973          Out << Thunk.This.NonVirtual << " non-virtual";
1974
1975          if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
1976            Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
1977            Out << " vcall offset offset";
1978          }
1979
1980          Out << ']';
1981        }
1982      }
1983
1984      break;
1985    }
1986
1987    case VTableComponent::CK_CompleteDtorPointer:
1988    case VTableComponent::CK_DeletingDtorPointer: {
1989      bool IsComplete =
1990        Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
1991
1992      const CXXDestructorDecl *DD = Component.getDestructorDecl();
1993
1994      DD->printQualifiedName(Out);
1995      if (IsComplete)
1996        Out << "() [complete]";
1997      else
1998        Out << "() [deleting]";
1999
2000      if (DD->isPure())
2001        Out << " [pure]";
2002
2003      ThunkInfo Thunk = VTableThunks.lookup(I);
2004      if (!Thunk.isEmpty()) {
2005        // If this destructor has a 'this' pointer adjustment, dump it.
2006        if (!Thunk.This.isEmpty()) {
2007          Out << "\n       [this adjustment: ";
2008          Out << Thunk.This.NonVirtual << " non-virtual";
2009
2010          if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2011            Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2012            Out << " vcall offset offset";
2013          }
2014
2015          Out << ']';
2016        }
2017      }
2018
2019      break;
2020    }
2021
2022    case VTableComponent::CK_UnusedFunctionPointer: {
2023      const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
2024
2025      std::string Str =
2026        PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2027                                    MD);
2028      Out << "[unused] " << Str;
2029      if (MD->isPure())
2030        Out << " [pure]";
2031    }
2032
2033    }
2034
2035    Out << '\n';
2036
2037    // Dump the next address point.
2038    uint64_t NextIndex = Index + 1;
2039    if (AddressPointsByIndex.count(NextIndex)) {
2040      if (AddressPointsByIndex.count(NextIndex) == 1) {
2041        const BaseSubobject &Base =
2042          AddressPointsByIndex.find(NextIndex)->second;
2043
2044        Out << "       -- (";
2045        Base.getBase()->printQualifiedName(Out);
2046        Out << ", " << Base.getBaseOffset().getQuantity();
2047        Out << ") vtable address --\n";
2048      } else {
2049        CharUnits BaseOffset =
2050          AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
2051
2052        // We store the class names in a set to get a stable order.
2053        std::set<std::string> ClassNames;
2054        for (const auto &I :
2055             llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) {
2056          assert(I.second.getBaseOffset() == BaseOffset &&
2057                 "Invalid base offset!");
2058          const CXXRecordDecl *RD = I.second.getBase();
2059          ClassNames.insert(RD->getQualifiedNameAsString());
2060        }
2061
2062        for (const std::string &Name : ClassNames) {
2063          Out << "       -- (" << Name;
2064          Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
2065        }
2066      }
2067    }
2068  }
2069
2070  Out << '\n';
2071
2072  if (isBuildingConstructorVTable())
2073    return;
2074
2075  if (MostDerivedClass->getNumVBases()) {
2076    // We store the virtual base class names and their offsets in a map to get
2077    // a stable order.
2078
2079    std::map<std::string, CharUnits> ClassNamesAndOffsets;
2080    for (const auto &I : VBaseOffsetOffsets) {
2081      std::string ClassName = I.first->getQualifiedNameAsString();
2082      CharUnits OffsetOffset = I.second;
2083      ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset));
2084    }
2085
2086    Out << "Virtual base offset offsets for '";
2087    MostDerivedClass->printQualifiedName(Out);
2088    Out << "' (";
2089    Out << ClassNamesAndOffsets.size();
2090    Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
2091
2092    for (const auto &I : ClassNamesAndOffsets)
2093      Out << "   " << I.first << " | " << I.second.getQuantity() << '\n';
2094
2095    Out << "\n";
2096  }
2097
2098  if (!Thunks.empty()) {
2099    // We store the method names in a map to get a stable order.
2100    std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
2101
2102    for (const auto &I : Thunks) {
2103      const CXXMethodDecl *MD = I.first;
2104      std::string MethodName =
2105        PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2106                                    MD);
2107
2108      MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
2109    }
2110
2111    for (const auto &I : MethodNamesAndDecls) {
2112      const std::string &MethodName = I.first;
2113      const CXXMethodDecl *MD = I.second;
2114
2115      ThunkInfoVectorTy ThunksVector = Thunks[MD];
2116      std::sort(ThunksVector.begin(), ThunksVector.end(),
2117                [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
2118        assert(LHS.Method == nullptr && RHS.Method == nullptr);
2119        return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
2120      });
2121
2122      Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
2123      Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
2124
2125      for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
2126        const ThunkInfo &Thunk = ThunksVector[I];
2127
2128        Out << llvm::format("%4d | ", I);
2129
2130        // If this function pointer has a return pointer adjustment, dump it.
2131        if (!Thunk.Return.isEmpty()) {
2132          Out << "return adjustment: " << Thunk.Return.NonVirtual;
2133          Out << " non-virtual";
2134          if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
2135            Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
2136            Out << " vbase offset offset";
2137          }
2138
2139          if (!Thunk.This.isEmpty())
2140            Out << "\n       ";
2141        }
2142
2143        // If this function pointer has a 'this' pointer adjustment, dump it.
2144        if (!Thunk.This.isEmpty()) {
2145          Out << "this adjustment: ";
2146          Out << Thunk.This.NonVirtual << " non-virtual";
2147
2148          if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2149            Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2150            Out << " vcall offset offset";
2151          }
2152        }
2153
2154        Out << '\n';
2155      }
2156
2157      Out << '\n';
2158    }
2159  }
2160
2161  // Compute the vtable indices for all the member functions.
2162  // Store them in a map keyed by the index so we'll get a sorted table.
2163  std::map<uint64_t, std::string> IndicesMap;
2164
2165  for (const auto *MD : MostDerivedClass->methods()) {
2166    // We only want virtual member functions.
2167    if (!MD->isVirtual())
2168      continue;
2169    MD = MD->getCanonicalDecl();
2170
2171    std::string MethodName =
2172      PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2173                                  MD);
2174
2175    if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2176      GlobalDecl GD(DD, Dtor_Complete);
2177      assert(MethodVTableIndices.count(GD));
2178      uint64_t VTableIndex = MethodVTableIndices[GD];
2179      IndicesMap[VTableIndex] = MethodName + " [complete]";
2180      IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
2181    } else {
2182      assert(MethodVTableIndices.count(MD));
2183      IndicesMap[MethodVTableIndices[MD]] = MethodName;
2184    }
2185  }
2186
2187  // Print the vtable indices for all the member functions.
2188  if (!IndicesMap.empty()) {
2189    Out << "VTable indices for '";
2190    MostDerivedClass->printQualifiedName(Out);
2191    Out << "' (" << IndicesMap.size() << " entries).\n";
2192
2193    for (const auto &I : IndicesMap) {
2194      uint64_t VTableIndex = I.first;
2195      const std::string &MethodName = I.second;
2196
2197      Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
2198          << '\n';
2199    }
2200  }
2201
2202  Out << '\n';
2203}
2204}
2205
2206VTableLayout::VTableLayout(uint64_t NumVTableComponents,
2207                           const VTableComponent *VTableComponents,
2208                           uint64_t NumVTableThunks,
2209                           const VTableThunkTy *VTableThunks,
2210                           const AddressPointsMapTy &AddressPoints,
2211                           bool IsMicrosoftABI)
2212  : NumVTableComponents(NumVTableComponents),
2213    VTableComponents(new VTableComponent[NumVTableComponents]),
2214    NumVTableThunks(NumVTableThunks),
2215    VTableThunks(new VTableThunkTy[NumVTableThunks]),
2216    AddressPoints(AddressPoints),
2217    IsMicrosoftABI(IsMicrosoftABI) {
2218  std::copy(VTableComponents, VTableComponents+NumVTableComponents,
2219            this->VTableComponents.get());
2220  std::copy(VTableThunks, VTableThunks+NumVTableThunks,
2221            this->VTableThunks.get());
2222  std::sort(this->VTableThunks.get(),
2223            this->VTableThunks.get() + NumVTableThunks,
2224            [](const VTableLayout::VTableThunkTy &LHS,
2225               const VTableLayout::VTableThunkTy &RHS) {
2226    assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
2227           "Different thunks should have unique indices!");
2228    return LHS.first < RHS.first;
2229  });
2230}
2231
2232VTableLayout::~VTableLayout() { }
2233
2234ItaniumVTableContext::ItaniumVTableContext(ASTContext &Context)
2235    : VTableContextBase(/*MS=*/false) {}
2236
2237ItaniumVTableContext::~ItaniumVTableContext() {
2238  llvm::DeleteContainerSeconds(VTableLayouts);
2239}
2240
2241uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
2242  MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
2243  if (I != MethodVTableIndices.end())
2244    return I->second;
2245
2246  const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
2247
2248  computeVTableRelatedInformation(RD);
2249
2250  I = MethodVTableIndices.find(GD);
2251  assert(I != MethodVTableIndices.end() && "Did not find index!");
2252  return I->second;
2253}
2254
2255CharUnits
2256ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
2257                                                 const CXXRecordDecl *VBase) {
2258  ClassPairTy ClassPair(RD, VBase);
2259
2260  VirtualBaseClassOffsetOffsetsMapTy::iterator I =
2261    VirtualBaseClassOffsetOffsets.find(ClassPair);
2262  if (I != VirtualBaseClassOffsetOffsets.end())
2263    return I->second;
2264
2265  VCallAndVBaseOffsetBuilder Builder(RD, RD, /*FinalOverriders=*/nullptr,
2266                                     BaseSubobject(RD, CharUnits::Zero()),
2267                                     /*BaseIsVirtual=*/false,
2268                                     /*OffsetInLayoutClass=*/CharUnits::Zero());
2269
2270  for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2271    // Insert all types.
2272    ClassPairTy ClassPair(RD, I.first);
2273
2274    VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2275  }
2276
2277  I = VirtualBaseClassOffsetOffsets.find(ClassPair);
2278  assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
2279
2280  return I->second;
2281}
2282
2283static VTableLayout *CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
2284  SmallVector<VTableLayout::VTableThunkTy, 1>
2285    VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
2286
2287  return new VTableLayout(Builder.getNumVTableComponents(),
2288                          Builder.vtable_component_begin(),
2289                          VTableThunks.size(),
2290                          VTableThunks.data(),
2291                          Builder.getAddressPoints(),
2292                          /*IsMicrosoftABI=*/false);
2293}
2294
2295void
2296ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
2297  const VTableLayout *&Entry = VTableLayouts[RD];
2298
2299  // Check if we've computed this information before.
2300  if (Entry)
2301    return;
2302
2303  ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
2304                               /*MostDerivedClassIsVirtual=*/0, RD);
2305  Entry = CreateVTableLayout(Builder);
2306
2307  MethodVTableIndices.insert(Builder.vtable_indices_begin(),
2308                             Builder.vtable_indices_end());
2309
2310  // Add the known thunks.
2311  Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
2312
2313  // If we don't have the vbase information for this class, insert it.
2314  // getVirtualBaseOffsetOffset will compute it separately without computing
2315  // the rest of the vtable related information.
2316  if (!RD->getNumVBases())
2317    return;
2318
2319  const CXXRecordDecl *VBase =
2320    RD->vbases_begin()->getType()->getAsCXXRecordDecl();
2321
2322  if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
2323    return;
2324
2325  for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2326    // Insert all types.
2327    ClassPairTy ClassPair(RD, I.first);
2328
2329    VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2330  }
2331}
2332
2333VTableLayout *ItaniumVTableContext::createConstructionVTableLayout(
2334    const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
2335    bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
2336  ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
2337                               MostDerivedClassIsVirtual, LayoutClass);
2338  return CreateVTableLayout(Builder);
2339}
2340
2341namespace {
2342
2343// Vtables in the Microsoft ABI are different from the Itanium ABI.
2344//
2345// The main differences are:
2346//  1. Separate vftable and vbtable.
2347//
2348//  2. Each subobject with a vfptr gets its own vftable rather than an address
2349//     point in a single vtable shared between all the subobjects.
2350//     Each vftable is represented by a separate section and virtual calls
2351//     must be done using the vftable which has a slot for the function to be
2352//     called.
2353//
2354//  3. Virtual method definitions expect their 'this' parameter to point to the
2355//     first vfptr whose table provides a compatible overridden method.  In many
2356//     cases, this permits the original vf-table entry to directly call
2357//     the method instead of passing through a thunk.
2358//     See example before VFTableBuilder::ComputeThisOffset below.
2359//
2360//     A compatible overridden method is one which does not have a non-trivial
2361//     covariant-return adjustment.
2362//
2363//     The first vfptr is the one with the lowest offset in the complete-object
2364//     layout of the defining class, and the method definition will subtract
2365//     that constant offset from the parameter value to get the real 'this'
2366//     value.  Therefore, if the offset isn't really constant (e.g. if a virtual
2367//     function defined in a virtual base is overridden in a more derived
2368//     virtual base and these bases have a reverse order in the complete
2369//     object), the vf-table may require a this-adjustment thunk.
2370//
2371//  4. vftables do not contain new entries for overrides that merely require
2372//     this-adjustment.  Together with #3, this keeps vf-tables smaller and
2373//     eliminates the need for this-adjustment thunks in many cases, at the cost
2374//     of often requiring redundant work to adjust the "this" pointer.
2375//
2376//  5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
2377//     Vtordisps are emitted into the class layout if a class has
2378//      a) a user-defined ctor/dtor
2379//     and
2380//      b) a method overriding a method in a virtual base.
2381//
2382//  To get a better understanding of this code,
2383//  you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
2384
2385class VFTableBuilder {
2386public:
2387  typedef MicrosoftVTableContext::MethodVFTableLocation MethodVFTableLocation;
2388
2389  typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
2390    MethodVFTableLocationsTy;
2391
2392  typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
2393    method_locations_range;
2394
2395private:
2396  /// VTables - Global vtable information.
2397  MicrosoftVTableContext &VTables;
2398
2399  /// Context - The ASTContext which we will use for layout information.
2400  ASTContext &Context;
2401
2402  /// MostDerivedClass - The most derived class for which we're building this
2403  /// vtable.
2404  const CXXRecordDecl *MostDerivedClass;
2405
2406  const ASTRecordLayout &MostDerivedClassLayout;
2407
2408  const VPtrInfo &WhichVFPtr;
2409
2410  /// FinalOverriders - The final overriders of the most derived class.
2411  const FinalOverriders Overriders;
2412
2413  /// Components - The components of the vftable being built.
2414  SmallVector<VTableComponent, 64> Components;
2415
2416  MethodVFTableLocationsTy MethodVFTableLocations;
2417
2418  /// \brief Does this class have an RTTI component?
2419  bool HasRTTIComponent = false;
2420
2421  /// MethodInfo - Contains information about a method in a vtable.
2422  /// (Used for computing 'this' pointer adjustment thunks.
2423  struct MethodInfo {
2424    /// VBTableIndex - The nonzero index in the vbtable that
2425    /// this method's base has, or zero.
2426    const uint64_t VBTableIndex;
2427
2428    /// VFTableIndex - The index in the vftable that this method has.
2429    const uint64_t VFTableIndex;
2430
2431    /// Shadowed - Indicates if this vftable slot is shadowed by
2432    /// a slot for a covariant-return override. If so, it shouldn't be printed
2433    /// or used for vcalls in the most derived class.
2434    bool Shadowed;
2435
2436    /// UsesExtraSlot - Indicates if this vftable slot was created because
2437    /// any of the overridden slots required a return adjusting thunk.
2438    bool UsesExtraSlot;
2439
2440    MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
2441               bool UsesExtraSlot = false)
2442        : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
2443          Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
2444
2445    MethodInfo()
2446        : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
2447          UsesExtraSlot(false) {}
2448  };
2449
2450  typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
2451
2452  /// MethodInfoMap - The information for all methods in the vftable we're
2453  /// currently building.
2454  MethodInfoMapTy MethodInfoMap;
2455
2456  typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
2457
2458  /// VTableThunks - The thunks by vftable index in the vftable currently being
2459  /// built.
2460  VTableThunksMapTy VTableThunks;
2461
2462  typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
2463  typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
2464
2465  /// Thunks - A map that contains all the thunks needed for all methods in the
2466  /// most derived class for which the vftable is currently being built.
2467  ThunksMapTy Thunks;
2468
2469  /// AddThunk - Add a thunk for the given method.
2470  void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
2471    SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
2472
2473    // Check if we have this thunk already.
2474    if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
2475        ThunksVector.end())
2476      return;
2477
2478    ThunksVector.push_back(Thunk);
2479  }
2480
2481  /// ComputeThisOffset - Returns the 'this' argument offset for the given
2482  /// method, relative to the beginning of the MostDerivedClass.
2483  CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
2484
2485  void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
2486                                   CharUnits ThisOffset, ThisAdjustment &TA);
2487
2488  /// AddMethod - Add a single virtual member function to the vftable
2489  /// components vector.
2490  void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
2491    if (!TI.isEmpty()) {
2492      VTableThunks[Components.size()] = TI;
2493      AddThunk(MD, TI);
2494    }
2495    if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2496      assert(TI.Return.isEmpty() &&
2497             "Destructor can't have return adjustment!");
2498      Components.push_back(VTableComponent::MakeDeletingDtor(DD));
2499    } else {
2500      Components.push_back(VTableComponent::MakeFunction(MD));
2501    }
2502  }
2503
2504  /// AddMethods - Add the methods of this base subobject and the relevant
2505  /// subbases to the vftable we're currently laying out.
2506  void AddMethods(BaseSubobject Base, unsigned BaseDepth,
2507                  const CXXRecordDecl *LastVBase,
2508                  BasesSetVectorTy &VisitedBases);
2509
2510  void LayoutVFTable() {
2511    // RTTI data goes before all other entries.
2512    if (HasRTTIComponent)
2513      Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
2514
2515    BasesSetVectorTy VisitedBases;
2516    AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
2517               VisitedBases);
2518    assert((HasRTTIComponent ? Components.size() - 1 : Components.size()) &&
2519           "vftable can't be empty");
2520
2521    assert(MethodVFTableLocations.empty());
2522    for (const auto &I : MethodInfoMap) {
2523      const CXXMethodDecl *MD = I.first;
2524      const MethodInfo &MI = I.second;
2525      // Skip the methods that the MostDerivedClass didn't override
2526      // and the entries shadowed by return adjusting thunks.
2527      if (MD->getParent() != MostDerivedClass || MI.Shadowed)
2528        continue;
2529      MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
2530                                WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
2531      if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2532        MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
2533      } else {
2534        MethodVFTableLocations[MD] = Loc;
2535      }
2536    }
2537  }
2538
2539public:
2540  VFTableBuilder(MicrosoftVTableContext &VTables,
2541                 const CXXRecordDecl *MostDerivedClass, const VPtrInfo *Which)
2542      : VTables(VTables),
2543        Context(MostDerivedClass->getASTContext()),
2544        MostDerivedClass(MostDerivedClass),
2545        MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
2546        WhichVFPtr(*Which),
2547        Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
2548    // Provide the RTTI component if RTTIData is enabled. If the vftable would
2549    // be available externally, we should not provide the RTTI componenent. It
2550    // is currently impossible to get available externally vftables with either
2551    // dllimport or extern template instantiations, but eventually we may add a
2552    // flag to support additional devirtualization that needs this.
2553    if (Context.getLangOpts().RTTIData)
2554      HasRTTIComponent = true;
2555
2556    LayoutVFTable();
2557
2558    if (Context.getLangOpts().DumpVTableLayouts)
2559      dumpLayout(llvm::outs());
2560  }
2561
2562  uint64_t getNumThunks() const { return Thunks.size(); }
2563
2564  ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
2565
2566  ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
2567
2568  method_locations_range vtable_locations() const {
2569    return method_locations_range(MethodVFTableLocations.begin(),
2570                                  MethodVFTableLocations.end());
2571  }
2572
2573  uint64_t getNumVTableComponents() const { return Components.size(); }
2574
2575  const VTableComponent *vtable_component_begin() const {
2576    return Components.begin();
2577  }
2578
2579  const VTableComponent *vtable_component_end() const {
2580    return Components.end();
2581  }
2582
2583  VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
2584    return VTableThunks.begin();
2585  }
2586
2587  VTableThunksMapTy::const_iterator vtable_thunks_end() const {
2588    return VTableThunks.end();
2589  }
2590
2591  void dumpLayout(raw_ostream &);
2592};
2593
2594} // end namespace
2595
2596// Let's study one class hierarchy as an example:
2597//   struct A {
2598//     virtual void f();
2599//     int x;
2600//   };
2601//
2602//   struct B : virtual A {
2603//     virtual void f();
2604//   };
2605//
2606// Record layouts:
2607//   struct A:
2608//   0 |   (A vftable pointer)
2609//   4 |   int x
2610//
2611//   struct B:
2612//   0 |   (B vbtable pointer)
2613//   4 |   struct A (virtual base)
2614//   4 |     (A vftable pointer)
2615//   8 |     int x
2616//
2617// Let's assume we have a pointer to the A part of an object of dynamic type B:
2618//   B b;
2619//   A *a = (A*)&b;
2620//   a->f();
2621//
2622// In this hierarchy, f() belongs to the vftable of A, so B::f() expects
2623// "this" parameter to point at the A subobject, which is B+4.
2624// In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
2625// performed as a *static* adjustment.
2626//
2627// Interesting thing happens when we alter the relative placement of A and B
2628// subobjects in a class:
2629//   struct C : virtual B { };
2630//
2631//   C c;
2632//   A *a = (A*)&c;
2633//   a->f();
2634//
2635// Respective record layout is:
2636//   0 |   (C vbtable pointer)
2637//   4 |   struct A (virtual base)
2638//   4 |     (A vftable pointer)
2639//   8 |     int x
2640//  12 |   struct B (virtual base)
2641//  12 |     (B vbtable pointer)
2642//
2643// The final overrider of f() in class C is still B::f(), so B+4 should be
2644// passed as "this" to that code.  However, "a" points at B-8, so the respective
2645// vftable entry should hold a thunk that adds 12 to the "this" argument before
2646// performing a tail call to B::f().
2647//
2648// With this example in mind, we can now calculate the 'this' argument offset
2649// for the given method, relative to the beginning of the MostDerivedClass.
2650CharUnits
2651VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
2652  BasesSetVectorTy Bases;
2653
2654  {
2655    // Find the set of least derived bases that define the given method.
2656    OverriddenMethodsSetTy VisitedOverriddenMethods;
2657    auto InitialOverriddenDefinitionCollector = [&](
2658        const CXXMethodDecl *OverriddenMD) {
2659      if (OverriddenMD->size_overridden_methods() == 0)
2660        Bases.insert(OverriddenMD->getParent());
2661      // Don't recurse on this method if we've already collected it.
2662      return VisitedOverriddenMethods.insert(OverriddenMD).second;
2663    };
2664    visitAllOverriddenMethods(Overrider.Method,
2665                              InitialOverriddenDefinitionCollector);
2666  }
2667
2668  // If there are no overrides then 'this' is located
2669  // in the base that defines the method.
2670  if (Bases.size() == 0)
2671    return Overrider.Offset;
2672
2673  CXXBasePaths Paths;
2674  Overrider.Method->getParent()->lookupInBases(
2675      [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) {
2676        return Bases.count(Specifier->getType()->getAsCXXRecordDecl());
2677      },
2678      Paths);
2679
2680  // This will hold the smallest this offset among overridees of MD.
2681  // This implies that an offset of a non-virtual base will dominate an offset
2682  // of a virtual base to potentially reduce the number of thunks required
2683  // in the derived classes that inherit this method.
2684  CharUnits Ret;
2685  bool First = true;
2686
2687  const ASTRecordLayout &OverriderRDLayout =
2688      Context.getASTRecordLayout(Overrider.Method->getParent());
2689  for (const CXXBasePath &Path : Paths) {
2690    CharUnits ThisOffset = Overrider.Offset;
2691    CharUnits LastVBaseOffset;
2692
2693    // For each path from the overrider to the parents of the overridden
2694    // methods, traverse the path, calculating the this offset in the most
2695    // derived class.
2696    for (const CXXBasePathElement &Element : Path) {
2697      QualType CurTy = Element.Base->getType();
2698      const CXXRecordDecl *PrevRD = Element.Class,
2699                          *CurRD = CurTy->getAsCXXRecordDecl();
2700      const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
2701
2702      if (Element.Base->isVirtual()) {
2703        // The interesting things begin when you have virtual inheritance.
2704        // The final overrider will use a static adjustment equal to the offset
2705        // of the vbase in the final overrider class.
2706        // For example, if the final overrider is in a vbase B of the most
2707        // derived class and it overrides a method of the B's own vbase A,
2708        // it uses A* as "this".  In its prologue, it can cast A* to B* with
2709        // a static offset.  This offset is used regardless of the actual
2710        // offset of A from B in the most derived class, requiring an
2711        // this-adjusting thunk in the vftable if A and B are laid out
2712        // differently in the most derived class.
2713        LastVBaseOffset = ThisOffset =
2714            Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
2715      } else {
2716        ThisOffset += Layout.getBaseClassOffset(CurRD);
2717      }
2718    }
2719
2720    if (isa<CXXDestructorDecl>(Overrider.Method)) {
2721      if (LastVBaseOffset.isZero()) {
2722        // If a "Base" class has at least one non-virtual base with a virtual
2723        // destructor, the "Base" virtual destructor will take the address
2724        // of the "Base" subobject as the "this" argument.
2725        ThisOffset = Overrider.Offset;
2726      } else {
2727        // A virtual destructor of a virtual base takes the address of the
2728        // virtual base subobject as the "this" argument.
2729        ThisOffset = LastVBaseOffset;
2730      }
2731    }
2732
2733    if (Ret > ThisOffset || First) {
2734      First = false;
2735      Ret = ThisOffset;
2736    }
2737  }
2738
2739  assert(!First && "Method not found in the given subobject?");
2740  return Ret;
2741}
2742
2743// Things are getting even more complex when the "this" adjustment has to
2744// use a dynamic offset instead of a static one, or even two dynamic offsets.
2745// This is sometimes required when a virtual call happens in the middle of
2746// a non-most-derived class construction or destruction.
2747//
2748// Let's take a look at the following example:
2749//   struct A {
2750//     virtual void f();
2751//   };
2752//
2753//   void foo(A *a) { a->f(); }  // Knows nothing about siblings of A.
2754//
2755//   struct B : virtual A {
2756//     virtual void f();
2757//     B() {
2758//       foo(this);
2759//     }
2760//   };
2761//
2762//   struct C : virtual B {
2763//     virtual void f();
2764//   };
2765//
2766// Record layouts for these classes are:
2767//   struct A
2768//   0 |   (A vftable pointer)
2769//
2770//   struct B
2771//   0 |   (B vbtable pointer)
2772//   4 |   (vtordisp for vbase A)
2773//   8 |   struct A (virtual base)
2774//   8 |     (A vftable pointer)
2775//
2776//   struct C
2777//   0 |   (C vbtable pointer)
2778//   4 |   (vtordisp for vbase A)
2779//   8 |   struct A (virtual base)  // A precedes B!
2780//   8 |     (A vftable pointer)
2781//  12 |   struct B (virtual base)
2782//  12 |     (B vbtable pointer)
2783//
2784// When one creates an object of type C, the C constructor:
2785// - initializes all the vbptrs, then
2786// - calls the A subobject constructor
2787//   (initializes A's vfptr with an address of A vftable), then
2788// - calls the B subobject constructor
2789//   (initializes A's vfptr with an address of B vftable and vtordisp for A),
2790//   that in turn calls foo(), then
2791// - initializes A's vfptr with an address of C vftable and zeroes out the
2792//   vtordisp
2793//   FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
2794//   without vtordisp thunks?
2795//   FIXME: how are vtordisp handled in the presence of nooverride/final?
2796//
2797// When foo() is called, an object with a layout of class C has a vftable
2798// referencing B::f() that assumes a B layout, so the "this" adjustments are
2799// incorrect, unless an extra adjustment is done.  This adjustment is called
2800// "vtordisp adjustment".  Vtordisp basically holds the difference between the
2801// actual location of a vbase in the layout class and the location assumed by
2802// the vftable of the class being constructed/destructed.  Vtordisp is only
2803// needed if "this" escapes a
2804// structor (or we can't prove otherwise).
2805// [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
2806// estimation of a dynamic adjustment]
2807//
2808// foo() gets a pointer to the A vbase and doesn't know anything about B or C,
2809// so it just passes that pointer as "this" in a virtual call.
2810// If there was no vtordisp, that would just dispatch to B::f().
2811// However, B::f() assumes B+8 is passed as "this",
2812// yet the pointer foo() passes along is B-4 (i.e. C+8).
2813// An extra adjustment is needed, so we emit a thunk into the B vftable.
2814// This vtordisp thunk subtracts the value of vtordisp
2815// from the "this" argument (-12) before making a tailcall to B::f().
2816//
2817// Let's consider an even more complex example:
2818//   struct D : virtual B, virtual C {
2819//     D() {
2820//       foo(this);
2821//     }
2822//   };
2823//
2824//   struct D
2825//   0 |   (D vbtable pointer)
2826//   4 |   (vtordisp for vbase A)
2827//   8 |   struct A (virtual base)  // A precedes both B and C!
2828//   8 |     (A vftable pointer)
2829//  12 |   struct B (virtual base)  // B precedes C!
2830//  12 |     (B vbtable pointer)
2831//  16 |   struct C (virtual base)
2832//  16 |     (C vbtable pointer)
2833//
2834// When D::D() calls foo(), we find ourselves in a thunk that should tailcall
2835// to C::f(), which assumes C+8 as its "this" parameter.  This time, foo()
2836// passes along A, which is C-8.  The A vtordisp holds
2837//   "D.vbptr[index_of_A] - offset_of_A_in_D"
2838// and we statically know offset_of_A_in_D, so can get a pointer to D.
2839// When we know it, we can make an extra vbtable lookup to locate the C vbase
2840// and one extra static adjustment to calculate the expected value of C+8.
2841void VFTableBuilder::CalculateVtordispAdjustment(
2842    FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
2843    ThisAdjustment &TA) {
2844  const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
2845      MostDerivedClassLayout.getVBaseOffsetsMap();
2846  const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
2847      VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
2848  assert(VBaseMapEntry != VBaseMap.end());
2849
2850  // If there's no vtordisp or the final overrider is defined in the same vbase
2851  // as the initial declaration, we don't need any vtordisp adjustment.
2852  if (!VBaseMapEntry->second.hasVtorDisp() ||
2853      Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
2854    return;
2855
2856  // OK, now we know we need to use a vtordisp thunk.
2857  // The implicit vtordisp field is located right before the vbase.
2858  CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
2859  TA.Virtual.Microsoft.VtordispOffset =
2860      (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
2861
2862  // A simple vtordisp thunk will suffice if the final overrider is defined
2863  // in either the most derived class or its non-virtual base.
2864  if (Overrider.Method->getParent() == MostDerivedClass ||
2865      !Overrider.VirtualBase)
2866    return;
2867
2868  // Otherwise, we need to do use the dynamic offset of the final overrider
2869  // in order to get "this" adjustment right.
2870  TA.Virtual.Microsoft.VBPtrOffset =
2871      (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
2872       MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
2873  TA.Virtual.Microsoft.VBOffsetOffset =
2874      Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
2875      VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
2876
2877  TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
2878}
2879
2880static void GroupNewVirtualOverloads(
2881    const CXXRecordDecl *RD,
2882    SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
2883  // Put the virtual methods into VirtualMethods in the proper order:
2884  // 1) Group overloads by declaration name. New groups are added to the
2885  //    vftable in the order of their first declarations in this class
2886  //    (including overrides, non-virtual methods and any other named decl that
2887  //    might be nested within the class).
2888  // 2) In each group, new overloads appear in the reverse order of declaration.
2889  typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
2890  SmallVector<MethodGroup, 10> Groups;
2891  typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
2892  VisitedGroupIndicesTy VisitedGroupIndices;
2893  for (const auto *D : RD->decls()) {
2894    const auto *ND = dyn_cast<NamedDecl>(D);
2895    if (!ND)
2896      continue;
2897    VisitedGroupIndicesTy::iterator J;
2898    bool Inserted;
2899    std::tie(J, Inserted) = VisitedGroupIndices.insert(
2900        std::make_pair(ND->getDeclName(), Groups.size()));
2901    if (Inserted)
2902      Groups.push_back(MethodGroup());
2903    if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
2904      if (MD->isVirtual())
2905        Groups[J->second].push_back(MD->getCanonicalDecl());
2906  }
2907
2908  for (const MethodGroup &Group : Groups)
2909    VirtualMethods.append(Group.rbegin(), Group.rend());
2910}
2911
2912static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
2913  for (const auto &B : RD->bases()) {
2914    if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
2915      return true;
2916  }
2917  return false;
2918}
2919
2920void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
2921                                const CXXRecordDecl *LastVBase,
2922                                BasesSetVectorTy &VisitedBases) {
2923  const CXXRecordDecl *RD = Base.getBase();
2924  if (!RD->isPolymorphic())
2925    return;
2926
2927  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2928
2929  // See if this class expands a vftable of the base we look at, which is either
2930  // the one defined by the vfptr base path or the primary base of the current
2931  // class.
2932  const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
2933  CharUnits NextBaseOffset;
2934  if (BaseDepth < WhichVFPtr.PathToBaseWithVPtr.size()) {
2935    NextBase = WhichVFPtr.PathToBaseWithVPtr[BaseDepth];
2936    if (isDirectVBase(NextBase, RD)) {
2937      NextLastVBase = NextBase;
2938      NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
2939    } else {
2940      NextBaseOffset =
2941          Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
2942    }
2943  } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
2944    assert(!Layout.isPrimaryBaseVirtual() &&
2945           "No primary virtual bases in this ABI");
2946    NextBase = PrimaryBase;
2947    NextBaseOffset = Base.getBaseOffset();
2948  }
2949
2950  if (NextBase) {
2951    AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
2952               NextLastVBase, VisitedBases);
2953    if (!VisitedBases.insert(NextBase))
2954      llvm_unreachable("Found a duplicate primary base!");
2955  }
2956
2957  SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
2958  // Put virtual methods in the proper order.
2959  GroupNewVirtualOverloads(RD, VirtualMethods);
2960
2961  // Now go through all virtual member functions and add them to the current
2962  // vftable. This is done by
2963  //  - replacing overridden methods in their existing slots, as long as they
2964  //    don't require return adjustment; calculating This adjustment if needed.
2965  //  - adding new slots for methods of the current base not present in any
2966  //    sub-bases;
2967  //  - adding new slots for methods that require Return adjustment.
2968  // We keep track of the methods visited in the sub-bases in MethodInfoMap.
2969  for (const CXXMethodDecl *MD : VirtualMethods) {
2970    FinalOverriders::OverriderInfo FinalOverrider =
2971        Overriders.getOverrider(MD, Base.getBaseOffset());
2972    const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
2973    const CXXMethodDecl *OverriddenMD =
2974        FindNearestOverriddenMethod(MD, VisitedBases);
2975
2976    ThisAdjustment ThisAdjustmentOffset;
2977    bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
2978    CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
2979    ThisAdjustmentOffset.NonVirtual =
2980        (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
2981    if ((OverriddenMD || FinalOverriderMD != MD) &&
2982        WhichVFPtr.getVBaseWithVPtr())
2983      CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
2984                                  ThisAdjustmentOffset);
2985
2986    if (OverriddenMD) {
2987      // If MD overrides anything in this vftable, we need to update the
2988      // entries.
2989      MethodInfoMapTy::iterator OverriddenMDIterator =
2990          MethodInfoMap.find(OverriddenMD);
2991
2992      // If the overridden method went to a different vftable, skip it.
2993      if (OverriddenMDIterator == MethodInfoMap.end())
2994        continue;
2995
2996      MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
2997
2998      // Let's check if the overrider requires any return adjustments.
2999      // We must create a new slot if the MD's return type is not trivially
3000      // convertible to the OverriddenMD's one.
3001      // Once a chain of method overrides adds a return adjusting vftable slot,
3002      // all subsequent overrides will also use an extra method slot.
3003      ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
3004                                  Context, MD, OverriddenMD).isEmpty() ||
3005                             OverriddenMethodInfo.UsesExtraSlot;
3006
3007      if (!ReturnAdjustingThunk) {
3008        // No return adjustment needed - just replace the overridden method info
3009        // with the current info.
3010        MethodInfo MI(OverriddenMethodInfo.VBTableIndex,
3011                      OverriddenMethodInfo.VFTableIndex);
3012        MethodInfoMap.erase(OverriddenMDIterator);
3013
3014        assert(!MethodInfoMap.count(MD) &&
3015               "Should not have method info for this method yet!");
3016        MethodInfoMap.insert(std::make_pair(MD, MI));
3017        continue;
3018      }
3019
3020      // In case we need a return adjustment, we'll add a new slot for
3021      // the overrider. Mark the overriden method as shadowed by the new slot.
3022      OverriddenMethodInfo.Shadowed = true;
3023
3024      // Force a special name mangling for a return-adjusting thunk
3025      // unless the method is the final overrider without this adjustment.
3026      ForceReturnAdjustmentMangling =
3027          !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
3028    } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
3029               MD->size_overridden_methods()) {
3030      // Skip methods that don't belong to the vftable of the current class,
3031      // e.g. each method that wasn't seen in any of the visited sub-bases
3032      // but overrides multiple methods of other sub-bases.
3033      continue;
3034    }
3035
3036    // If we got here, MD is a method not seen in any of the sub-bases or
3037    // it requires return adjustment. Insert the method info for this method.
3038    unsigned VBIndex =
3039        LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
3040    MethodInfo MI(VBIndex,
3041                  HasRTTIComponent ? Components.size() - 1 : Components.size(),
3042                  ReturnAdjustingThunk);
3043
3044    assert(!MethodInfoMap.count(MD) &&
3045           "Should not have method info for this method yet!");
3046    MethodInfoMap.insert(std::make_pair(MD, MI));
3047
3048    // Check if this overrider needs a return adjustment.
3049    // We don't want to do this for pure virtual member functions.
3050    BaseOffset ReturnAdjustmentOffset;
3051    ReturnAdjustment ReturnAdjustment;
3052    if (!FinalOverriderMD->isPure()) {
3053      ReturnAdjustmentOffset =
3054          ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
3055    }
3056    if (!ReturnAdjustmentOffset.isEmpty()) {
3057      ForceReturnAdjustmentMangling = true;
3058      ReturnAdjustment.NonVirtual =
3059          ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
3060      if (ReturnAdjustmentOffset.VirtualBase) {
3061        const ASTRecordLayout &DerivedLayout =
3062            Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
3063        ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
3064            DerivedLayout.getVBPtrOffset().getQuantity();
3065        ReturnAdjustment.Virtual.Microsoft.VBIndex =
3066            VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
3067                                    ReturnAdjustmentOffset.VirtualBase);
3068      }
3069    }
3070
3071    AddMethod(FinalOverriderMD,
3072              ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
3073                        ForceReturnAdjustmentMangling ? MD : nullptr));
3074  }
3075}
3076
3077static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
3078  for (const CXXRecordDecl *Elem :
3079       llvm::make_range(Path.rbegin(), Path.rend())) {
3080    Out << "'";
3081    Elem->printQualifiedName(Out);
3082    Out << "' in ";
3083  }
3084}
3085
3086static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
3087                                         bool ContinueFirstLine) {
3088  const ReturnAdjustment &R = TI.Return;
3089  bool Multiline = false;
3090  const char *LinePrefix = "\n       ";
3091  if (!R.isEmpty() || TI.Method) {
3092    if (!ContinueFirstLine)
3093      Out << LinePrefix;
3094    Out << "[return adjustment (to type '"
3095        << TI.Method->getReturnType().getCanonicalType().getAsString()
3096        << "'): ";
3097    if (R.Virtual.Microsoft.VBPtrOffset)
3098      Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
3099    if (R.Virtual.Microsoft.VBIndex)
3100      Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
3101    Out << R.NonVirtual << " non-virtual]";
3102    Multiline = true;
3103  }
3104
3105  const ThisAdjustment &T = TI.This;
3106  if (!T.isEmpty()) {
3107    if (Multiline || !ContinueFirstLine)
3108      Out << LinePrefix;
3109    Out << "[this adjustment: ";
3110    if (!TI.This.Virtual.isEmpty()) {
3111      assert(T.Virtual.Microsoft.VtordispOffset < 0);
3112      Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
3113      if (T.Virtual.Microsoft.VBPtrOffset) {
3114        Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
3115            << " to the left,";
3116        assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
3117        Out << LinePrefix << " vboffset at "
3118            << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
3119      }
3120    }
3121    Out << T.NonVirtual << " non-virtual]";
3122  }
3123}
3124
3125void VFTableBuilder::dumpLayout(raw_ostream &Out) {
3126  Out << "VFTable for ";
3127  PrintBasePath(WhichVFPtr.PathToBaseWithVPtr, Out);
3128  Out << "'";
3129  MostDerivedClass->printQualifiedName(Out);
3130  Out << "' (" << Components.size()
3131      << (Components.size() == 1 ? " entry" : " entries") << ").\n";
3132
3133  for (unsigned I = 0, E = Components.size(); I != E; ++I) {
3134    Out << llvm::format("%4d | ", I);
3135
3136    const VTableComponent &Component = Components[I];
3137
3138    // Dump the component.
3139    switch (Component.getKind()) {
3140    case VTableComponent::CK_RTTI:
3141      Component.getRTTIDecl()->printQualifiedName(Out);
3142      Out << " RTTI";
3143      break;
3144
3145    case VTableComponent::CK_FunctionPointer: {
3146      const CXXMethodDecl *MD = Component.getFunctionDecl();
3147
3148      // FIXME: Figure out how to print the real thunk type, since they can
3149      // differ in the return type.
3150      std::string Str = PredefinedExpr::ComputeName(
3151          PredefinedExpr::PrettyFunctionNoVirtual, MD);
3152      Out << Str;
3153      if (MD->isPure())
3154        Out << " [pure]";
3155
3156      if (MD->isDeleted())
3157        Out << " [deleted]";
3158
3159      ThunkInfo Thunk = VTableThunks.lookup(I);
3160      if (!Thunk.isEmpty())
3161        dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3162
3163      break;
3164    }
3165
3166    case VTableComponent::CK_DeletingDtorPointer: {
3167      const CXXDestructorDecl *DD = Component.getDestructorDecl();
3168
3169      DD->printQualifiedName(Out);
3170      Out << "() [scalar deleting]";
3171
3172      if (DD->isPure())
3173        Out << " [pure]";
3174
3175      ThunkInfo Thunk = VTableThunks.lookup(I);
3176      if (!Thunk.isEmpty()) {
3177        assert(Thunk.Return.isEmpty() &&
3178               "No return adjustment needed for destructors!");
3179        dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3180      }
3181
3182      break;
3183    }
3184
3185    default:
3186      DiagnosticsEngine &Diags = Context.getDiagnostics();
3187      unsigned DiagID = Diags.getCustomDiagID(
3188          DiagnosticsEngine::Error,
3189          "Unexpected vftable component type %0 for component number %1");
3190      Diags.Report(MostDerivedClass->getLocation(), DiagID)
3191          << I << Component.getKind();
3192    }
3193
3194    Out << '\n';
3195  }
3196
3197  Out << '\n';
3198
3199  if (!Thunks.empty()) {
3200    // We store the method names in a map to get a stable order.
3201    std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
3202
3203    for (const auto &I : Thunks) {
3204      const CXXMethodDecl *MD = I.first;
3205      std::string MethodName = PredefinedExpr::ComputeName(
3206          PredefinedExpr::PrettyFunctionNoVirtual, MD);
3207
3208      MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
3209    }
3210
3211    for (const auto &MethodNameAndDecl : MethodNamesAndDecls) {
3212      const std::string &MethodName = MethodNameAndDecl.first;
3213      const CXXMethodDecl *MD = MethodNameAndDecl.second;
3214
3215      ThunkInfoVectorTy ThunksVector = Thunks[MD];
3216      std::stable_sort(ThunksVector.begin(), ThunksVector.end(),
3217                       [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
3218        // Keep different thunks with the same adjustments in the order they
3219        // were put into the vector.
3220        return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
3221      });
3222
3223      Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
3224      Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
3225
3226      for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
3227        const ThunkInfo &Thunk = ThunksVector[I];
3228
3229        Out << llvm::format("%4d | ", I);
3230        dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
3231        Out << '\n';
3232      }
3233
3234      Out << '\n';
3235    }
3236  }
3237
3238  Out.flush();
3239}
3240
3241static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
3242                          ArrayRef<const CXXRecordDecl *> B) {
3243  for (const CXXRecordDecl *Decl : B) {
3244    if (A.count(Decl))
3245      return true;
3246  }
3247  return false;
3248}
3249
3250static bool rebucketPaths(VPtrInfoVector &Paths);
3251
3252/// Produces MSVC-compatible vbtable data.  The symbols produced by this
3253/// algorithm match those produced by MSVC 2012 and newer, which is different
3254/// from MSVC 2010.
3255///
3256/// MSVC 2012 appears to minimize the vbtable names using the following
3257/// algorithm.  First, walk the class hierarchy in the usual order, depth first,
3258/// left to right, to find all of the subobjects which contain a vbptr field.
3259/// Visiting each class node yields a list of inheritance paths to vbptrs.  Each
3260/// record with a vbptr creates an initially empty path.
3261///
3262/// To combine paths from child nodes, the paths are compared to check for
3263/// ambiguity.  Paths are "ambiguous" if multiple paths have the same set of
3264/// components in the same order.  Each group of ambiguous paths is extended by
3265/// appending the class of the base from which it came.  If the current class
3266/// node produced an ambiguous path, its path is extended with the current class.
3267/// After extending paths, MSVC again checks for ambiguity, and extends any
3268/// ambiguous path which wasn't already extended.  Because each node yields an
3269/// unambiguous set of paths, MSVC doesn't need to extend any path more than once
3270/// to produce an unambiguous set of paths.
3271///
3272/// TODO: Presumably vftables use the same algorithm.
3273void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
3274                                                const CXXRecordDecl *RD,
3275                                                VPtrInfoVector &Paths) {
3276  assert(Paths.empty());
3277  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3278
3279  // Base case: this subobject has its own vptr.
3280  if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
3281    Paths.push_back(new VPtrInfo(RD));
3282
3283  // Recursive case: get all the vbtables from our bases and remove anything
3284  // that shares a virtual base.
3285  llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
3286  for (const auto &B : RD->bases()) {
3287    const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
3288    if (B.isVirtual() && VBasesSeen.count(Base))
3289      continue;
3290
3291    if (!Base->isDynamicClass())
3292      continue;
3293
3294    const VPtrInfoVector &BasePaths =
3295        ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
3296
3297    for (VPtrInfo *BaseInfo : BasePaths) {
3298      // Don't include the path if it goes through a virtual base that we've
3299      // already included.
3300      if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
3301        continue;
3302
3303      // Copy the path and adjust it as necessary.
3304      VPtrInfo *P = new VPtrInfo(*BaseInfo);
3305
3306      // We mangle Base into the path if the path would've been ambiguous and it
3307      // wasn't already extended with Base.
3308      if (P->MangledPath.empty() || P->MangledPath.back() != Base)
3309        P->NextBaseToMangle = Base;
3310
3311      // Keep track of which vtable the derived class is going to extend with
3312      // new methods or bases.  We append to either the vftable of our primary
3313      // base, or the first non-virtual base that has a vbtable.
3314      if (P->ReusingBase == Base &&
3315          Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
3316                               : Layout.getPrimaryBase()))
3317        P->ReusingBase = RD;
3318
3319      // Keep track of the full adjustment from the MDC to this vtable.  The
3320      // adjustment is captured by an optional vbase and a non-virtual offset.
3321      if (B.isVirtual())
3322        P->ContainingVBases.push_back(Base);
3323      else if (P->ContainingVBases.empty())
3324        P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
3325
3326      // Update the full offset in the MDC.
3327      P->FullOffsetInMDC = P->NonVirtualOffset;
3328      if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
3329        P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
3330
3331      Paths.push_back(P);
3332    }
3333
3334    if (B.isVirtual())
3335      VBasesSeen.insert(Base);
3336
3337    // After visiting any direct base, we've transitively visited all of its
3338    // morally virtual bases.
3339    for (const auto &VB : Base->vbases())
3340      VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
3341  }
3342
3343  // Sort the paths into buckets, and if any of them are ambiguous, extend all
3344  // paths in ambiguous buckets.
3345  bool Changed = true;
3346  while (Changed)
3347    Changed = rebucketPaths(Paths);
3348}
3349
3350static bool extendPath(VPtrInfo *P) {
3351  if (P->NextBaseToMangle) {
3352    P->MangledPath.push_back(P->NextBaseToMangle);
3353    P->NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
3354    return true;
3355  }
3356  return false;
3357}
3358
3359static bool rebucketPaths(VPtrInfoVector &Paths) {
3360  // What we're essentially doing here is bucketing together ambiguous paths.
3361  // Any bucket with more than one path in it gets extended by NextBase, which
3362  // is usually the direct base of the inherited the vbptr.  This code uses a
3363  // sorted vector to implement a multiset to form the buckets.  Note that the
3364  // ordering is based on pointers, but it doesn't change our output order.  The
3365  // current algorithm is designed to match MSVC 2012's names.
3366  VPtrInfoVector PathsSorted(Paths);
3367  std::sort(PathsSorted.begin(), PathsSorted.end(),
3368            [](const VPtrInfo *LHS, const VPtrInfo *RHS) {
3369    return LHS->MangledPath < RHS->MangledPath;
3370  });
3371  bool Changed = false;
3372  for (size_t I = 0, E = PathsSorted.size(); I != E;) {
3373    // Scan forward to find the end of the bucket.
3374    size_t BucketStart = I;
3375    do {
3376      ++I;
3377    } while (I != E && PathsSorted[BucketStart]->MangledPath ==
3378                           PathsSorted[I]->MangledPath);
3379
3380    // If this bucket has multiple paths, extend them all.
3381    if (I - BucketStart > 1) {
3382      for (size_t II = BucketStart; II != I; ++II)
3383        Changed |= extendPath(PathsSorted[II]);
3384      assert(Changed && "no paths were extended to fix ambiguity");
3385    }
3386  }
3387  return Changed;
3388}
3389
3390MicrosoftVTableContext::~MicrosoftVTableContext() {
3391  for (auto &P : VFPtrLocations)
3392    llvm::DeleteContainerPointers(*P.second);
3393  llvm::DeleteContainerSeconds(VFPtrLocations);
3394  llvm::DeleteContainerSeconds(VFTableLayouts);
3395  llvm::DeleteContainerSeconds(VBaseInfo);
3396}
3397
3398namespace {
3399typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>,
3400                        llvm::DenseSet<BaseSubobject>> FullPathTy;
3401}
3402
3403// This recursive function finds all paths from a subobject centered at
3404// (RD, Offset) to the subobject located at BaseWithVPtr.
3405static void findPathsToSubobject(ASTContext &Context,
3406                                 const ASTRecordLayout &MostDerivedLayout,
3407                                 const CXXRecordDecl *RD, CharUnits Offset,
3408                                 BaseSubobject BaseWithVPtr,
3409                                 FullPathTy &FullPath,
3410                                 std::list<FullPathTy> &Paths) {
3411  if (BaseSubobject(RD, Offset) == BaseWithVPtr) {
3412    Paths.push_back(FullPath);
3413    return;
3414  }
3415
3416  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3417
3418  for (const CXXBaseSpecifier &BS : RD->bases()) {
3419    const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl();
3420    CharUnits NewOffset = BS.isVirtual()
3421                              ? MostDerivedLayout.getVBaseClassOffset(Base)
3422                              : Offset + Layout.getBaseClassOffset(Base);
3423    FullPath.insert(BaseSubobject(Base, NewOffset));
3424    findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset,
3425                         BaseWithVPtr, FullPath, Paths);
3426    FullPath.pop_back();
3427  }
3428}
3429
3430// Return the paths which are not subsets of other paths.
3431static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) {
3432  FullPaths.remove_if([&](const FullPathTy &SpecificPath) {
3433    for (const FullPathTy &OtherPath : FullPaths) {
3434      if (&SpecificPath == &OtherPath)
3435        continue;
3436      if (std::all_of(SpecificPath.begin(), SpecificPath.end(),
3437                      [&](const BaseSubobject &BSO) {
3438                        return OtherPath.count(BSO) != 0;
3439                      })) {
3440        return true;
3441      }
3442    }
3443    return false;
3444  });
3445}
3446
3447static CharUnits getOffsetOfFullPath(ASTContext &Context,
3448                                     const CXXRecordDecl *RD,
3449                                     const FullPathTy &FullPath) {
3450  const ASTRecordLayout &MostDerivedLayout =
3451      Context.getASTRecordLayout(RD);
3452  CharUnits Offset = CharUnits::fromQuantity(-1);
3453  for (const BaseSubobject &BSO : FullPath) {
3454    const CXXRecordDecl *Base = BSO.getBase();
3455    // The first entry in the path is always the most derived record, skip it.
3456    if (Base == RD) {
3457      assert(Offset.getQuantity() == -1);
3458      Offset = CharUnits::Zero();
3459      continue;
3460    }
3461    assert(Offset.getQuantity() != -1);
3462    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3463    // While we know which base has to be traversed, we don't know if that base
3464    // was a virtual base.
3465    const CXXBaseSpecifier *BaseBS = std::find_if(
3466        RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) {
3467          return BS.getType()->getAsCXXRecordDecl() == Base;
3468        });
3469    Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base)
3470                                 : Offset + Layout.getBaseClassOffset(Base);
3471    RD = Base;
3472  }
3473  return Offset;
3474}
3475
3476// We want to select the path which introduces the most covariant overrides.  If
3477// two paths introduce overrides which the other path doesn't contain, issue a
3478// diagnostic.
3479static const FullPathTy *selectBestPath(ASTContext &Context,
3480                                        const CXXRecordDecl *RD, VPtrInfo *Info,
3481                                        std::list<FullPathTy> &FullPaths) {
3482  // Handle some easy cases first.
3483  if (FullPaths.empty())
3484    return nullptr;
3485  if (FullPaths.size() == 1)
3486    return &FullPaths.front();
3487
3488  const FullPathTy *BestPath = nullptr;
3489  typedef std::set<const CXXMethodDecl *> OverriderSetTy;
3490  OverriderSetTy LastOverrides;
3491  for (const FullPathTy &SpecificPath : FullPaths) {
3492    assert(!SpecificPath.empty());
3493    OverriderSetTy CurrentOverrides;
3494    const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase();
3495    // Find the distance from the start of the path to the subobject with the
3496    // VPtr.
3497    CharUnits BaseOffset =
3498        getOffsetOfFullPath(Context, TopLevelRD, SpecificPath);
3499    FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD);
3500    for (const CXXMethodDecl *MD : Info->BaseWithVPtr->methods()) {
3501      if (!MD->isVirtual())
3502        continue;
3503      FinalOverriders::OverriderInfo OI =
3504          Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset);
3505      const CXXMethodDecl *OverridingMethod = OI.Method;
3506      // Only overriders which have a return adjustment introduce problematic
3507      // thunks.
3508      if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD)
3509              .isEmpty())
3510        continue;
3511      // It's possible that the overrider isn't in this path.  If so, skip it
3512      // because this path didn't introduce it.
3513      const CXXRecordDecl *OverridingParent = OverridingMethod->getParent();
3514      if (std::none_of(SpecificPath.begin(), SpecificPath.end(),
3515                       [&](const BaseSubobject &BSO) {
3516                         return BSO.getBase() == OverridingParent;
3517                       }))
3518        continue;
3519      CurrentOverrides.insert(OverridingMethod);
3520    }
3521    OverriderSetTy NewOverrides =
3522        llvm::set_difference(CurrentOverrides, LastOverrides);
3523    if (NewOverrides.empty())
3524      continue;
3525    OverriderSetTy MissingOverrides =
3526        llvm::set_difference(LastOverrides, CurrentOverrides);
3527    if (MissingOverrides.empty()) {
3528      // This path is a strict improvement over the last path, let's use it.
3529      BestPath = &SpecificPath;
3530      std::swap(CurrentOverrides, LastOverrides);
3531    } else {
3532      // This path introduces an overrider with a conflicting covariant thunk.
3533      DiagnosticsEngine &Diags = Context.getDiagnostics();
3534      const CXXMethodDecl *CovariantMD = *NewOverrides.begin();
3535      const CXXMethodDecl *ConflictMD = *MissingOverrides.begin();
3536      Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component)
3537          << RD;
3538      Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk)
3539          << CovariantMD;
3540      Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk)
3541          << ConflictMD;
3542    }
3543  }
3544  // Go with the path that introduced the most covariant overrides.  If there is
3545  // no such path, pick the first path.
3546  return BestPath ? BestPath : &FullPaths.front();
3547}
3548
3549static void computeFullPathsForVFTables(ASTContext &Context,
3550                                        const CXXRecordDecl *RD,
3551                                        VPtrInfoVector &Paths) {
3552  const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
3553  FullPathTy FullPath;
3554  std::list<FullPathTy> FullPaths;
3555  for (VPtrInfo *Info : Paths) {
3556    findPathsToSubobject(
3557        Context, MostDerivedLayout, RD, CharUnits::Zero(),
3558        BaseSubobject(Info->BaseWithVPtr, Info->FullOffsetInMDC), FullPath,
3559        FullPaths);
3560    FullPath.clear();
3561    removeRedundantPaths(FullPaths);
3562    Info->PathToBaseWithVPtr.clear();
3563    if (const FullPathTy *BestPath =
3564            selectBestPath(Context, RD, Info, FullPaths))
3565      for (const BaseSubobject &BSO : *BestPath)
3566        Info->PathToBaseWithVPtr.push_back(BSO.getBase());
3567    FullPaths.clear();
3568  }
3569}
3570
3571void MicrosoftVTableContext::computeVTableRelatedInformation(
3572    const CXXRecordDecl *RD) {
3573  assert(RD->isDynamicClass());
3574
3575  // Check if we've computed this information before.
3576  if (VFPtrLocations.count(RD))
3577    return;
3578
3579  const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
3580
3581  VPtrInfoVector *VFPtrs = new VPtrInfoVector();
3582  computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
3583  computeFullPathsForVFTables(Context, RD, *VFPtrs);
3584  VFPtrLocations[RD] = VFPtrs;
3585
3586  MethodVFTableLocationsTy NewMethodLocations;
3587  for (const VPtrInfo *VFPtr : *VFPtrs) {
3588    VFTableBuilder Builder(*this, RD, VFPtr);
3589
3590    VFTableIdTy id(RD, VFPtr->FullOffsetInMDC);
3591    assert(VFTableLayouts.count(id) == 0);
3592    SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
3593        Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
3594    VFTableLayouts[id] = new VTableLayout(
3595        Builder.getNumVTableComponents(), Builder.vtable_component_begin(),
3596        VTableThunks.size(), VTableThunks.data(), EmptyAddressPointsMap, true);
3597    Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
3598
3599    for (const auto &Loc : Builder.vtable_locations()) {
3600      GlobalDecl GD = Loc.first;
3601      MethodVFTableLocation NewLoc = Loc.second;
3602      auto M = NewMethodLocations.find(GD);
3603      if (M == NewMethodLocations.end() || NewLoc < M->second)
3604        NewMethodLocations[GD] = NewLoc;
3605    }
3606  }
3607
3608  MethodVFTableLocations.insert(NewMethodLocations.begin(),
3609                                NewMethodLocations.end());
3610  if (Context.getLangOpts().DumpVTableLayouts)
3611    dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
3612}
3613
3614void MicrosoftVTableContext::dumpMethodLocations(
3615    const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
3616    raw_ostream &Out) {
3617  // Compute the vtable indices for all the member functions.
3618  // Store them in a map keyed by the location so we'll get a sorted table.
3619  std::map<MethodVFTableLocation, std::string> IndicesMap;
3620  bool HasNonzeroOffset = false;
3621
3622  for (const auto &I : NewMethods) {
3623    const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl());
3624    assert(MD->isVirtual());
3625
3626    std::string MethodName = PredefinedExpr::ComputeName(
3627        PredefinedExpr::PrettyFunctionNoVirtual, MD);
3628
3629    if (isa<CXXDestructorDecl>(MD)) {
3630      IndicesMap[I.second] = MethodName + " [scalar deleting]";
3631    } else {
3632      IndicesMap[I.second] = MethodName;
3633    }
3634
3635    if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0)
3636      HasNonzeroOffset = true;
3637  }
3638
3639  // Print the vtable indices for all the member functions.
3640  if (!IndicesMap.empty()) {
3641    Out << "VFTable indices for ";
3642    Out << "'";
3643    RD->printQualifiedName(Out);
3644    Out << "' (" << IndicesMap.size()
3645        << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
3646
3647    CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
3648    uint64_t LastVBIndex = 0;
3649    for (const auto &I : IndicesMap) {
3650      CharUnits VFPtrOffset = I.first.VFPtrOffset;
3651      uint64_t VBIndex = I.first.VBTableIndex;
3652      if (HasNonzeroOffset &&
3653          (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
3654        assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
3655        Out << " -- accessible via ";
3656        if (VBIndex)
3657          Out << "vbtable index " << VBIndex << ", ";
3658        Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
3659        LastVFPtrOffset = VFPtrOffset;
3660        LastVBIndex = VBIndex;
3661      }
3662
3663      uint64_t VTableIndex = I.first.Index;
3664      const std::string &MethodName = I.second;
3665      Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
3666    }
3667    Out << '\n';
3668  }
3669
3670  Out.flush();
3671}
3672
3673const VirtualBaseInfo *MicrosoftVTableContext::computeVBTableRelatedInformation(
3674    const CXXRecordDecl *RD) {
3675  VirtualBaseInfo *VBI;
3676
3677  {
3678    // Get or create a VBI for RD.  Don't hold a reference to the DenseMap cell,
3679    // as it may be modified and rehashed under us.
3680    VirtualBaseInfo *&Entry = VBaseInfo[RD];
3681    if (Entry)
3682      return Entry;
3683    Entry = VBI = new VirtualBaseInfo();
3684  }
3685
3686  computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
3687
3688  // First, see if the Derived class shared the vbptr with a non-virtual base.
3689  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3690  if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
3691    // If the Derived class shares the vbptr with a non-virtual base, the shared
3692    // virtual bases come first so that the layout is the same.
3693    const VirtualBaseInfo *BaseInfo =
3694        computeVBTableRelatedInformation(VBPtrBase);
3695    VBI->VBTableIndices.insert(BaseInfo->VBTableIndices.begin(),
3696                               BaseInfo->VBTableIndices.end());
3697  }
3698
3699  // New vbases are added to the end of the vbtable.
3700  // Skip the self entry and vbases visited in the non-virtual base, if any.
3701  unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
3702  for (const auto &VB : RD->vbases()) {
3703    const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
3704    if (!VBI->VBTableIndices.count(CurVBase))
3705      VBI->VBTableIndices[CurVBase] = VBTableIndex++;
3706  }
3707
3708  return VBI;
3709}
3710
3711unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
3712                                                 const CXXRecordDecl *VBase) {
3713  const VirtualBaseInfo *VBInfo = computeVBTableRelatedInformation(Derived);
3714  assert(VBInfo->VBTableIndices.count(VBase));
3715  return VBInfo->VBTableIndices.find(VBase)->second;
3716}
3717
3718const VPtrInfoVector &
3719MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
3720  return computeVBTableRelatedInformation(RD)->VBPtrPaths;
3721}
3722
3723const VPtrInfoVector &
3724MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
3725  computeVTableRelatedInformation(RD);
3726
3727  assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
3728  return *VFPtrLocations[RD];
3729}
3730
3731const VTableLayout &
3732MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
3733                                         CharUnits VFPtrOffset) {
3734  computeVTableRelatedInformation(RD);
3735
3736  VFTableIdTy id(RD, VFPtrOffset);
3737  assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
3738  return *VFTableLayouts[id];
3739}
3740
3741const MicrosoftVTableContext::MethodVFTableLocation &
3742MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
3743  assert(cast<CXXMethodDecl>(GD.getDecl())->isVirtual() &&
3744         "Only use this method for virtual methods or dtors");
3745  if (isa<CXXDestructorDecl>(GD.getDecl()))
3746    assert(GD.getDtorType() == Dtor_Deleting);
3747
3748  MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
3749  if (I != MethodVFTableLocations.end())
3750    return I->second;
3751
3752  const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
3753
3754  computeVTableRelatedInformation(RD);
3755
3756  I = MethodVFTableLocations.find(GD);
3757  assert(I != MethodVFTableLocations.end() && "Did not find index!");
3758  return I->second;
3759}
3760