1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/RecursiveASTVisitor.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/Scope.h"
26#include "clang/Sema/ScopeInfo.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/DenseSet.h"
29#include "TypeLocBuilder.h"
30
31using namespace clang;
32
33/// Check whether the given method, which must be in the 'init'
34/// family, is a valid member of that family.
35///
36/// \param receiverTypeIfCall - if null, check this as if declaring it;
37///   if non-null, check this as if making a call to it with the given
38///   receiver type
39///
40/// \return true to indicate that there was an error and appropriate
41///   actions were taken
42bool Sema::checkInitMethod(ObjCMethodDecl *method,
43                           QualType receiverTypeIfCall) {
44  if (method->isInvalidDecl()) return true;
45
46  // This castAs is safe: methods that don't return an object
47  // pointer won't be inferred as inits and will reject an explicit
48  // objc_method_family(init).
49
50  // We ignore protocols here.  Should we?  What about Class?
51
52  const ObjCObjectType *result =
53      method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
54
55  if (result->isObjCId()) {
56    return false;
57  } else if (result->isObjCClass()) {
58    // fall through: always an error
59  } else {
60    ObjCInterfaceDecl *resultClass = result->getInterface();
61    assert(resultClass && "unexpected object type!");
62
63    // It's okay for the result type to still be a forward declaration
64    // if we're checking an interface declaration.
65    if (!resultClass->hasDefinition()) {
66      if (receiverTypeIfCall.isNull() &&
67          !isa<ObjCImplementationDecl>(method->getDeclContext()))
68        return false;
69
70    // Otherwise, we try to compare class types.
71    } else {
72      // If this method was declared in a protocol, we can't check
73      // anything unless we have a receiver type that's an interface.
74      const ObjCInterfaceDecl *receiverClass = nullptr;
75      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
76        if (receiverTypeIfCall.isNull())
77          return false;
78
79        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
80          ->getInterfaceDecl();
81
82        // This can be null for calls to e.g. id<Foo>.
83        if (!receiverClass) return false;
84      } else {
85        receiverClass = method->getClassInterface();
86        assert(receiverClass && "method not associated with a class!");
87      }
88
89      // If either class is a subclass of the other, it's fine.
90      if (receiverClass->isSuperClassOf(resultClass) ||
91          resultClass->isSuperClassOf(receiverClass))
92        return false;
93    }
94  }
95
96  SourceLocation loc = method->getLocation();
97
98  // If we're in a system header, and this is not a call, just make
99  // the method unusable.
100  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
101    method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
102                      UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
103    return true;
104  }
105
106  // Otherwise, it's an error.
107  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108  method->setInvalidDecl();
109  return true;
110}
111
112void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
113                                   const ObjCMethodDecl *Overridden) {
114  if (Overridden->hasRelatedResultType() &&
115      !NewMethod->hasRelatedResultType()) {
116    // This can only happen when the method follows a naming convention that
117    // implies a related result type, and the original (overridden) method has
118    // a suitable return type, but the new (overriding) method does not have
119    // a suitable return type.
120    QualType ResultType = NewMethod->getReturnType();
121    SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
122
123    // Figure out which class this method is part of, if any.
124    ObjCInterfaceDecl *CurrentClass
125      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
126    if (!CurrentClass) {
127      DeclContext *DC = NewMethod->getDeclContext();
128      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
129        CurrentClass = Cat->getClassInterface();
130      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
131        CurrentClass = Impl->getClassInterface();
132      else if (ObjCCategoryImplDecl *CatImpl
133               = dyn_cast<ObjCCategoryImplDecl>(DC))
134        CurrentClass = CatImpl->getClassInterface();
135    }
136
137    if (CurrentClass) {
138      Diag(NewMethod->getLocation(),
139           diag::warn_related_result_type_compatibility_class)
140        << Context.getObjCInterfaceType(CurrentClass)
141        << ResultType
142        << ResultTypeRange;
143    } else {
144      Diag(NewMethod->getLocation(),
145           diag::warn_related_result_type_compatibility_protocol)
146        << ResultType
147        << ResultTypeRange;
148    }
149
150    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
151      Diag(Overridden->getLocation(),
152           diag::note_related_result_type_family)
153        << /*overridden method*/ 0
154        << Family;
155    else
156      Diag(Overridden->getLocation(),
157           diag::note_related_result_type_overridden);
158  }
159  if (getLangOpts().ObjCAutoRefCount) {
160    if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
161         Overridden->hasAttr<NSReturnsRetainedAttr>())) {
162        Diag(NewMethod->getLocation(),
163             diag::err_nsreturns_retained_attribute_mismatch) << 1;
164        Diag(Overridden->getLocation(), diag::note_previous_decl)
165        << "method";
166    }
167    if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
168              Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
169        Diag(NewMethod->getLocation(),
170             diag::err_nsreturns_retained_attribute_mismatch) << 0;
171        Diag(Overridden->getLocation(), diag::note_previous_decl)
172        << "method";
173    }
174    ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
175                                         oe = Overridden->param_end();
176    for (ObjCMethodDecl::param_iterator
177           ni = NewMethod->param_begin(), ne = NewMethod->param_end();
178         ni != ne && oi != oe; ++ni, ++oi) {
179      const ParmVarDecl *oldDecl = (*oi);
180      ParmVarDecl *newDecl = (*ni);
181      if (newDecl->hasAttr<NSConsumedAttr>() !=
182          oldDecl->hasAttr<NSConsumedAttr>()) {
183        Diag(newDecl->getLocation(),
184             diag::err_nsconsumed_attribute_mismatch);
185        Diag(oldDecl->getLocation(), diag::note_previous_decl)
186          << "parameter";
187      }
188    }
189  }
190}
191
192/// \brief Check a method declaration for compatibility with the Objective-C
193/// ARC conventions.
194bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
195  ObjCMethodFamily family = method->getMethodFamily();
196  switch (family) {
197  case OMF_None:
198  case OMF_finalize:
199  case OMF_retain:
200  case OMF_release:
201  case OMF_autorelease:
202  case OMF_retainCount:
203  case OMF_self:
204  case OMF_initialize:
205  case OMF_performSelector:
206    return false;
207
208  case OMF_dealloc:
209    if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
210      SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
211      if (ResultTypeRange.isInvalid())
212        Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
213            << method->getReturnType()
214            << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
215      else
216        Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
217            << method->getReturnType()
218            << FixItHint::CreateReplacement(ResultTypeRange, "void");
219      return true;
220    }
221    return false;
222
223  case OMF_init:
224    // If the method doesn't obey the init rules, don't bother annotating it.
225    if (checkInitMethod(method, QualType()))
226      return true;
227
228    method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
229
230    // Don't add a second copy of this attribute, but otherwise don't
231    // let it be suppressed.
232    if (method->hasAttr<NSReturnsRetainedAttr>())
233      return false;
234    break;
235
236  case OMF_alloc:
237  case OMF_copy:
238  case OMF_mutableCopy:
239  case OMF_new:
240    if (method->hasAttr<NSReturnsRetainedAttr>() ||
241        method->hasAttr<NSReturnsNotRetainedAttr>() ||
242        method->hasAttr<NSReturnsAutoreleasedAttr>())
243      return false;
244    break;
245  }
246
247  method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
248  return false;
249}
250
251static void DiagnoseObjCImplementedDeprecations(Sema &S,
252                                                NamedDecl *ND,
253                                                SourceLocation ImplLoc,
254                                                int select) {
255  if (ND && ND->isDeprecated()) {
256    S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
257    if (select == 0)
258      S.Diag(ND->getLocation(), diag::note_method_declared_at)
259        << ND->getDeclName();
260    else
261      S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
262  }
263}
264
265/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
266/// pool.
267void Sema::AddAnyMethodToGlobalPool(Decl *D) {
268  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
269
270  // If we don't have a valid method decl, simply return.
271  if (!MDecl)
272    return;
273  if (MDecl->isInstanceMethod())
274    AddInstanceMethodToGlobalPool(MDecl, true);
275  else
276    AddFactoryMethodToGlobalPool(MDecl, true);
277}
278
279/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
280/// has explicit ownership attribute; false otherwise.
281static bool
282HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
283  QualType T = Param->getType();
284
285  if (const PointerType *PT = T->getAs<PointerType>()) {
286    T = PT->getPointeeType();
287  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
288    T = RT->getPointeeType();
289  } else {
290    return true;
291  }
292
293  // If we have a lifetime qualifier, but it's local, we must have
294  // inferred it. So, it is implicit.
295  return !T.getLocalQualifiers().hasObjCLifetime();
296}
297
298/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
299/// and user declared, in the method definition's AST.
300void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
301  assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
302  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
303
304  // If we don't have a valid method decl, simply return.
305  if (!MDecl)
306    return;
307
308  // Allow all of Sema to see that we are entering a method definition.
309  PushDeclContext(FnBodyScope, MDecl);
310  PushFunctionScope();
311
312  // Create Decl objects for each parameter, entrring them in the scope for
313  // binding to their use.
314
315  // Insert the invisible arguments, self and _cmd!
316  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
317
318  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
319  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
320
321  // The ObjC parser requires parameter names so there's no need to check.
322  CheckParmsForFunctionDef(MDecl->parameters(),
323                           /*CheckParameterNames=*/false);
324
325  // Introduce all of the other parameters into this scope.
326  for (auto *Param : MDecl->parameters()) {
327    if (!Param->isInvalidDecl() &&
328        getLangOpts().ObjCAutoRefCount &&
329        !HasExplicitOwnershipAttr(*this, Param))
330      Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
331            Param->getType();
332
333    if (Param->getIdentifier())
334      PushOnScopeChains(Param, FnBodyScope);
335  }
336
337  // In ARC, disallow definition of retain/release/autorelease/retainCount
338  if (getLangOpts().ObjCAutoRefCount) {
339    switch (MDecl->getMethodFamily()) {
340    case OMF_retain:
341    case OMF_retainCount:
342    case OMF_release:
343    case OMF_autorelease:
344      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
345        << 0 << MDecl->getSelector();
346      break;
347
348    case OMF_None:
349    case OMF_dealloc:
350    case OMF_finalize:
351    case OMF_alloc:
352    case OMF_init:
353    case OMF_mutableCopy:
354    case OMF_copy:
355    case OMF_new:
356    case OMF_self:
357    case OMF_initialize:
358    case OMF_performSelector:
359      break;
360    }
361  }
362
363  // Warn on deprecated methods under -Wdeprecated-implementations,
364  // and prepare for warning on missing super calls.
365  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
366    ObjCMethodDecl *IMD =
367      IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
368
369    if (IMD) {
370      ObjCImplDecl *ImplDeclOfMethodDef =
371        dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
372      ObjCContainerDecl *ContDeclOfMethodDecl =
373        dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
374      ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
375      if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
376        ImplDeclOfMethodDecl = OID->getImplementation();
377      else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
378        if (CD->IsClassExtension()) {
379          if (ObjCInterfaceDecl *OID = CD->getClassInterface())
380            ImplDeclOfMethodDecl = OID->getImplementation();
381        } else
382            ImplDeclOfMethodDecl = CD->getImplementation();
383      }
384      // No need to issue deprecated warning if deprecated mehod in class/category
385      // is being implemented in its own implementation (no overriding is involved).
386      if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
387        DiagnoseObjCImplementedDeprecations(*this,
388                                          dyn_cast<NamedDecl>(IMD),
389                                          MDecl->getLocation(), 0);
390    }
391
392    if (MDecl->getMethodFamily() == OMF_init) {
393      if (MDecl->isDesignatedInitializerForTheInterface()) {
394        getCurFunction()->ObjCIsDesignatedInit = true;
395        getCurFunction()->ObjCWarnForNoDesignatedInitChain =
396            IC->getSuperClass() != nullptr;
397      } else if (IC->hasDesignatedInitializers()) {
398        getCurFunction()->ObjCIsSecondaryInit = true;
399        getCurFunction()->ObjCWarnForNoInitDelegation = true;
400      }
401    }
402
403    // If this is "dealloc" or "finalize", set some bit here.
404    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
405    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
406    // Only do this if the current class actually has a superclass.
407    if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
408      ObjCMethodFamily Family = MDecl->getMethodFamily();
409      if (Family == OMF_dealloc) {
410        if (!(getLangOpts().ObjCAutoRefCount ||
411              getLangOpts().getGC() == LangOptions::GCOnly))
412          getCurFunction()->ObjCShouldCallSuper = true;
413
414      } else if (Family == OMF_finalize) {
415        if (Context.getLangOpts().getGC() != LangOptions::NonGC)
416          getCurFunction()->ObjCShouldCallSuper = true;
417
418      } else {
419        const ObjCMethodDecl *SuperMethod =
420          SuperClass->lookupMethod(MDecl->getSelector(),
421                                   MDecl->isInstanceMethod());
422        getCurFunction()->ObjCShouldCallSuper =
423          (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
424      }
425    }
426  }
427}
428
429namespace {
430
431// Callback to only accept typo corrections that are Objective-C classes.
432// If an ObjCInterfaceDecl* is given to the constructor, then the validation
433// function will reject corrections to that class.
434class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
435 public:
436  ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
437  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
438      : CurrentIDecl(IDecl) {}
439
440  bool ValidateCandidate(const TypoCorrection &candidate) override {
441    ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
442    return ID && !declaresSameEntity(ID, CurrentIDecl);
443  }
444
445 private:
446  ObjCInterfaceDecl *CurrentIDecl;
447};
448
449} // end anonymous namespace
450
451static void diagnoseUseOfProtocols(Sema &TheSema,
452                                   ObjCContainerDecl *CD,
453                                   ObjCProtocolDecl *const *ProtoRefs,
454                                   unsigned NumProtoRefs,
455                                   const SourceLocation *ProtoLocs) {
456  assert(ProtoRefs);
457  // Diagnose availability in the context of the ObjC container.
458  Sema::ContextRAII SavedContext(TheSema, CD);
459  for (unsigned i = 0; i < NumProtoRefs; ++i) {
460    (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i]);
461  }
462}
463
464void Sema::
465ActOnSuperClassOfClassInterface(Scope *S,
466                                SourceLocation AtInterfaceLoc,
467                                ObjCInterfaceDecl *IDecl,
468                                IdentifierInfo *ClassName,
469                                SourceLocation ClassLoc,
470                                IdentifierInfo *SuperName,
471                                SourceLocation SuperLoc,
472                                ArrayRef<ParsedType> SuperTypeArgs,
473                                SourceRange SuperTypeArgsRange) {
474  // Check if a different kind of symbol declared in this scope.
475  NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
476                                         LookupOrdinaryName);
477
478  if (!PrevDecl) {
479    // Try to correct for a typo in the superclass name without correcting
480    // to the class we're defining.
481    if (TypoCorrection Corrected = CorrectTypo(
482            DeclarationNameInfo(SuperName, SuperLoc),
483            LookupOrdinaryName, TUScope,
484            nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
485            CTK_ErrorRecovery)) {
486      diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
487                   << SuperName << ClassName);
488      PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
489    }
490  }
491
492  if (declaresSameEntity(PrevDecl, IDecl)) {
493    Diag(SuperLoc, diag::err_recursive_superclass)
494      << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
495    IDecl->setEndOfDefinitionLoc(ClassLoc);
496  } else {
497    ObjCInterfaceDecl *SuperClassDecl =
498    dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
499    QualType SuperClassType;
500
501    // Diagnose classes that inherit from deprecated classes.
502    if (SuperClassDecl) {
503      (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
504      SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
505    }
506
507    if (PrevDecl && !SuperClassDecl) {
508      // The previous declaration was not a class decl. Check if we have a
509      // typedef. If we do, get the underlying class type.
510      if (const TypedefNameDecl *TDecl =
511          dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
512        QualType T = TDecl->getUnderlyingType();
513        if (T->isObjCObjectType()) {
514          if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
515            SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
516            SuperClassType = Context.getTypeDeclType(TDecl);
517
518            // This handles the following case:
519            // @interface NewI @end
520            // typedef NewI DeprI __attribute__((deprecated("blah")))
521            // @interface SI : DeprI /* warn here */ @end
522            (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
523          }
524        }
525      }
526
527      // This handles the following case:
528      //
529      // typedef int SuperClass;
530      // @interface MyClass : SuperClass {} @end
531      //
532      if (!SuperClassDecl) {
533        Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
534        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
535      }
536    }
537
538    if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
539      if (!SuperClassDecl)
540        Diag(SuperLoc, diag::err_undef_superclass)
541          << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
542      else if (RequireCompleteType(SuperLoc,
543                                   SuperClassType,
544                                   diag::err_forward_superclass,
545                                   SuperClassDecl->getDeclName(),
546                                   ClassName,
547                                   SourceRange(AtInterfaceLoc, ClassLoc))) {
548        SuperClassDecl = nullptr;
549        SuperClassType = QualType();
550      }
551    }
552
553    if (SuperClassType.isNull()) {
554      assert(!SuperClassDecl && "Failed to set SuperClassType?");
555      return;
556    }
557
558    // Handle type arguments on the superclass.
559    TypeSourceInfo *SuperClassTInfo = nullptr;
560    if (!SuperTypeArgs.empty()) {
561      TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
562                                        S,
563                                        SuperLoc,
564                                        CreateParsedType(SuperClassType,
565                                                         nullptr),
566                                        SuperTypeArgsRange.getBegin(),
567                                        SuperTypeArgs,
568                                        SuperTypeArgsRange.getEnd(),
569                                        SourceLocation(),
570                                        { },
571                                        { },
572                                        SourceLocation());
573      if (!fullSuperClassType.isUsable())
574        return;
575
576      SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
577                                         &SuperClassTInfo);
578    }
579
580    if (!SuperClassTInfo) {
581      SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
582                                                         SuperLoc);
583    }
584
585    IDecl->setSuperClass(SuperClassTInfo);
586    IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getLocEnd());
587  }
588}
589
590DeclResult Sema::actOnObjCTypeParam(Scope *S,
591                                    ObjCTypeParamVariance variance,
592                                    SourceLocation varianceLoc,
593                                    unsigned index,
594                                    IdentifierInfo *paramName,
595                                    SourceLocation paramLoc,
596                                    SourceLocation colonLoc,
597                                    ParsedType parsedTypeBound) {
598  // If there was an explicitly-provided type bound, check it.
599  TypeSourceInfo *typeBoundInfo = nullptr;
600  if (parsedTypeBound) {
601    // The type bound can be any Objective-C pointer type.
602    QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
603    if (typeBound->isObjCObjectPointerType()) {
604      // okay
605    } else if (typeBound->isObjCObjectType()) {
606      // The user forgot the * on an Objective-C pointer type, e.g.,
607      // "T : NSView".
608      SourceLocation starLoc = getLocForEndOfToken(
609                                 typeBoundInfo->getTypeLoc().getEndLoc());
610      Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
611           diag::err_objc_type_param_bound_missing_pointer)
612        << typeBound << paramName
613        << FixItHint::CreateInsertion(starLoc, " *");
614
615      // Create a new type location builder so we can update the type
616      // location information we have.
617      TypeLocBuilder builder;
618      builder.pushFullCopy(typeBoundInfo->getTypeLoc());
619
620      // Create the Objective-C pointer type.
621      typeBound = Context.getObjCObjectPointerType(typeBound);
622      ObjCObjectPointerTypeLoc newT
623        = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
624      newT.setStarLoc(starLoc);
625
626      // Form the new type source information.
627      typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
628    } else {
629      // Not a valid type bound.
630      Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
631           diag::err_objc_type_param_bound_nonobject)
632        << typeBound << paramName;
633
634      // Forget the bound; we'll default to id later.
635      typeBoundInfo = nullptr;
636    }
637
638    // Type bounds cannot have qualifiers (even indirectly) or explicit
639    // nullability.
640    if (typeBoundInfo) {
641      QualType typeBound = typeBoundInfo->getType();
642      TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
643      if (qual || typeBound.hasQualifiers()) {
644        bool diagnosed = false;
645        SourceRange rangeToRemove;
646        if (qual) {
647          if (auto attr = qual.getAs<AttributedTypeLoc>()) {
648            rangeToRemove = attr.getLocalSourceRange();
649            if (attr.getTypePtr()->getImmediateNullability()) {
650              Diag(attr.getLocStart(),
651                   diag::err_objc_type_param_bound_explicit_nullability)
652                << paramName << typeBound
653                << FixItHint::CreateRemoval(rangeToRemove);
654              diagnosed = true;
655            }
656          }
657        }
658
659        if (!diagnosed) {
660          Diag(qual ? qual.getLocStart()
661                    : typeBoundInfo->getTypeLoc().getLocStart(),
662              diag::err_objc_type_param_bound_qualified)
663            << paramName << typeBound << typeBound.getQualifiers().getAsString()
664            << FixItHint::CreateRemoval(rangeToRemove);
665        }
666
667        // If the type bound has qualifiers other than CVR, we need to strip
668        // them or we'll probably assert later when trying to apply new
669        // qualifiers.
670        Qualifiers quals = typeBound.getQualifiers();
671        quals.removeCVRQualifiers();
672        if (!quals.empty()) {
673          typeBoundInfo =
674             Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
675        }
676      }
677    }
678  }
679
680  // If there was no explicit type bound (or we removed it due to an error),
681  // use 'id' instead.
682  if (!typeBoundInfo) {
683    colonLoc = SourceLocation();
684    typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
685  }
686
687  // Create the type parameter.
688  return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
689                                   index, paramLoc, paramName, colonLoc,
690                                   typeBoundInfo);
691}
692
693ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
694                                                SourceLocation lAngleLoc,
695                                                ArrayRef<Decl *> typeParamsIn,
696                                                SourceLocation rAngleLoc) {
697  // We know that the array only contains Objective-C type parameters.
698  ArrayRef<ObjCTypeParamDecl *>
699    typeParams(
700      reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
701      typeParamsIn.size());
702
703  // Diagnose redeclarations of type parameters.
704  // We do this now because Objective-C type parameters aren't pushed into
705  // scope until later (after the instance variable block), but we want the
706  // diagnostics to occur right after we parse the type parameter list.
707  llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
708  for (auto typeParam : typeParams) {
709    auto known = knownParams.find(typeParam->getIdentifier());
710    if (known != knownParams.end()) {
711      Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
712        << typeParam->getIdentifier()
713        << SourceRange(known->second->getLocation());
714
715      typeParam->setInvalidDecl();
716    } else {
717      knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
718
719      // Push the type parameter into scope.
720      PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
721    }
722  }
723
724  // Create the parameter list.
725  return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
726}
727
728void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
729  for (auto typeParam : *typeParamList) {
730    if (!typeParam->isInvalidDecl()) {
731      S->RemoveDecl(typeParam);
732      IdResolver.RemoveDecl(typeParam);
733    }
734  }
735}
736
737namespace {
738  /// The context in which an Objective-C type parameter list occurs, for use
739  /// in diagnostics.
740  enum class TypeParamListContext {
741    ForwardDeclaration,
742    Definition,
743    Category,
744    Extension
745  };
746} // end anonymous namespace
747
748/// Check consistency between two Objective-C type parameter lists, e.g.,
749/// between a category/extension and an \@interface or between an \@class and an
750/// \@interface.
751static bool checkTypeParamListConsistency(Sema &S,
752                                          ObjCTypeParamList *prevTypeParams,
753                                          ObjCTypeParamList *newTypeParams,
754                                          TypeParamListContext newContext) {
755  // If the sizes don't match, complain about that.
756  if (prevTypeParams->size() != newTypeParams->size()) {
757    SourceLocation diagLoc;
758    if (newTypeParams->size() > prevTypeParams->size()) {
759      diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
760    } else {
761      diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getLocEnd());
762    }
763
764    S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
765      << static_cast<unsigned>(newContext)
766      << (newTypeParams->size() > prevTypeParams->size())
767      << prevTypeParams->size()
768      << newTypeParams->size();
769
770    return true;
771  }
772
773  // Match up the type parameters.
774  for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
775    ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
776    ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
777
778    // Check for consistency of the variance.
779    if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
780      if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
781          newContext != TypeParamListContext::Definition) {
782        // When the new type parameter is invariant and is not part
783        // of the definition, just propagate the variance.
784        newTypeParam->setVariance(prevTypeParam->getVariance());
785      } else if (prevTypeParam->getVariance()
786                   == ObjCTypeParamVariance::Invariant &&
787                 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
788                   cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
789                     ->getDefinition() == prevTypeParam->getDeclContext())) {
790        // When the old parameter is invariant and was not part of the
791        // definition, just ignore the difference because it doesn't
792        // matter.
793      } else {
794        {
795          // Diagnose the conflict and update the second declaration.
796          SourceLocation diagLoc = newTypeParam->getVarianceLoc();
797          if (diagLoc.isInvalid())
798            diagLoc = newTypeParam->getLocStart();
799
800          auto diag = S.Diag(diagLoc,
801                             diag::err_objc_type_param_variance_conflict)
802                        << static_cast<unsigned>(newTypeParam->getVariance())
803                        << newTypeParam->getDeclName()
804                        << static_cast<unsigned>(prevTypeParam->getVariance())
805                        << prevTypeParam->getDeclName();
806          switch (prevTypeParam->getVariance()) {
807          case ObjCTypeParamVariance::Invariant:
808            diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
809            break;
810
811          case ObjCTypeParamVariance::Covariant:
812          case ObjCTypeParamVariance::Contravariant: {
813            StringRef newVarianceStr
814               = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
815                   ? "__covariant"
816                   : "__contravariant";
817            if (newTypeParam->getVariance()
818                  == ObjCTypeParamVariance::Invariant) {
819              diag << FixItHint::CreateInsertion(newTypeParam->getLocStart(),
820                                                 (newVarianceStr + " ").str());
821            } else {
822              diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
823                                               newVarianceStr);
824            }
825          }
826          }
827        }
828
829        S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
830          << prevTypeParam->getDeclName();
831
832        // Override the variance.
833        newTypeParam->setVariance(prevTypeParam->getVariance());
834      }
835    }
836
837    // If the bound types match, there's nothing to do.
838    if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
839                              newTypeParam->getUnderlyingType()))
840      continue;
841
842    // If the new type parameter's bound was explicit, complain about it being
843    // different from the original.
844    if (newTypeParam->hasExplicitBound()) {
845      SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
846                                    ->getTypeLoc().getSourceRange();
847      S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
848        << newTypeParam->getUnderlyingType()
849        << newTypeParam->getDeclName()
850        << prevTypeParam->hasExplicitBound()
851        << prevTypeParam->getUnderlyingType()
852        << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
853        << prevTypeParam->getDeclName()
854        << FixItHint::CreateReplacement(
855             newBoundRange,
856             prevTypeParam->getUnderlyingType().getAsString(
857               S.Context.getPrintingPolicy()));
858
859      S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
860        << prevTypeParam->getDeclName();
861
862      // Override the new type parameter's bound type with the previous type,
863      // so that it's consistent.
864      newTypeParam->setTypeSourceInfo(
865        S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
866      continue;
867    }
868
869    // The new type parameter got the implicit bound of 'id'. That's okay for
870    // categories and extensions (overwrite it later), but not for forward
871    // declarations and @interfaces, because those must be standalone.
872    if (newContext == TypeParamListContext::ForwardDeclaration ||
873        newContext == TypeParamListContext::Definition) {
874      // Diagnose this problem for forward declarations and definitions.
875      SourceLocation insertionLoc
876        = S.getLocForEndOfToken(newTypeParam->getLocation());
877      std::string newCode
878        = " : " + prevTypeParam->getUnderlyingType().getAsString(
879                    S.Context.getPrintingPolicy());
880      S.Diag(newTypeParam->getLocation(),
881             diag::err_objc_type_param_bound_missing)
882        << prevTypeParam->getUnderlyingType()
883        << newTypeParam->getDeclName()
884        << (newContext == TypeParamListContext::ForwardDeclaration)
885        << FixItHint::CreateInsertion(insertionLoc, newCode);
886
887      S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
888        << prevTypeParam->getDeclName();
889    }
890
891    // Update the new type parameter's bound to match the previous one.
892    newTypeParam->setTypeSourceInfo(
893      S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
894  }
895
896  return false;
897}
898
899Decl *Sema::
900ActOnStartClassInterface(Scope *S, SourceLocation AtInterfaceLoc,
901                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
902                         ObjCTypeParamList *typeParamList,
903                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
904                         ArrayRef<ParsedType> SuperTypeArgs,
905                         SourceRange SuperTypeArgsRange,
906                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
907                         const SourceLocation *ProtoLocs,
908                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
909  assert(ClassName && "Missing class identifier");
910
911  // Check for another declaration kind with the same name.
912  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
913                                         LookupOrdinaryName, ForRedeclaration);
914
915  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
916    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
917    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
918  }
919
920  // Create a declaration to describe this @interface.
921  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
922
923  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
924    // A previous decl with a different name is because of
925    // @compatibility_alias, for example:
926    // \code
927    //   @class NewImage;
928    //   @compatibility_alias OldImage NewImage;
929    // \endcode
930    // A lookup for 'OldImage' will return the 'NewImage' decl.
931    //
932    // In such a case use the real declaration name, instead of the alias one,
933    // otherwise we will break IdentifierResolver and redecls-chain invariants.
934    // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
935    // has been aliased.
936    ClassName = PrevIDecl->getIdentifier();
937  }
938
939  // If there was a forward declaration with type parameters, check
940  // for consistency.
941  if (PrevIDecl) {
942    if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
943      if (typeParamList) {
944        // Both have type parameter lists; check for consistency.
945        if (checkTypeParamListConsistency(*this, prevTypeParamList,
946                                          typeParamList,
947                                          TypeParamListContext::Definition)) {
948          typeParamList = nullptr;
949        }
950      } else {
951        Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
952          << ClassName;
953        Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
954          << ClassName;
955
956        // Clone the type parameter list.
957        SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
958        for (auto typeParam : *prevTypeParamList) {
959          clonedTypeParams.push_back(
960            ObjCTypeParamDecl::Create(
961              Context,
962              CurContext,
963              typeParam->getVariance(),
964              SourceLocation(),
965              typeParam->getIndex(),
966              SourceLocation(),
967              typeParam->getIdentifier(),
968              SourceLocation(),
969              Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
970        }
971
972        typeParamList = ObjCTypeParamList::create(Context,
973                                                  SourceLocation(),
974                                                  clonedTypeParams,
975                                                  SourceLocation());
976      }
977    }
978  }
979
980  ObjCInterfaceDecl *IDecl
981    = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
982                                typeParamList, PrevIDecl, ClassLoc);
983  if (PrevIDecl) {
984    // Class already seen. Was it a definition?
985    if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
986      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
987        << PrevIDecl->getDeclName();
988      Diag(Def->getLocation(), diag::note_previous_definition);
989      IDecl->setInvalidDecl();
990    }
991  }
992
993  if (AttrList)
994    ProcessDeclAttributeList(TUScope, IDecl, AttrList);
995  PushOnScopeChains(IDecl, TUScope);
996
997  // Start the definition of this class. If we're in a redefinition case, there
998  // may already be a definition, so we'll end up adding to it.
999  if (!IDecl->hasDefinition())
1000    IDecl->startDefinition();
1001
1002  if (SuperName) {
1003    // Diagnose availability in the context of the @interface.
1004    ContextRAII SavedContext(*this, IDecl);
1005
1006    ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1007                                    ClassName, ClassLoc,
1008                                    SuperName, SuperLoc, SuperTypeArgs,
1009                                    SuperTypeArgsRange);
1010  } else { // we have a root class.
1011    IDecl->setEndOfDefinitionLoc(ClassLoc);
1012  }
1013
1014  // Check then save referenced protocols.
1015  if (NumProtoRefs) {
1016    diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1017                           NumProtoRefs, ProtoLocs);
1018    IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1019                           ProtoLocs, Context);
1020    IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1021  }
1022
1023  CheckObjCDeclScope(IDecl);
1024  return ActOnObjCContainerStartDefinition(IDecl);
1025}
1026
1027/// ActOnTypedefedProtocols - this action finds protocol list as part of the
1028/// typedef'ed use for a qualified super class and adds them to the list
1029/// of the protocols.
1030void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1031                                   IdentifierInfo *SuperName,
1032                                   SourceLocation SuperLoc) {
1033  if (!SuperName)
1034    return;
1035  NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1036                                      LookupOrdinaryName);
1037  if (!IDecl)
1038    return;
1039
1040  if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1041    QualType T = TDecl->getUnderlyingType();
1042    if (T->isObjCObjectType())
1043      if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>())
1044        ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1045  }
1046}
1047
1048/// ActOnCompatibilityAlias - this action is called after complete parsing of
1049/// a \@compatibility_alias declaration. It sets up the alias relationships.
1050Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1051                                    IdentifierInfo *AliasName,
1052                                    SourceLocation AliasLocation,
1053                                    IdentifierInfo *ClassName,
1054                                    SourceLocation ClassLocation) {
1055  // Look for previous declaration of alias name
1056  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
1057                                      LookupOrdinaryName, ForRedeclaration);
1058  if (ADecl) {
1059    Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1060    Diag(ADecl->getLocation(), diag::note_previous_declaration);
1061    return nullptr;
1062  }
1063  // Check for class declaration
1064  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1065                                       LookupOrdinaryName, ForRedeclaration);
1066  if (const TypedefNameDecl *TDecl =
1067        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1068    QualType T = TDecl->getUnderlyingType();
1069    if (T->isObjCObjectType()) {
1070      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1071        ClassName = IDecl->getIdentifier();
1072        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1073                                  LookupOrdinaryName, ForRedeclaration);
1074      }
1075    }
1076  }
1077  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1078  if (!CDecl) {
1079    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1080    if (CDeclU)
1081      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1082    return nullptr;
1083  }
1084
1085  // Everything checked out, instantiate a new alias declaration AST.
1086  ObjCCompatibleAliasDecl *AliasDecl =
1087    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1088
1089  if (!CheckObjCDeclScope(AliasDecl))
1090    PushOnScopeChains(AliasDecl, TUScope);
1091
1092  return AliasDecl;
1093}
1094
1095bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1096  IdentifierInfo *PName,
1097  SourceLocation &Ploc, SourceLocation PrevLoc,
1098  const ObjCList<ObjCProtocolDecl> &PList) {
1099
1100  bool res = false;
1101  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1102       E = PList.end(); I != E; ++I) {
1103    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1104                                                 Ploc)) {
1105      if (PDecl->getIdentifier() == PName) {
1106        Diag(Ploc, diag::err_protocol_has_circular_dependency);
1107        Diag(PrevLoc, diag::note_previous_definition);
1108        res = true;
1109      }
1110
1111      if (!PDecl->hasDefinition())
1112        continue;
1113
1114      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1115            PDecl->getLocation(), PDecl->getReferencedProtocols()))
1116        res = true;
1117    }
1118  }
1119  return res;
1120}
1121
1122Decl *
1123Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
1124                                  IdentifierInfo *ProtocolName,
1125                                  SourceLocation ProtocolLoc,
1126                                  Decl * const *ProtoRefs,
1127                                  unsigned NumProtoRefs,
1128                                  const SourceLocation *ProtoLocs,
1129                                  SourceLocation EndProtoLoc,
1130                                  AttributeList *AttrList) {
1131  bool err = false;
1132  // FIXME: Deal with AttrList.
1133  assert(ProtocolName && "Missing protocol identifier");
1134  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1135                                              ForRedeclaration);
1136  ObjCProtocolDecl *PDecl = nullptr;
1137  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1138    // If we already have a definition, complain.
1139    Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1140    Diag(Def->getLocation(), diag::note_previous_definition);
1141
1142    // Create a new protocol that is completely distinct from previous
1143    // declarations, and do not make this protocol available for name lookup.
1144    // That way, we'll end up completely ignoring the duplicate.
1145    // FIXME: Can we turn this into an error?
1146    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1147                                     ProtocolLoc, AtProtoInterfaceLoc,
1148                                     /*PrevDecl=*/nullptr);
1149    PDecl->startDefinition();
1150  } else {
1151    if (PrevDecl) {
1152      // Check for circular dependencies among protocol declarations. This can
1153      // only happen if this protocol was forward-declared.
1154      ObjCList<ObjCProtocolDecl> PList;
1155      PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1156      err = CheckForwardProtocolDeclarationForCircularDependency(
1157              ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1158    }
1159
1160    // Create the new declaration.
1161    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1162                                     ProtocolLoc, AtProtoInterfaceLoc,
1163                                     /*PrevDecl=*/PrevDecl);
1164
1165    PushOnScopeChains(PDecl, TUScope);
1166    PDecl->startDefinition();
1167  }
1168
1169  if (AttrList)
1170    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1171
1172  // Merge attributes from previous declarations.
1173  if (PrevDecl)
1174    mergeDeclAttributes(PDecl, PrevDecl);
1175
1176  if (!err && NumProtoRefs ) {
1177    /// Check then save referenced protocols.
1178    diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1179                           NumProtoRefs, ProtoLocs);
1180    PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1181                           ProtoLocs, Context);
1182  }
1183
1184  CheckObjCDeclScope(PDecl);
1185  return ActOnObjCContainerStartDefinition(PDecl);
1186}
1187
1188static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1189                                          ObjCProtocolDecl *&UndefinedProtocol) {
1190  if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1191    UndefinedProtocol = PDecl;
1192    return true;
1193  }
1194
1195  for (auto *PI : PDecl->protocols())
1196    if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1197      UndefinedProtocol = PI;
1198      return true;
1199    }
1200  return false;
1201}
1202
1203/// FindProtocolDeclaration - This routine looks up protocols and
1204/// issues an error if they are not declared. It returns list of
1205/// protocol declarations in its 'Protocols' argument.
1206void
1207Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1208                              ArrayRef<IdentifierLocPair> ProtocolId,
1209                              SmallVectorImpl<Decl *> &Protocols) {
1210  for (const IdentifierLocPair &Pair : ProtocolId) {
1211    ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1212    if (!PDecl) {
1213      TypoCorrection Corrected = CorrectTypo(
1214          DeclarationNameInfo(Pair.first, Pair.second),
1215          LookupObjCProtocolName, TUScope, nullptr,
1216          llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
1217          CTK_ErrorRecovery);
1218      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1219        diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1220                                    << Pair.first);
1221    }
1222
1223    if (!PDecl) {
1224      Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1225      continue;
1226    }
1227    // If this is a forward protocol declaration, get its definition.
1228    if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1229      PDecl = PDecl->getDefinition();
1230
1231    // For an objc container, delay protocol reference checking until after we
1232    // can set the objc decl as the availability context, otherwise check now.
1233    if (!ForObjCContainer) {
1234      (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1235    }
1236
1237    // If this is a forward declaration and we are supposed to warn in this
1238    // case, do it.
1239    // FIXME: Recover nicely in the hidden case.
1240    ObjCProtocolDecl *UndefinedProtocol;
1241
1242    if (WarnOnDeclarations &&
1243        NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1244      Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1245      Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1246        << UndefinedProtocol;
1247    }
1248    Protocols.push_back(PDecl);
1249  }
1250}
1251
1252namespace {
1253// Callback to only accept typo corrections that are either
1254// Objective-C protocols or valid Objective-C type arguments.
1255class ObjCTypeArgOrProtocolValidatorCCC : public CorrectionCandidateCallback {
1256  ASTContext &Context;
1257  Sema::LookupNameKind LookupKind;
1258 public:
1259  ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1260                                    Sema::LookupNameKind lookupKind)
1261    : Context(context), LookupKind(lookupKind) { }
1262
1263  bool ValidateCandidate(const TypoCorrection &candidate) override {
1264    // If we're allowed to find protocols and we have a protocol, accept it.
1265    if (LookupKind != Sema::LookupOrdinaryName) {
1266      if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1267        return true;
1268    }
1269
1270    // If we're allowed to find type names and we have one, accept it.
1271    if (LookupKind != Sema::LookupObjCProtocolName) {
1272      // If we have a type declaration, we might accept this result.
1273      if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1274        // If we found a tag declaration outside of C++, skip it. This
1275        // can happy because we look for any name when there is no
1276        // bias to protocol or type names.
1277        if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1278          return false;
1279
1280        // Make sure the type is something we would accept as a type
1281        // argument.
1282        auto type = Context.getTypeDeclType(typeDecl);
1283        if (type->isObjCObjectPointerType() ||
1284            type->isBlockPointerType() ||
1285            type->isDependentType() ||
1286            type->isObjCObjectType())
1287          return true;
1288
1289        return false;
1290      }
1291
1292      // If we have an Objective-C class type, accept it; there will
1293      // be another fix to add the '*'.
1294      if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1295        return true;
1296
1297      return false;
1298    }
1299
1300    return false;
1301  }
1302};
1303} // end anonymous namespace
1304
1305void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1306                                        SourceLocation ProtocolLoc,
1307                                        IdentifierInfo *TypeArgId,
1308                                        SourceLocation TypeArgLoc,
1309                                        bool SelectProtocolFirst) {
1310  Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1311      << SelectProtocolFirst << TypeArgId << ProtocolId
1312      << SourceRange(ProtocolLoc);
1313}
1314
1315void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1316       Scope *S,
1317       ParsedType baseType,
1318       SourceLocation lAngleLoc,
1319       ArrayRef<IdentifierInfo *> identifiers,
1320       ArrayRef<SourceLocation> identifierLocs,
1321       SourceLocation rAngleLoc,
1322       SourceLocation &typeArgsLAngleLoc,
1323       SmallVectorImpl<ParsedType> &typeArgs,
1324       SourceLocation &typeArgsRAngleLoc,
1325       SourceLocation &protocolLAngleLoc,
1326       SmallVectorImpl<Decl *> &protocols,
1327       SourceLocation &protocolRAngleLoc,
1328       bool warnOnIncompleteProtocols) {
1329  // Local function that updates the declaration specifiers with
1330  // protocol information.
1331  unsigned numProtocolsResolved = 0;
1332  auto resolvedAsProtocols = [&] {
1333    assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1334
1335    // Determine whether the base type is a parameterized class, in
1336    // which case we want to warn about typos such as
1337    // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1338    ObjCInterfaceDecl *baseClass = nullptr;
1339    QualType base = GetTypeFromParser(baseType, nullptr);
1340    bool allAreTypeNames = false;
1341    SourceLocation firstClassNameLoc;
1342    if (!base.isNull()) {
1343      if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1344        baseClass = objcObjectType->getInterface();
1345        if (baseClass) {
1346          if (auto typeParams = baseClass->getTypeParamList()) {
1347            if (typeParams->size() == numProtocolsResolved) {
1348              // Note that we should be looking for type names, too.
1349              allAreTypeNames = true;
1350            }
1351          }
1352        }
1353      }
1354    }
1355
1356    for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1357      ObjCProtocolDecl *&proto
1358        = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1359      // For an objc container, delay protocol reference checking until after we
1360      // can set the objc decl as the availability context, otherwise check now.
1361      if (!warnOnIncompleteProtocols) {
1362        (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1363      }
1364
1365      // If this is a forward protocol declaration, get its definition.
1366      if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1367        proto = proto->getDefinition();
1368
1369      // If this is a forward declaration and we are supposed to warn in this
1370      // case, do it.
1371      // FIXME: Recover nicely in the hidden case.
1372      ObjCProtocolDecl *forwardDecl = nullptr;
1373      if (warnOnIncompleteProtocols &&
1374          NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1375        Diag(identifierLocs[i], diag::warn_undef_protocolref)
1376          << proto->getDeclName();
1377        Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1378          << forwardDecl;
1379      }
1380
1381      // If everything this far has been a type name (and we care
1382      // about such things), check whether this name refers to a type
1383      // as well.
1384      if (allAreTypeNames) {
1385        if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1386                                          LookupOrdinaryName)) {
1387          if (isa<ObjCInterfaceDecl>(decl)) {
1388            if (firstClassNameLoc.isInvalid())
1389              firstClassNameLoc = identifierLocs[i];
1390          } else if (!isa<TypeDecl>(decl)) {
1391            // Not a type.
1392            allAreTypeNames = false;
1393          }
1394        } else {
1395          allAreTypeNames = false;
1396        }
1397      }
1398    }
1399
1400    // All of the protocols listed also have type names, and at least
1401    // one is an Objective-C class name. Check whether all of the
1402    // protocol conformances are declared by the base class itself, in
1403    // which case we warn.
1404    if (allAreTypeNames && firstClassNameLoc.isValid()) {
1405      llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1406      Context.CollectInheritedProtocols(baseClass, knownProtocols);
1407      bool allProtocolsDeclared = true;
1408      for (auto proto : protocols) {
1409        if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1410          allProtocolsDeclared = false;
1411          break;
1412        }
1413      }
1414
1415      if (allProtocolsDeclared) {
1416        Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1417          << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1418          << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1419                                        " *");
1420      }
1421    }
1422
1423    protocolLAngleLoc = lAngleLoc;
1424    protocolRAngleLoc = rAngleLoc;
1425    assert(protocols.size() == identifierLocs.size());
1426  };
1427
1428  // Attempt to resolve all of the identifiers as protocols.
1429  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1430    ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1431    protocols.push_back(proto);
1432    if (proto)
1433      ++numProtocolsResolved;
1434  }
1435
1436  // If all of the names were protocols, these were protocol qualifiers.
1437  if (numProtocolsResolved == identifiers.size())
1438    return resolvedAsProtocols();
1439
1440  // Attempt to resolve all of the identifiers as type names or
1441  // Objective-C class names. The latter is technically ill-formed,
1442  // but is probably something like \c NSArray<NSView *> missing the
1443  // \c*.
1444  typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1445  SmallVector<TypeOrClassDecl, 4> typeDecls;
1446  unsigned numTypeDeclsResolved = 0;
1447  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1448    NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1449                                       LookupOrdinaryName);
1450    if (!decl) {
1451      typeDecls.push_back(TypeOrClassDecl());
1452      continue;
1453    }
1454
1455    if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1456      typeDecls.push_back(typeDecl);
1457      ++numTypeDeclsResolved;
1458      continue;
1459    }
1460
1461    if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1462      typeDecls.push_back(objcClass);
1463      ++numTypeDeclsResolved;
1464      continue;
1465    }
1466
1467    typeDecls.push_back(TypeOrClassDecl());
1468  }
1469
1470  AttributeFactory attrFactory;
1471
1472  // Local function that forms a reference to the given type or
1473  // Objective-C class declaration.
1474  auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1475                                -> TypeResult {
1476    // Form declaration specifiers. They simply refer to the type.
1477    DeclSpec DS(attrFactory);
1478    const char* prevSpec; // unused
1479    unsigned diagID; // unused
1480    QualType type;
1481    if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1482      type = Context.getTypeDeclType(actualTypeDecl);
1483    else
1484      type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1485    TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1486    ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1487    DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1488                       parsedType, Context.getPrintingPolicy());
1489    // Use the identifier location for the type source range.
1490    DS.SetRangeStart(loc);
1491    DS.SetRangeEnd(loc);
1492
1493    // Form the declarator.
1494    Declarator D(DS, Declarator::TypeNameContext);
1495
1496    // If we have a typedef of an Objective-C class type that is missing a '*',
1497    // add the '*'.
1498    if (type->getAs<ObjCInterfaceType>()) {
1499      SourceLocation starLoc = getLocForEndOfToken(loc);
1500      ParsedAttributes parsedAttrs(attrFactory);
1501      D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
1502                                                SourceLocation(),
1503                                                SourceLocation(),
1504                                                SourceLocation(),
1505                                                SourceLocation(),
1506                                                SourceLocation()),
1507                                                parsedAttrs,
1508                                                starLoc);
1509
1510      // Diagnose the missing '*'.
1511      Diag(loc, diag::err_objc_type_arg_missing_star)
1512        << type
1513        << FixItHint::CreateInsertion(starLoc, " *");
1514    }
1515
1516    // Convert this to a type.
1517    return ActOnTypeName(S, D);
1518  };
1519
1520  // Local function that updates the declaration specifiers with
1521  // type argument information.
1522  auto resolvedAsTypeDecls = [&] {
1523    // We did not resolve these as protocols.
1524    protocols.clear();
1525
1526    assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1527    // Map type declarations to type arguments.
1528    for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1529      // Map type reference to a type.
1530      TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1531      if (!type.isUsable()) {
1532        typeArgs.clear();
1533        return;
1534      }
1535
1536      typeArgs.push_back(type.get());
1537    }
1538
1539    typeArgsLAngleLoc = lAngleLoc;
1540    typeArgsRAngleLoc = rAngleLoc;
1541  };
1542
1543  // If all of the identifiers can be resolved as type names or
1544  // Objective-C class names, we have type arguments.
1545  if (numTypeDeclsResolved == identifiers.size())
1546    return resolvedAsTypeDecls();
1547
1548  // Error recovery: some names weren't found, or we have a mix of
1549  // type and protocol names. Go resolve all of the unresolved names
1550  // and complain if we can't find a consistent answer.
1551  LookupNameKind lookupKind = LookupAnyName;
1552  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1553    // If we already have a protocol or type. Check whether it is the
1554    // right thing.
1555    if (protocols[i] || typeDecls[i]) {
1556      // If we haven't figured out whether we want types or protocols
1557      // yet, try to figure it out from this name.
1558      if (lookupKind == LookupAnyName) {
1559        // If this name refers to both a protocol and a type (e.g., \c
1560        // NSObject), don't conclude anything yet.
1561        if (protocols[i] && typeDecls[i])
1562          continue;
1563
1564        // Otherwise, let this name decide whether we'll be correcting
1565        // toward types or protocols.
1566        lookupKind = protocols[i] ? LookupObjCProtocolName
1567                                  : LookupOrdinaryName;
1568        continue;
1569      }
1570
1571      // If we want protocols and we have a protocol, there's nothing
1572      // more to do.
1573      if (lookupKind == LookupObjCProtocolName && protocols[i])
1574        continue;
1575
1576      // If we want types and we have a type declaration, there's
1577      // nothing more to do.
1578      if (lookupKind == LookupOrdinaryName && typeDecls[i])
1579        continue;
1580
1581      // We have a conflict: some names refer to protocols and others
1582      // refer to types.
1583      DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1584                                   identifiers[i], identifierLocs[i],
1585                                   protocols[i] != nullptr);
1586
1587      protocols.clear();
1588      typeArgs.clear();
1589      return;
1590    }
1591
1592    // Perform typo correction on the name.
1593    TypoCorrection corrected = CorrectTypo(
1594        DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1595        nullptr,
1596        llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(Context,
1597                                                             lookupKind),
1598        CTK_ErrorRecovery);
1599    if (corrected) {
1600      // Did we find a protocol?
1601      if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1602        diagnoseTypo(corrected,
1603                     PDiag(diag::err_undeclared_protocol_suggest)
1604                       << identifiers[i]);
1605        lookupKind = LookupObjCProtocolName;
1606        protocols[i] = proto;
1607        ++numProtocolsResolved;
1608        continue;
1609      }
1610
1611      // Did we find a type?
1612      if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1613        diagnoseTypo(corrected,
1614                     PDiag(diag::err_unknown_typename_suggest)
1615                       << identifiers[i]);
1616        lookupKind = LookupOrdinaryName;
1617        typeDecls[i] = typeDecl;
1618        ++numTypeDeclsResolved;
1619        continue;
1620      }
1621
1622      // Did we find an Objective-C class?
1623      if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1624        diagnoseTypo(corrected,
1625                     PDiag(diag::err_unknown_type_or_class_name_suggest)
1626                       << identifiers[i] << true);
1627        lookupKind = LookupOrdinaryName;
1628        typeDecls[i] = objcClass;
1629        ++numTypeDeclsResolved;
1630        continue;
1631      }
1632    }
1633
1634    // We couldn't find anything.
1635    Diag(identifierLocs[i],
1636         (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1637          : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1638          : diag::err_unknown_typename))
1639      << identifiers[i];
1640    protocols.clear();
1641    typeArgs.clear();
1642    return;
1643  }
1644
1645  // If all of the names were (corrected to) protocols, these were
1646  // protocol qualifiers.
1647  if (numProtocolsResolved == identifiers.size())
1648    return resolvedAsProtocols();
1649
1650  // Otherwise, all of the names were (corrected to) types.
1651  assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1652  return resolvedAsTypeDecls();
1653}
1654
1655/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1656/// a class method in its extension.
1657///
1658void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1659                                            ObjCInterfaceDecl *ID) {
1660  if (!ID)
1661    return;  // Possibly due to previous error
1662
1663  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1664  for (auto *MD : ID->methods())
1665    MethodMap[MD->getSelector()] = MD;
1666
1667  if (MethodMap.empty())
1668    return;
1669  for (const auto *Method : CAT->methods()) {
1670    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1671    if (PrevMethod &&
1672        (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1673        !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1674      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1675            << Method->getDeclName();
1676      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1677    }
1678  }
1679}
1680
1681/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1682Sema::DeclGroupPtrTy
1683Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1684                                      ArrayRef<IdentifierLocPair> IdentList,
1685                                      AttributeList *attrList) {
1686  SmallVector<Decl *, 8> DeclsInGroup;
1687  for (const IdentifierLocPair &IdentPair : IdentList) {
1688    IdentifierInfo *Ident = IdentPair.first;
1689    ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1690                                                ForRedeclaration);
1691    ObjCProtocolDecl *PDecl
1692      = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1693                                 IdentPair.second, AtProtocolLoc,
1694                                 PrevDecl);
1695
1696    PushOnScopeChains(PDecl, TUScope);
1697    CheckObjCDeclScope(PDecl);
1698
1699    if (attrList)
1700      ProcessDeclAttributeList(TUScope, PDecl, attrList);
1701
1702    if (PrevDecl)
1703      mergeDeclAttributes(PDecl, PrevDecl);
1704
1705    DeclsInGroup.push_back(PDecl);
1706  }
1707
1708  return BuildDeclaratorGroup(DeclsInGroup, false);
1709}
1710
1711Decl *Sema::
1712ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
1713                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
1714                            ObjCTypeParamList *typeParamList,
1715                            IdentifierInfo *CategoryName,
1716                            SourceLocation CategoryLoc,
1717                            Decl * const *ProtoRefs,
1718                            unsigned NumProtoRefs,
1719                            const SourceLocation *ProtoLocs,
1720                            SourceLocation EndProtoLoc) {
1721  ObjCCategoryDecl *CDecl;
1722  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1723
1724  /// Check that class of this category is already completely declared.
1725
1726  if (!IDecl
1727      || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1728                             diag::err_category_forward_interface,
1729                             CategoryName == nullptr)) {
1730    // Create an invalid ObjCCategoryDecl to serve as context for
1731    // the enclosing method declarations.  We mark the decl invalid
1732    // to make it clear that this isn't a valid AST.
1733    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1734                                     ClassLoc, CategoryLoc, CategoryName,
1735                                     IDecl, typeParamList);
1736    CDecl->setInvalidDecl();
1737    CurContext->addDecl(CDecl);
1738
1739    if (!IDecl)
1740      Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1741    return ActOnObjCContainerStartDefinition(CDecl);
1742  }
1743
1744  if (!CategoryName && IDecl->getImplementation()) {
1745    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1746    Diag(IDecl->getImplementation()->getLocation(),
1747          diag::note_implementation_declared);
1748  }
1749
1750  if (CategoryName) {
1751    /// Check for duplicate interface declaration for this category
1752    if (ObjCCategoryDecl *Previous
1753          = IDecl->FindCategoryDeclaration(CategoryName)) {
1754      // Class extensions can be declared multiple times, categories cannot.
1755      Diag(CategoryLoc, diag::warn_dup_category_def)
1756        << ClassName << CategoryName;
1757      Diag(Previous->getLocation(), diag::note_previous_definition);
1758    }
1759  }
1760
1761  // If we have a type parameter list, check it.
1762  if (typeParamList) {
1763    if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1764      if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1765                                        CategoryName
1766                                          ? TypeParamListContext::Category
1767                                          : TypeParamListContext::Extension))
1768        typeParamList = nullptr;
1769    } else {
1770      Diag(typeParamList->getLAngleLoc(),
1771           diag::err_objc_parameterized_category_nonclass)
1772        << (CategoryName != nullptr)
1773        << ClassName
1774        << typeParamList->getSourceRange();
1775
1776      typeParamList = nullptr;
1777    }
1778  }
1779
1780  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1781                                   ClassLoc, CategoryLoc, CategoryName, IDecl,
1782                                   typeParamList);
1783  // FIXME: PushOnScopeChains?
1784  CurContext->addDecl(CDecl);
1785
1786  if (NumProtoRefs) {
1787    diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1788                           NumProtoRefs, ProtoLocs);
1789    CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1790                           ProtoLocs, Context);
1791    // Protocols in the class extension belong to the class.
1792    if (CDecl->IsClassExtension())
1793     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1794                                            NumProtoRefs, Context);
1795  }
1796
1797  CheckObjCDeclScope(CDecl);
1798  return ActOnObjCContainerStartDefinition(CDecl);
1799}
1800
1801/// ActOnStartCategoryImplementation - Perform semantic checks on the
1802/// category implementation declaration and build an ObjCCategoryImplDecl
1803/// object.
1804Decl *Sema::ActOnStartCategoryImplementation(
1805                      SourceLocation AtCatImplLoc,
1806                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
1807                      IdentifierInfo *CatName, SourceLocation CatLoc) {
1808  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1809  ObjCCategoryDecl *CatIDecl = nullptr;
1810  if (IDecl && IDecl->hasDefinition()) {
1811    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1812    if (!CatIDecl) {
1813      // Category @implementation with no corresponding @interface.
1814      // Create and install one.
1815      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1816                                          ClassLoc, CatLoc,
1817                                          CatName, IDecl,
1818                                          /*typeParamList=*/nullptr);
1819      CatIDecl->setImplicit();
1820    }
1821  }
1822
1823  ObjCCategoryImplDecl *CDecl =
1824    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1825                                 ClassLoc, AtCatImplLoc, CatLoc);
1826  /// Check that class of this category is already completely declared.
1827  if (!IDecl) {
1828    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1829    CDecl->setInvalidDecl();
1830  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1831                                 diag::err_undef_interface)) {
1832    CDecl->setInvalidDecl();
1833  }
1834
1835  // FIXME: PushOnScopeChains?
1836  CurContext->addDecl(CDecl);
1837
1838  // If the interface is deprecated/unavailable, warn/error about it.
1839  if (IDecl)
1840    DiagnoseUseOfDecl(IDecl, ClassLoc);
1841
1842  // If the interface has the objc_runtime_visible attribute, we
1843  // cannot implement a category for it.
1844  if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1845    Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1846      << IDecl->getDeclName();
1847  }
1848
1849  /// Check that CatName, category name, is not used in another implementation.
1850  if (CatIDecl) {
1851    if (CatIDecl->getImplementation()) {
1852      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1853        << CatName;
1854      Diag(CatIDecl->getImplementation()->getLocation(),
1855           diag::note_previous_definition);
1856      CDecl->setInvalidDecl();
1857    } else {
1858      CatIDecl->setImplementation(CDecl);
1859      // Warn on implementating category of deprecated class under
1860      // -Wdeprecated-implementations flag.
1861      DiagnoseObjCImplementedDeprecations(*this,
1862                                          dyn_cast<NamedDecl>(IDecl),
1863                                          CDecl->getLocation(), 2);
1864    }
1865  }
1866
1867  CheckObjCDeclScope(CDecl);
1868  return ActOnObjCContainerStartDefinition(CDecl);
1869}
1870
1871Decl *Sema::ActOnStartClassImplementation(
1872                      SourceLocation AtClassImplLoc,
1873                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
1874                      IdentifierInfo *SuperClassname,
1875                      SourceLocation SuperClassLoc) {
1876  ObjCInterfaceDecl *IDecl = nullptr;
1877  // Check for another declaration kind with the same name.
1878  NamedDecl *PrevDecl
1879    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1880                       ForRedeclaration);
1881  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1882    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1883    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1884  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1885    // FIXME: This will produce an error if the definition of the interface has
1886    // been imported from a module but is not visible.
1887    RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1888                        diag::warn_undef_interface);
1889  } else {
1890    // We did not find anything with the name ClassName; try to correct for
1891    // typos in the class name.
1892    TypoCorrection Corrected = CorrectTypo(
1893        DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
1894        nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
1895    if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1896      // Suggest the (potentially) correct interface name. Don't provide a
1897      // code-modification hint or use the typo name for recovery, because
1898      // this is just a warning. The program may actually be correct.
1899      diagnoseTypo(Corrected,
1900                   PDiag(diag::warn_undef_interface_suggest) << ClassName,
1901                   /*ErrorRecovery*/false);
1902    } else {
1903      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1904    }
1905  }
1906
1907  // Check that super class name is valid class name
1908  ObjCInterfaceDecl *SDecl = nullptr;
1909  if (SuperClassname) {
1910    // Check if a different kind of symbol declared in this scope.
1911    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1912                                LookupOrdinaryName);
1913    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1914      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1915        << SuperClassname;
1916      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1917    } else {
1918      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1919      if (SDecl && !SDecl->hasDefinition())
1920        SDecl = nullptr;
1921      if (!SDecl)
1922        Diag(SuperClassLoc, diag::err_undef_superclass)
1923          << SuperClassname << ClassName;
1924      else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1925        // This implementation and its interface do not have the same
1926        // super class.
1927        Diag(SuperClassLoc, diag::err_conflicting_super_class)
1928          << SDecl->getDeclName();
1929        Diag(SDecl->getLocation(), diag::note_previous_definition);
1930      }
1931    }
1932  }
1933
1934  if (!IDecl) {
1935    // Legacy case of @implementation with no corresponding @interface.
1936    // Build, chain & install the interface decl into the identifier.
1937
1938    // FIXME: Do we support attributes on the @implementation? If so we should
1939    // copy them over.
1940    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1941                                      ClassName, /*typeParamList=*/nullptr,
1942                                      /*PrevDecl=*/nullptr, ClassLoc,
1943                                      true);
1944    IDecl->startDefinition();
1945    if (SDecl) {
1946      IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
1947                             Context.getObjCInterfaceType(SDecl),
1948                             SuperClassLoc));
1949      IDecl->setEndOfDefinitionLoc(SuperClassLoc);
1950    } else {
1951      IDecl->setEndOfDefinitionLoc(ClassLoc);
1952    }
1953
1954    PushOnScopeChains(IDecl, TUScope);
1955  } else {
1956    // Mark the interface as being completed, even if it was just as
1957    //   @class ....;
1958    // declaration; the user cannot reopen it.
1959    if (!IDecl->hasDefinition())
1960      IDecl->startDefinition();
1961  }
1962
1963  ObjCImplementationDecl* IMPDecl =
1964    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
1965                                   ClassLoc, AtClassImplLoc, SuperClassLoc);
1966
1967  if (CheckObjCDeclScope(IMPDecl))
1968    return ActOnObjCContainerStartDefinition(IMPDecl);
1969
1970  // Check that there is no duplicate implementation of this class.
1971  if (IDecl->getImplementation()) {
1972    // FIXME: Don't leak everything!
1973    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
1974    Diag(IDecl->getImplementation()->getLocation(),
1975         diag::note_previous_definition);
1976    IMPDecl->setInvalidDecl();
1977  } else { // add it to the list.
1978    IDecl->setImplementation(IMPDecl);
1979    PushOnScopeChains(IMPDecl, TUScope);
1980    // Warn on implementating deprecated class under
1981    // -Wdeprecated-implementations flag.
1982    DiagnoseObjCImplementedDeprecations(*this,
1983                                        dyn_cast<NamedDecl>(IDecl),
1984                                        IMPDecl->getLocation(), 1);
1985  }
1986
1987  // If the superclass has the objc_runtime_visible attribute, we
1988  // cannot implement a subclass of it.
1989  if (IDecl->getSuperClass() &&
1990      IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
1991    Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
1992      << IDecl->getDeclName()
1993      << IDecl->getSuperClass()->getDeclName();
1994  }
1995
1996  return ActOnObjCContainerStartDefinition(IMPDecl);
1997}
1998
1999Sema::DeclGroupPtrTy
2000Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2001  SmallVector<Decl *, 64> DeclsInGroup;
2002  DeclsInGroup.reserve(Decls.size() + 1);
2003
2004  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2005    Decl *Dcl = Decls[i];
2006    if (!Dcl)
2007      continue;
2008    if (Dcl->getDeclContext()->isFileContext())
2009      Dcl->setTopLevelDeclInObjCContainer();
2010    DeclsInGroup.push_back(Dcl);
2011  }
2012
2013  DeclsInGroup.push_back(ObjCImpDecl);
2014
2015  return BuildDeclaratorGroup(DeclsInGroup, false);
2016}
2017
2018void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2019                                    ObjCIvarDecl **ivars, unsigned numIvars,
2020                                    SourceLocation RBrace) {
2021  assert(ImpDecl && "missing implementation decl");
2022  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2023  if (!IDecl)
2024    return;
2025  /// Check case of non-existing \@interface decl.
2026  /// (legacy objective-c \@implementation decl without an \@interface decl).
2027  /// Add implementations's ivar to the synthesize class's ivar list.
2028  if (IDecl->isImplicitInterfaceDecl()) {
2029    IDecl->setEndOfDefinitionLoc(RBrace);
2030    // Add ivar's to class's DeclContext.
2031    for (unsigned i = 0, e = numIvars; i != e; ++i) {
2032      ivars[i]->setLexicalDeclContext(ImpDecl);
2033      IDecl->makeDeclVisibleInContext(ivars[i]);
2034      ImpDecl->addDecl(ivars[i]);
2035    }
2036
2037    return;
2038  }
2039  // If implementation has empty ivar list, just return.
2040  if (numIvars == 0)
2041    return;
2042
2043  assert(ivars && "missing @implementation ivars");
2044  if (LangOpts.ObjCRuntime.isNonFragile()) {
2045    if (ImpDecl->getSuperClass())
2046      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2047    for (unsigned i = 0; i < numIvars; i++) {
2048      ObjCIvarDecl* ImplIvar = ivars[i];
2049      if (const ObjCIvarDecl *ClsIvar =
2050            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2051        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2052        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2053        continue;
2054      }
2055      // Check class extensions (unnamed categories) for duplicate ivars.
2056      for (const auto *CDecl : IDecl->visible_extensions()) {
2057        if (const ObjCIvarDecl *ClsExtIvar =
2058            CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2059          Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2060          Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2061          continue;
2062        }
2063      }
2064      // Instance ivar to Implementation's DeclContext.
2065      ImplIvar->setLexicalDeclContext(ImpDecl);
2066      IDecl->makeDeclVisibleInContext(ImplIvar);
2067      ImpDecl->addDecl(ImplIvar);
2068    }
2069    return;
2070  }
2071  // Check interface's Ivar list against those in the implementation.
2072  // names and types must match.
2073  //
2074  unsigned j = 0;
2075  ObjCInterfaceDecl::ivar_iterator
2076    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2077  for (; numIvars > 0 && IVI != IVE; ++IVI) {
2078    ObjCIvarDecl* ImplIvar = ivars[j++];
2079    ObjCIvarDecl* ClsIvar = *IVI;
2080    assert (ImplIvar && "missing implementation ivar");
2081    assert (ClsIvar && "missing class ivar");
2082
2083    // First, make sure the types match.
2084    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2085      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2086        << ImplIvar->getIdentifier()
2087        << ImplIvar->getType() << ClsIvar->getType();
2088      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2089    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2090               ImplIvar->getBitWidthValue(Context) !=
2091               ClsIvar->getBitWidthValue(Context)) {
2092      Diag(ImplIvar->getBitWidth()->getLocStart(),
2093           diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
2094      Diag(ClsIvar->getBitWidth()->getLocStart(),
2095           diag::note_previous_definition);
2096    }
2097    // Make sure the names are identical.
2098    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2099      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2100        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2101      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2102    }
2103    --numIvars;
2104  }
2105
2106  if (numIvars > 0)
2107    Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2108  else if (IVI != IVE)
2109    Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2110}
2111
2112static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2113                                ObjCMethodDecl *method,
2114                                bool &IncompleteImpl,
2115                                unsigned DiagID,
2116                                NamedDecl *NeededFor = nullptr) {
2117  // No point warning no definition of method which is 'unavailable'.
2118  switch (method->getAvailability()) {
2119  case AR_Available:
2120  case AR_Deprecated:
2121    break;
2122
2123      // Don't warn about unavailable or not-yet-introduced methods.
2124  case AR_NotYetIntroduced:
2125  case AR_Unavailable:
2126    return;
2127  }
2128
2129  // FIXME: For now ignore 'IncompleteImpl'.
2130  // Previously we grouped all unimplemented methods under a single
2131  // warning, but some users strongly voiced that they would prefer
2132  // separate warnings.  We will give that approach a try, as that
2133  // matches what we do with protocols.
2134  {
2135    const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2136    B << method;
2137    if (NeededFor)
2138      B << NeededFor;
2139  }
2140
2141  // Issue a note to the original declaration.
2142  SourceLocation MethodLoc = method->getLocStart();
2143  if (MethodLoc.isValid())
2144    S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2145}
2146
2147/// Determines if type B can be substituted for type A.  Returns true if we can
2148/// guarantee that anything that the user will do to an object of type A can
2149/// also be done to an object of type B.  This is trivially true if the two
2150/// types are the same, or if B is a subclass of A.  It becomes more complex
2151/// in cases where protocols are involved.
2152///
2153/// Object types in Objective-C describe the minimum requirements for an
2154/// object, rather than providing a complete description of a type.  For
2155/// example, if A is a subclass of B, then B* may refer to an instance of A.
2156/// The principle of substitutability means that we may use an instance of A
2157/// anywhere that we may use an instance of B - it will implement all of the
2158/// ivars of B and all of the methods of B.
2159///
2160/// This substitutability is important when type checking methods, because
2161/// the implementation may have stricter type definitions than the interface.
2162/// The interface specifies minimum requirements, but the implementation may
2163/// have more accurate ones.  For example, a method may privately accept
2164/// instances of B, but only publish that it accepts instances of A.  Any
2165/// object passed to it will be type checked against B, and so will implicitly
2166/// by a valid A*.  Similarly, a method may return a subclass of the class that
2167/// it is declared as returning.
2168///
2169/// This is most important when considering subclassing.  A method in a
2170/// subclass must accept any object as an argument that its superclass's
2171/// implementation accepts.  It may, however, accept a more general type
2172/// without breaking substitutability (i.e. you can still use the subclass
2173/// anywhere that you can use the superclass, but not vice versa).  The
2174/// converse requirement applies to return types: the return type for a
2175/// subclass method must be a valid object of the kind that the superclass
2176/// advertises, but it may be specified more accurately.  This avoids the need
2177/// for explicit down-casting by callers.
2178///
2179/// Note: This is a stricter requirement than for assignment.
2180static bool isObjCTypeSubstitutable(ASTContext &Context,
2181                                    const ObjCObjectPointerType *A,
2182                                    const ObjCObjectPointerType *B,
2183                                    bool rejectId) {
2184  // Reject a protocol-unqualified id.
2185  if (rejectId && B->isObjCIdType()) return false;
2186
2187  // If B is a qualified id, then A must also be a qualified id and it must
2188  // implement all of the protocols in B.  It may not be a qualified class.
2189  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2190  // stricter definition so it is not substitutable for id<A>.
2191  if (B->isObjCQualifiedIdType()) {
2192    return A->isObjCQualifiedIdType() &&
2193           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
2194                                                     QualType(B,0),
2195                                                     false);
2196  }
2197
2198  /*
2199  // id is a special type that bypasses type checking completely.  We want a
2200  // warning when it is used in one place but not another.
2201  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2202
2203
2204  // If B is a qualified id, then A must also be a qualified id (which it isn't
2205  // if we've got this far)
2206  if (B->isObjCQualifiedIdType()) return false;
2207  */
2208
2209  // Now we know that A and B are (potentially-qualified) class types.  The
2210  // normal rules for assignment apply.
2211  return Context.canAssignObjCInterfaces(A, B);
2212}
2213
2214static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2215  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2216}
2217
2218/// Determine whether two set of Objective-C declaration qualifiers conflict.
2219static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2220                                  Decl::ObjCDeclQualifier y) {
2221  return (x & ~Decl::OBJC_TQ_CSNullability) !=
2222         (y & ~Decl::OBJC_TQ_CSNullability);
2223}
2224
2225static bool CheckMethodOverrideReturn(Sema &S,
2226                                      ObjCMethodDecl *MethodImpl,
2227                                      ObjCMethodDecl *MethodDecl,
2228                                      bool IsProtocolMethodDecl,
2229                                      bool IsOverridingMode,
2230                                      bool Warn) {
2231  if (IsProtocolMethodDecl &&
2232      objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2233                            MethodImpl->getObjCDeclQualifier())) {
2234    if (Warn) {
2235      S.Diag(MethodImpl->getLocation(),
2236             (IsOverridingMode
2237                  ? diag::warn_conflicting_overriding_ret_type_modifiers
2238                  : diag::warn_conflicting_ret_type_modifiers))
2239          << MethodImpl->getDeclName()
2240          << MethodImpl->getReturnTypeSourceRange();
2241      S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2242          << MethodDecl->getReturnTypeSourceRange();
2243    }
2244    else
2245      return false;
2246  }
2247  if (Warn && IsOverridingMode &&
2248      !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2249      !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2250                                                 MethodDecl->getReturnType(),
2251                                                 false)) {
2252    auto nullabilityMethodImpl =
2253      *MethodImpl->getReturnType()->getNullability(S.Context);
2254    auto nullabilityMethodDecl =
2255      *MethodDecl->getReturnType()->getNullability(S.Context);
2256      S.Diag(MethodImpl->getLocation(),
2257             diag::warn_conflicting_nullability_attr_overriding_ret_types)
2258        << DiagNullabilityKind(
2259             nullabilityMethodImpl,
2260             ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2261              != 0))
2262        << DiagNullabilityKind(
2263             nullabilityMethodDecl,
2264             ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2265                != 0));
2266      S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2267  }
2268
2269  if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2270                                       MethodDecl->getReturnType()))
2271    return true;
2272  if (!Warn)
2273    return false;
2274
2275  unsigned DiagID =
2276    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2277                     : diag::warn_conflicting_ret_types;
2278
2279  // Mismatches between ObjC pointers go into a different warning
2280  // category, and sometimes they're even completely whitelisted.
2281  if (const ObjCObjectPointerType *ImplPtrTy =
2282          MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2283    if (const ObjCObjectPointerType *IfacePtrTy =
2284            MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2285      // Allow non-matching return types as long as they don't violate
2286      // the principle of substitutability.  Specifically, we permit
2287      // return types that are subclasses of the declared return type,
2288      // or that are more-qualified versions of the declared type.
2289      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2290        return false;
2291
2292      DiagID =
2293        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2294                         : diag::warn_non_covariant_ret_types;
2295    }
2296  }
2297
2298  S.Diag(MethodImpl->getLocation(), DiagID)
2299      << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2300      << MethodImpl->getReturnType()
2301      << MethodImpl->getReturnTypeSourceRange();
2302  S.Diag(MethodDecl->getLocation(), IsOverridingMode
2303                                        ? diag::note_previous_declaration
2304                                        : diag::note_previous_definition)
2305      << MethodDecl->getReturnTypeSourceRange();
2306  return false;
2307}
2308
2309static bool CheckMethodOverrideParam(Sema &S,
2310                                     ObjCMethodDecl *MethodImpl,
2311                                     ObjCMethodDecl *MethodDecl,
2312                                     ParmVarDecl *ImplVar,
2313                                     ParmVarDecl *IfaceVar,
2314                                     bool IsProtocolMethodDecl,
2315                                     bool IsOverridingMode,
2316                                     bool Warn) {
2317  if (IsProtocolMethodDecl &&
2318      objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2319                            IfaceVar->getObjCDeclQualifier())) {
2320    if (Warn) {
2321      if (IsOverridingMode)
2322        S.Diag(ImplVar->getLocation(),
2323               diag::warn_conflicting_overriding_param_modifiers)
2324            << getTypeRange(ImplVar->getTypeSourceInfo())
2325            << MethodImpl->getDeclName();
2326      else S.Diag(ImplVar->getLocation(),
2327             diag::warn_conflicting_param_modifiers)
2328          << getTypeRange(ImplVar->getTypeSourceInfo())
2329          << MethodImpl->getDeclName();
2330      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2331          << getTypeRange(IfaceVar->getTypeSourceInfo());
2332    }
2333    else
2334      return false;
2335  }
2336
2337  QualType ImplTy = ImplVar->getType();
2338  QualType IfaceTy = IfaceVar->getType();
2339  if (Warn && IsOverridingMode &&
2340      !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2341      !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2342    S.Diag(ImplVar->getLocation(),
2343           diag::warn_conflicting_nullability_attr_overriding_param_types)
2344      << DiagNullabilityKind(
2345           *ImplTy->getNullability(S.Context),
2346           ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2347            != 0))
2348      << DiagNullabilityKind(
2349           *IfaceTy->getNullability(S.Context),
2350           ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2351            != 0));
2352    S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2353  }
2354  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2355    return true;
2356
2357  if (!Warn)
2358    return false;
2359  unsigned DiagID =
2360    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2361                     : diag::warn_conflicting_param_types;
2362
2363  // Mismatches between ObjC pointers go into a different warning
2364  // category, and sometimes they're even completely whitelisted.
2365  if (const ObjCObjectPointerType *ImplPtrTy =
2366        ImplTy->getAs<ObjCObjectPointerType>()) {
2367    if (const ObjCObjectPointerType *IfacePtrTy =
2368          IfaceTy->getAs<ObjCObjectPointerType>()) {
2369      // Allow non-matching argument types as long as they don't
2370      // violate the principle of substitutability.  Specifically, the
2371      // implementation must accept any objects that the superclass
2372      // accepts, however it may also accept others.
2373      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2374        return false;
2375
2376      DiagID =
2377      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2378                       : diag::warn_non_contravariant_param_types;
2379    }
2380  }
2381
2382  S.Diag(ImplVar->getLocation(), DiagID)
2383    << getTypeRange(ImplVar->getTypeSourceInfo())
2384    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2385  S.Diag(IfaceVar->getLocation(),
2386         (IsOverridingMode ? diag::note_previous_declaration
2387                           : diag::note_previous_definition))
2388    << getTypeRange(IfaceVar->getTypeSourceInfo());
2389  return false;
2390}
2391
2392/// In ARC, check whether the conventional meanings of the two methods
2393/// match.  If they don't, it's a hard error.
2394static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2395                                      ObjCMethodDecl *decl) {
2396  ObjCMethodFamily implFamily = impl->getMethodFamily();
2397  ObjCMethodFamily declFamily = decl->getMethodFamily();
2398  if (implFamily == declFamily) return false;
2399
2400  // Since conventions are sorted by selector, the only possibility is
2401  // that the types differ enough to cause one selector or the other
2402  // to fall out of the family.
2403  assert(implFamily == OMF_None || declFamily == OMF_None);
2404
2405  // No further diagnostics required on invalid declarations.
2406  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2407
2408  const ObjCMethodDecl *unmatched = impl;
2409  ObjCMethodFamily family = declFamily;
2410  unsigned errorID = diag::err_arc_lost_method_convention;
2411  unsigned noteID = diag::note_arc_lost_method_convention;
2412  if (declFamily == OMF_None) {
2413    unmatched = decl;
2414    family = implFamily;
2415    errorID = diag::err_arc_gained_method_convention;
2416    noteID = diag::note_arc_gained_method_convention;
2417  }
2418
2419  // Indexes into a %select clause in the diagnostic.
2420  enum FamilySelector {
2421    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2422  };
2423  FamilySelector familySelector = FamilySelector();
2424
2425  switch (family) {
2426  case OMF_None: llvm_unreachable("logic error, no method convention");
2427  case OMF_retain:
2428  case OMF_release:
2429  case OMF_autorelease:
2430  case OMF_dealloc:
2431  case OMF_finalize:
2432  case OMF_retainCount:
2433  case OMF_self:
2434  case OMF_initialize:
2435  case OMF_performSelector:
2436    // Mismatches for these methods don't change ownership
2437    // conventions, so we don't care.
2438    return false;
2439
2440  case OMF_init: familySelector = F_init; break;
2441  case OMF_alloc: familySelector = F_alloc; break;
2442  case OMF_copy: familySelector = F_copy; break;
2443  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2444  case OMF_new: familySelector = F_new; break;
2445  }
2446
2447  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2448  ReasonSelector reasonSelector;
2449
2450  // The only reason these methods don't fall within their families is
2451  // due to unusual result types.
2452  if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2453    reasonSelector = R_UnrelatedReturn;
2454  } else {
2455    reasonSelector = R_NonObjectReturn;
2456  }
2457
2458  S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2459  S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2460
2461  return true;
2462}
2463
2464void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2465                                       ObjCMethodDecl *MethodDecl,
2466                                       bool IsProtocolMethodDecl) {
2467  if (getLangOpts().ObjCAutoRefCount &&
2468      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2469    return;
2470
2471  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2472                            IsProtocolMethodDecl, false,
2473                            true);
2474
2475  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2476       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2477       EF = MethodDecl->param_end();
2478       IM != EM && IF != EF; ++IM, ++IF) {
2479    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2480                             IsProtocolMethodDecl, false, true);
2481  }
2482
2483  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2484    Diag(ImpMethodDecl->getLocation(),
2485         diag::warn_conflicting_variadic);
2486    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2487  }
2488}
2489
2490void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2491                                       ObjCMethodDecl *Overridden,
2492                                       bool IsProtocolMethodDecl) {
2493
2494  CheckMethodOverrideReturn(*this, Method, Overridden,
2495                            IsProtocolMethodDecl, true,
2496                            true);
2497
2498  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2499       IF = Overridden->param_begin(), EM = Method->param_end(),
2500       EF = Overridden->param_end();
2501       IM != EM && IF != EF; ++IM, ++IF) {
2502    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2503                             IsProtocolMethodDecl, true, true);
2504  }
2505
2506  if (Method->isVariadic() != Overridden->isVariadic()) {
2507    Diag(Method->getLocation(),
2508         diag::warn_conflicting_overriding_variadic);
2509    Diag(Overridden->getLocation(), diag::note_previous_declaration);
2510  }
2511}
2512
2513/// WarnExactTypedMethods - This routine issues a warning if method
2514/// implementation declaration matches exactly that of its declaration.
2515void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2516                                 ObjCMethodDecl *MethodDecl,
2517                                 bool IsProtocolMethodDecl) {
2518  // don't issue warning when protocol method is optional because primary
2519  // class is not required to implement it and it is safe for protocol
2520  // to implement it.
2521  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2522    return;
2523  // don't issue warning when primary class's method is
2524  // depecated/unavailable.
2525  if (MethodDecl->hasAttr<UnavailableAttr>() ||
2526      MethodDecl->hasAttr<DeprecatedAttr>())
2527    return;
2528
2529  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2530                                      IsProtocolMethodDecl, false, false);
2531  if (match)
2532    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2533         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2534         EF = MethodDecl->param_end();
2535         IM != EM && IF != EF; ++IM, ++IF) {
2536      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2537                                       *IM, *IF,
2538                                       IsProtocolMethodDecl, false, false);
2539      if (!match)
2540        break;
2541    }
2542  if (match)
2543    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2544  if (match)
2545    match = !(MethodDecl->isClassMethod() &&
2546              MethodDecl->getSelector() == GetNullarySelector("load", Context));
2547
2548  if (match) {
2549    Diag(ImpMethodDecl->getLocation(),
2550         diag::warn_category_method_impl_match);
2551    Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2552      << MethodDecl->getDeclName();
2553  }
2554}
2555
2556/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2557/// improve the efficiency of selector lookups and type checking by associating
2558/// with each protocol / interface / category the flattened instance tables. If
2559/// we used an immutable set to keep the table then it wouldn't add significant
2560/// memory cost and it would be handy for lookups.
2561
2562typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2563typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2564
2565static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2566                                           ProtocolNameSet &PNS) {
2567  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2568    PNS.insert(PDecl->getIdentifier());
2569  for (const auto *PI : PDecl->protocols())
2570    findProtocolsWithExplicitImpls(PI, PNS);
2571}
2572
2573/// Recursively populates a set with all conformed protocols in a class
2574/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2575/// attribute.
2576static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2577                                           ProtocolNameSet &PNS) {
2578  if (!Super)
2579    return;
2580
2581  for (const auto *I : Super->all_referenced_protocols())
2582    findProtocolsWithExplicitImpls(I, PNS);
2583
2584  findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2585}
2586
2587/// CheckProtocolMethodDefs - This routine checks unimplemented methods
2588/// Declared in protocol, and those referenced by it.
2589static void CheckProtocolMethodDefs(Sema &S,
2590                                    SourceLocation ImpLoc,
2591                                    ObjCProtocolDecl *PDecl,
2592                                    bool& IncompleteImpl,
2593                                    const Sema::SelectorSet &InsMap,
2594                                    const Sema::SelectorSet &ClsMap,
2595                                    ObjCContainerDecl *CDecl,
2596                                    LazyProtocolNameSet &ProtocolsExplictImpl) {
2597  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2598  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2599                               : dyn_cast<ObjCInterfaceDecl>(CDecl);
2600  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2601
2602  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2603  ObjCInterfaceDecl *NSIDecl = nullptr;
2604
2605  // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2606  // then we should check if any class in the super class hierarchy also
2607  // conforms to this protocol, either directly or via protocol inheritance.
2608  // If so, we can skip checking this protocol completely because we
2609  // know that a parent class already satisfies this protocol.
2610  //
2611  // Note: we could generalize this logic for all protocols, and merely
2612  // add the limit on looking at the super class chain for just
2613  // specially marked protocols.  This may be a good optimization.  This
2614  // change is restricted to 'objc_protocol_requires_explicit_implementation'
2615  // protocols for now for controlled evaluation.
2616  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2617    if (!ProtocolsExplictImpl) {
2618      ProtocolsExplictImpl.reset(new ProtocolNameSet);
2619      findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2620    }
2621    if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2622        ProtocolsExplictImpl->end())
2623      return;
2624
2625    // If no super class conforms to the protocol, we should not search
2626    // for methods in the super class to implicitly satisfy the protocol.
2627    Super = nullptr;
2628  }
2629
2630  if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2631    // check to see if class implements forwardInvocation method and objects
2632    // of this class are derived from 'NSProxy' so that to forward requests
2633    // from one object to another.
2634    // Under such conditions, which means that every method possible is
2635    // implemented in the class, we should not issue "Method definition not
2636    // found" warnings.
2637    // FIXME: Use a general GetUnarySelector method for this.
2638    IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2639    Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2640    if (InsMap.count(fISelector))
2641      // Is IDecl derived from 'NSProxy'? If so, no instance methods
2642      // need be implemented in the implementation.
2643      NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2644  }
2645
2646  // If this is a forward protocol declaration, get its definition.
2647  if (!PDecl->isThisDeclarationADefinition() &&
2648      PDecl->getDefinition())
2649    PDecl = PDecl->getDefinition();
2650
2651  // If a method lookup fails locally we still need to look and see if
2652  // the method was implemented by a base class or an inherited
2653  // protocol. This lookup is slow, but occurs rarely in correct code
2654  // and otherwise would terminate in a warning.
2655
2656  // check unimplemented instance methods.
2657  if (!NSIDecl)
2658    for (auto *method : PDecl->instance_methods()) {
2659      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2660          !method->isPropertyAccessor() &&
2661          !InsMap.count(method->getSelector()) &&
2662          (!Super || !Super->lookupMethod(method->getSelector(),
2663                                          true /* instance */,
2664                                          false /* shallowCategory */,
2665                                          true /* followsSuper */,
2666                                          nullptr /* category */))) {
2667            // If a method is not implemented in the category implementation but
2668            // has been declared in its primary class, superclass,
2669            // or in one of their protocols, no need to issue the warning.
2670            // This is because method will be implemented in the primary class
2671            // or one of its super class implementation.
2672
2673            // Ugly, but necessary. Method declared in protcol might have
2674            // have been synthesized due to a property declared in the class which
2675            // uses the protocol.
2676            if (ObjCMethodDecl *MethodInClass =
2677                  IDecl->lookupMethod(method->getSelector(),
2678                                      true /* instance */,
2679                                      true /* shallowCategoryLookup */,
2680                                      false /* followSuper */))
2681              if (C || MethodInClass->isPropertyAccessor())
2682                continue;
2683            unsigned DIAG = diag::warn_unimplemented_protocol_method;
2684            if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2685              WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2686                                  PDecl);
2687            }
2688          }
2689    }
2690  // check unimplemented class methods
2691  for (auto *method : PDecl->class_methods()) {
2692    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2693        !ClsMap.count(method->getSelector()) &&
2694        (!Super || !Super->lookupMethod(method->getSelector(),
2695                                        false /* class method */,
2696                                        false /* shallowCategoryLookup */,
2697                                        true  /* followSuper */,
2698                                        nullptr /* category */))) {
2699      // See above comment for instance method lookups.
2700      if (C && IDecl->lookupMethod(method->getSelector(),
2701                                   false /* class */,
2702                                   true /* shallowCategoryLookup */,
2703                                   false /* followSuper */))
2704        continue;
2705
2706      unsigned DIAG = diag::warn_unimplemented_protocol_method;
2707      if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2708        WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2709      }
2710    }
2711  }
2712  // Check on this protocols's referenced protocols, recursively.
2713  for (auto *PI : PDecl->protocols())
2714    CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2715                            CDecl, ProtocolsExplictImpl);
2716}
2717
2718/// MatchAllMethodDeclarations - Check methods declared in interface
2719/// or protocol against those declared in their implementations.
2720///
2721void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2722                                      const SelectorSet &ClsMap,
2723                                      SelectorSet &InsMapSeen,
2724                                      SelectorSet &ClsMapSeen,
2725                                      ObjCImplDecl* IMPDecl,
2726                                      ObjCContainerDecl* CDecl,
2727                                      bool &IncompleteImpl,
2728                                      bool ImmediateClass,
2729                                      bool WarnCategoryMethodImpl) {
2730  // Check and see if instance methods in class interface have been
2731  // implemented in the implementation class. If so, their types match.
2732  for (auto *I : CDecl->instance_methods()) {
2733    if (!InsMapSeen.insert(I->getSelector()).second)
2734      continue;
2735    if (!I->isPropertyAccessor() &&
2736        !InsMap.count(I->getSelector())) {
2737      if (ImmediateClass)
2738        WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2739                            diag::warn_undef_method_impl);
2740      continue;
2741    } else {
2742      ObjCMethodDecl *ImpMethodDecl =
2743        IMPDecl->getInstanceMethod(I->getSelector());
2744      assert(CDecl->getInstanceMethod(I->getSelector()) &&
2745             "Expected to find the method through lookup as well");
2746      // ImpMethodDecl may be null as in a @dynamic property.
2747      if (ImpMethodDecl) {
2748        if (!WarnCategoryMethodImpl)
2749          WarnConflictingTypedMethods(ImpMethodDecl, I,
2750                                      isa<ObjCProtocolDecl>(CDecl));
2751        else if (!I->isPropertyAccessor())
2752          WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2753      }
2754    }
2755  }
2756
2757  // Check and see if class methods in class interface have been
2758  // implemented in the implementation class. If so, their types match.
2759  for (auto *I : CDecl->class_methods()) {
2760    if (!ClsMapSeen.insert(I->getSelector()).second)
2761      continue;
2762    if (!I->isPropertyAccessor() &&
2763        !ClsMap.count(I->getSelector())) {
2764      if (ImmediateClass)
2765        WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2766                            diag::warn_undef_method_impl);
2767    } else {
2768      ObjCMethodDecl *ImpMethodDecl =
2769        IMPDecl->getClassMethod(I->getSelector());
2770      assert(CDecl->getClassMethod(I->getSelector()) &&
2771             "Expected to find the method through lookup as well");
2772      // ImpMethodDecl may be null as in a @dynamic property.
2773      if (ImpMethodDecl) {
2774        if (!WarnCategoryMethodImpl)
2775          WarnConflictingTypedMethods(ImpMethodDecl, I,
2776                                      isa<ObjCProtocolDecl>(CDecl));
2777        else if (!I->isPropertyAccessor())
2778          WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2779      }
2780    }
2781  }
2782
2783  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2784    // Also, check for methods declared in protocols inherited by
2785    // this protocol.
2786    for (auto *PI : PD->protocols())
2787      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2788                                 IMPDecl, PI, IncompleteImpl, false,
2789                                 WarnCategoryMethodImpl);
2790  }
2791
2792  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2793    // when checking that methods in implementation match their declaration,
2794    // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2795    // extension; as well as those in categories.
2796    if (!WarnCategoryMethodImpl) {
2797      for (auto *Cat : I->visible_categories())
2798        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2799                                   IMPDecl, Cat, IncompleteImpl,
2800                                   ImmediateClass && Cat->IsClassExtension(),
2801                                   WarnCategoryMethodImpl);
2802    } else {
2803      // Also methods in class extensions need be looked at next.
2804      for (auto *Ext : I->visible_extensions())
2805        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2806                                   IMPDecl, Ext, IncompleteImpl, false,
2807                                   WarnCategoryMethodImpl);
2808    }
2809
2810    // Check for any implementation of a methods declared in protocol.
2811    for (auto *PI : I->all_referenced_protocols())
2812      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2813                                 IMPDecl, PI, IncompleteImpl, false,
2814                                 WarnCategoryMethodImpl);
2815
2816    // FIXME. For now, we are not checking for extact match of methods
2817    // in category implementation and its primary class's super class.
2818    if (!WarnCategoryMethodImpl && I->getSuperClass())
2819      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2820                                 IMPDecl,
2821                                 I->getSuperClass(), IncompleteImpl, false);
2822  }
2823}
2824
2825/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2826/// category matches with those implemented in its primary class and
2827/// warns each time an exact match is found.
2828void Sema::CheckCategoryVsClassMethodMatches(
2829                                  ObjCCategoryImplDecl *CatIMPDecl) {
2830  // Get category's primary class.
2831  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2832  if (!CatDecl)
2833    return;
2834  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2835  if (!IDecl)
2836    return;
2837  ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2838  SelectorSet InsMap, ClsMap;
2839
2840  for (const auto *I : CatIMPDecl->instance_methods()) {
2841    Selector Sel = I->getSelector();
2842    // When checking for methods implemented in the category, skip over
2843    // those declared in category class's super class. This is because
2844    // the super class must implement the method.
2845    if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2846      continue;
2847    InsMap.insert(Sel);
2848  }
2849
2850  for (const auto *I : CatIMPDecl->class_methods()) {
2851    Selector Sel = I->getSelector();
2852    if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2853      continue;
2854    ClsMap.insert(Sel);
2855  }
2856  if (InsMap.empty() && ClsMap.empty())
2857    return;
2858
2859  SelectorSet InsMapSeen, ClsMapSeen;
2860  bool IncompleteImpl = false;
2861  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2862                             CatIMPDecl, IDecl,
2863                             IncompleteImpl, false,
2864                             true /*WarnCategoryMethodImpl*/);
2865}
2866
2867void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2868                                     ObjCContainerDecl* CDecl,
2869                                     bool IncompleteImpl) {
2870  SelectorSet InsMap;
2871  // Check and see if instance methods in class interface have been
2872  // implemented in the implementation class.
2873  for (const auto *I : IMPDecl->instance_methods())
2874    InsMap.insert(I->getSelector());
2875
2876  // Add the selectors for getters/setters of @dynamic properties.
2877  for (const auto *PImpl : IMPDecl->property_impls()) {
2878    // We only care about @dynamic implementations.
2879    if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2880      continue;
2881
2882    const auto *P = PImpl->getPropertyDecl();
2883    if (!P) continue;
2884
2885    InsMap.insert(P->getGetterName());
2886    if (!P->getSetterName().isNull())
2887      InsMap.insert(P->getSetterName());
2888  }
2889
2890  // Check and see if properties declared in the interface have either 1)
2891  // an implementation or 2) there is a @synthesize/@dynamic implementation
2892  // of the property in the @implementation.
2893  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2894    bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2895                                LangOpts.ObjCRuntime.isNonFragile() &&
2896                                !IDecl->isObjCRequiresPropertyDefs();
2897    DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2898  }
2899
2900  // Diagnose null-resettable synthesized setters.
2901  diagnoseNullResettableSynthesizedSetters(IMPDecl);
2902
2903  SelectorSet ClsMap;
2904  for (const auto *I : IMPDecl->class_methods())
2905    ClsMap.insert(I->getSelector());
2906
2907  // Check for type conflict of methods declared in a class/protocol and
2908  // its implementation; if any.
2909  SelectorSet InsMapSeen, ClsMapSeen;
2910  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2911                             IMPDecl, CDecl,
2912                             IncompleteImpl, true);
2913
2914  // check all methods implemented in category against those declared
2915  // in its primary class.
2916  if (ObjCCategoryImplDecl *CatDecl =
2917        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
2918    CheckCategoryVsClassMethodMatches(CatDecl);
2919
2920  // Check the protocol list for unimplemented methods in the @implementation
2921  // class.
2922  // Check and see if class methods in class interface have been
2923  // implemented in the implementation class.
2924
2925  LazyProtocolNameSet ExplicitImplProtocols;
2926
2927  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2928    for (auto *PI : I->all_referenced_protocols())
2929      CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
2930                              InsMap, ClsMap, I, ExplicitImplProtocols);
2931  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2932    // For extended class, unimplemented methods in its protocols will
2933    // be reported in the primary class.
2934    if (!C->IsClassExtension()) {
2935      for (auto *P : C->protocols())
2936        CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
2937                                IncompleteImpl, InsMap, ClsMap, CDecl,
2938                                ExplicitImplProtocols);
2939      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
2940                                      /*SynthesizeProperties=*/false);
2941    }
2942  } else
2943    llvm_unreachable("invalid ObjCContainerDecl type.");
2944}
2945
2946Sema::DeclGroupPtrTy
2947Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
2948                                   IdentifierInfo **IdentList,
2949                                   SourceLocation *IdentLocs,
2950                                   ArrayRef<ObjCTypeParamList *> TypeParamLists,
2951                                   unsigned NumElts) {
2952  SmallVector<Decl *, 8> DeclsInGroup;
2953  for (unsigned i = 0; i != NumElts; ++i) {
2954    // Check for another declaration kind with the same name.
2955    NamedDecl *PrevDecl
2956      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
2957                         LookupOrdinaryName, ForRedeclaration);
2958    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2959      // GCC apparently allows the following idiom:
2960      //
2961      // typedef NSObject < XCElementTogglerP > XCElementToggler;
2962      // @class XCElementToggler;
2963      //
2964      // Here we have chosen to ignore the forward class declaration
2965      // with a warning. Since this is the implied behavior.
2966      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
2967      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
2968        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
2969        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2970      } else {
2971        // a forward class declaration matching a typedef name of a class refers
2972        // to the underlying class. Just ignore the forward class with a warning
2973        // as this will force the intended behavior which is to lookup the
2974        // typedef name.
2975        if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
2976          Diag(AtClassLoc, diag::warn_forward_class_redefinition)
2977              << IdentList[i];
2978          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2979          continue;
2980        }
2981      }
2982    }
2983
2984    // Create a declaration to describe this forward declaration.
2985    ObjCInterfaceDecl *PrevIDecl
2986      = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2987
2988    IdentifierInfo *ClassName = IdentList[i];
2989    if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
2990      // A previous decl with a different name is because of
2991      // @compatibility_alias, for example:
2992      // \code
2993      //   @class NewImage;
2994      //   @compatibility_alias OldImage NewImage;
2995      // \endcode
2996      // A lookup for 'OldImage' will return the 'NewImage' decl.
2997      //
2998      // In such a case use the real declaration name, instead of the alias one,
2999      // otherwise we will break IdentifierResolver and redecls-chain invariants.
3000      // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3001      // has been aliased.
3002      ClassName = PrevIDecl->getIdentifier();
3003    }
3004
3005    // If this forward declaration has type parameters, compare them with the
3006    // type parameters of the previous declaration.
3007    ObjCTypeParamList *TypeParams = TypeParamLists[i];
3008    if (PrevIDecl && TypeParams) {
3009      if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3010        // Check for consistency with the previous declaration.
3011        if (checkTypeParamListConsistency(
3012              *this, PrevTypeParams, TypeParams,
3013              TypeParamListContext::ForwardDeclaration)) {
3014          TypeParams = nullptr;
3015        }
3016      } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3017        // The @interface does not have type parameters. Complain.
3018        Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3019          << ClassName
3020          << TypeParams->getSourceRange();
3021        Diag(Def->getLocation(), diag::note_defined_here)
3022          << ClassName;
3023
3024        TypeParams = nullptr;
3025      }
3026    }
3027
3028    ObjCInterfaceDecl *IDecl
3029      = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3030                                  ClassName, TypeParams, PrevIDecl,
3031                                  IdentLocs[i]);
3032    IDecl->setAtEndRange(IdentLocs[i]);
3033
3034    PushOnScopeChains(IDecl, TUScope);
3035    CheckObjCDeclScope(IDecl);
3036    DeclsInGroup.push_back(IDecl);
3037  }
3038
3039  return BuildDeclaratorGroup(DeclsInGroup, false);
3040}
3041
3042static bool tryMatchRecordTypes(ASTContext &Context,
3043                                Sema::MethodMatchStrategy strategy,
3044                                const Type *left, const Type *right);
3045
3046static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3047                       QualType leftQT, QualType rightQT) {
3048  const Type *left =
3049    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3050  const Type *right =
3051    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3052
3053  if (left == right) return true;
3054
3055  // If we're doing a strict match, the types have to match exactly.
3056  if (strategy == Sema::MMS_strict) return false;
3057
3058  if (left->isIncompleteType() || right->isIncompleteType()) return false;
3059
3060  // Otherwise, use this absurdly complicated algorithm to try to
3061  // validate the basic, low-level compatibility of the two types.
3062
3063  // As a minimum, require the sizes and alignments to match.
3064  TypeInfo LeftTI = Context.getTypeInfo(left);
3065  TypeInfo RightTI = Context.getTypeInfo(right);
3066  if (LeftTI.Width != RightTI.Width)
3067    return false;
3068
3069  if (LeftTI.Align != RightTI.Align)
3070    return false;
3071
3072  // Consider all the kinds of non-dependent canonical types:
3073  // - functions and arrays aren't possible as return and parameter types
3074
3075  // - vector types of equal size can be arbitrarily mixed
3076  if (isa<VectorType>(left)) return isa<VectorType>(right);
3077  if (isa<VectorType>(right)) return false;
3078
3079  // - references should only match references of identical type
3080  // - structs, unions, and Objective-C objects must match more-or-less
3081  //   exactly
3082  // - everything else should be a scalar
3083  if (!left->isScalarType() || !right->isScalarType())
3084    return tryMatchRecordTypes(Context, strategy, left, right);
3085
3086  // Make scalars agree in kind, except count bools as chars, and group
3087  // all non-member pointers together.
3088  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3089  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3090  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3091  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3092  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3093    leftSK = Type::STK_ObjCObjectPointer;
3094  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3095    rightSK = Type::STK_ObjCObjectPointer;
3096
3097  // Note that data member pointers and function member pointers don't
3098  // intermix because of the size differences.
3099
3100  return (leftSK == rightSK);
3101}
3102
3103static bool tryMatchRecordTypes(ASTContext &Context,
3104                                Sema::MethodMatchStrategy strategy,
3105                                const Type *lt, const Type *rt) {
3106  assert(lt && rt && lt != rt);
3107
3108  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3109  RecordDecl *left = cast<RecordType>(lt)->getDecl();
3110  RecordDecl *right = cast<RecordType>(rt)->getDecl();
3111
3112  // Require union-hood to match.
3113  if (left->isUnion() != right->isUnion()) return false;
3114
3115  // Require an exact match if either is non-POD.
3116  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3117      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3118    return false;
3119
3120  // Require size and alignment to match.
3121  TypeInfo LeftTI = Context.getTypeInfo(lt);
3122  TypeInfo RightTI = Context.getTypeInfo(rt);
3123  if (LeftTI.Width != RightTI.Width)
3124    return false;
3125
3126  if (LeftTI.Align != RightTI.Align)
3127    return false;
3128
3129  // Require fields to match.
3130  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3131  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3132  for (; li != le && ri != re; ++li, ++ri) {
3133    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3134      return false;
3135  }
3136  return (li == le && ri == re);
3137}
3138
3139/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3140/// returns true, or false, accordingly.
3141/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3142bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3143                                      const ObjCMethodDecl *right,
3144                                      MethodMatchStrategy strategy) {
3145  if (!matchTypes(Context, strategy, left->getReturnType(),
3146                  right->getReturnType()))
3147    return false;
3148
3149  // If either is hidden, it is not considered to match.
3150  if (left->isHidden() || right->isHidden())
3151    return false;
3152
3153  if (getLangOpts().ObjCAutoRefCount &&
3154      (left->hasAttr<NSReturnsRetainedAttr>()
3155         != right->hasAttr<NSReturnsRetainedAttr>() ||
3156       left->hasAttr<NSConsumesSelfAttr>()
3157         != right->hasAttr<NSConsumesSelfAttr>()))
3158    return false;
3159
3160  ObjCMethodDecl::param_const_iterator
3161    li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3162    re = right->param_end();
3163
3164  for (; li != le && ri != re; ++li, ++ri) {
3165    assert(ri != right->param_end() && "Param mismatch");
3166    const ParmVarDecl *lparm = *li, *rparm = *ri;
3167
3168    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3169      return false;
3170
3171    if (getLangOpts().ObjCAutoRefCount &&
3172        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3173      return false;
3174  }
3175  return true;
3176}
3177
3178static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3179                                               ObjCMethodDecl *MethodInList) {
3180  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3181  auto *MethodInListProtocol =
3182      dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3183  // If this method belongs to a protocol but the method in list does not, or
3184  // vice versa, we say the context is not the same.
3185  if ((MethodProtocol && !MethodInListProtocol) ||
3186      (!MethodProtocol && MethodInListProtocol))
3187    return false;
3188
3189  if (MethodProtocol && MethodInListProtocol)
3190    return true;
3191
3192  ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3193  ObjCInterfaceDecl *MethodInListInterface =
3194      MethodInList->getClassInterface();
3195  return MethodInterface == MethodInListInterface;
3196}
3197
3198void Sema::addMethodToGlobalList(ObjCMethodList *List,
3199                                 ObjCMethodDecl *Method) {
3200  // Record at the head of the list whether there were 0, 1, or >= 2 methods
3201  // inside categories.
3202  if (ObjCCategoryDecl *CD =
3203          dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3204    if (!CD->IsClassExtension() && List->getBits() < 2)
3205      List->setBits(List->getBits() + 1);
3206
3207  // If the list is empty, make it a singleton list.
3208  if (List->getMethod() == nullptr) {
3209    List->setMethod(Method);
3210    List->setNext(nullptr);
3211    return;
3212  }
3213
3214  // We've seen a method with this name, see if we have already seen this type
3215  // signature.
3216  ObjCMethodList *Previous = List;
3217  ObjCMethodList *ListWithSameDeclaration = nullptr;
3218  for (; List; Previous = List, List = List->getNext()) {
3219    // If we are building a module, keep all of the methods.
3220    if (getLangOpts().CompilingModule)
3221      continue;
3222
3223    bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3224                                                      List->getMethod());
3225    // Looking for method with a type bound requires the correct context exists.
3226    // We need to insert a method into the list if the context is different.
3227    // If the method's declaration matches the list
3228    // a> the method belongs to a different context: we need to insert it, in
3229    //    order to emit the availability message, we need to prioritize over
3230    //    availability among the methods with the same declaration.
3231    // b> the method belongs to the same context: there is no need to insert a
3232    //    new entry.
3233    // If the method's declaration does not match the list, we insert it to the
3234    // end.
3235    if (!SameDeclaration ||
3236        !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3237      // Even if two method types do not match, we would like to say
3238      // there is more than one declaration so unavailability/deprecated
3239      // warning is not too noisy.
3240      if (!Method->isDefined())
3241        List->setHasMoreThanOneDecl(true);
3242
3243      // For methods with the same declaration, the one that is deprecated
3244      // should be put in the front for better diagnostics.
3245      if (Method->isDeprecated() && SameDeclaration &&
3246          !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3247        ListWithSameDeclaration = List;
3248
3249      if (Method->isUnavailable() && SameDeclaration &&
3250          !ListWithSameDeclaration &&
3251          List->getMethod()->getAvailability() < AR_Deprecated)
3252        ListWithSameDeclaration = List;
3253      continue;
3254    }
3255
3256    ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3257
3258    // Propagate the 'defined' bit.
3259    if (Method->isDefined())
3260      PrevObjCMethod->setDefined(true);
3261    else {
3262      // Objective-C doesn't allow an @interface for a class after its
3263      // @implementation. So if Method is not defined and there already is
3264      // an entry for this type signature, Method has to be for a different
3265      // class than PrevObjCMethod.
3266      List->setHasMoreThanOneDecl(true);
3267    }
3268
3269    // If a method is deprecated, push it in the global pool.
3270    // This is used for better diagnostics.
3271    if (Method->isDeprecated()) {
3272      if (!PrevObjCMethod->isDeprecated())
3273        List->setMethod(Method);
3274    }
3275    // If the new method is unavailable, push it into global pool
3276    // unless previous one is deprecated.
3277    if (Method->isUnavailable()) {
3278      if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3279        List->setMethod(Method);
3280    }
3281
3282    return;
3283  }
3284
3285  // We have a new signature for an existing method - add it.
3286  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3287  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3288
3289  // We insert it right before ListWithSameDeclaration.
3290  if (ListWithSameDeclaration) {
3291    auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3292    // FIXME: should we clear the other bits in ListWithSameDeclaration?
3293    ListWithSameDeclaration->setMethod(Method);
3294    ListWithSameDeclaration->setNext(List);
3295    return;
3296  }
3297
3298  Previous->setNext(new (Mem) ObjCMethodList(Method));
3299}
3300
3301/// \brief Read the contents of the method pool for a given selector from
3302/// external storage.
3303void Sema::ReadMethodPool(Selector Sel) {
3304  assert(ExternalSource && "We need an external AST source");
3305  ExternalSource->ReadMethodPool(Sel);
3306}
3307
3308void Sema::updateOutOfDateSelector(Selector Sel) {
3309  if (!ExternalSource)
3310    return;
3311  ExternalSource->updateOutOfDateSelector(Sel);
3312}
3313
3314void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3315                                 bool instance) {
3316  // Ignore methods of invalid containers.
3317  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3318    return;
3319
3320  if (ExternalSource)
3321    ReadMethodPool(Method->getSelector());
3322
3323  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3324  if (Pos == MethodPool.end())
3325    Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3326                                           GlobalMethods())).first;
3327
3328  Method->setDefined(impl);
3329
3330  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3331  addMethodToGlobalList(&Entry, Method);
3332}
3333
3334/// Determines if this is an "acceptable" loose mismatch in the global
3335/// method pool.  This exists mostly as a hack to get around certain
3336/// global mismatches which we can't afford to make warnings / errors.
3337/// Really, what we want is a way to take a method out of the global
3338/// method pool.
3339static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3340                                       ObjCMethodDecl *other) {
3341  if (!chosen->isInstanceMethod())
3342    return false;
3343
3344  Selector sel = chosen->getSelector();
3345  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3346    return false;
3347
3348  // Don't complain about mismatches for -length if the method we
3349  // chose has an integral result type.
3350  return (chosen->getReturnType()->isIntegerType());
3351}
3352
3353/// Return true if the given method is wthin the type bound.
3354static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3355                                     const ObjCObjectType *TypeBound) {
3356  if (!TypeBound)
3357    return true;
3358
3359  if (TypeBound->isObjCId())
3360    // FIXME: should we handle the case of bounding to id<A, B> differently?
3361    return true;
3362
3363  auto *BoundInterface = TypeBound->getInterface();
3364  assert(BoundInterface && "unexpected object type!");
3365
3366  // Check if the Method belongs to a protocol. We should allow any method
3367  // defined in any protocol, because any subclass could adopt the protocol.
3368  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3369  if (MethodProtocol) {
3370    return true;
3371  }
3372
3373  // If the Method belongs to a class, check if it belongs to the class
3374  // hierarchy of the class bound.
3375  if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3376    // We allow methods declared within classes that are part of the hierarchy
3377    // of the class bound (superclass of, subclass of, or the same as the class
3378    // bound).
3379    return MethodInterface == BoundInterface ||
3380           MethodInterface->isSuperClassOf(BoundInterface) ||
3381           BoundInterface->isSuperClassOf(MethodInterface);
3382  }
3383  llvm_unreachable("unknow method context");
3384}
3385
3386/// We first select the type of the method: Instance or Factory, then collect
3387/// all methods with that type.
3388bool Sema::CollectMultipleMethodsInGlobalPool(
3389    Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3390    bool InstanceFirst, bool CheckTheOther,
3391    const ObjCObjectType *TypeBound) {
3392  if (ExternalSource)
3393    ReadMethodPool(Sel);
3394
3395  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3396  if (Pos == MethodPool.end())
3397    return false;
3398
3399  // Gather the non-hidden methods.
3400  ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3401                             Pos->second.second;
3402  for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3403    if (M->getMethod() && !M->getMethod()->isHidden()) {
3404      if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3405        Methods.push_back(M->getMethod());
3406    }
3407
3408  // Return if we find any method with the desired kind.
3409  if (!Methods.empty())
3410    return Methods.size() > 1;
3411
3412  if (!CheckTheOther)
3413    return false;
3414
3415  // Gather the other kind.
3416  ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3417                              Pos->second.first;
3418  for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3419    if (M->getMethod() && !M->getMethod()->isHidden()) {
3420      if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3421        Methods.push_back(M->getMethod());
3422    }
3423
3424  return Methods.size() > 1;
3425}
3426
3427bool Sema::AreMultipleMethodsInGlobalPool(
3428    Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3429    bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3430  // Diagnose finding more than one method in global pool.
3431  SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3432  FilteredMethods.push_back(BestMethod);
3433
3434  for (auto *M : Methods)
3435    if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3436      FilteredMethods.push_back(M);
3437
3438  if (FilteredMethods.size() > 1)
3439    DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3440                                       receiverIdOrClass);
3441
3442  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3443  // Test for no method in the pool which should not trigger any warning by
3444  // caller.
3445  if (Pos == MethodPool.end())
3446    return true;
3447  ObjCMethodList &MethList =
3448    BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3449  return MethList.hasMoreThanOneDecl();
3450}
3451
3452ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3453                                               bool receiverIdOrClass,
3454                                               bool instance) {
3455  if (ExternalSource)
3456    ReadMethodPool(Sel);
3457
3458  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3459  if (Pos == MethodPool.end())
3460    return nullptr;
3461
3462  // Gather the non-hidden methods.
3463  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3464  SmallVector<ObjCMethodDecl *, 4> Methods;
3465  for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3466    if (M->getMethod() && !M->getMethod()->isHidden())
3467      return M->getMethod();
3468  }
3469  return nullptr;
3470}
3471
3472void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3473                                              Selector Sel, SourceRange R,
3474                                              bool receiverIdOrClass) {
3475  // We found multiple methods, so we may have to complain.
3476  bool issueDiagnostic = false, issueError = false;
3477
3478  // We support a warning which complains about *any* difference in
3479  // method signature.
3480  bool strictSelectorMatch =
3481  receiverIdOrClass &&
3482  !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3483  if (strictSelectorMatch) {
3484    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3485      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3486        issueDiagnostic = true;
3487        break;
3488      }
3489    }
3490  }
3491
3492  // If we didn't see any strict differences, we won't see any loose
3493  // differences.  In ARC, however, we also need to check for loose
3494  // mismatches, because most of them are errors.
3495  if (!strictSelectorMatch ||
3496      (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3497    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3498      // This checks if the methods differ in type mismatch.
3499      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3500          !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3501        issueDiagnostic = true;
3502        if (getLangOpts().ObjCAutoRefCount)
3503          issueError = true;
3504        break;
3505      }
3506    }
3507
3508  if (issueDiagnostic) {
3509    if (issueError)
3510      Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3511    else if (strictSelectorMatch)
3512      Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3513    else
3514      Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3515
3516    Diag(Methods[0]->getLocStart(),
3517         issueError ? diag::note_possibility : diag::note_using)
3518    << Methods[0]->getSourceRange();
3519    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3520      Diag(Methods[I]->getLocStart(), diag::note_also_found)
3521      << Methods[I]->getSourceRange();
3522    }
3523  }
3524}
3525
3526ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3527  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3528  if (Pos == MethodPool.end())
3529    return nullptr;
3530
3531  GlobalMethods &Methods = Pos->second;
3532  for (const ObjCMethodList *Method = &Methods.first; Method;
3533       Method = Method->getNext())
3534    if (Method->getMethod() &&
3535        (Method->getMethod()->isDefined() ||
3536         Method->getMethod()->isPropertyAccessor()))
3537      return Method->getMethod();
3538
3539  for (const ObjCMethodList *Method = &Methods.second; Method;
3540       Method = Method->getNext())
3541    if (Method->getMethod() &&
3542        (Method->getMethod()->isDefined() ||
3543         Method->getMethod()->isPropertyAccessor()))
3544      return Method->getMethod();
3545  return nullptr;
3546}
3547
3548static void
3549HelperSelectorsForTypoCorrection(
3550                      SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3551                      StringRef Typo, const ObjCMethodDecl * Method) {
3552  const unsigned MaxEditDistance = 1;
3553  unsigned BestEditDistance = MaxEditDistance + 1;
3554  std::string MethodName = Method->getSelector().getAsString();
3555
3556  unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3557  if (MinPossibleEditDistance > 0 &&
3558      Typo.size() / MinPossibleEditDistance < 1)
3559    return;
3560  unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3561  if (EditDistance > MaxEditDistance)
3562    return;
3563  if (EditDistance == BestEditDistance)
3564    BestMethod.push_back(Method);
3565  else if (EditDistance < BestEditDistance) {
3566    BestMethod.clear();
3567    BestMethod.push_back(Method);
3568  }
3569}
3570
3571static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3572                                     QualType ObjectType) {
3573  if (ObjectType.isNull())
3574    return true;
3575  if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3576    return true;
3577  return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3578         nullptr;
3579}
3580
3581const ObjCMethodDecl *
3582Sema::SelectorsForTypoCorrection(Selector Sel,
3583                                 QualType ObjectType) {
3584  unsigned NumArgs = Sel.getNumArgs();
3585  SmallVector<const ObjCMethodDecl *, 8> Methods;
3586  bool ObjectIsId = true, ObjectIsClass = true;
3587  if (ObjectType.isNull())
3588    ObjectIsId = ObjectIsClass = false;
3589  else if (!ObjectType->isObjCObjectPointerType())
3590    return nullptr;
3591  else if (const ObjCObjectPointerType *ObjCPtr =
3592           ObjectType->getAsObjCInterfacePointerType()) {
3593    ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3594    ObjectIsId = ObjectIsClass = false;
3595  }
3596  else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3597    ObjectIsClass = false;
3598  else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3599    ObjectIsId = false;
3600  else
3601    return nullptr;
3602
3603  for (GlobalMethodPool::iterator b = MethodPool.begin(),
3604       e = MethodPool.end(); b != e; b++) {
3605    // instance methods
3606    for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3607      if (M->getMethod() &&
3608          (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3609          (M->getMethod()->getSelector() != Sel)) {
3610        if (ObjectIsId)
3611          Methods.push_back(M->getMethod());
3612        else if (!ObjectIsClass &&
3613                 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3614                                          ObjectType))
3615          Methods.push_back(M->getMethod());
3616      }
3617    // class methods
3618    for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3619      if (M->getMethod() &&
3620          (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3621          (M->getMethod()->getSelector() != Sel)) {
3622        if (ObjectIsClass)
3623          Methods.push_back(M->getMethod());
3624        else if (!ObjectIsId &&
3625                 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3626                                          ObjectType))
3627          Methods.push_back(M->getMethod());
3628      }
3629  }
3630
3631  SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3632  for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3633    HelperSelectorsForTypoCorrection(SelectedMethods,
3634                                     Sel.getAsString(), Methods[i]);
3635  }
3636  return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3637}
3638
3639/// DiagnoseDuplicateIvars -
3640/// Check for duplicate ivars in the entire class at the start of
3641/// \@implementation. This becomes necesssary because class extension can
3642/// add ivars to a class in random order which will not be known until
3643/// class's \@implementation is seen.
3644void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3645                                  ObjCInterfaceDecl *SID) {
3646  for (auto *Ivar : ID->ivars()) {
3647    if (Ivar->isInvalidDecl())
3648      continue;
3649    if (IdentifierInfo *II = Ivar->getIdentifier()) {
3650      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3651      if (prevIvar) {
3652        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3653        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3654        Ivar->setInvalidDecl();
3655      }
3656    }
3657  }
3658}
3659
3660/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3661static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3662  if (S.getLangOpts().ObjCWeak) return;
3663
3664  for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3665         ivar; ivar = ivar->getNextIvar()) {
3666    if (ivar->isInvalidDecl()) continue;
3667    if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3668      if (S.getLangOpts().ObjCWeakRuntime) {
3669        S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3670      } else {
3671        S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3672      }
3673    }
3674  }
3675}
3676
3677Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3678  switch (CurContext->getDeclKind()) {
3679    case Decl::ObjCInterface:
3680      return Sema::OCK_Interface;
3681    case Decl::ObjCProtocol:
3682      return Sema::OCK_Protocol;
3683    case Decl::ObjCCategory:
3684      if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3685        return Sema::OCK_ClassExtension;
3686      return Sema::OCK_Category;
3687    case Decl::ObjCImplementation:
3688      return Sema::OCK_Implementation;
3689    case Decl::ObjCCategoryImpl:
3690      return Sema::OCK_CategoryImplementation;
3691
3692    default:
3693      return Sema::OCK_None;
3694  }
3695}
3696
3697// Note: For class/category implementations, allMethods is always null.
3698Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3699                       ArrayRef<DeclGroupPtrTy> allTUVars) {
3700  if (getObjCContainerKind() == Sema::OCK_None)
3701    return nullptr;
3702
3703  assert(AtEnd.isValid() && "Invalid location for '@end'");
3704
3705  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
3706  Decl *ClassDecl = cast<Decl>(OCD);
3707
3708  bool isInterfaceDeclKind =
3709        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3710         || isa<ObjCProtocolDecl>(ClassDecl);
3711  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3712
3713  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3714  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3715  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3716
3717  for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3718    ObjCMethodDecl *Method =
3719      cast_or_null<ObjCMethodDecl>(allMethods[i]);
3720
3721    if (!Method) continue;  // Already issued a diagnostic.
3722    if (Method->isInstanceMethod()) {
3723      /// Check for instance method of the same name with incompatible types
3724      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3725      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3726                              : false;
3727      if ((isInterfaceDeclKind && PrevMethod && !match)
3728          || (checkIdenticalMethods && match)) {
3729          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3730            << Method->getDeclName();
3731          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3732        Method->setInvalidDecl();
3733      } else {
3734        if (PrevMethod) {
3735          Method->setAsRedeclaration(PrevMethod);
3736          if (!Context.getSourceManager().isInSystemHeader(
3737                 Method->getLocation()))
3738            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3739              << Method->getDeclName();
3740          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3741        }
3742        InsMap[Method->getSelector()] = Method;
3743        /// The following allows us to typecheck messages to "id".
3744        AddInstanceMethodToGlobalPool(Method);
3745      }
3746    } else {
3747      /// Check for class method of the same name with incompatible types
3748      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3749      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3750                              : false;
3751      if ((isInterfaceDeclKind && PrevMethod && !match)
3752          || (checkIdenticalMethods && match)) {
3753        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3754          << Method->getDeclName();
3755        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3756        Method->setInvalidDecl();
3757      } else {
3758        if (PrevMethod) {
3759          Method->setAsRedeclaration(PrevMethod);
3760          if (!Context.getSourceManager().isInSystemHeader(
3761                 Method->getLocation()))
3762            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3763              << Method->getDeclName();
3764          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3765        }
3766        ClsMap[Method->getSelector()] = Method;
3767        AddFactoryMethodToGlobalPool(Method);
3768      }
3769    }
3770  }
3771  if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3772    // Nothing to do here.
3773  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3774    // Categories are used to extend the class by declaring new methods.
3775    // By the same token, they are also used to add new properties. No
3776    // need to compare the added property to those in the class.
3777
3778    if (C->IsClassExtension()) {
3779      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3780      DiagnoseClassExtensionDupMethods(C, CCPrimary);
3781    }
3782  }
3783  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3784    if (CDecl->getIdentifier())
3785      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3786      // user-defined setter/getter. It also synthesizes setter/getter methods
3787      // and adds them to the DeclContext and global method pools.
3788      for (auto *I : CDecl->properties())
3789        ProcessPropertyDecl(I);
3790    CDecl->setAtEndRange(AtEnd);
3791  }
3792  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3793    IC->setAtEndRange(AtEnd);
3794    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3795      // Any property declared in a class extension might have user
3796      // declared setter or getter in current class extension or one
3797      // of the other class extensions. Mark them as synthesized as
3798      // property will be synthesized when property with same name is
3799      // seen in the @implementation.
3800      for (const auto *Ext : IDecl->visible_extensions()) {
3801        for (const auto *Property : Ext->instance_properties()) {
3802          // Skip over properties declared @dynamic
3803          if (const ObjCPropertyImplDecl *PIDecl
3804              = IC->FindPropertyImplDecl(Property->getIdentifier(),
3805                                         Property->getQueryKind()))
3806            if (PIDecl->getPropertyImplementation()
3807                  == ObjCPropertyImplDecl::Dynamic)
3808              continue;
3809
3810          for (const auto *Ext : IDecl->visible_extensions()) {
3811            if (ObjCMethodDecl *GetterMethod
3812                  = Ext->getInstanceMethod(Property->getGetterName()))
3813              GetterMethod->setPropertyAccessor(true);
3814            if (!Property->isReadOnly())
3815              if (ObjCMethodDecl *SetterMethod
3816                    = Ext->getInstanceMethod(Property->getSetterName()))
3817                SetterMethod->setPropertyAccessor(true);
3818          }
3819        }
3820      }
3821      ImplMethodsVsClassMethods(S, IC, IDecl);
3822      AtomicPropertySetterGetterRules(IC, IDecl);
3823      DiagnoseOwningPropertyGetterSynthesis(IC);
3824      DiagnoseUnusedBackingIvarInAccessor(S, IC);
3825      if (IDecl->hasDesignatedInitializers())
3826        DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
3827      DiagnoseWeakIvars(*this, IC);
3828
3829      bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
3830      if (IDecl->getSuperClass() == nullptr) {
3831        // This class has no superclass, so check that it has been marked with
3832        // __attribute((objc_root_class)).
3833        if (!HasRootClassAttr) {
3834          SourceLocation DeclLoc(IDecl->getLocation());
3835          SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
3836          Diag(DeclLoc, diag::warn_objc_root_class_missing)
3837            << IDecl->getIdentifier();
3838          // See if NSObject is in the current scope, and if it is, suggest
3839          // adding " : NSObject " to the class declaration.
3840          NamedDecl *IF = LookupSingleName(TUScope,
3841                                           NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
3842                                           DeclLoc, LookupOrdinaryName);
3843          ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
3844          if (NSObjectDecl && NSObjectDecl->getDefinition()) {
3845            Diag(SuperClassLoc, diag::note_objc_needs_superclass)
3846              << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
3847          } else {
3848            Diag(SuperClassLoc, diag::note_objc_needs_superclass);
3849          }
3850        }
3851      } else if (HasRootClassAttr) {
3852        // Complain that only root classes may have this attribute.
3853        Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
3854      }
3855
3856      if (LangOpts.ObjCRuntime.isNonFragile()) {
3857        while (IDecl->getSuperClass()) {
3858          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
3859          IDecl = IDecl->getSuperClass();
3860        }
3861      }
3862    }
3863    SetIvarInitializers(IC);
3864  } else if (ObjCCategoryImplDecl* CatImplClass =
3865                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
3866    CatImplClass->setAtEndRange(AtEnd);
3867
3868    // Find category interface decl and then check that all methods declared
3869    // in this interface are implemented in the category @implementation.
3870    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
3871      if (ObjCCategoryDecl *Cat
3872            = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
3873        ImplMethodsVsClassMethods(S, CatImplClass, Cat);
3874      }
3875    }
3876  }
3877  if (isInterfaceDeclKind) {
3878    // Reject invalid vardecls.
3879    for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
3880      DeclGroupRef DG = allTUVars[i].get();
3881      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
3882        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
3883          if (!VDecl->hasExternalStorage())
3884            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
3885        }
3886    }
3887  }
3888  ActOnObjCContainerFinishDefinition();
3889
3890  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
3891    DeclGroupRef DG = allTUVars[i].get();
3892    for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
3893      (*I)->setTopLevelDeclInObjCContainer();
3894    Consumer.HandleTopLevelDeclInObjCContainer(DG);
3895  }
3896
3897  ActOnDocumentableDecl(ClassDecl);
3898  return ClassDecl;
3899}
3900
3901/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
3902/// objective-c's type qualifier from the parser version of the same info.
3903static Decl::ObjCDeclQualifier
3904CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
3905  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
3906}
3907
3908/// \brief Check whether the declared result type of the given Objective-C
3909/// method declaration is compatible with the method's class.
3910///
3911static Sema::ResultTypeCompatibilityKind
3912CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
3913                                    ObjCInterfaceDecl *CurrentClass) {
3914  QualType ResultType = Method->getReturnType();
3915
3916  // If an Objective-C method inherits its related result type, then its
3917  // declared result type must be compatible with its own class type. The
3918  // declared result type is compatible if:
3919  if (const ObjCObjectPointerType *ResultObjectType
3920                                = ResultType->getAs<ObjCObjectPointerType>()) {
3921    //   - it is id or qualified id, or
3922    if (ResultObjectType->isObjCIdType() ||
3923        ResultObjectType->isObjCQualifiedIdType())
3924      return Sema::RTC_Compatible;
3925
3926    if (CurrentClass) {
3927      if (ObjCInterfaceDecl *ResultClass
3928                                      = ResultObjectType->getInterfaceDecl()) {
3929        //   - it is the same as the method's class type, or
3930        if (declaresSameEntity(CurrentClass, ResultClass))
3931          return Sema::RTC_Compatible;
3932
3933        //   - it is a superclass of the method's class type
3934        if (ResultClass->isSuperClassOf(CurrentClass))
3935          return Sema::RTC_Compatible;
3936      }
3937    } else {
3938      // Any Objective-C pointer type might be acceptable for a protocol
3939      // method; we just don't know.
3940      return Sema::RTC_Unknown;
3941    }
3942  }
3943
3944  return Sema::RTC_Incompatible;
3945}
3946
3947namespace {
3948/// A helper class for searching for methods which a particular method
3949/// overrides.
3950class OverrideSearch {
3951public:
3952  Sema &S;
3953  ObjCMethodDecl *Method;
3954  llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
3955  bool Recursive;
3956
3957public:
3958  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
3959    Selector selector = method->getSelector();
3960
3961    // Bypass this search if we've never seen an instance/class method
3962    // with this selector before.
3963    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
3964    if (it == S.MethodPool.end()) {
3965      if (!S.getExternalSource()) return;
3966      S.ReadMethodPool(selector);
3967
3968      it = S.MethodPool.find(selector);
3969      if (it == S.MethodPool.end())
3970        return;
3971    }
3972    ObjCMethodList &list =
3973      method->isInstanceMethod() ? it->second.first : it->second.second;
3974    if (!list.getMethod()) return;
3975
3976    ObjCContainerDecl *container
3977      = cast<ObjCContainerDecl>(method->getDeclContext());
3978
3979    // Prevent the search from reaching this container again.  This is
3980    // important with categories, which override methods from the
3981    // interface and each other.
3982    if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
3983      searchFromContainer(container);
3984      if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
3985        searchFromContainer(Interface);
3986    } else {
3987      searchFromContainer(container);
3988    }
3989  }
3990
3991  typedef llvm::SmallPtrSetImpl<ObjCMethodDecl*>::iterator iterator;
3992  iterator begin() const { return Overridden.begin(); }
3993  iterator end() const { return Overridden.end(); }
3994
3995private:
3996  void searchFromContainer(ObjCContainerDecl *container) {
3997    if (container->isInvalidDecl()) return;
3998
3999    switch (container->getDeclKind()) {
4000#define OBJCCONTAINER(type, base) \
4001    case Decl::type: \
4002      searchFrom(cast<type##Decl>(container)); \
4003      break;
4004#define ABSTRACT_DECL(expansion)
4005#define DECL(type, base) \
4006    case Decl::type:
4007#include "clang/AST/DeclNodes.inc"
4008      llvm_unreachable("not an ObjC container!");
4009    }
4010  }
4011
4012  void searchFrom(ObjCProtocolDecl *protocol) {
4013    if (!protocol->hasDefinition())
4014      return;
4015
4016    // A method in a protocol declaration overrides declarations from
4017    // referenced ("parent") protocols.
4018    search(protocol->getReferencedProtocols());
4019  }
4020
4021  void searchFrom(ObjCCategoryDecl *category) {
4022    // A method in a category declaration overrides declarations from
4023    // the main class and from protocols the category references.
4024    // The main class is handled in the constructor.
4025    search(category->getReferencedProtocols());
4026  }
4027
4028  void searchFrom(ObjCCategoryImplDecl *impl) {
4029    // A method in a category definition that has a category
4030    // declaration overrides declarations from the category
4031    // declaration.
4032    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4033      search(category);
4034      if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4035        search(Interface);
4036
4037    // Otherwise it overrides declarations from the class.
4038    } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
4039      search(Interface);
4040    }
4041  }
4042
4043  void searchFrom(ObjCInterfaceDecl *iface) {
4044    // A method in a class declaration overrides declarations from
4045    if (!iface->hasDefinition())
4046      return;
4047
4048    //   - categories,
4049    for (auto *Cat : iface->known_categories())
4050      search(Cat);
4051
4052    //   - the super class, and
4053    if (ObjCInterfaceDecl *super = iface->getSuperClass())
4054      search(super);
4055
4056    //   - any referenced protocols.
4057    search(iface->getReferencedProtocols());
4058  }
4059
4060  void searchFrom(ObjCImplementationDecl *impl) {
4061    // A method in a class implementation overrides declarations from
4062    // the class interface.
4063    if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
4064      search(Interface);
4065  }
4066
4067  void search(const ObjCProtocolList &protocols) {
4068    for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
4069         i != e; ++i)
4070      search(*i);
4071  }
4072
4073  void search(ObjCContainerDecl *container) {
4074    // Check for a method in this container which matches this selector.
4075    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4076                                                Method->isInstanceMethod(),
4077                                                /*AllowHidden=*/true);
4078
4079    // If we find one, record it and bail out.
4080    if (meth) {
4081      Overridden.insert(meth);
4082      return;
4083    }
4084
4085    // Otherwise, search for methods that a hypothetical method here
4086    // would have overridden.
4087
4088    // Note that we're now in a recursive case.
4089    Recursive = true;
4090
4091    searchFromContainer(container);
4092  }
4093};
4094} // end anonymous namespace
4095
4096void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4097                                    ObjCInterfaceDecl *CurrentClass,
4098                                    ResultTypeCompatibilityKind RTC) {
4099  // Search for overridden methods and merge information down from them.
4100  OverrideSearch overrides(*this, ObjCMethod);
4101  // Keep track if the method overrides any method in the class's base classes,
4102  // its protocols, or its categories' protocols; we will keep that info
4103  // in the ObjCMethodDecl.
4104  // For this info, a method in an implementation is not considered as
4105  // overriding the same method in the interface or its categories.
4106  bool hasOverriddenMethodsInBaseOrProtocol = false;
4107  for (OverrideSearch::iterator
4108         i = overrides.begin(), e = overrides.end(); i != e; ++i) {
4109    ObjCMethodDecl *overridden = *i;
4110
4111    if (!hasOverriddenMethodsInBaseOrProtocol) {
4112      if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4113          CurrentClass != overridden->getClassInterface() ||
4114          overridden->isOverriding()) {
4115        hasOverriddenMethodsInBaseOrProtocol = true;
4116
4117      } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4118        // OverrideSearch will return as "overridden" the same method in the
4119        // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4120        // check whether a category of a base class introduced a method with the
4121        // same selector, after the interface method declaration.
4122        // To avoid unnecessary lookups in the majority of cases, we use the
4123        // extra info bits in GlobalMethodPool to check whether there were any
4124        // category methods with this selector.
4125        GlobalMethodPool::iterator It =
4126            MethodPool.find(ObjCMethod->getSelector());
4127        if (It != MethodPool.end()) {
4128          ObjCMethodList &List =
4129            ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4130          unsigned CategCount = List.getBits();
4131          if (CategCount > 0) {
4132            // If the method is in a category we'll do lookup if there were at
4133            // least 2 category methods recorded, otherwise only one will do.
4134            if (CategCount > 1 ||
4135                !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4136              OverrideSearch overrides(*this, overridden);
4137              for (OverrideSearch::iterator
4138                     OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
4139                ObjCMethodDecl *SuperOverridden = *OI;
4140                if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4141                    CurrentClass != SuperOverridden->getClassInterface()) {
4142                  hasOverriddenMethodsInBaseOrProtocol = true;
4143                  overridden->setOverriding(true);
4144                  break;
4145                }
4146              }
4147            }
4148          }
4149        }
4150      }
4151    }
4152
4153    // Propagate down the 'related result type' bit from overridden methods.
4154    if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4155      ObjCMethod->SetRelatedResultType();
4156
4157    // Then merge the declarations.
4158    mergeObjCMethodDecls(ObjCMethod, overridden);
4159
4160    if (ObjCMethod->isImplicit() && overridden->isImplicit())
4161      continue; // Conflicting properties are detected elsewhere.
4162
4163    // Check for overriding methods
4164    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4165        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4166      CheckConflictingOverridingMethod(ObjCMethod, overridden,
4167              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4168
4169    if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4170        isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4171        !overridden->isImplicit() /* not meant for properties */) {
4172      ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4173                                          E = ObjCMethod->param_end();
4174      ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4175                                     PrevE = overridden->param_end();
4176      for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4177        assert(PrevI != overridden->param_end() && "Param mismatch");
4178        QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4179        QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4180        // If type of argument of method in this class does not match its
4181        // respective argument type in the super class method, issue warning;
4182        if (!Context.typesAreCompatible(T1, T2)) {
4183          Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4184            << T1 << T2;
4185          Diag(overridden->getLocation(), diag::note_previous_declaration);
4186          break;
4187        }
4188      }
4189    }
4190  }
4191
4192  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4193}
4194
4195/// Merge type nullability from for a redeclaration of the same entity,
4196/// producing the updated type of the redeclared entity.
4197static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4198                                              QualType type,
4199                                              bool usesCSKeyword,
4200                                              SourceLocation prevLoc,
4201                                              QualType prevType,
4202                                              bool prevUsesCSKeyword) {
4203  // Determine the nullability of both types.
4204  auto nullability = type->getNullability(S.Context);
4205  auto prevNullability = prevType->getNullability(S.Context);
4206
4207  // Easy case: both have nullability.
4208  if (nullability.hasValue() == prevNullability.hasValue()) {
4209    // Neither has nullability; continue.
4210    if (!nullability)
4211      return type;
4212
4213    // The nullabilities are equivalent; do nothing.
4214    if (*nullability == *prevNullability)
4215      return type;
4216
4217    // Complain about mismatched nullability.
4218    S.Diag(loc, diag::err_nullability_conflicting)
4219      << DiagNullabilityKind(*nullability, usesCSKeyword)
4220      << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4221    return type;
4222  }
4223
4224  // If it's the redeclaration that has nullability, don't change anything.
4225  if (nullability)
4226    return type;
4227
4228  // Otherwise, provide the result with the same nullability.
4229  return S.Context.getAttributedType(
4230           AttributedType::getNullabilityAttrKind(*prevNullability),
4231           type, type);
4232}
4233
4234/// Merge information from the declaration of a method in the \@interface
4235/// (or a category/extension) into the corresponding method in the
4236/// @implementation (for a class or category).
4237static void mergeInterfaceMethodToImpl(Sema &S,
4238                                       ObjCMethodDecl *method,
4239                                       ObjCMethodDecl *prevMethod) {
4240  // Merge the objc_requires_super attribute.
4241  if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4242      !method->hasAttr<ObjCRequiresSuperAttr>()) {
4243    // merge the attribute into implementation.
4244    method->addAttr(
4245      ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4246                                            method->getLocation()));
4247  }
4248
4249  // Merge nullability of the result type.
4250  QualType newReturnType
4251    = mergeTypeNullabilityForRedecl(
4252        S, method->getReturnTypeSourceRange().getBegin(),
4253        method->getReturnType(),
4254        method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4255        prevMethod->getReturnTypeSourceRange().getBegin(),
4256        prevMethod->getReturnType(),
4257        prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4258  method->setReturnType(newReturnType);
4259
4260  // Handle each of the parameters.
4261  unsigned numParams = method->param_size();
4262  unsigned numPrevParams = prevMethod->param_size();
4263  for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4264    ParmVarDecl *param = method->param_begin()[i];
4265    ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4266
4267    // Merge nullability.
4268    QualType newParamType
4269      = mergeTypeNullabilityForRedecl(
4270          S, param->getLocation(), param->getType(),
4271          param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4272          prevParam->getLocation(), prevParam->getType(),
4273          prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4274    param->setType(newParamType);
4275  }
4276}
4277
4278Decl *Sema::ActOnMethodDeclaration(
4279    Scope *S,
4280    SourceLocation MethodLoc, SourceLocation EndLoc,
4281    tok::TokenKind MethodType,
4282    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4283    ArrayRef<SourceLocation> SelectorLocs,
4284    Selector Sel,
4285    // optional arguments. The number of types/arguments is obtained
4286    // from the Sel.getNumArgs().
4287    ObjCArgInfo *ArgInfo,
4288    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
4289    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
4290    bool isVariadic, bool MethodDefinition) {
4291  // Make sure we can establish a context for the method.
4292  if (!CurContext->isObjCContainer()) {
4293    Diag(MethodLoc, diag::error_missing_method_context);
4294    return nullptr;
4295  }
4296  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
4297  Decl *ClassDecl = cast<Decl>(OCD);
4298  QualType resultDeclType;
4299
4300  bool HasRelatedResultType = false;
4301  TypeSourceInfo *ReturnTInfo = nullptr;
4302  if (ReturnType) {
4303    resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4304
4305    if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4306      return nullptr;
4307
4308    QualType bareResultType = resultDeclType;
4309    (void)AttributedType::stripOuterNullability(bareResultType);
4310    HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4311  } else { // get the type for "id".
4312    resultDeclType = Context.getObjCIdType();
4313    Diag(MethodLoc, diag::warn_missing_method_return_type)
4314      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4315  }
4316
4317  ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4318      Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4319      MethodType == tok::minus, isVariadic,
4320      /*isPropertyAccessor=*/false,
4321      /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4322      MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4323                                           : ObjCMethodDecl::Required,
4324      HasRelatedResultType);
4325
4326  SmallVector<ParmVarDecl*, 16> Params;
4327
4328  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4329    QualType ArgType;
4330    TypeSourceInfo *DI;
4331
4332    if (!ArgInfo[i].Type) {
4333      ArgType = Context.getObjCIdType();
4334      DI = nullptr;
4335    } else {
4336      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4337    }
4338
4339    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4340                   LookupOrdinaryName, ForRedeclaration);
4341    LookupName(R, S);
4342    if (R.isSingleResult()) {
4343      NamedDecl *PrevDecl = R.getFoundDecl();
4344      if (S->isDeclScope(PrevDecl)) {
4345        Diag(ArgInfo[i].NameLoc,
4346             (MethodDefinition ? diag::warn_method_param_redefinition
4347                               : diag::warn_method_param_declaration))
4348          << ArgInfo[i].Name;
4349        Diag(PrevDecl->getLocation(),
4350             diag::note_previous_declaration);
4351      }
4352    }
4353
4354    SourceLocation StartLoc = DI
4355      ? DI->getTypeLoc().getBeginLoc()
4356      : ArgInfo[i].NameLoc;
4357
4358    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4359                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
4360                                        ArgType, DI, SC_None);
4361
4362    Param->setObjCMethodScopeInfo(i);
4363
4364    Param->setObjCDeclQualifier(
4365      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4366
4367    // Apply the attributes to the parameter.
4368    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4369
4370    if (Param->hasAttr<BlocksAttr>()) {
4371      Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4372      Param->setInvalidDecl();
4373    }
4374    S->AddDecl(Param);
4375    IdResolver.AddDecl(Param);
4376
4377    Params.push_back(Param);
4378  }
4379
4380  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4381    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4382    QualType ArgType = Param->getType();
4383    if (ArgType.isNull())
4384      ArgType = Context.getObjCIdType();
4385    else
4386      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4387      ArgType = Context.getAdjustedParameterType(ArgType);
4388
4389    Param->setDeclContext(ObjCMethod);
4390    Params.push_back(Param);
4391  }
4392
4393  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4394  ObjCMethod->setObjCDeclQualifier(
4395    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4396
4397  if (AttrList)
4398    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4399
4400  // Add the method now.
4401  const ObjCMethodDecl *PrevMethod = nullptr;
4402  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4403    if (MethodType == tok::minus) {
4404      PrevMethod = ImpDecl->getInstanceMethod(Sel);
4405      ImpDecl->addInstanceMethod(ObjCMethod);
4406    } else {
4407      PrevMethod = ImpDecl->getClassMethod(Sel);
4408      ImpDecl->addClassMethod(ObjCMethod);
4409    }
4410
4411    // Merge information from the @interface declaration into the
4412    // @implementation.
4413    if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4414      if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4415                                          ObjCMethod->isInstanceMethod())) {
4416        mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4417
4418        // Warn about defining -dealloc in a category.
4419        if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4420            ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4421          Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4422            << ObjCMethod->getDeclName();
4423        }
4424      }
4425    }
4426  } else {
4427    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4428  }
4429
4430  if (PrevMethod) {
4431    // You can never have two method definitions with the same name.
4432    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4433      << ObjCMethod->getDeclName();
4434    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4435    ObjCMethod->setInvalidDecl();
4436    return ObjCMethod;
4437  }
4438
4439  // If this Objective-C method does not have a related result type, but we
4440  // are allowed to infer related result types, try to do so based on the
4441  // method family.
4442  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4443  if (!CurrentClass) {
4444    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4445      CurrentClass = Cat->getClassInterface();
4446    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4447      CurrentClass = Impl->getClassInterface();
4448    else if (ObjCCategoryImplDecl *CatImpl
4449                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4450      CurrentClass = CatImpl->getClassInterface();
4451  }
4452
4453  ResultTypeCompatibilityKind RTC
4454    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4455
4456  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4457
4458  bool ARCError = false;
4459  if (getLangOpts().ObjCAutoRefCount)
4460    ARCError = CheckARCMethodDecl(ObjCMethod);
4461
4462  // Infer the related result type when possible.
4463  if (!ARCError && RTC == Sema::RTC_Compatible &&
4464      !ObjCMethod->hasRelatedResultType() &&
4465      LangOpts.ObjCInferRelatedResultType) {
4466    bool InferRelatedResultType = false;
4467    switch (ObjCMethod->getMethodFamily()) {
4468    case OMF_None:
4469    case OMF_copy:
4470    case OMF_dealloc:
4471    case OMF_finalize:
4472    case OMF_mutableCopy:
4473    case OMF_release:
4474    case OMF_retainCount:
4475    case OMF_initialize:
4476    case OMF_performSelector:
4477      break;
4478
4479    case OMF_alloc:
4480    case OMF_new:
4481        InferRelatedResultType = ObjCMethod->isClassMethod();
4482      break;
4483
4484    case OMF_init:
4485    case OMF_autorelease:
4486    case OMF_retain:
4487    case OMF_self:
4488      InferRelatedResultType = ObjCMethod->isInstanceMethod();
4489      break;
4490    }
4491
4492    if (InferRelatedResultType &&
4493        !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4494      ObjCMethod->SetRelatedResultType();
4495  }
4496
4497  ActOnDocumentableDecl(ObjCMethod);
4498
4499  return ObjCMethod;
4500}
4501
4502bool Sema::CheckObjCDeclScope(Decl *D) {
4503  // Following is also an error. But it is caused by a missing @end
4504  // and diagnostic is issued elsewhere.
4505  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4506    return false;
4507
4508  // If we switched context to translation unit while we are still lexically in
4509  // an objc container, it means the parser missed emitting an error.
4510  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4511    return false;
4512
4513  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4514  D->setInvalidDecl();
4515
4516  return true;
4517}
4518
4519/// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
4520/// instance variables of ClassName into Decls.
4521void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4522                     IdentifierInfo *ClassName,
4523                     SmallVectorImpl<Decl*> &Decls) {
4524  // Check that ClassName is a valid class
4525  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4526  if (!Class) {
4527    Diag(DeclStart, diag::err_undef_interface) << ClassName;
4528    return;
4529  }
4530  if (LangOpts.ObjCRuntime.isNonFragile()) {
4531    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4532    return;
4533  }
4534
4535  // Collect the instance variables
4536  SmallVector<const ObjCIvarDecl*, 32> Ivars;
4537  Context.DeepCollectObjCIvars(Class, true, Ivars);
4538  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4539  for (unsigned i = 0; i < Ivars.size(); i++) {
4540    const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
4541    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4542    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4543                                           /*FIXME: StartL=*/ID->getLocation(),
4544                                           ID->getLocation(),
4545                                           ID->getIdentifier(), ID->getType(),
4546                                           ID->getBitWidth());
4547    Decls.push_back(FD);
4548  }
4549
4550  // Introduce all of these fields into the appropriate scope.
4551  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4552       D != Decls.end(); ++D) {
4553    FieldDecl *FD = cast<FieldDecl>(*D);
4554    if (getLangOpts().CPlusPlus)
4555      PushOnScopeChains(cast<FieldDecl>(FD), S);
4556    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4557      Record->addDecl(FD);
4558  }
4559}
4560
4561/// \brief Build a type-check a new Objective-C exception variable declaration.
4562VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
4563                                      SourceLocation StartLoc,
4564                                      SourceLocation IdLoc,
4565                                      IdentifierInfo *Id,
4566                                      bool Invalid) {
4567  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4568  // duration shall not be qualified by an address-space qualifier."
4569  // Since all parameters have automatic store duration, they can not have
4570  // an address space.
4571  if (T.getAddressSpace() != 0) {
4572    Diag(IdLoc, diag::err_arg_with_address_space);
4573    Invalid = true;
4574  }
4575
4576  // An @catch parameter must be an unqualified object pointer type;
4577  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4578  if (Invalid) {
4579    // Don't do any further checking.
4580  } else if (T->isDependentType()) {
4581    // Okay: we don't know what this type will instantiate to.
4582  } else if (!T->isObjCObjectPointerType()) {
4583    Invalid = true;
4584    Diag(IdLoc ,diag::err_catch_param_not_objc_type);
4585  } else if (T->isObjCQualifiedIdType()) {
4586    Invalid = true;
4587    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4588  }
4589
4590  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4591                                 T, TInfo, SC_None);
4592  New->setExceptionVariable(true);
4593
4594  // In ARC, infer 'retaining' for variables of retainable type.
4595  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4596    Invalid = true;
4597
4598  if (Invalid)
4599    New->setInvalidDecl();
4600  return New;
4601}
4602
4603Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
4604  const DeclSpec &DS = D.getDeclSpec();
4605
4606  // We allow the "register" storage class on exception variables because
4607  // GCC did, but we drop it completely. Any other storage class is an error.
4608  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4609    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4610      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
4611  } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4612    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4613      << DeclSpec::getSpecifierName(SCS);
4614  }
4615  if (DS.isInlineSpecified())
4616    Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4617        << getLangOpts().CPlusPlus1z;
4618  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
4619    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4620         diag::err_invalid_thread)
4621     << DeclSpec::getSpecifierName(TSCS);
4622  D.getMutableDeclSpec().ClearStorageClassSpecs();
4623
4624  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4625
4626  // Check that there are no default arguments inside the type of this
4627  // exception object (C++ only).
4628  if (getLangOpts().CPlusPlus)
4629    CheckExtraCXXDefaultArguments(D);
4630
4631  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4632  QualType ExceptionType = TInfo->getType();
4633
4634  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4635                                        D.getSourceRange().getBegin(),
4636                                        D.getIdentifierLoc(),
4637                                        D.getIdentifier(),
4638                                        D.isInvalidType());
4639
4640  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4641  if (D.getCXXScopeSpec().isSet()) {
4642    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4643      << D.getCXXScopeSpec().getRange();
4644    New->setInvalidDecl();
4645  }
4646
4647  // Add the parameter declaration into this scope.
4648  S->AddDecl(New);
4649  if (D.getIdentifier())
4650    IdResolver.AddDecl(New);
4651
4652  ProcessDeclAttributes(S, New, D);
4653
4654  if (New->hasAttr<BlocksAttr>())
4655    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4656  return New;
4657}
4658
4659/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4660/// initialization.
4661void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4662                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
4663  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4664       Iv= Iv->getNextIvar()) {
4665    QualType QT = Context.getBaseElementType(Iv->getType());
4666    if (QT->isRecordType())
4667      Ivars.push_back(Iv);
4668  }
4669}
4670
4671void Sema::DiagnoseUseOfUnimplementedSelectors() {
4672  // Load referenced selectors from the external source.
4673  if (ExternalSource) {
4674    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
4675    ExternalSource->ReadReferencedSelectors(Sels);
4676    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4677      ReferencedSelectors[Sels[I].first] = Sels[I].second;
4678  }
4679
4680  // Warning will be issued only when selector table is
4681  // generated (which means there is at lease one implementation
4682  // in the TU). This is to match gcc's behavior.
4683  if (ReferencedSelectors.empty() ||
4684      !Context.AnyObjCImplementation())
4685    return;
4686  for (auto &SelectorAndLocation : ReferencedSelectors) {
4687    Selector Sel = SelectorAndLocation.first;
4688    SourceLocation Loc = SelectorAndLocation.second;
4689    if (!LookupImplementedMethodInGlobalPool(Sel))
4690      Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4691  }
4692}
4693
4694ObjCIvarDecl *
4695Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4696                                     const ObjCPropertyDecl *&PDecl) const {
4697  if (Method->isClassMethod())
4698    return nullptr;
4699  const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4700  if (!IDecl)
4701    return nullptr;
4702  Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4703                               /*shallowCategoryLookup=*/false,
4704                               /*followSuper=*/false);
4705  if (!Method || !Method->isPropertyAccessor())
4706    return nullptr;
4707  if ((PDecl = Method->findPropertyDecl()))
4708    if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
4709      // property backing ivar must belong to property's class
4710      // or be a private ivar in class's implementation.
4711      // FIXME. fix the const-ness issue.
4712      IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
4713                                                        IV->getIdentifier());
4714      return IV;
4715    }
4716  return nullptr;
4717}
4718
4719namespace {
4720  /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
4721  /// accessor references the backing ivar.
4722  class UnusedBackingIvarChecker :
4723      public RecursiveASTVisitor<UnusedBackingIvarChecker> {
4724  public:
4725    Sema &S;
4726    const ObjCMethodDecl *Method;
4727    const ObjCIvarDecl *IvarD;
4728    bool AccessedIvar;
4729    bool InvokedSelfMethod;
4730
4731    UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
4732                             const ObjCIvarDecl *IvarD)
4733      : S(S), Method(Method), IvarD(IvarD),
4734        AccessedIvar(false), InvokedSelfMethod(false) {
4735      assert(IvarD);
4736    }
4737
4738    bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
4739      if (E->getDecl() == IvarD) {
4740        AccessedIvar = true;
4741        return false;
4742      }
4743      return true;
4744    }
4745
4746    bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
4747      if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
4748          S.isSelfExpr(E->getInstanceReceiver(), Method)) {
4749        InvokedSelfMethod = true;
4750      }
4751      return true;
4752    }
4753  };
4754} // end anonymous namespace
4755
4756void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
4757                                          const ObjCImplementationDecl *ImplD) {
4758  if (S->hasUnrecoverableErrorOccurred())
4759    return;
4760
4761  for (const auto *CurMethod : ImplD->instance_methods()) {
4762    unsigned DIAG = diag::warn_unused_property_backing_ivar;
4763    SourceLocation Loc = CurMethod->getLocation();
4764    if (Diags.isIgnored(DIAG, Loc))
4765      continue;
4766
4767    const ObjCPropertyDecl *PDecl;
4768    const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
4769    if (!IV)
4770      continue;
4771
4772    UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
4773    Checker.TraverseStmt(CurMethod->getBody());
4774    if (Checker.AccessedIvar)
4775      continue;
4776
4777    // Do not issue this warning if backing ivar is used somewhere and accessor
4778    // implementation makes a self call. This is to prevent false positive in
4779    // cases where the ivar is accessed by another method that the accessor
4780    // delegates to.
4781    if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
4782      Diag(Loc, DIAG) << IV;
4783      Diag(PDecl->getLocation(), diag::note_property_declare);
4784    }
4785  }
4786}
4787