SemaDeclObjC.cpp revision 4e4d08403ca5cfd4d558fa2936215d3a4e5a528d
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/ExternalSemaSource.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ASTMutationListener.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Sema/DeclSpec.h"
27#include "llvm/ADT/DenseSet.h"
28
29using namespace clang;
30
31/// Check whether the given method, which must be in the 'init'
32/// family, is a valid member of that family.
33///
34/// \param receiverTypeIfCall - if null, check this as if declaring it;
35///   if non-null, check this as if making a call to it with the given
36///   receiver type
37///
38/// \return true to indicate that there was an error and appropriate
39///   actions were taken
40bool Sema::checkInitMethod(ObjCMethodDecl *method,
41                           QualType receiverTypeIfCall) {
42  if (method->isInvalidDecl()) return true;
43
44  // This castAs is safe: methods that don't return an object
45  // pointer won't be inferred as inits and will reject an explicit
46  // objc_method_family(init).
47
48  // We ignore protocols here.  Should we?  What about Class?
49
50  const ObjCObjectType *result = method->getResultType()
51    ->castAs<ObjCObjectPointerType>()->getObjectType();
52
53  if (result->isObjCId()) {
54    return false;
55  } else if (result->isObjCClass()) {
56    // fall through: always an error
57  } else {
58    ObjCInterfaceDecl *resultClass = result->getInterface();
59    assert(resultClass && "unexpected object type!");
60
61    // It's okay for the result type to still be a forward declaration
62    // if we're checking an interface declaration.
63    if (!resultClass->hasDefinition()) {
64      if (receiverTypeIfCall.isNull() &&
65          !isa<ObjCImplementationDecl>(method->getDeclContext()))
66        return false;
67
68    // Otherwise, we try to compare class types.
69    } else {
70      // If this method was declared in a protocol, we can't check
71      // anything unless we have a receiver type that's an interface.
72      const ObjCInterfaceDecl *receiverClass = 0;
73      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
74        if (receiverTypeIfCall.isNull())
75          return false;
76
77        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
78          ->getInterfaceDecl();
79
80        // This can be null for calls to e.g. id<Foo>.
81        if (!receiverClass) return false;
82      } else {
83        receiverClass = method->getClassInterface();
84        assert(receiverClass && "method not associated with a class!");
85      }
86
87      // If either class is a subclass of the other, it's fine.
88      if (receiverClass->isSuperClassOf(resultClass) ||
89          resultClass->isSuperClassOf(receiverClass))
90        return false;
91    }
92  }
93
94  SourceLocation loc = method->getLocation();
95
96  // If we're in a system header, and this is not a call, just make
97  // the method unusable.
98  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
99    method->addAttr(new (Context) UnavailableAttr(loc, Context,
100                "init method returns a type unrelated to its receiver type"));
101    return true;
102  }
103
104  // Otherwise, it's an error.
105  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
106  method->setInvalidDecl();
107  return true;
108}
109
110void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
111                                   const ObjCMethodDecl *Overridden,
112                                   bool IsImplementation) {
113  if (Overridden->hasRelatedResultType() &&
114      !NewMethod->hasRelatedResultType()) {
115    // This can only happen when the method follows a naming convention that
116    // implies a related result type, and the original (overridden) method has
117    // a suitable return type, but the new (overriding) method does not have
118    // a suitable return type.
119    QualType ResultType = NewMethod->getResultType();
120    SourceRange ResultTypeRange;
121    if (const TypeSourceInfo *ResultTypeInfo
122                                        = NewMethod->getResultTypeSourceInfo())
123      ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
124
125    // Figure out which class this method is part of, if any.
126    ObjCInterfaceDecl *CurrentClass
127      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
128    if (!CurrentClass) {
129      DeclContext *DC = NewMethod->getDeclContext();
130      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
131        CurrentClass = Cat->getClassInterface();
132      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
133        CurrentClass = Impl->getClassInterface();
134      else if (ObjCCategoryImplDecl *CatImpl
135               = dyn_cast<ObjCCategoryImplDecl>(DC))
136        CurrentClass = CatImpl->getClassInterface();
137    }
138
139    if (CurrentClass) {
140      Diag(NewMethod->getLocation(),
141           diag::warn_related_result_type_compatibility_class)
142        << Context.getObjCInterfaceType(CurrentClass)
143        << ResultType
144        << ResultTypeRange;
145    } else {
146      Diag(NewMethod->getLocation(),
147           diag::warn_related_result_type_compatibility_protocol)
148        << ResultType
149        << ResultTypeRange;
150    }
151
152    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
153      Diag(Overridden->getLocation(),
154           diag::note_related_result_type_overridden_family)
155        << Family;
156    else
157      Diag(Overridden->getLocation(),
158           diag::note_related_result_type_overridden);
159  }
160  if (getLangOpts().ObjCAutoRefCount) {
161    if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
162         Overridden->hasAttr<NSReturnsRetainedAttr>())) {
163        Diag(NewMethod->getLocation(),
164             diag::err_nsreturns_retained_attribute_mismatch) << 1;
165        Diag(Overridden->getLocation(), diag::note_previous_decl)
166        << "method";
167    }
168    if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
169              Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
170        Diag(NewMethod->getLocation(),
171             diag::err_nsreturns_retained_attribute_mismatch) << 0;
172        Diag(Overridden->getLocation(), diag::note_previous_decl)
173        << "method";
174    }
175    ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin();
176    for (ObjCMethodDecl::param_iterator
177           ni = NewMethod->param_begin(), ne = NewMethod->param_end();
178         ni != ne; ++ni, ++oi) {
179      const ParmVarDecl *oldDecl = (*oi);
180      ParmVarDecl *newDecl = (*ni);
181      if (newDecl->hasAttr<NSConsumedAttr>() !=
182          oldDecl->hasAttr<NSConsumedAttr>()) {
183        Diag(newDecl->getLocation(),
184             diag::err_nsconsumed_attribute_mismatch);
185        Diag(oldDecl->getLocation(), diag::note_previous_decl)
186          << "parameter";
187      }
188    }
189  }
190}
191
192/// \brief Check a method declaration for compatibility with the Objective-C
193/// ARC conventions.
194static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) {
195  ObjCMethodFamily family = method->getMethodFamily();
196  switch (family) {
197  case OMF_None:
198  case OMF_dealloc:
199  case OMF_finalize:
200  case OMF_retain:
201  case OMF_release:
202  case OMF_autorelease:
203  case OMF_retainCount:
204  case OMF_self:
205  case OMF_performSelector:
206    return false;
207
208  case OMF_init:
209    // If the method doesn't obey the init rules, don't bother annotating it.
210    if (S.checkInitMethod(method, QualType()))
211      return true;
212
213    method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(),
214                                                       S.Context));
215
216    // Don't add a second copy of this attribute, but otherwise don't
217    // let it be suppressed.
218    if (method->hasAttr<NSReturnsRetainedAttr>())
219      return false;
220    break;
221
222  case OMF_alloc:
223  case OMF_copy:
224  case OMF_mutableCopy:
225  case OMF_new:
226    if (method->hasAttr<NSReturnsRetainedAttr>() ||
227        method->hasAttr<NSReturnsNotRetainedAttr>() ||
228        method->hasAttr<NSReturnsAutoreleasedAttr>())
229      return false;
230    break;
231  }
232
233  method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(),
234                                                        S.Context));
235  return false;
236}
237
238static void DiagnoseObjCImplementedDeprecations(Sema &S,
239                                                NamedDecl *ND,
240                                                SourceLocation ImplLoc,
241                                                int select) {
242  if (ND && ND->isDeprecated()) {
243    S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
244    if (select == 0)
245      S.Diag(ND->getLocation(), diag::note_method_declared_at)
246        << ND->getDeclName();
247    else
248      S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
249  }
250}
251
252/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
253/// pool.
254void Sema::AddAnyMethodToGlobalPool(Decl *D) {
255  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
256
257  // If we don't have a valid method decl, simply return.
258  if (!MDecl)
259    return;
260  if (MDecl->isInstanceMethod())
261    AddInstanceMethodToGlobalPool(MDecl, true);
262  else
263    AddFactoryMethodToGlobalPool(MDecl, true);
264}
265
266/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
267/// and user declared, in the method definition's AST.
268void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
269  assert(getCurMethodDecl() == 0 && "Method parsing confused");
270  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
271
272  // If we don't have a valid method decl, simply return.
273  if (!MDecl)
274    return;
275
276  // Allow all of Sema to see that we are entering a method definition.
277  PushDeclContext(FnBodyScope, MDecl);
278  PushFunctionScope();
279
280  // Create Decl objects for each parameter, entrring them in the scope for
281  // binding to their use.
282
283  // Insert the invisible arguments, self and _cmd!
284  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
285
286  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
287  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
288
289  // Introduce all of the other parameters into this scope.
290  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
291       E = MDecl->param_end(); PI != E; ++PI) {
292    ParmVarDecl *Param = (*PI);
293    if (!Param->isInvalidDecl() &&
294        RequireCompleteType(Param->getLocation(), Param->getType(),
295                            diag::err_typecheck_decl_incomplete_type))
296          Param->setInvalidDecl();
297    if ((*PI)->getIdentifier())
298      PushOnScopeChains(*PI, FnBodyScope);
299  }
300
301  // In ARC, disallow definition of retain/release/autorelease/retainCount
302  if (getLangOpts().ObjCAutoRefCount) {
303    switch (MDecl->getMethodFamily()) {
304    case OMF_retain:
305    case OMF_retainCount:
306    case OMF_release:
307    case OMF_autorelease:
308      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
309        << MDecl->getSelector();
310      break;
311
312    case OMF_None:
313    case OMF_dealloc:
314    case OMF_finalize:
315    case OMF_alloc:
316    case OMF_init:
317    case OMF_mutableCopy:
318    case OMF_copy:
319    case OMF_new:
320    case OMF_self:
321    case OMF_performSelector:
322      break;
323    }
324  }
325
326  // Warn on deprecated methods under -Wdeprecated-implementations,
327  // and prepare for warning on missing super calls.
328  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
329    if (ObjCMethodDecl *IMD =
330          IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()))
331      DiagnoseObjCImplementedDeprecations(*this,
332                                          dyn_cast<NamedDecl>(IMD),
333                                          MDecl->getLocation(), 0);
334
335    // If this is "dealloc" or "finalize", set some bit here.
336    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
337    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
338    // Only do this if the current class actually has a superclass.
339    if (IC->getSuperClass()) {
340      ObjCShouldCallSuperDealloc =
341        !(Context.getLangOpts().ObjCAutoRefCount ||
342          Context.getLangOpts().getGC() == LangOptions::GCOnly) &&
343        MDecl->getMethodFamily() == OMF_dealloc;
344      ObjCShouldCallSuperFinalize =
345        Context.getLangOpts().getGC() != LangOptions::NonGC &&
346        MDecl->getMethodFamily() == OMF_finalize;
347    }
348  }
349}
350
351namespace {
352
353// Callback to only accept typo corrections that are Objective-C classes.
354// If an ObjCInterfaceDecl* is given to the constructor, then the validation
355// function will reject corrections to that class.
356class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
357 public:
358  ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {}
359  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
360      : CurrentIDecl(IDecl) {}
361
362  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
363    ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
364    return ID && !declaresSameEntity(ID, CurrentIDecl);
365  }
366
367 private:
368  ObjCInterfaceDecl *CurrentIDecl;
369};
370
371}
372
373Decl *Sema::
374ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
375                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
376                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
377                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
378                         const SourceLocation *ProtoLocs,
379                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
380  assert(ClassName && "Missing class identifier");
381
382  // Check for another declaration kind with the same name.
383  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
384                                         LookupOrdinaryName, ForRedeclaration);
385
386  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
387    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
388    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
389  }
390
391  // Create a declaration to describe this @interface.
392  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
393  ObjCInterfaceDecl *IDecl
394    = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
395                                PrevIDecl, ClassLoc);
396
397  if (PrevIDecl) {
398    // Class already seen. Was it a definition?
399    if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
400      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
401        << PrevIDecl->getDeclName();
402      Diag(Def->getLocation(), diag::note_previous_definition);
403      IDecl->setInvalidDecl();
404    }
405  }
406
407  if (AttrList)
408    ProcessDeclAttributeList(TUScope, IDecl, AttrList);
409  PushOnScopeChains(IDecl, TUScope);
410
411  // Start the definition of this class. If we're in a redefinition case, there
412  // may already be a definition, so we'll end up adding to it.
413  if (!IDecl->hasDefinition())
414    IDecl->startDefinition();
415
416  if (SuperName) {
417    // Check if a different kind of symbol declared in this scope.
418    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
419                                LookupOrdinaryName);
420
421    if (!PrevDecl) {
422      // Try to correct for a typo in the superclass name without correcting
423      // to the class we're defining.
424      ObjCInterfaceValidatorCCC Validator(IDecl);
425      if (TypoCorrection Corrected = CorrectTypo(
426          DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
427          NULL, Validator)) {
428        PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
429        Diag(SuperLoc, diag::err_undef_superclass_suggest)
430          << SuperName << ClassName << PrevDecl->getDeclName();
431        Diag(PrevDecl->getLocation(), diag::note_previous_decl)
432          << PrevDecl->getDeclName();
433      }
434    }
435
436    if (declaresSameEntity(PrevDecl, IDecl)) {
437      Diag(SuperLoc, diag::err_recursive_superclass)
438        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
439      IDecl->setEndOfDefinitionLoc(ClassLoc);
440    } else {
441      ObjCInterfaceDecl *SuperClassDecl =
442                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
443
444      // Diagnose classes that inherit from deprecated classes.
445      if (SuperClassDecl)
446        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
447
448      if (PrevDecl && SuperClassDecl == 0) {
449        // The previous declaration was not a class decl. Check if we have a
450        // typedef. If we do, get the underlying class type.
451        if (const TypedefNameDecl *TDecl =
452              dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
453          QualType T = TDecl->getUnderlyingType();
454          if (T->isObjCObjectType()) {
455            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
456              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
457          }
458        }
459
460        // This handles the following case:
461        //
462        // typedef int SuperClass;
463        // @interface MyClass : SuperClass {} @end
464        //
465        if (!SuperClassDecl) {
466          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
467          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
468        }
469      }
470
471      if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
472        if (!SuperClassDecl)
473          Diag(SuperLoc, diag::err_undef_superclass)
474            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
475        else if (RequireCompleteType(SuperLoc,
476                   Context.getObjCInterfaceType(SuperClassDecl),
477                   PDiag(diag::err_forward_superclass)
478                     << SuperClassDecl->getDeclName()
479                     << ClassName
480                   << SourceRange(AtInterfaceLoc, ClassLoc))) {
481          SuperClassDecl = 0;
482        }
483      }
484      IDecl->setSuperClass(SuperClassDecl);
485      IDecl->setSuperClassLoc(SuperLoc);
486      IDecl->setEndOfDefinitionLoc(SuperLoc);
487    }
488  } else { // we have a root class.
489    IDecl->setEndOfDefinitionLoc(ClassLoc);
490  }
491
492  // Check then save referenced protocols.
493  if (NumProtoRefs) {
494    IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
495                           ProtoLocs, Context);
496    IDecl->setEndOfDefinitionLoc(EndProtoLoc);
497  }
498
499  CheckObjCDeclScope(IDecl);
500  return ActOnObjCContainerStartDefinition(IDecl);
501}
502
503/// ActOnCompatiblityAlias - this action is called after complete parsing of
504/// @compatibility_alias declaration. It sets up the alias relationships.
505Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
506                                        IdentifierInfo *AliasName,
507                                        SourceLocation AliasLocation,
508                                        IdentifierInfo *ClassName,
509                                        SourceLocation ClassLocation) {
510  // Look for previous declaration of alias name
511  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
512                                      LookupOrdinaryName, ForRedeclaration);
513  if (ADecl) {
514    if (isa<ObjCCompatibleAliasDecl>(ADecl))
515      Diag(AliasLocation, diag::warn_previous_alias_decl);
516    else
517      Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
518    Diag(ADecl->getLocation(), diag::note_previous_declaration);
519    return 0;
520  }
521  // Check for class declaration
522  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
523                                       LookupOrdinaryName, ForRedeclaration);
524  if (const TypedefNameDecl *TDecl =
525        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
526    QualType T = TDecl->getUnderlyingType();
527    if (T->isObjCObjectType()) {
528      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
529        ClassName = IDecl->getIdentifier();
530        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
531                                  LookupOrdinaryName, ForRedeclaration);
532      }
533    }
534  }
535  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
536  if (CDecl == 0) {
537    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
538    if (CDeclU)
539      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
540    return 0;
541  }
542
543  // Everything checked out, instantiate a new alias declaration AST.
544  ObjCCompatibleAliasDecl *AliasDecl =
545    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
546
547  if (!CheckObjCDeclScope(AliasDecl))
548    PushOnScopeChains(AliasDecl, TUScope);
549
550  return AliasDecl;
551}
552
553bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
554  IdentifierInfo *PName,
555  SourceLocation &Ploc, SourceLocation PrevLoc,
556  const ObjCList<ObjCProtocolDecl> &PList) {
557
558  bool res = false;
559  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
560       E = PList.end(); I != E; ++I) {
561    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
562                                                 Ploc)) {
563      if (PDecl->getIdentifier() == PName) {
564        Diag(Ploc, diag::err_protocol_has_circular_dependency);
565        Diag(PrevLoc, diag::note_previous_definition);
566        res = true;
567      }
568
569      if (!PDecl->hasDefinition())
570        continue;
571
572      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
573            PDecl->getLocation(), PDecl->getReferencedProtocols()))
574        res = true;
575    }
576  }
577  return res;
578}
579
580Decl *
581Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
582                                  IdentifierInfo *ProtocolName,
583                                  SourceLocation ProtocolLoc,
584                                  Decl * const *ProtoRefs,
585                                  unsigned NumProtoRefs,
586                                  const SourceLocation *ProtoLocs,
587                                  SourceLocation EndProtoLoc,
588                                  AttributeList *AttrList) {
589  bool err = false;
590  // FIXME: Deal with AttrList.
591  assert(ProtocolName && "Missing protocol identifier");
592  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
593                                              ForRedeclaration);
594  ObjCProtocolDecl *PDecl = 0;
595  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) {
596    // If we already have a definition, complain.
597    Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
598    Diag(Def->getLocation(), diag::note_previous_definition);
599
600    // Create a new protocol that is completely distinct from previous
601    // declarations, and do not make this protocol available for name lookup.
602    // That way, we'll end up completely ignoring the duplicate.
603    // FIXME: Can we turn this into an error?
604    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
605                                     ProtocolLoc, AtProtoInterfaceLoc,
606                                     /*PrevDecl=*/0);
607    PDecl->startDefinition();
608  } else {
609    if (PrevDecl) {
610      // Check for circular dependencies among protocol declarations. This can
611      // only happen if this protocol was forward-declared.
612      ObjCList<ObjCProtocolDecl> PList;
613      PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
614      err = CheckForwardProtocolDeclarationForCircularDependency(
615              ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
616    }
617
618    // Create the new declaration.
619    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
620                                     ProtocolLoc, AtProtoInterfaceLoc,
621                                     /*PrevDecl=*/PrevDecl);
622
623    PushOnScopeChains(PDecl, TUScope);
624    PDecl->startDefinition();
625  }
626
627  if (AttrList)
628    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
629
630  // Merge attributes from previous declarations.
631  if (PrevDecl)
632    mergeDeclAttributes(PDecl, PrevDecl);
633
634  if (!err && NumProtoRefs ) {
635    /// Check then save referenced protocols.
636    PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
637                           ProtoLocs, Context);
638  }
639
640  CheckObjCDeclScope(PDecl);
641  return ActOnObjCContainerStartDefinition(PDecl);
642}
643
644/// FindProtocolDeclaration - This routine looks up protocols and
645/// issues an error if they are not declared. It returns list of
646/// protocol declarations in its 'Protocols' argument.
647void
648Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
649                              const IdentifierLocPair *ProtocolId,
650                              unsigned NumProtocols,
651                              SmallVectorImpl<Decl *> &Protocols) {
652  for (unsigned i = 0; i != NumProtocols; ++i) {
653    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
654                                             ProtocolId[i].second);
655    if (!PDecl) {
656      DeclFilterCCC<ObjCProtocolDecl> Validator;
657      TypoCorrection Corrected = CorrectTypo(
658          DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
659          LookupObjCProtocolName, TUScope, NULL, Validator);
660      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
661        Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
662          << ProtocolId[i].first << Corrected.getCorrection();
663        Diag(PDecl->getLocation(), diag::note_previous_decl)
664          << PDecl->getDeclName();
665      }
666    }
667
668    if (!PDecl) {
669      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
670        << ProtocolId[i].first;
671      continue;
672    }
673
674    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
675
676    // If this is a forward declaration and we are supposed to warn in this
677    // case, do it.
678    if (WarnOnDeclarations && !PDecl->hasDefinition())
679      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
680        << ProtocolId[i].first;
681    Protocols.push_back(PDecl);
682  }
683}
684
685/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
686/// a class method in its extension.
687///
688void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
689                                            ObjCInterfaceDecl *ID) {
690  if (!ID)
691    return;  // Possibly due to previous error
692
693  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
694  for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
695       e =  ID->meth_end(); i != e; ++i) {
696    ObjCMethodDecl *MD = *i;
697    MethodMap[MD->getSelector()] = MD;
698  }
699
700  if (MethodMap.empty())
701    return;
702  for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
703       e =  CAT->meth_end(); i != e; ++i) {
704    ObjCMethodDecl *Method = *i;
705    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
706    if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
707      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
708            << Method->getDeclName();
709      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
710    }
711  }
712}
713
714/// ActOnForwardProtocolDeclaration - Handle @protocol foo;
715Sema::DeclGroupPtrTy
716Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
717                                      const IdentifierLocPair *IdentList,
718                                      unsigned NumElts,
719                                      AttributeList *attrList) {
720  SmallVector<Decl *, 8> DeclsInGroup;
721  for (unsigned i = 0; i != NumElts; ++i) {
722    IdentifierInfo *Ident = IdentList[i].first;
723    ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
724                                                ForRedeclaration);
725    ObjCProtocolDecl *PDecl
726      = ObjCProtocolDecl::Create(Context, CurContext, Ident,
727                                 IdentList[i].second, AtProtocolLoc,
728                                 PrevDecl);
729
730    PushOnScopeChains(PDecl, TUScope);
731    CheckObjCDeclScope(PDecl);
732
733    if (attrList)
734      ProcessDeclAttributeList(TUScope, PDecl, attrList);
735
736    if (PrevDecl)
737      mergeDeclAttributes(PDecl, PrevDecl);
738
739    DeclsInGroup.push_back(PDecl);
740  }
741
742  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
743}
744
745Decl *Sema::
746ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
747                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
748                            IdentifierInfo *CategoryName,
749                            SourceLocation CategoryLoc,
750                            Decl * const *ProtoRefs,
751                            unsigned NumProtoRefs,
752                            const SourceLocation *ProtoLocs,
753                            SourceLocation EndProtoLoc) {
754  ObjCCategoryDecl *CDecl;
755  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
756
757  /// Check that class of this category is already completely declared.
758
759  if (!IDecl
760      || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
761                             PDiag(diag::err_category_forward_interface)
762                               << (CategoryName == 0))) {
763    // Create an invalid ObjCCategoryDecl to serve as context for
764    // the enclosing method declarations.  We mark the decl invalid
765    // to make it clear that this isn't a valid AST.
766    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
767                                     ClassLoc, CategoryLoc, CategoryName,IDecl);
768    CDecl->setInvalidDecl();
769
770    if (!IDecl)
771      Diag(ClassLoc, diag::err_undef_interface) << ClassName;
772    return ActOnObjCContainerStartDefinition(CDecl);
773  }
774
775  if (!CategoryName && IDecl->getImplementation()) {
776    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
777    Diag(IDecl->getImplementation()->getLocation(),
778          diag::note_implementation_declared);
779  }
780
781  if (CategoryName) {
782    /// Check for duplicate interface declaration for this category
783    ObjCCategoryDecl *CDeclChain;
784    for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
785         CDeclChain = CDeclChain->getNextClassCategory()) {
786      if (CDeclChain->getIdentifier() == CategoryName) {
787        // Class extensions can be declared multiple times.
788        Diag(CategoryLoc, diag::warn_dup_category_def)
789          << ClassName << CategoryName;
790        Diag(CDeclChain->getLocation(), diag::note_previous_definition);
791        break;
792      }
793    }
794  }
795
796  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
797                                   ClassLoc, CategoryLoc, CategoryName, IDecl);
798  // FIXME: PushOnScopeChains?
799  CurContext->addDecl(CDecl);
800
801  if (NumProtoRefs) {
802    CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
803                           ProtoLocs, Context);
804    // Protocols in the class extension belong to the class.
805    if (CDecl->IsClassExtension())
806     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
807                                            NumProtoRefs, Context);
808  }
809
810  CheckObjCDeclScope(CDecl);
811  return ActOnObjCContainerStartDefinition(CDecl);
812}
813
814/// ActOnStartCategoryImplementation - Perform semantic checks on the
815/// category implementation declaration and build an ObjCCategoryImplDecl
816/// object.
817Decl *Sema::ActOnStartCategoryImplementation(
818                      SourceLocation AtCatImplLoc,
819                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
820                      IdentifierInfo *CatName, SourceLocation CatLoc) {
821  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
822  ObjCCategoryDecl *CatIDecl = 0;
823  if (IDecl && IDecl->hasDefinition()) {
824    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
825    if (!CatIDecl) {
826      // Category @implementation with no corresponding @interface.
827      // Create and install one.
828      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
829                                          ClassLoc, CatLoc,
830                                          CatName, IDecl);
831      CatIDecl->setImplicit();
832    }
833  }
834
835  ObjCCategoryImplDecl *CDecl =
836    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
837                                 ClassLoc, AtCatImplLoc, CatLoc);
838  /// Check that class of this category is already completely declared.
839  if (!IDecl) {
840    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
841    CDecl->setInvalidDecl();
842  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
843                                 diag::err_undef_interface)) {
844    CDecl->setInvalidDecl();
845  }
846
847  // FIXME: PushOnScopeChains?
848  CurContext->addDecl(CDecl);
849
850  // If the interface is deprecated/unavailable, warn/error about it.
851  if (IDecl)
852    DiagnoseUseOfDecl(IDecl, ClassLoc);
853
854  /// Check that CatName, category name, is not used in another implementation.
855  if (CatIDecl) {
856    if (CatIDecl->getImplementation()) {
857      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
858        << CatName;
859      Diag(CatIDecl->getImplementation()->getLocation(),
860           diag::note_previous_definition);
861    } else {
862      CatIDecl->setImplementation(CDecl);
863      // Warn on implementating category of deprecated class under
864      // -Wdeprecated-implementations flag.
865      DiagnoseObjCImplementedDeprecations(*this,
866                                          dyn_cast<NamedDecl>(IDecl),
867                                          CDecl->getLocation(), 2);
868    }
869  }
870
871  CheckObjCDeclScope(CDecl);
872  return ActOnObjCContainerStartDefinition(CDecl);
873}
874
875Decl *Sema::ActOnStartClassImplementation(
876                      SourceLocation AtClassImplLoc,
877                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
878                      IdentifierInfo *SuperClassname,
879                      SourceLocation SuperClassLoc) {
880  ObjCInterfaceDecl* IDecl = 0;
881  // Check for another declaration kind with the same name.
882  NamedDecl *PrevDecl
883    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
884                       ForRedeclaration);
885  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
886    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
887    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
888  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
889    RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
890                        diag::warn_undef_interface);
891  } else {
892    // We did not find anything with the name ClassName; try to correct for
893    // typos in the class name.
894    ObjCInterfaceValidatorCCC Validator;
895    if (TypoCorrection Corrected = CorrectTypo(
896        DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
897        NULL, Validator)) {
898      // Suggest the (potentially) correct interface name. However, put the
899      // fix-it hint itself in a separate note, since changing the name in
900      // the warning would make the fix-it change semantics.However, don't
901      // provide a code-modification hint or use the typo name for recovery,
902      // because this is just a warning. The program may actually be correct.
903      IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
904      DeclarationName CorrectedName = Corrected.getCorrection();
905      Diag(ClassLoc, diag::warn_undef_interface_suggest)
906        << ClassName << CorrectedName;
907      Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
908        << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
909      IDecl = 0;
910    } else {
911      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
912    }
913  }
914
915  // Check that super class name is valid class name
916  ObjCInterfaceDecl* SDecl = 0;
917  if (SuperClassname) {
918    // Check if a different kind of symbol declared in this scope.
919    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
920                                LookupOrdinaryName);
921    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
922      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
923        << SuperClassname;
924      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
925    } else {
926      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
927      if (!SDecl)
928        Diag(SuperClassLoc, diag::err_undef_superclass)
929          << SuperClassname << ClassName;
930      else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
931        // This implementation and its interface do not have the same
932        // super class.
933        Diag(SuperClassLoc, diag::err_conflicting_super_class)
934          << SDecl->getDeclName();
935        Diag(SDecl->getLocation(), diag::note_previous_definition);
936      }
937    }
938  }
939
940  if (!IDecl) {
941    // Legacy case of @implementation with no corresponding @interface.
942    // Build, chain & install the interface decl into the identifier.
943
944    // FIXME: Do we support attributes on the @implementation? If so we should
945    // copy them over.
946    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
947                                      ClassName, /*PrevDecl=*/0, ClassLoc,
948                                      true);
949    IDecl->startDefinition();
950    if (SDecl) {
951      IDecl->setSuperClass(SDecl);
952      IDecl->setSuperClassLoc(SuperClassLoc);
953      IDecl->setEndOfDefinitionLoc(SuperClassLoc);
954    } else {
955      IDecl->setEndOfDefinitionLoc(ClassLoc);
956    }
957
958    PushOnScopeChains(IDecl, TUScope);
959  } else {
960    // Mark the interface as being completed, even if it was just as
961    //   @class ....;
962    // declaration; the user cannot reopen it.
963    if (!IDecl->hasDefinition())
964      IDecl->startDefinition();
965  }
966
967  ObjCImplementationDecl* IMPDecl =
968    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
969                                   ClassLoc, AtClassImplLoc);
970
971  if (CheckObjCDeclScope(IMPDecl))
972    return ActOnObjCContainerStartDefinition(IMPDecl);
973
974  // Check that there is no duplicate implementation of this class.
975  if (IDecl->getImplementation()) {
976    // FIXME: Don't leak everything!
977    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
978    Diag(IDecl->getImplementation()->getLocation(),
979         diag::note_previous_definition);
980  } else { // add it to the list.
981    IDecl->setImplementation(IMPDecl);
982    PushOnScopeChains(IMPDecl, TUScope);
983    // Warn on implementating deprecated class under
984    // -Wdeprecated-implementations flag.
985    DiagnoseObjCImplementedDeprecations(*this,
986                                        dyn_cast<NamedDecl>(IDecl),
987                                        IMPDecl->getLocation(), 1);
988  }
989  return ActOnObjCContainerStartDefinition(IMPDecl);
990}
991
992Sema::DeclGroupPtrTy
993Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
994  SmallVector<Decl *, 64> DeclsInGroup;
995  DeclsInGroup.reserve(Decls.size() + 1);
996
997  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
998    Decl *Dcl = Decls[i];
999    if (!Dcl)
1000      continue;
1001    if (Dcl->getDeclContext()->isFileContext())
1002      Dcl->setTopLevelDeclInObjCContainer();
1003    DeclsInGroup.push_back(Dcl);
1004  }
1005
1006  DeclsInGroup.push_back(ObjCImpDecl);
1007
1008  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1009}
1010
1011void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
1012                                    ObjCIvarDecl **ivars, unsigned numIvars,
1013                                    SourceLocation RBrace) {
1014  assert(ImpDecl && "missing implementation decl");
1015  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1016  if (!IDecl)
1017    return;
1018  /// Check case of non-existing @interface decl.
1019  /// (legacy objective-c @implementation decl without an @interface decl).
1020  /// Add implementations's ivar to the synthesize class's ivar list.
1021  if (IDecl->isImplicitInterfaceDecl()) {
1022    IDecl->setEndOfDefinitionLoc(RBrace);
1023    // Add ivar's to class's DeclContext.
1024    for (unsigned i = 0, e = numIvars; i != e; ++i) {
1025      ivars[i]->setLexicalDeclContext(ImpDecl);
1026      IDecl->makeDeclVisibleInContext(ivars[i], false);
1027      ImpDecl->addDecl(ivars[i]);
1028    }
1029
1030    return;
1031  }
1032  // If implementation has empty ivar list, just return.
1033  if (numIvars == 0)
1034    return;
1035
1036  assert(ivars && "missing @implementation ivars");
1037  if (LangOpts.ObjCNonFragileABI2) {
1038    if (ImpDecl->getSuperClass())
1039      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1040    for (unsigned i = 0; i < numIvars; i++) {
1041      ObjCIvarDecl* ImplIvar = ivars[i];
1042      if (const ObjCIvarDecl *ClsIvar =
1043            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1044        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1045        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1046        continue;
1047      }
1048      // Instance ivar to Implementation's DeclContext.
1049      ImplIvar->setLexicalDeclContext(ImpDecl);
1050      IDecl->makeDeclVisibleInContext(ImplIvar, false);
1051      ImpDecl->addDecl(ImplIvar);
1052    }
1053    return;
1054  }
1055  // Check interface's Ivar list against those in the implementation.
1056  // names and types must match.
1057  //
1058  unsigned j = 0;
1059  ObjCInterfaceDecl::ivar_iterator
1060    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1061  for (; numIvars > 0 && IVI != IVE; ++IVI) {
1062    ObjCIvarDecl* ImplIvar = ivars[j++];
1063    ObjCIvarDecl* ClsIvar = *IVI;
1064    assert (ImplIvar && "missing implementation ivar");
1065    assert (ClsIvar && "missing class ivar");
1066
1067    // First, make sure the types match.
1068    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1069      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1070        << ImplIvar->getIdentifier()
1071        << ImplIvar->getType() << ClsIvar->getType();
1072      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1073    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1074               ImplIvar->getBitWidthValue(Context) !=
1075               ClsIvar->getBitWidthValue(Context)) {
1076      Diag(ImplIvar->getBitWidth()->getLocStart(),
1077           diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1078      Diag(ClsIvar->getBitWidth()->getLocStart(),
1079           diag::note_previous_definition);
1080    }
1081    // Make sure the names are identical.
1082    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1083      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1084        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1085      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1086    }
1087    --numIvars;
1088  }
1089
1090  if (numIvars > 0)
1091    Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
1092  else if (IVI != IVE)
1093    Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
1094}
1095
1096void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
1097                               bool &IncompleteImpl, unsigned DiagID) {
1098  // No point warning no definition of method which is 'unavailable'.
1099  if (method->hasAttr<UnavailableAttr>())
1100    return;
1101  if (!IncompleteImpl) {
1102    Diag(ImpLoc, diag::warn_incomplete_impl);
1103    IncompleteImpl = true;
1104  }
1105  if (DiagID == diag::warn_unimplemented_protocol_method)
1106    Diag(ImpLoc, DiagID) << method->getDeclName();
1107  else
1108    Diag(method->getLocation(), DiagID) << method->getDeclName();
1109}
1110
1111/// Determines if type B can be substituted for type A.  Returns true if we can
1112/// guarantee that anything that the user will do to an object of type A can
1113/// also be done to an object of type B.  This is trivially true if the two
1114/// types are the same, or if B is a subclass of A.  It becomes more complex
1115/// in cases where protocols are involved.
1116///
1117/// Object types in Objective-C describe the minimum requirements for an
1118/// object, rather than providing a complete description of a type.  For
1119/// example, if A is a subclass of B, then B* may refer to an instance of A.
1120/// The principle of substitutability means that we may use an instance of A
1121/// anywhere that we may use an instance of B - it will implement all of the
1122/// ivars of B and all of the methods of B.
1123///
1124/// This substitutability is important when type checking methods, because
1125/// the implementation may have stricter type definitions than the interface.
1126/// The interface specifies minimum requirements, but the implementation may
1127/// have more accurate ones.  For example, a method may privately accept
1128/// instances of B, but only publish that it accepts instances of A.  Any
1129/// object passed to it will be type checked against B, and so will implicitly
1130/// by a valid A*.  Similarly, a method may return a subclass of the class that
1131/// it is declared as returning.
1132///
1133/// This is most important when considering subclassing.  A method in a
1134/// subclass must accept any object as an argument that its superclass's
1135/// implementation accepts.  It may, however, accept a more general type
1136/// without breaking substitutability (i.e. you can still use the subclass
1137/// anywhere that you can use the superclass, but not vice versa).  The
1138/// converse requirement applies to return types: the return type for a
1139/// subclass method must be a valid object of the kind that the superclass
1140/// advertises, but it may be specified more accurately.  This avoids the need
1141/// for explicit down-casting by callers.
1142///
1143/// Note: This is a stricter requirement than for assignment.
1144static bool isObjCTypeSubstitutable(ASTContext &Context,
1145                                    const ObjCObjectPointerType *A,
1146                                    const ObjCObjectPointerType *B,
1147                                    bool rejectId) {
1148  // Reject a protocol-unqualified id.
1149  if (rejectId && B->isObjCIdType()) return false;
1150
1151  // If B is a qualified id, then A must also be a qualified id and it must
1152  // implement all of the protocols in B.  It may not be a qualified class.
1153  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1154  // stricter definition so it is not substitutable for id<A>.
1155  if (B->isObjCQualifiedIdType()) {
1156    return A->isObjCQualifiedIdType() &&
1157           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1158                                                     QualType(B,0),
1159                                                     false);
1160  }
1161
1162  /*
1163  // id is a special type that bypasses type checking completely.  We want a
1164  // warning when it is used in one place but not another.
1165  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1166
1167
1168  // If B is a qualified id, then A must also be a qualified id (which it isn't
1169  // if we've got this far)
1170  if (B->isObjCQualifiedIdType()) return false;
1171  */
1172
1173  // Now we know that A and B are (potentially-qualified) class types.  The
1174  // normal rules for assignment apply.
1175  return Context.canAssignObjCInterfaces(A, B);
1176}
1177
1178static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1179  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1180}
1181
1182static bool CheckMethodOverrideReturn(Sema &S,
1183                                      ObjCMethodDecl *MethodImpl,
1184                                      ObjCMethodDecl *MethodDecl,
1185                                      bool IsProtocolMethodDecl,
1186                                      bool IsOverridingMode,
1187                                      bool Warn) {
1188  if (IsProtocolMethodDecl &&
1189      (MethodDecl->getObjCDeclQualifier() !=
1190       MethodImpl->getObjCDeclQualifier())) {
1191    if (Warn) {
1192        S.Diag(MethodImpl->getLocation(),
1193               (IsOverridingMode ?
1194                 diag::warn_conflicting_overriding_ret_type_modifiers
1195                 : diag::warn_conflicting_ret_type_modifiers))
1196          << MethodImpl->getDeclName()
1197          << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1198        S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1199          << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1200    }
1201    else
1202      return false;
1203  }
1204
1205  if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
1206                                       MethodDecl->getResultType()))
1207    return true;
1208  if (!Warn)
1209    return false;
1210
1211  unsigned DiagID =
1212    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
1213                     : diag::warn_conflicting_ret_types;
1214
1215  // Mismatches between ObjC pointers go into a different warning
1216  // category, and sometimes they're even completely whitelisted.
1217  if (const ObjCObjectPointerType *ImplPtrTy =
1218        MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
1219    if (const ObjCObjectPointerType *IfacePtrTy =
1220          MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
1221      // Allow non-matching return types as long as they don't violate
1222      // the principle of substitutability.  Specifically, we permit
1223      // return types that are subclasses of the declared return type,
1224      // or that are more-qualified versions of the declared type.
1225      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1226        return false;
1227
1228      DiagID =
1229        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
1230                          : diag::warn_non_covariant_ret_types;
1231    }
1232  }
1233
1234  S.Diag(MethodImpl->getLocation(), DiagID)
1235    << MethodImpl->getDeclName()
1236    << MethodDecl->getResultType()
1237    << MethodImpl->getResultType()
1238    << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1239  S.Diag(MethodDecl->getLocation(),
1240         IsOverridingMode ? diag::note_previous_declaration
1241                          : diag::note_previous_definition)
1242    << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1243  return false;
1244}
1245
1246static bool CheckMethodOverrideParam(Sema &S,
1247                                     ObjCMethodDecl *MethodImpl,
1248                                     ObjCMethodDecl *MethodDecl,
1249                                     ParmVarDecl *ImplVar,
1250                                     ParmVarDecl *IfaceVar,
1251                                     bool IsProtocolMethodDecl,
1252                                     bool IsOverridingMode,
1253                                     bool Warn) {
1254  if (IsProtocolMethodDecl &&
1255      (ImplVar->getObjCDeclQualifier() !=
1256       IfaceVar->getObjCDeclQualifier())) {
1257    if (Warn) {
1258      if (IsOverridingMode)
1259        S.Diag(ImplVar->getLocation(),
1260               diag::warn_conflicting_overriding_param_modifiers)
1261            << getTypeRange(ImplVar->getTypeSourceInfo())
1262            << MethodImpl->getDeclName();
1263      else S.Diag(ImplVar->getLocation(),
1264             diag::warn_conflicting_param_modifiers)
1265          << getTypeRange(ImplVar->getTypeSourceInfo())
1266          << MethodImpl->getDeclName();
1267      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1268          << getTypeRange(IfaceVar->getTypeSourceInfo());
1269    }
1270    else
1271      return false;
1272  }
1273
1274  QualType ImplTy = ImplVar->getType();
1275  QualType IfaceTy = IfaceVar->getType();
1276
1277  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1278    return true;
1279
1280  if (!Warn)
1281    return false;
1282  unsigned DiagID =
1283    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
1284                     : diag::warn_conflicting_param_types;
1285
1286  // Mismatches between ObjC pointers go into a different warning
1287  // category, and sometimes they're even completely whitelisted.
1288  if (const ObjCObjectPointerType *ImplPtrTy =
1289        ImplTy->getAs<ObjCObjectPointerType>()) {
1290    if (const ObjCObjectPointerType *IfacePtrTy =
1291          IfaceTy->getAs<ObjCObjectPointerType>()) {
1292      // Allow non-matching argument types as long as they don't
1293      // violate the principle of substitutability.  Specifically, the
1294      // implementation must accept any objects that the superclass
1295      // accepts, however it may also accept others.
1296      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1297        return false;
1298
1299      DiagID =
1300      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
1301                       :  diag::warn_non_contravariant_param_types;
1302    }
1303  }
1304
1305  S.Diag(ImplVar->getLocation(), DiagID)
1306    << getTypeRange(ImplVar->getTypeSourceInfo())
1307    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1308  S.Diag(IfaceVar->getLocation(),
1309         (IsOverridingMode ? diag::note_previous_declaration
1310                        : diag::note_previous_definition))
1311    << getTypeRange(IfaceVar->getTypeSourceInfo());
1312  return false;
1313}
1314
1315/// In ARC, check whether the conventional meanings of the two methods
1316/// match.  If they don't, it's a hard error.
1317static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1318                                      ObjCMethodDecl *decl) {
1319  ObjCMethodFamily implFamily = impl->getMethodFamily();
1320  ObjCMethodFamily declFamily = decl->getMethodFamily();
1321  if (implFamily == declFamily) return false;
1322
1323  // Since conventions are sorted by selector, the only possibility is
1324  // that the types differ enough to cause one selector or the other
1325  // to fall out of the family.
1326  assert(implFamily == OMF_None || declFamily == OMF_None);
1327
1328  // No further diagnostics required on invalid declarations.
1329  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1330
1331  const ObjCMethodDecl *unmatched = impl;
1332  ObjCMethodFamily family = declFamily;
1333  unsigned errorID = diag::err_arc_lost_method_convention;
1334  unsigned noteID = diag::note_arc_lost_method_convention;
1335  if (declFamily == OMF_None) {
1336    unmatched = decl;
1337    family = implFamily;
1338    errorID = diag::err_arc_gained_method_convention;
1339    noteID = diag::note_arc_gained_method_convention;
1340  }
1341
1342  // Indexes into a %select clause in the diagnostic.
1343  enum FamilySelector {
1344    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1345  };
1346  FamilySelector familySelector = FamilySelector();
1347
1348  switch (family) {
1349  case OMF_None: llvm_unreachable("logic error, no method convention");
1350  case OMF_retain:
1351  case OMF_release:
1352  case OMF_autorelease:
1353  case OMF_dealloc:
1354  case OMF_finalize:
1355  case OMF_retainCount:
1356  case OMF_self:
1357  case OMF_performSelector:
1358    // Mismatches for these methods don't change ownership
1359    // conventions, so we don't care.
1360    return false;
1361
1362  case OMF_init: familySelector = F_init; break;
1363  case OMF_alloc: familySelector = F_alloc; break;
1364  case OMF_copy: familySelector = F_copy; break;
1365  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1366  case OMF_new: familySelector = F_new; break;
1367  }
1368
1369  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1370  ReasonSelector reasonSelector;
1371
1372  // The only reason these methods don't fall within their families is
1373  // due to unusual result types.
1374  if (unmatched->getResultType()->isObjCObjectPointerType()) {
1375    reasonSelector = R_UnrelatedReturn;
1376  } else {
1377    reasonSelector = R_NonObjectReturn;
1378  }
1379
1380  S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
1381  S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
1382
1383  return true;
1384}
1385
1386void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1387                                       ObjCMethodDecl *MethodDecl,
1388                                       bool IsProtocolMethodDecl) {
1389  if (getLangOpts().ObjCAutoRefCount &&
1390      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1391    return;
1392
1393  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1394                            IsProtocolMethodDecl, false,
1395                            true);
1396
1397  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1398       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
1399       IM != EM; ++IM, ++IF) {
1400    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1401                             IsProtocolMethodDecl, false, true);
1402  }
1403
1404  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1405    Diag(ImpMethodDecl->getLocation(),
1406         diag::warn_conflicting_variadic);
1407    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1408  }
1409}
1410
1411void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1412                                       ObjCMethodDecl *Overridden,
1413                                       bool IsProtocolMethodDecl) {
1414
1415  CheckMethodOverrideReturn(*this, Method, Overridden,
1416                            IsProtocolMethodDecl, true,
1417                            true);
1418
1419  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1420       IF = Overridden->param_begin(), EM = Method->param_end();
1421       IM != EM; ++IM, ++IF) {
1422    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1423                             IsProtocolMethodDecl, true, true);
1424  }
1425
1426  if (Method->isVariadic() != Overridden->isVariadic()) {
1427    Diag(Method->getLocation(),
1428         diag::warn_conflicting_overriding_variadic);
1429    Diag(Overridden->getLocation(), diag::note_previous_declaration);
1430  }
1431}
1432
1433/// WarnExactTypedMethods - This routine issues a warning if method
1434/// implementation declaration matches exactly that of its declaration.
1435void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1436                                 ObjCMethodDecl *MethodDecl,
1437                                 bool IsProtocolMethodDecl) {
1438  // don't issue warning when protocol method is optional because primary
1439  // class is not required to implement it and it is safe for protocol
1440  // to implement it.
1441  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1442    return;
1443  // don't issue warning when primary class's method is
1444  // depecated/unavailable.
1445  if (MethodDecl->hasAttr<UnavailableAttr>() ||
1446      MethodDecl->hasAttr<DeprecatedAttr>())
1447    return;
1448
1449  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1450                                      IsProtocolMethodDecl, false, false);
1451  if (match)
1452    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1453         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
1454         IM != EM; ++IM, ++IF) {
1455      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
1456                                       *IM, *IF,
1457                                       IsProtocolMethodDecl, false, false);
1458      if (!match)
1459        break;
1460    }
1461  if (match)
1462    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1463  if (match)
1464    match = !(MethodDecl->isClassMethod() &&
1465              MethodDecl->getSelector() == GetNullarySelector("load", Context));
1466
1467  if (match) {
1468    Diag(ImpMethodDecl->getLocation(),
1469         diag::warn_category_method_impl_match);
1470    Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
1471      << MethodDecl->getDeclName();
1472  }
1473}
1474
1475/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1476/// improve the efficiency of selector lookups and type checking by associating
1477/// with each protocol / interface / category the flattened instance tables. If
1478/// we used an immutable set to keep the table then it wouldn't add significant
1479/// memory cost and it would be handy for lookups.
1480
1481/// CheckProtocolMethodDefs - This routine checks unimplemented methods
1482/// Declared in protocol, and those referenced by it.
1483void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
1484                                   ObjCProtocolDecl *PDecl,
1485                                   bool& IncompleteImpl,
1486                                   const llvm::DenseSet<Selector> &InsMap,
1487                                   const llvm::DenseSet<Selector> &ClsMap,
1488                                   ObjCContainerDecl *CDecl) {
1489  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
1490  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
1491                               : dyn_cast<ObjCInterfaceDecl>(CDecl);
1492  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1493
1494  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1495  ObjCInterfaceDecl *NSIDecl = 0;
1496  if (getLangOpts().NeXTRuntime) {
1497    // check to see if class implements forwardInvocation method and objects
1498    // of this class are derived from 'NSProxy' so that to forward requests
1499    // from one object to another.
1500    // Under such conditions, which means that every method possible is
1501    // implemented in the class, we should not issue "Method definition not
1502    // found" warnings.
1503    // FIXME: Use a general GetUnarySelector method for this.
1504    IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
1505    Selector fISelector = Context.Selectors.getSelector(1, &II);
1506    if (InsMap.count(fISelector))
1507      // Is IDecl derived from 'NSProxy'? If so, no instance methods
1508      // need be implemented in the implementation.
1509      NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
1510  }
1511
1512  // If a method lookup fails locally we still need to look and see if
1513  // the method was implemented by a base class or an inherited
1514  // protocol. This lookup is slow, but occurs rarely in correct code
1515  // and otherwise would terminate in a warning.
1516
1517  // check unimplemented instance methods.
1518  if (!NSIDecl)
1519    for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
1520         E = PDecl->instmeth_end(); I != E; ++I) {
1521      ObjCMethodDecl *method = *I;
1522      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1523          !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
1524          (!Super ||
1525           !Super->lookupInstanceMethod(method->getSelector()))) {
1526            // If a method is not implemented in the category implementation but
1527            // has been declared in its primary class, superclass,
1528            // or in one of their protocols, no need to issue the warning.
1529            // This is because method will be implemented in the primary class
1530            // or one of its super class implementation.
1531
1532            // Ugly, but necessary. Method declared in protcol might have
1533            // have been synthesized due to a property declared in the class which
1534            // uses the protocol.
1535            if (ObjCMethodDecl *MethodInClass =
1536                  IDecl->lookupInstanceMethod(method->getSelector(),
1537                                              true /*noCategoryLookup*/))
1538              if (C || MethodInClass->isSynthesized())
1539                continue;
1540            unsigned DIAG = diag::warn_unimplemented_protocol_method;
1541            if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1542                != DiagnosticsEngine::Ignored) {
1543              WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1544              Diag(method->getLocation(), diag::note_method_declared_at)
1545                << method->getDeclName();
1546              Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1547                << PDecl->getDeclName();
1548            }
1549          }
1550    }
1551  // check unimplemented class methods
1552  for (ObjCProtocolDecl::classmeth_iterator
1553         I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1554       I != E; ++I) {
1555    ObjCMethodDecl *method = *I;
1556    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1557        !ClsMap.count(method->getSelector()) &&
1558        (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1559      // See above comment for instance method lookups.
1560      if (C && IDecl->lookupClassMethod(method->getSelector(),
1561                                        true /*noCategoryLookup*/))
1562        continue;
1563      unsigned DIAG = diag::warn_unimplemented_protocol_method;
1564      if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
1565            DiagnosticsEngine::Ignored) {
1566        WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1567        Diag(method->getLocation(), diag::note_method_declared_at)
1568          << method->getDeclName();
1569        Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1570          PDecl->getDeclName();
1571      }
1572    }
1573  }
1574  // Check on this protocols's referenced protocols, recursively.
1575  for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1576       E = PDecl->protocol_end(); PI != E; ++PI)
1577    CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl);
1578}
1579
1580/// MatchAllMethodDeclarations - Check methods declared in interface
1581/// or protocol against those declared in their implementations.
1582///
1583void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
1584                                      const llvm::DenseSet<Selector> &ClsMap,
1585                                      llvm::DenseSet<Selector> &InsMapSeen,
1586                                      llvm::DenseSet<Selector> &ClsMapSeen,
1587                                      ObjCImplDecl* IMPDecl,
1588                                      ObjCContainerDecl* CDecl,
1589                                      bool &IncompleteImpl,
1590                                      bool ImmediateClass,
1591                                      bool WarnCategoryMethodImpl) {
1592  // Check and see if instance methods in class interface have been
1593  // implemented in the implementation class. If so, their types match.
1594  for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1595       E = CDecl->instmeth_end(); I != E; ++I) {
1596    if (InsMapSeen.count((*I)->getSelector()))
1597        continue;
1598    InsMapSeen.insert((*I)->getSelector());
1599    if (!(*I)->isSynthesized() &&
1600        !InsMap.count((*I)->getSelector())) {
1601      if (ImmediateClass)
1602        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1603                            diag::note_undef_method_impl);
1604      continue;
1605    } else {
1606      ObjCMethodDecl *ImpMethodDecl =
1607        IMPDecl->getInstanceMethod((*I)->getSelector());
1608      assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
1609             "Expected to find the method through lookup as well");
1610      ObjCMethodDecl *MethodDecl = *I;
1611      // ImpMethodDecl may be null as in a @dynamic property.
1612      if (ImpMethodDecl) {
1613        if (!WarnCategoryMethodImpl)
1614          WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1615                                      isa<ObjCProtocolDecl>(CDecl));
1616        else if (!MethodDecl->isSynthesized())
1617          WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1618                                isa<ObjCProtocolDecl>(CDecl));
1619      }
1620    }
1621  }
1622
1623  // Check and see if class methods in class interface have been
1624  // implemented in the implementation class. If so, their types match.
1625   for (ObjCInterfaceDecl::classmeth_iterator
1626       I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1627     if (ClsMapSeen.count((*I)->getSelector()))
1628       continue;
1629     ClsMapSeen.insert((*I)->getSelector());
1630    if (!ClsMap.count((*I)->getSelector())) {
1631      if (ImmediateClass)
1632        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1633                            diag::note_undef_method_impl);
1634    } else {
1635      ObjCMethodDecl *ImpMethodDecl =
1636        IMPDecl->getClassMethod((*I)->getSelector());
1637      assert(CDecl->getClassMethod((*I)->getSelector()) &&
1638             "Expected to find the method through lookup as well");
1639      ObjCMethodDecl *MethodDecl = *I;
1640      if (!WarnCategoryMethodImpl)
1641        WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1642                                    isa<ObjCProtocolDecl>(CDecl));
1643      else
1644        WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1645                              isa<ObjCProtocolDecl>(CDecl));
1646    }
1647  }
1648
1649  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1650    // Also methods in class extensions need be looked at next.
1651    for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
1652         ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
1653      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1654                                 IMPDecl,
1655                                 const_cast<ObjCCategoryDecl *>(ClsExtDecl),
1656                                 IncompleteImpl, false,
1657                                 WarnCategoryMethodImpl);
1658
1659    // Check for any implementation of a methods declared in protocol.
1660    for (ObjCInterfaceDecl::all_protocol_iterator
1661          PI = I->all_referenced_protocol_begin(),
1662          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1663      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1664                                 IMPDecl,
1665                                 (*PI), IncompleteImpl, false,
1666                                 WarnCategoryMethodImpl);
1667
1668    // FIXME. For now, we are not checking for extact match of methods
1669    // in category implementation and its primary class's super class.
1670    if (!WarnCategoryMethodImpl && I->getSuperClass())
1671      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1672                                 IMPDecl,
1673                                 I->getSuperClass(), IncompleteImpl, false);
1674  }
1675}
1676
1677/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1678/// category matches with those implemented in its primary class and
1679/// warns each time an exact match is found.
1680void Sema::CheckCategoryVsClassMethodMatches(
1681                                  ObjCCategoryImplDecl *CatIMPDecl) {
1682  llvm::DenseSet<Selector> InsMap, ClsMap;
1683
1684  for (ObjCImplementationDecl::instmeth_iterator
1685       I = CatIMPDecl->instmeth_begin(),
1686       E = CatIMPDecl->instmeth_end(); I!=E; ++I)
1687    InsMap.insert((*I)->getSelector());
1688
1689  for (ObjCImplementationDecl::classmeth_iterator
1690       I = CatIMPDecl->classmeth_begin(),
1691       E = CatIMPDecl->classmeth_end(); I != E; ++I)
1692    ClsMap.insert((*I)->getSelector());
1693  if (InsMap.empty() && ClsMap.empty())
1694    return;
1695
1696  // Get category's primary class.
1697  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1698  if (!CatDecl)
1699    return;
1700  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1701  if (!IDecl)
1702    return;
1703  llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
1704  bool IncompleteImpl = false;
1705  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1706                             CatIMPDecl, IDecl,
1707                             IncompleteImpl, false,
1708                             true /*WarnCategoryMethodImpl*/);
1709}
1710
1711void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1712                                     ObjCContainerDecl* CDecl,
1713                                     bool IncompleteImpl) {
1714  llvm::DenseSet<Selector> InsMap;
1715  // Check and see if instance methods in class interface have been
1716  // implemented in the implementation class.
1717  for (ObjCImplementationDecl::instmeth_iterator
1718         I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1719    InsMap.insert((*I)->getSelector());
1720
1721  // Check and see if properties declared in the interface have either 1)
1722  // an implementation or 2) there is a @synthesize/@dynamic implementation
1723  // of the property in the @implementation.
1724  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl))
1725    if  (!(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2) ||
1726      IDecl->isObjCRequiresPropertyDefs())
1727      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1728
1729  llvm::DenseSet<Selector> ClsMap;
1730  for (ObjCImplementationDecl::classmeth_iterator
1731       I = IMPDecl->classmeth_begin(),
1732       E = IMPDecl->classmeth_end(); I != E; ++I)
1733    ClsMap.insert((*I)->getSelector());
1734
1735  // Check for type conflict of methods declared in a class/protocol and
1736  // its implementation; if any.
1737  llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
1738  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1739                             IMPDecl, CDecl,
1740                             IncompleteImpl, true);
1741
1742  // check all methods implemented in category against those declared
1743  // in its primary class.
1744  if (ObjCCategoryImplDecl *CatDecl =
1745        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1746    CheckCategoryVsClassMethodMatches(CatDecl);
1747
1748  // Check the protocol list for unimplemented methods in the @implementation
1749  // class.
1750  // Check and see if class methods in class interface have been
1751  // implemented in the implementation class.
1752
1753  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1754    for (ObjCInterfaceDecl::all_protocol_iterator
1755          PI = I->all_referenced_protocol_begin(),
1756          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1757      CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1758                              InsMap, ClsMap, I);
1759    // Check class extensions (unnamed categories)
1760    for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
1761         Categories; Categories = Categories->getNextClassExtension())
1762      ImplMethodsVsClassMethods(S, IMPDecl,
1763                                const_cast<ObjCCategoryDecl*>(Categories),
1764                                IncompleteImpl);
1765  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1766    // For extended class, unimplemented methods in its protocols will
1767    // be reported in the primary class.
1768    if (!C->IsClassExtension()) {
1769      for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1770           E = C->protocol_end(); PI != E; ++PI)
1771        CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1772                                InsMap, ClsMap, CDecl);
1773      // Report unimplemented properties in the category as well.
1774      // When reporting on missing setter/getters, do not report when
1775      // setter/getter is implemented in category's primary class
1776      // implementation.
1777      if (ObjCInterfaceDecl *ID = C->getClassInterface())
1778        if (ObjCImplDecl *IMP = ID->getImplementation()) {
1779          for (ObjCImplementationDecl::instmeth_iterator
1780               I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
1781            InsMap.insert((*I)->getSelector());
1782        }
1783      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1784    }
1785  } else
1786    llvm_unreachable("invalid ObjCContainerDecl type.");
1787}
1788
1789/// ActOnForwardClassDeclaration -
1790Sema::DeclGroupPtrTy
1791Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1792                                   IdentifierInfo **IdentList,
1793                                   SourceLocation *IdentLocs,
1794                                   unsigned NumElts) {
1795  SmallVector<Decl *, 8> DeclsInGroup;
1796  for (unsigned i = 0; i != NumElts; ++i) {
1797    // Check for another declaration kind with the same name.
1798    NamedDecl *PrevDecl
1799      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1800                         LookupOrdinaryName, ForRedeclaration);
1801    if (PrevDecl && PrevDecl->isTemplateParameter()) {
1802      // Maybe we will complain about the shadowed template parameter.
1803      DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
1804      // Just pretend that we didn't see the previous declaration.
1805      PrevDecl = 0;
1806    }
1807
1808    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1809      // GCC apparently allows the following idiom:
1810      //
1811      // typedef NSObject < XCElementTogglerP > XCElementToggler;
1812      // @class XCElementToggler;
1813      //
1814      // Here we have chosen to ignore the forward class declaration
1815      // with a warning. Since this is the implied behavior.
1816      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
1817      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1818        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1819        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1820      } else {
1821        // a forward class declaration matching a typedef name of a class refers
1822        // to the underlying class. Just ignore the forward class with a warning
1823        // as this will force the intended behavior which is to lookup the typedef
1824        // name.
1825        if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
1826          Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
1827          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1828          continue;
1829        }
1830      }
1831    }
1832
1833    // Create a declaration to describe this forward declaration.
1834    ObjCInterfaceDecl *PrevIDecl
1835      = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1836    ObjCInterfaceDecl *IDecl
1837      = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1838                                  IdentList[i], PrevIDecl, IdentLocs[i]);
1839    IDecl->setAtEndRange(IdentLocs[i]);
1840
1841    PushOnScopeChains(IDecl, TUScope);
1842    CheckObjCDeclScope(IDecl);
1843    DeclsInGroup.push_back(IDecl);
1844  }
1845
1846  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1847}
1848
1849static bool tryMatchRecordTypes(ASTContext &Context,
1850                                Sema::MethodMatchStrategy strategy,
1851                                const Type *left, const Type *right);
1852
1853static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
1854                       QualType leftQT, QualType rightQT) {
1855  const Type *left =
1856    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
1857  const Type *right =
1858    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
1859
1860  if (left == right) return true;
1861
1862  // If we're doing a strict match, the types have to match exactly.
1863  if (strategy == Sema::MMS_strict) return false;
1864
1865  if (left->isIncompleteType() || right->isIncompleteType()) return false;
1866
1867  // Otherwise, use this absurdly complicated algorithm to try to
1868  // validate the basic, low-level compatibility of the two types.
1869
1870  // As a minimum, require the sizes and alignments to match.
1871  if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
1872    return false;
1873
1874  // Consider all the kinds of non-dependent canonical types:
1875  // - functions and arrays aren't possible as return and parameter types
1876
1877  // - vector types of equal size can be arbitrarily mixed
1878  if (isa<VectorType>(left)) return isa<VectorType>(right);
1879  if (isa<VectorType>(right)) return false;
1880
1881  // - references should only match references of identical type
1882  // - structs, unions, and Objective-C objects must match more-or-less
1883  //   exactly
1884  // - everything else should be a scalar
1885  if (!left->isScalarType() || !right->isScalarType())
1886    return tryMatchRecordTypes(Context, strategy, left, right);
1887
1888  // Make scalars agree in kind, except count bools as chars, and group
1889  // all non-member pointers together.
1890  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
1891  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
1892  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
1893  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
1894  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
1895    leftSK = Type::STK_ObjCObjectPointer;
1896  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
1897    rightSK = Type::STK_ObjCObjectPointer;
1898
1899  // Note that data member pointers and function member pointers don't
1900  // intermix because of the size differences.
1901
1902  return (leftSK == rightSK);
1903}
1904
1905static bool tryMatchRecordTypes(ASTContext &Context,
1906                                Sema::MethodMatchStrategy strategy,
1907                                const Type *lt, const Type *rt) {
1908  assert(lt && rt && lt != rt);
1909
1910  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
1911  RecordDecl *left = cast<RecordType>(lt)->getDecl();
1912  RecordDecl *right = cast<RecordType>(rt)->getDecl();
1913
1914  // Require union-hood to match.
1915  if (left->isUnion() != right->isUnion()) return false;
1916
1917  // Require an exact match if either is non-POD.
1918  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
1919      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
1920    return false;
1921
1922  // Require size and alignment to match.
1923  if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
1924
1925  // Require fields to match.
1926  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
1927  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
1928  for (; li != le && ri != re; ++li, ++ri) {
1929    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
1930      return false;
1931  }
1932  return (li == le && ri == re);
1933}
1934
1935/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
1936/// returns true, or false, accordingly.
1937/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
1938bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
1939                                      const ObjCMethodDecl *right,
1940                                      MethodMatchStrategy strategy) {
1941  if (!matchTypes(Context, strategy,
1942                  left->getResultType(), right->getResultType()))
1943    return false;
1944
1945  if (getLangOpts().ObjCAutoRefCount &&
1946      (left->hasAttr<NSReturnsRetainedAttr>()
1947         != right->hasAttr<NSReturnsRetainedAttr>() ||
1948       left->hasAttr<NSConsumesSelfAttr>()
1949         != right->hasAttr<NSConsumesSelfAttr>()))
1950    return false;
1951
1952  ObjCMethodDecl::param_const_iterator
1953    li = left->param_begin(), le = left->param_end(), ri = right->param_begin();
1954
1955  for (; li != le; ++li, ++ri) {
1956    assert(ri != right->param_end() && "Param mismatch");
1957    const ParmVarDecl *lparm = *li, *rparm = *ri;
1958
1959    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
1960      return false;
1961
1962    if (getLangOpts().ObjCAutoRefCount &&
1963        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
1964      return false;
1965  }
1966  return true;
1967}
1968
1969void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
1970  // If the list is empty, make it a singleton list.
1971  if (List->Method == 0) {
1972    List->Method = Method;
1973    List->Next = 0;
1974    return;
1975  }
1976
1977  // We've seen a method with this name, see if we have already seen this type
1978  // signature.
1979  ObjCMethodList *Previous = List;
1980  for (; List; Previous = List, List = List->Next) {
1981    if (!MatchTwoMethodDeclarations(Method, List->Method))
1982      continue;
1983
1984    ObjCMethodDecl *PrevObjCMethod = List->Method;
1985
1986    // Propagate the 'defined' bit.
1987    if (Method->isDefined())
1988      PrevObjCMethod->setDefined(true);
1989
1990    // If a method is deprecated, push it in the global pool.
1991    // This is used for better diagnostics.
1992    if (Method->isDeprecated()) {
1993      if (!PrevObjCMethod->isDeprecated())
1994        List->Method = Method;
1995    }
1996    // If new method is unavailable, push it into global pool
1997    // unless previous one is deprecated.
1998    if (Method->isUnavailable()) {
1999      if (PrevObjCMethod->getAvailability() < AR_Deprecated)
2000        List->Method = Method;
2001    }
2002
2003    return;
2004  }
2005
2006  // We have a new signature for an existing method - add it.
2007  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
2008  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
2009  Previous->Next = new (Mem) ObjCMethodList(Method, 0);
2010}
2011
2012/// \brief Read the contents of the method pool for a given selector from
2013/// external storage.
2014void Sema::ReadMethodPool(Selector Sel) {
2015  assert(ExternalSource && "We need an external AST source");
2016  ExternalSource->ReadMethodPool(Sel);
2017}
2018
2019void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
2020                                 bool instance) {
2021  if (ExternalSource)
2022    ReadMethodPool(Method->getSelector());
2023
2024  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
2025  if (Pos == MethodPool.end())
2026    Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
2027                                           GlobalMethods())).first;
2028
2029  Method->setDefined(impl);
2030
2031  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
2032  addMethodToGlobalList(&Entry, Method);
2033}
2034
2035/// Determines if this is an "acceptable" loose mismatch in the global
2036/// method pool.  This exists mostly as a hack to get around certain
2037/// global mismatches which we can't afford to make warnings / errors.
2038/// Really, what we want is a way to take a method out of the global
2039/// method pool.
2040static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
2041                                       ObjCMethodDecl *other) {
2042  if (!chosen->isInstanceMethod())
2043    return false;
2044
2045  Selector sel = chosen->getSelector();
2046  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
2047    return false;
2048
2049  // Don't complain about mismatches for -length if the method we
2050  // chose has an integral result type.
2051  return (chosen->getResultType()->isIntegerType());
2052}
2053
2054ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
2055                                               bool receiverIdOrClass,
2056                                               bool warn, bool instance) {
2057  if (ExternalSource)
2058    ReadMethodPool(Sel);
2059
2060  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2061  if (Pos == MethodPool.end())
2062    return 0;
2063
2064  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2065
2066  if (warn && MethList.Method && MethList.Next) {
2067    bool issueDiagnostic = false, issueError = false;
2068
2069    // We support a warning which complains about *any* difference in
2070    // method signature.
2071    bool strictSelectorMatch =
2072      (receiverIdOrClass && warn &&
2073       (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
2074                                 R.getBegin()) !=
2075      DiagnosticsEngine::Ignored));
2076    if (strictSelectorMatch)
2077      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
2078        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
2079                                        MMS_strict)) {
2080          issueDiagnostic = true;
2081          break;
2082        }
2083      }
2084
2085    // If we didn't see any strict differences, we won't see any loose
2086    // differences.  In ARC, however, we also need to check for loose
2087    // mismatches, because most of them are errors.
2088    if (!strictSelectorMatch ||
2089        (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
2090      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
2091        // This checks if the methods differ in type mismatch.
2092        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
2093                                        MMS_loose) &&
2094            !isAcceptableMethodMismatch(MethList.Method, Next->Method)) {
2095          issueDiagnostic = true;
2096          if (getLangOpts().ObjCAutoRefCount)
2097            issueError = true;
2098          break;
2099        }
2100      }
2101
2102    if (issueDiagnostic) {
2103      if (issueError)
2104        Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2105      else if (strictSelectorMatch)
2106        Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2107      else
2108        Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2109
2110      Diag(MethList.Method->getLocStart(),
2111           issueError ? diag::note_possibility : diag::note_using)
2112        << MethList.Method->getSourceRange();
2113      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
2114        Diag(Next->Method->getLocStart(), diag::note_also_found)
2115          << Next->Method->getSourceRange();
2116    }
2117  }
2118  return MethList.Method;
2119}
2120
2121ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2122  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2123  if (Pos == MethodPool.end())
2124    return 0;
2125
2126  GlobalMethods &Methods = Pos->second;
2127
2128  if (Methods.first.Method && Methods.first.Method->isDefined())
2129    return Methods.first.Method;
2130  if (Methods.second.Method && Methods.second.Method->isDefined())
2131    return Methods.second.Method;
2132  return 0;
2133}
2134
2135/// CompareMethodParamsInBaseAndSuper - This routine compares methods with
2136/// identical selector names in current and its super classes and issues
2137/// a warning if any of their argument types are incompatible.
2138void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
2139                                             ObjCMethodDecl *Method,
2140                                             bool IsInstance)  {
2141  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
2142  if (ID == 0) return;
2143
2144  while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
2145    ObjCMethodDecl *SuperMethodDecl =
2146        SD->lookupMethod(Method->getSelector(), IsInstance);
2147    if (SuperMethodDecl == 0) {
2148      ID = SD;
2149      continue;
2150    }
2151    ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
2152      E = Method->param_end();
2153    ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
2154    for (; ParamI != E; ++ParamI, ++PrevI) {
2155      // Number of parameters are the same and is guaranteed by selector match.
2156      assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
2157      QualType T1 = Context.getCanonicalType((*ParamI)->getType());
2158      QualType T2 = Context.getCanonicalType((*PrevI)->getType());
2159      // If type of argument of method in this class does not match its
2160      // respective argument type in the super class method, issue warning;
2161      if (!Context.typesAreCompatible(T1, T2)) {
2162        Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
2163          << T1 << T2;
2164        Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
2165        return;
2166      }
2167    }
2168    ID = SD;
2169  }
2170}
2171
2172/// DiagnoseDuplicateIvars -
2173/// Check for duplicate ivars in the entire class at the start of
2174/// @implementation. This becomes necesssary because class extension can
2175/// add ivars to a class in random order which will not be known until
2176/// class's @implementation is seen.
2177void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
2178                                  ObjCInterfaceDecl *SID) {
2179  for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
2180       IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
2181    ObjCIvarDecl* Ivar = (*IVI);
2182    if (Ivar->isInvalidDecl())
2183      continue;
2184    if (IdentifierInfo *II = Ivar->getIdentifier()) {
2185      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2186      if (prevIvar) {
2187        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2188        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2189        Ivar->setInvalidDecl();
2190      }
2191    }
2192  }
2193}
2194
2195Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
2196  switch (CurContext->getDeclKind()) {
2197    case Decl::ObjCInterface:
2198      return Sema::OCK_Interface;
2199    case Decl::ObjCProtocol:
2200      return Sema::OCK_Protocol;
2201    case Decl::ObjCCategory:
2202      if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
2203        return Sema::OCK_ClassExtension;
2204      else
2205        return Sema::OCK_Category;
2206    case Decl::ObjCImplementation:
2207      return Sema::OCK_Implementation;
2208    case Decl::ObjCCategoryImpl:
2209      return Sema::OCK_CategoryImplementation;
2210
2211    default:
2212      return Sema::OCK_None;
2213  }
2214}
2215
2216// Note: For class/category implemenations, allMethods/allProperties is
2217// always null.
2218Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
2219                       Decl **allMethods, unsigned allNum,
2220                       Decl **allProperties, unsigned pNum,
2221                       DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
2222
2223  if (getObjCContainerKind() == Sema::OCK_None)
2224    return 0;
2225
2226  assert(AtEnd.isValid() && "Invalid location for '@end'");
2227
2228  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2229  Decl *ClassDecl = cast<Decl>(OCD);
2230
2231  bool isInterfaceDeclKind =
2232        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2233         || isa<ObjCProtocolDecl>(ClassDecl);
2234  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2235
2236  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2237  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2238  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2239
2240  for (unsigned i = 0; i < allNum; i++ ) {
2241    ObjCMethodDecl *Method =
2242      cast_or_null<ObjCMethodDecl>(allMethods[i]);
2243
2244    if (!Method) continue;  // Already issued a diagnostic.
2245    if (Method->isInstanceMethod()) {
2246      /// Check for instance method of the same name with incompatible types
2247      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2248      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2249                              : false;
2250      if ((isInterfaceDeclKind && PrevMethod && !match)
2251          || (checkIdenticalMethods && match)) {
2252          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2253            << Method->getDeclName();
2254          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2255        Method->setInvalidDecl();
2256      } else {
2257        if (PrevMethod) {
2258          Method->setAsRedeclaration(PrevMethod);
2259          if (!Context.getSourceManager().isInSystemHeader(
2260                 Method->getLocation()))
2261            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2262              << Method->getDeclName();
2263          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2264        }
2265        InsMap[Method->getSelector()] = Method;
2266        /// The following allows us to typecheck messages to "id".
2267        AddInstanceMethodToGlobalPool(Method);
2268        // verify that the instance method conforms to the same definition of
2269        // parent methods if it shadows one.
2270        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
2271      }
2272    } else {
2273      /// Check for class method of the same name with incompatible types
2274      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2275      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2276                              : false;
2277      if ((isInterfaceDeclKind && PrevMethod && !match)
2278          || (checkIdenticalMethods && match)) {
2279        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2280          << Method->getDeclName();
2281        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2282        Method->setInvalidDecl();
2283      } else {
2284        if (PrevMethod) {
2285          Method->setAsRedeclaration(PrevMethod);
2286          if (!Context.getSourceManager().isInSystemHeader(
2287                 Method->getLocation()))
2288            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2289              << Method->getDeclName();
2290          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2291        }
2292        ClsMap[Method->getSelector()] = Method;
2293        /// The following allows us to typecheck messages to "Class".
2294        AddFactoryMethodToGlobalPool(Method);
2295        // verify that the class method conforms to the same definition of
2296        // parent methods if it shadows one.
2297        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
2298      }
2299    }
2300  }
2301  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
2302    // Compares properties declared in this class to those of its
2303    // super class.
2304    ComparePropertiesInBaseAndSuper(I);
2305    CompareProperties(I, I);
2306  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2307    // Categories are used to extend the class by declaring new methods.
2308    // By the same token, they are also used to add new properties. No
2309    // need to compare the added property to those in the class.
2310
2311    // Compare protocol properties with those in category
2312    CompareProperties(C, C);
2313    if (C->IsClassExtension()) {
2314      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2315      DiagnoseClassExtensionDupMethods(C, CCPrimary);
2316    }
2317  }
2318  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2319    if (CDecl->getIdentifier())
2320      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2321      // user-defined setter/getter. It also synthesizes setter/getter methods
2322      // and adds them to the DeclContext and global method pools.
2323      for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
2324                                            E = CDecl->prop_end();
2325           I != E; ++I)
2326        ProcessPropertyDecl(*I, CDecl);
2327    CDecl->setAtEndRange(AtEnd);
2328  }
2329  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2330    IC->setAtEndRange(AtEnd);
2331    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2332      // Any property declared in a class extension might have user
2333      // declared setter or getter in current class extension or one
2334      // of the other class extensions. Mark them as synthesized as
2335      // property will be synthesized when property with same name is
2336      // seen in the @implementation.
2337      for (const ObjCCategoryDecl *ClsExtDecl =
2338           IDecl->getFirstClassExtension();
2339           ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
2340        for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
2341             E = ClsExtDecl->prop_end(); I != E; ++I) {
2342          ObjCPropertyDecl *Property = (*I);
2343          // Skip over properties declared @dynamic
2344          if (const ObjCPropertyImplDecl *PIDecl
2345              = IC->FindPropertyImplDecl(Property->getIdentifier()))
2346            if (PIDecl->getPropertyImplementation()
2347                  == ObjCPropertyImplDecl::Dynamic)
2348              continue;
2349
2350          for (const ObjCCategoryDecl *CExtDecl =
2351               IDecl->getFirstClassExtension();
2352               CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
2353            if (ObjCMethodDecl *GetterMethod =
2354                CExtDecl->getInstanceMethod(Property->getGetterName()))
2355              GetterMethod->setSynthesized(true);
2356            if (!Property->isReadOnly())
2357              if (ObjCMethodDecl *SetterMethod =
2358                  CExtDecl->getInstanceMethod(Property->getSetterName()))
2359                SetterMethod->setSynthesized(true);
2360          }
2361        }
2362      }
2363      ImplMethodsVsClassMethods(S, IC, IDecl);
2364      AtomicPropertySetterGetterRules(IC, IDecl);
2365      DiagnoseOwningPropertyGetterSynthesis(IC);
2366
2367      if (LangOpts.ObjCNonFragileABI2)
2368        while (IDecl->getSuperClass()) {
2369          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2370          IDecl = IDecl->getSuperClass();
2371        }
2372    }
2373    SetIvarInitializers(IC);
2374  } else if (ObjCCategoryImplDecl* CatImplClass =
2375                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2376    CatImplClass->setAtEndRange(AtEnd);
2377
2378    // Find category interface decl and then check that all methods declared
2379    // in this interface are implemented in the category @implementation.
2380    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2381      for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
2382           Categories; Categories = Categories->getNextClassCategory()) {
2383        if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
2384          ImplMethodsVsClassMethods(S, CatImplClass, Categories);
2385          break;
2386        }
2387      }
2388    }
2389  }
2390  if (isInterfaceDeclKind) {
2391    // Reject invalid vardecls.
2392    for (unsigned i = 0; i != tuvNum; i++) {
2393      DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2394      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2395        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2396          if (!VDecl->hasExternalStorage())
2397            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2398        }
2399    }
2400  }
2401  ActOnObjCContainerFinishDefinition();
2402
2403  for (unsigned i = 0; i != tuvNum; i++) {
2404    DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2405    for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2406      (*I)->setTopLevelDeclInObjCContainer();
2407    Consumer.HandleTopLevelDeclInObjCContainer(DG);
2408  }
2409
2410  return ClassDecl;
2411}
2412
2413
2414/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2415/// objective-c's type qualifier from the parser version of the same info.
2416static Decl::ObjCDeclQualifier
2417CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2418  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2419}
2420
2421static inline
2422bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
2423                                        const AttrVec &A) {
2424  // If method is only declared in implementation (private method),
2425  // No need to issue any diagnostics on method definition with attributes.
2426  if (!IMD)
2427    return false;
2428
2429  // method declared in interface has no attribute.
2430  // But implementation has attributes. This is invalid
2431  if (!IMD->hasAttrs())
2432    return true;
2433
2434  const AttrVec &D = IMD->getAttrs();
2435  if (D.size() != A.size())
2436    return true;
2437
2438  // attributes on method declaration and definition must match exactly.
2439  // Note that we have at most a couple of attributes on methods, so this
2440  // n*n search is good enough.
2441  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
2442    bool match = false;
2443    for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
2444      if ((*i)->getKind() == (*i1)->getKind()) {
2445        match = true;
2446        break;
2447      }
2448    }
2449    if (!match)
2450      return true;
2451  }
2452  return false;
2453}
2454
2455namespace  {
2456  /// \brief Describes the compatibility of a result type with its method.
2457  enum ResultTypeCompatibilityKind {
2458    RTC_Compatible,
2459    RTC_Incompatible,
2460    RTC_Unknown
2461  };
2462}
2463
2464/// \brief Check whether the declared result type of the given Objective-C
2465/// method declaration is compatible with the method's class.
2466///
2467static ResultTypeCompatibilityKind
2468CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2469                                    ObjCInterfaceDecl *CurrentClass) {
2470  QualType ResultType = Method->getResultType();
2471
2472  // If an Objective-C method inherits its related result type, then its
2473  // declared result type must be compatible with its own class type. The
2474  // declared result type is compatible if:
2475  if (const ObjCObjectPointerType *ResultObjectType
2476                                = ResultType->getAs<ObjCObjectPointerType>()) {
2477    //   - it is id or qualified id, or
2478    if (ResultObjectType->isObjCIdType() ||
2479        ResultObjectType->isObjCQualifiedIdType())
2480      return RTC_Compatible;
2481
2482    if (CurrentClass) {
2483      if (ObjCInterfaceDecl *ResultClass
2484                                      = ResultObjectType->getInterfaceDecl()) {
2485        //   - it is the same as the method's class type, or
2486        if (declaresSameEntity(CurrentClass, ResultClass))
2487          return RTC_Compatible;
2488
2489        //   - it is a superclass of the method's class type
2490        if (ResultClass->isSuperClassOf(CurrentClass))
2491          return RTC_Compatible;
2492      }
2493    } else {
2494      // Any Objective-C pointer type might be acceptable for a protocol
2495      // method; we just don't know.
2496      return RTC_Unknown;
2497    }
2498  }
2499
2500  return RTC_Incompatible;
2501}
2502
2503namespace {
2504/// A helper class for searching for methods which a particular method
2505/// overrides.
2506class OverrideSearch {
2507public:
2508  Sema &S;
2509  ObjCMethodDecl *Method;
2510  llvm::SmallPtrSet<ObjCContainerDecl*, 128> Searched;
2511  llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
2512  bool Recursive;
2513
2514public:
2515  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2516    Selector selector = method->getSelector();
2517
2518    // Bypass this search if we've never seen an instance/class method
2519    // with this selector before.
2520    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2521    if (it == S.MethodPool.end()) {
2522      if (!S.ExternalSource) return;
2523      S.ReadMethodPool(selector);
2524
2525      it = S.MethodPool.find(selector);
2526      if (it == S.MethodPool.end())
2527        return;
2528    }
2529    ObjCMethodList &list =
2530      method->isInstanceMethod() ? it->second.first : it->second.second;
2531    if (!list.Method) return;
2532
2533    ObjCContainerDecl *container
2534      = cast<ObjCContainerDecl>(method->getDeclContext());
2535
2536    // Prevent the search from reaching this container again.  This is
2537    // important with categories, which override methods from the
2538    // interface and each other.
2539    Searched.insert(container);
2540    searchFromContainer(container);
2541  }
2542
2543  typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
2544  iterator begin() const { return Overridden.begin(); }
2545  iterator end() const { return Overridden.end(); }
2546
2547private:
2548  void searchFromContainer(ObjCContainerDecl *container) {
2549    if (container->isInvalidDecl()) return;
2550
2551    switch (container->getDeclKind()) {
2552#define OBJCCONTAINER(type, base) \
2553    case Decl::type: \
2554      searchFrom(cast<type##Decl>(container)); \
2555      break;
2556#define ABSTRACT_DECL(expansion)
2557#define DECL(type, base) \
2558    case Decl::type:
2559#include "clang/AST/DeclNodes.inc"
2560      llvm_unreachable("not an ObjC container!");
2561    }
2562  }
2563
2564  void searchFrom(ObjCProtocolDecl *protocol) {
2565    if (!protocol->hasDefinition())
2566      return;
2567
2568    // A method in a protocol declaration overrides declarations from
2569    // referenced ("parent") protocols.
2570    search(protocol->getReferencedProtocols());
2571  }
2572
2573  void searchFrom(ObjCCategoryDecl *category) {
2574    // A method in a category declaration overrides declarations from
2575    // the main class and from protocols the category references.
2576    search(category->getClassInterface());
2577    search(category->getReferencedProtocols());
2578  }
2579
2580  void searchFrom(ObjCCategoryImplDecl *impl) {
2581    // A method in a category definition that has a category
2582    // declaration overrides declarations from the category
2583    // declaration.
2584    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2585      search(category);
2586
2587    // Otherwise it overrides declarations from the class.
2588    } else {
2589      search(impl->getClassInterface());
2590    }
2591  }
2592
2593  void searchFrom(ObjCInterfaceDecl *iface) {
2594    // A method in a class declaration overrides declarations from
2595    if (!iface->hasDefinition())
2596      return;
2597
2598    //   - categories,
2599    for (ObjCCategoryDecl *category = iface->getCategoryList();
2600           category; category = category->getNextClassCategory())
2601      search(category);
2602
2603    //   - the super class, and
2604    if (ObjCInterfaceDecl *super = iface->getSuperClass())
2605      search(super);
2606
2607    //   - any referenced protocols.
2608    search(iface->getReferencedProtocols());
2609  }
2610
2611  void searchFrom(ObjCImplementationDecl *impl) {
2612    // A method in a class implementation overrides declarations from
2613    // the class interface.
2614    search(impl->getClassInterface());
2615  }
2616
2617
2618  void search(const ObjCProtocolList &protocols) {
2619    for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2620         i != e; ++i)
2621      search(*i);
2622  }
2623
2624  void search(ObjCContainerDecl *container) {
2625    // Abort if we've already searched this container.
2626    if (!Searched.insert(container)) return;
2627
2628    // Check for a method in this container which matches this selector.
2629    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2630                                                Method->isInstanceMethod());
2631
2632    // If we find one, record it and bail out.
2633    if (meth) {
2634      Overridden.insert(meth);
2635      return;
2636    }
2637
2638    // Otherwise, search for methods that a hypothetical method here
2639    // would have overridden.
2640
2641    // Note that we're now in a recursive case.
2642    Recursive = true;
2643
2644    searchFromContainer(container);
2645  }
2646};
2647}
2648
2649Decl *Sema::ActOnMethodDeclaration(
2650    Scope *S,
2651    SourceLocation MethodLoc, SourceLocation EndLoc,
2652    tok::TokenKind MethodType,
2653    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
2654    ArrayRef<SourceLocation> SelectorLocs,
2655    Selector Sel,
2656    // optional arguments. The number of types/arguments is obtained
2657    // from the Sel.getNumArgs().
2658    ObjCArgInfo *ArgInfo,
2659    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
2660    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
2661    bool isVariadic, bool MethodDefinition) {
2662  // Make sure we can establish a context for the method.
2663  if (!CurContext->isObjCContainer()) {
2664    Diag(MethodLoc, diag::error_missing_method_context);
2665    return 0;
2666  }
2667  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2668  Decl *ClassDecl = cast<Decl>(OCD);
2669  QualType resultDeclType;
2670
2671  bool HasRelatedResultType = false;
2672  TypeSourceInfo *ResultTInfo = 0;
2673  if (ReturnType) {
2674    resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
2675
2676    // Methods cannot return interface types. All ObjC objects are
2677    // passed by reference.
2678    if (resultDeclType->isObjCObjectType()) {
2679      Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
2680        << 0 << resultDeclType;
2681      return 0;
2682    }
2683
2684    HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
2685  } else { // get the type for "id".
2686    resultDeclType = Context.getObjCIdType();
2687    Diag(MethodLoc, diag::warn_missing_method_return_type)
2688      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
2689  }
2690
2691  ObjCMethodDecl* ObjCMethod =
2692    ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
2693                           resultDeclType,
2694                           ResultTInfo,
2695                           CurContext,
2696                           MethodType == tok::minus, isVariadic,
2697                           /*isSynthesized=*/false,
2698                           /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
2699                           MethodDeclKind == tok::objc_optional
2700                             ? ObjCMethodDecl::Optional
2701                             : ObjCMethodDecl::Required,
2702                           HasRelatedResultType);
2703
2704  SmallVector<ParmVarDecl*, 16> Params;
2705
2706  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
2707    QualType ArgType;
2708    TypeSourceInfo *DI;
2709
2710    if (ArgInfo[i].Type == 0) {
2711      ArgType = Context.getObjCIdType();
2712      DI = 0;
2713    } else {
2714      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
2715      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2716      ArgType = Context.getAdjustedParameterType(ArgType);
2717    }
2718
2719    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
2720                   LookupOrdinaryName, ForRedeclaration);
2721    LookupName(R, S);
2722    if (R.isSingleResult()) {
2723      NamedDecl *PrevDecl = R.getFoundDecl();
2724      if (S->isDeclScope(PrevDecl)) {
2725        Diag(ArgInfo[i].NameLoc,
2726             (MethodDefinition ? diag::warn_method_param_redefinition
2727                               : diag::warn_method_param_declaration))
2728          << ArgInfo[i].Name;
2729        Diag(PrevDecl->getLocation(),
2730             diag::note_previous_declaration);
2731      }
2732    }
2733
2734    SourceLocation StartLoc = DI
2735      ? DI->getTypeLoc().getBeginLoc()
2736      : ArgInfo[i].NameLoc;
2737
2738    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
2739                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
2740                                        ArgType, DI, SC_None, SC_None);
2741
2742    Param->setObjCMethodScopeInfo(i);
2743
2744    Param->setObjCDeclQualifier(
2745      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
2746
2747    // Apply the attributes to the parameter.
2748    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
2749
2750    if (Param->hasAttr<BlocksAttr>()) {
2751      Diag(Param->getLocation(), diag::err_block_on_nonlocal);
2752      Param->setInvalidDecl();
2753    }
2754    S->AddDecl(Param);
2755    IdResolver.AddDecl(Param);
2756
2757    Params.push_back(Param);
2758  }
2759
2760  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
2761    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
2762    QualType ArgType = Param->getType();
2763    if (ArgType.isNull())
2764      ArgType = Context.getObjCIdType();
2765    else
2766      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2767      ArgType = Context.getAdjustedParameterType(ArgType);
2768    if (ArgType->isObjCObjectType()) {
2769      Diag(Param->getLocation(),
2770           diag::err_object_cannot_be_passed_returned_by_value)
2771      << 1 << ArgType;
2772      Param->setInvalidDecl();
2773    }
2774    Param->setDeclContext(ObjCMethod);
2775
2776    Params.push_back(Param);
2777  }
2778
2779  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
2780  ObjCMethod->setObjCDeclQualifier(
2781    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
2782
2783  if (AttrList)
2784    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
2785
2786  // Add the method now.
2787  const ObjCMethodDecl *PrevMethod = 0;
2788  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
2789    if (MethodType == tok::minus) {
2790      PrevMethod = ImpDecl->getInstanceMethod(Sel);
2791      ImpDecl->addInstanceMethod(ObjCMethod);
2792    } else {
2793      PrevMethod = ImpDecl->getClassMethod(Sel);
2794      ImpDecl->addClassMethod(ObjCMethod);
2795    }
2796
2797    ObjCMethodDecl *IMD = 0;
2798    if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
2799      IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
2800                                ObjCMethod->isInstanceMethod());
2801    if (ObjCMethod->hasAttrs() &&
2802        containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
2803      SourceLocation MethodLoc = IMD->getLocation();
2804      if (!getSourceManager().isInSystemHeader(MethodLoc)) {
2805        Diag(EndLoc, diag::warn_attribute_method_def);
2806        Diag(MethodLoc, diag::note_method_declared_at)
2807          << ObjCMethod->getDeclName();
2808      }
2809    }
2810  } else {
2811    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
2812  }
2813
2814  if (PrevMethod) {
2815    // You can never have two method definitions with the same name.
2816    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
2817      << ObjCMethod->getDeclName();
2818    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2819  }
2820
2821  // If this Objective-C method does not have a related result type, but we
2822  // are allowed to infer related result types, try to do so based on the
2823  // method family.
2824  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
2825  if (!CurrentClass) {
2826    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
2827      CurrentClass = Cat->getClassInterface();
2828    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
2829      CurrentClass = Impl->getClassInterface();
2830    else if (ObjCCategoryImplDecl *CatImpl
2831                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
2832      CurrentClass = CatImpl->getClassInterface();
2833  }
2834
2835  ResultTypeCompatibilityKind RTC
2836    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
2837
2838  // Search for overridden methods and merge information down from them.
2839  OverrideSearch overrides(*this, ObjCMethod);
2840  for (OverrideSearch::iterator
2841         i = overrides.begin(), e = overrides.end(); i != e; ++i) {
2842    ObjCMethodDecl *overridden = *i;
2843
2844    // Propagate down the 'related result type' bit from overridden methods.
2845    if (RTC != RTC_Incompatible && overridden->hasRelatedResultType())
2846      ObjCMethod->SetRelatedResultType();
2847
2848    // Then merge the declarations.
2849    mergeObjCMethodDecls(ObjCMethod, overridden);
2850
2851    // Check for overriding methods
2852    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
2853        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
2854      CheckConflictingOverridingMethod(ObjCMethod, overridden,
2855              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
2856  }
2857
2858  bool ARCError = false;
2859  if (getLangOpts().ObjCAutoRefCount)
2860    ARCError = CheckARCMethodDecl(*this, ObjCMethod);
2861
2862  // Infer the related result type when possible.
2863  if (!ARCError && RTC == RTC_Compatible &&
2864      !ObjCMethod->hasRelatedResultType() &&
2865      LangOpts.ObjCInferRelatedResultType) {
2866    bool InferRelatedResultType = false;
2867    switch (ObjCMethod->getMethodFamily()) {
2868    case OMF_None:
2869    case OMF_copy:
2870    case OMF_dealloc:
2871    case OMF_finalize:
2872    case OMF_mutableCopy:
2873    case OMF_release:
2874    case OMF_retainCount:
2875    case OMF_performSelector:
2876      break;
2877
2878    case OMF_alloc:
2879    case OMF_new:
2880      InferRelatedResultType = ObjCMethod->isClassMethod();
2881      break;
2882
2883    case OMF_init:
2884    case OMF_autorelease:
2885    case OMF_retain:
2886    case OMF_self:
2887      InferRelatedResultType = ObjCMethod->isInstanceMethod();
2888      break;
2889    }
2890
2891    if (InferRelatedResultType)
2892      ObjCMethod->SetRelatedResultType();
2893  }
2894
2895  return ObjCMethod;
2896}
2897
2898bool Sema::CheckObjCDeclScope(Decl *D) {
2899  if (isa<TranslationUnitDecl>(CurContext->getRedeclContext()))
2900    return false;
2901  // Following is also an error. But it is caused by a missing @end
2902  // and diagnostic is issued elsewhere.
2903  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) {
2904    return false;
2905  }
2906
2907  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
2908  D->setInvalidDecl();
2909
2910  return true;
2911}
2912
2913/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2914/// instance variables of ClassName into Decls.
2915void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
2916                     IdentifierInfo *ClassName,
2917                     SmallVectorImpl<Decl*> &Decls) {
2918  // Check that ClassName is a valid class
2919  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
2920  if (!Class) {
2921    Diag(DeclStart, diag::err_undef_interface) << ClassName;
2922    return;
2923  }
2924  if (LangOpts.ObjCNonFragileABI) {
2925    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
2926    return;
2927  }
2928
2929  // Collect the instance variables
2930  SmallVector<const ObjCIvarDecl*, 32> Ivars;
2931  Context.DeepCollectObjCIvars(Class, true, Ivars);
2932  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2933  for (unsigned i = 0; i < Ivars.size(); i++) {
2934    const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
2935    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
2936    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
2937                                           /*FIXME: StartL=*/ID->getLocation(),
2938                                           ID->getLocation(),
2939                                           ID->getIdentifier(), ID->getType(),
2940                                           ID->getBitWidth());
2941    Decls.push_back(FD);
2942  }
2943
2944  // Introduce all of these fields into the appropriate scope.
2945  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
2946       D != Decls.end(); ++D) {
2947    FieldDecl *FD = cast<FieldDecl>(*D);
2948    if (getLangOpts().CPlusPlus)
2949      PushOnScopeChains(cast<FieldDecl>(FD), S);
2950    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
2951      Record->addDecl(FD);
2952  }
2953}
2954
2955/// \brief Build a type-check a new Objective-C exception variable declaration.
2956VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
2957                                      SourceLocation StartLoc,
2958                                      SourceLocation IdLoc,
2959                                      IdentifierInfo *Id,
2960                                      bool Invalid) {
2961  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
2962  // duration shall not be qualified by an address-space qualifier."
2963  // Since all parameters have automatic store duration, they can not have
2964  // an address space.
2965  if (T.getAddressSpace() != 0) {
2966    Diag(IdLoc, diag::err_arg_with_address_space);
2967    Invalid = true;
2968  }
2969
2970  // An @catch parameter must be an unqualified object pointer type;
2971  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
2972  if (Invalid) {
2973    // Don't do any further checking.
2974  } else if (T->isDependentType()) {
2975    // Okay: we don't know what this type will instantiate to.
2976  } else if (!T->isObjCObjectPointerType()) {
2977    Invalid = true;
2978    Diag(IdLoc ,diag::err_catch_param_not_objc_type);
2979  } else if (T->isObjCQualifiedIdType()) {
2980    Invalid = true;
2981    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
2982  }
2983
2984  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
2985                                 T, TInfo, SC_None, SC_None);
2986  New->setExceptionVariable(true);
2987
2988  // In ARC, infer 'retaining' for variables of retainable type.
2989  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
2990    Invalid = true;
2991
2992  if (Invalid)
2993    New->setInvalidDecl();
2994  return New;
2995}
2996
2997Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
2998  const DeclSpec &DS = D.getDeclSpec();
2999
3000  // We allow the "register" storage class on exception variables because
3001  // GCC did, but we drop it completely. Any other storage class is an error.
3002  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3003    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
3004      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
3005  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3006    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
3007      << DS.getStorageClassSpec();
3008  }
3009  if (D.getDeclSpec().isThreadSpecified())
3010    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3011  D.getMutableDeclSpec().ClearStorageClassSpecs();
3012
3013  DiagnoseFunctionSpecifiers(D);
3014
3015  // Check that there are no default arguments inside the type of this
3016  // exception object (C++ only).
3017  if (getLangOpts().CPlusPlus)
3018    CheckExtraCXXDefaultArguments(D);
3019
3020  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3021  QualType ExceptionType = TInfo->getType();
3022
3023  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
3024                                        D.getSourceRange().getBegin(),
3025                                        D.getIdentifierLoc(),
3026                                        D.getIdentifier(),
3027                                        D.isInvalidType());
3028
3029  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3030  if (D.getCXXScopeSpec().isSet()) {
3031    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
3032      << D.getCXXScopeSpec().getRange();
3033    New->setInvalidDecl();
3034  }
3035
3036  // Add the parameter declaration into this scope.
3037  S->AddDecl(New);
3038  if (D.getIdentifier())
3039    IdResolver.AddDecl(New);
3040
3041  ProcessDeclAttributes(S, New, D);
3042
3043  if (New->hasAttr<BlocksAttr>())
3044    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3045  return New;
3046}
3047
3048/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
3049/// initialization.
3050void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
3051                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
3052  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
3053       Iv= Iv->getNextIvar()) {
3054    QualType QT = Context.getBaseElementType(Iv->getType());
3055    if (QT->isRecordType())
3056      Ivars.push_back(Iv);
3057  }
3058}
3059
3060void Sema::DiagnoseUseOfUnimplementedSelectors() {
3061  // Load referenced selectors from the external source.
3062  if (ExternalSource) {
3063    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
3064    ExternalSource->ReadReferencedSelectors(Sels);
3065    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
3066      ReferencedSelectors[Sels[I].first] = Sels[I].second;
3067  }
3068
3069  // Warning will be issued only when selector table is
3070  // generated (which means there is at lease one implementation
3071  // in the TU). This is to match gcc's behavior.
3072  if (ReferencedSelectors.empty() ||
3073      !Context.AnyObjCImplementation())
3074    return;
3075  for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
3076        ReferencedSelectors.begin(),
3077       E = ReferencedSelectors.end(); S != E; ++S) {
3078    Selector Sel = (*S).first;
3079    if (!LookupImplementedMethodInGlobalPool(Sel))
3080      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
3081  }
3082  return;
3083}
3084