1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Implements semantic analysis for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "TreeTransform.h"
17#include "TypeLocBuilder.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTLambda.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Sema/Scope.h"
35#include "clang/Sema/ScopeInfo.h"
36#include "clang/Sema/SemaLambda.h"
37#include "clang/Sema/TemplateDeduction.h"
38#include "llvm/ADT/APInt.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Support/ErrorHandling.h"
41using namespace clang;
42using namespace sema;
43
44/// \brief Handle the result of the special case name lookup for inheriting
45/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
46/// constructor names in member using declarations, even if 'X' is not the
47/// name of the corresponding type.
48ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
49                                              SourceLocation NameLoc,
50                                              IdentifierInfo &Name) {
51  NestedNameSpecifier *NNS = SS.getScopeRep();
52
53  // Convert the nested-name-specifier into a type.
54  QualType Type;
55  switch (NNS->getKind()) {
56  case NestedNameSpecifier::TypeSpec:
57  case NestedNameSpecifier::TypeSpecWithTemplate:
58    Type = QualType(NNS->getAsType(), 0);
59    break;
60
61  case NestedNameSpecifier::Identifier:
62    // Strip off the last layer of the nested-name-specifier and build a
63    // typename type for it.
64    assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
65    Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
66                                        NNS->getAsIdentifier());
67    break;
68
69  case NestedNameSpecifier::Global:
70  case NestedNameSpecifier::Super:
71  case NestedNameSpecifier::Namespace:
72  case NestedNameSpecifier::NamespaceAlias:
73    llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
74  }
75
76  // This reference to the type is located entirely at the location of the
77  // final identifier in the qualified-id.
78  return CreateParsedType(Type,
79                          Context.getTrivialTypeSourceInfo(Type, NameLoc));
80}
81
82ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
83                                   IdentifierInfo &II,
84                                   SourceLocation NameLoc,
85                                   Scope *S, CXXScopeSpec &SS,
86                                   ParsedType ObjectTypePtr,
87                                   bool EnteringContext) {
88  // Determine where to perform name lookup.
89
90  // FIXME: This area of the standard is very messy, and the current
91  // wording is rather unclear about which scopes we search for the
92  // destructor name; see core issues 399 and 555. Issue 399 in
93  // particular shows where the current description of destructor name
94  // lookup is completely out of line with existing practice, e.g.,
95  // this appears to be ill-formed:
96  //
97  //   namespace N {
98  //     template <typename T> struct S {
99  //       ~S();
100  //     };
101  //   }
102  //
103  //   void f(N::S<int>* s) {
104  //     s->N::S<int>::~S();
105  //   }
106  //
107  // See also PR6358 and PR6359.
108  // For this reason, we're currently only doing the C++03 version of this
109  // code; the C++0x version has to wait until we get a proper spec.
110  QualType SearchType;
111  DeclContext *LookupCtx = nullptr;
112  bool isDependent = false;
113  bool LookInScope = false;
114
115  if (SS.isInvalid())
116    return nullptr;
117
118  // If we have an object type, it's because we are in a
119  // pseudo-destructor-expression or a member access expression, and
120  // we know what type we're looking for.
121  if (ObjectTypePtr)
122    SearchType = GetTypeFromParser(ObjectTypePtr);
123
124  if (SS.isSet()) {
125    NestedNameSpecifier *NNS = SS.getScopeRep();
126
127    bool AlreadySearched = false;
128    bool LookAtPrefix = true;
129    // C++11 [basic.lookup.qual]p6:
130    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
131    //   the type-names are looked up as types in the scope designated by the
132    //   nested-name-specifier. Similarly, in a qualified-id of the form:
133    //
134    //     nested-name-specifier[opt] class-name :: ~ class-name
135    //
136    //   the second class-name is looked up in the same scope as the first.
137    //
138    // Here, we determine whether the code below is permitted to look at the
139    // prefix of the nested-name-specifier.
140    DeclContext *DC = computeDeclContext(SS, EnteringContext);
141    if (DC && DC->isFileContext()) {
142      AlreadySearched = true;
143      LookupCtx = DC;
144      isDependent = false;
145    } else if (DC && isa<CXXRecordDecl>(DC)) {
146      LookAtPrefix = false;
147      LookInScope = true;
148    }
149
150    // The second case from the C++03 rules quoted further above.
151    NestedNameSpecifier *Prefix = nullptr;
152    if (AlreadySearched) {
153      // Nothing left to do.
154    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
155      CXXScopeSpec PrefixSS;
156      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
157      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
158      isDependent = isDependentScopeSpecifier(PrefixSS);
159    } else if (ObjectTypePtr) {
160      LookupCtx = computeDeclContext(SearchType);
161      isDependent = SearchType->isDependentType();
162    } else {
163      LookupCtx = computeDeclContext(SS, EnteringContext);
164      isDependent = LookupCtx && LookupCtx->isDependentContext();
165    }
166  } else if (ObjectTypePtr) {
167    // C++ [basic.lookup.classref]p3:
168    //   If the unqualified-id is ~type-name, the type-name is looked up
169    //   in the context of the entire postfix-expression. If the type T
170    //   of the object expression is of a class type C, the type-name is
171    //   also looked up in the scope of class C. At least one of the
172    //   lookups shall find a name that refers to (possibly
173    //   cv-qualified) T.
174    LookupCtx = computeDeclContext(SearchType);
175    isDependent = SearchType->isDependentType();
176    assert((isDependent || !SearchType->isIncompleteType()) &&
177           "Caller should have completed object type");
178
179    LookInScope = true;
180  } else {
181    // Perform lookup into the current scope (only).
182    LookInScope = true;
183  }
184
185  TypeDecl *NonMatchingTypeDecl = nullptr;
186  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
187  for (unsigned Step = 0; Step != 2; ++Step) {
188    // Look for the name first in the computed lookup context (if we
189    // have one) and, if that fails to find a match, in the scope (if
190    // we're allowed to look there).
191    Found.clear();
192    if (Step == 0 && LookupCtx)
193      LookupQualifiedName(Found, LookupCtx);
194    else if (Step == 1 && LookInScope && S)
195      LookupName(Found, S);
196    else
197      continue;
198
199    // FIXME: Should we be suppressing ambiguities here?
200    if (Found.isAmbiguous())
201      return nullptr;
202
203    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
204      QualType T = Context.getTypeDeclType(Type);
205      MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
206
207      if (SearchType.isNull() || SearchType->isDependentType() ||
208          Context.hasSameUnqualifiedType(T, SearchType)) {
209        // We found our type!
210
211        return CreateParsedType(T,
212                                Context.getTrivialTypeSourceInfo(T, NameLoc));
213      }
214
215      if (!SearchType.isNull())
216        NonMatchingTypeDecl = Type;
217    }
218
219    // If the name that we found is a class template name, and it is
220    // the same name as the template name in the last part of the
221    // nested-name-specifier (if present) or the object type, then
222    // this is the destructor for that class.
223    // FIXME: This is a workaround until we get real drafting for core
224    // issue 399, for which there isn't even an obvious direction.
225    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
226      QualType MemberOfType;
227      if (SS.isSet()) {
228        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
229          // Figure out the type of the context, if it has one.
230          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
231            MemberOfType = Context.getTypeDeclType(Record);
232        }
233      }
234      if (MemberOfType.isNull())
235        MemberOfType = SearchType;
236
237      if (MemberOfType.isNull())
238        continue;
239
240      // We're referring into a class template specialization. If the
241      // class template we found is the same as the template being
242      // specialized, we found what we are looking for.
243      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
244        if (ClassTemplateSpecializationDecl *Spec
245              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
246          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
247                Template->getCanonicalDecl())
248            return CreateParsedType(
249                MemberOfType,
250                Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
251        }
252
253        continue;
254      }
255
256      // We're referring to an unresolved class template
257      // specialization. Determine whether we class template we found
258      // is the same as the template being specialized or, if we don't
259      // know which template is being specialized, that it at least
260      // has the same name.
261      if (const TemplateSpecializationType *SpecType
262            = MemberOfType->getAs<TemplateSpecializationType>()) {
263        TemplateName SpecName = SpecType->getTemplateName();
264
265        // The class template we found is the same template being
266        // specialized.
267        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
268          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
269            return CreateParsedType(
270                MemberOfType,
271                Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
272
273          continue;
274        }
275
276        // The class template we found has the same name as the
277        // (dependent) template name being specialized.
278        if (DependentTemplateName *DepTemplate
279                                    = SpecName.getAsDependentTemplateName()) {
280          if (DepTemplate->isIdentifier() &&
281              DepTemplate->getIdentifier() == Template->getIdentifier())
282            return CreateParsedType(
283                MemberOfType,
284                Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
285
286          continue;
287        }
288      }
289    }
290  }
291
292  if (isDependent) {
293    // We didn't find our type, but that's okay: it's dependent
294    // anyway.
295
296    // FIXME: What if we have no nested-name-specifier?
297    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
298                                   SS.getWithLocInContext(Context),
299                                   II, NameLoc);
300    return ParsedType::make(T);
301  }
302
303  if (NonMatchingTypeDecl) {
304    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
305    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
306      << T << SearchType;
307    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
308      << T;
309  } else if (ObjectTypePtr)
310    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
311      << &II;
312  else {
313    SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
314                                          diag::err_destructor_class_name);
315    if (S) {
316      const DeclContext *Ctx = S->getEntity();
317      if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
318        DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
319                                                 Class->getNameAsString());
320    }
321  }
322
323  return nullptr;
324}
325
326ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
327    if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
328      return nullptr;
329    assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
330           && "only get destructor types from declspecs");
331    QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
332    QualType SearchType = GetTypeFromParser(ObjectType);
333    if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
334      return ParsedType::make(T);
335    }
336
337    Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
338      << T << SearchType;
339    return nullptr;
340}
341
342bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
343                                  const UnqualifiedId &Name) {
344  assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId);
345
346  if (!SS.isValid())
347    return false;
348
349  switch (SS.getScopeRep()->getKind()) {
350  case NestedNameSpecifier::Identifier:
351  case NestedNameSpecifier::TypeSpec:
352  case NestedNameSpecifier::TypeSpecWithTemplate:
353    // Per C++11 [over.literal]p2, literal operators can only be declared at
354    // namespace scope. Therefore, this unqualified-id cannot name anything.
355    // Reject it early, because we have no AST representation for this in the
356    // case where the scope is dependent.
357    Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
358      << SS.getScopeRep();
359    return true;
360
361  case NestedNameSpecifier::Global:
362  case NestedNameSpecifier::Super:
363  case NestedNameSpecifier::Namespace:
364  case NestedNameSpecifier::NamespaceAlias:
365    return false;
366  }
367
368  llvm_unreachable("unknown nested name specifier kind");
369}
370
371/// \brief Build a C++ typeid expression with a type operand.
372ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
373                                SourceLocation TypeidLoc,
374                                TypeSourceInfo *Operand,
375                                SourceLocation RParenLoc) {
376  // C++ [expr.typeid]p4:
377  //   The top-level cv-qualifiers of the lvalue expression or the type-id
378  //   that is the operand of typeid are always ignored.
379  //   If the type of the type-id is a class type or a reference to a class
380  //   type, the class shall be completely-defined.
381  Qualifiers Quals;
382  QualType T
383    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
384                                      Quals);
385  if (T->getAs<RecordType>() &&
386      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
387    return ExprError();
388
389  if (T->isVariablyModifiedType())
390    return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
391
392  return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
393                                     SourceRange(TypeidLoc, RParenLoc));
394}
395
396/// \brief Build a C++ typeid expression with an expression operand.
397ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
398                                SourceLocation TypeidLoc,
399                                Expr *E,
400                                SourceLocation RParenLoc) {
401  bool WasEvaluated = false;
402  if (E && !E->isTypeDependent()) {
403    if (E->getType()->isPlaceholderType()) {
404      ExprResult result = CheckPlaceholderExpr(E);
405      if (result.isInvalid()) return ExprError();
406      E = result.get();
407    }
408
409    QualType T = E->getType();
410    if (const RecordType *RecordT = T->getAs<RecordType>()) {
411      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
412      // C++ [expr.typeid]p3:
413      //   [...] If the type of the expression is a class type, the class
414      //   shall be completely-defined.
415      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
416        return ExprError();
417
418      // C++ [expr.typeid]p3:
419      //   When typeid is applied to an expression other than an glvalue of a
420      //   polymorphic class type [...] [the] expression is an unevaluated
421      //   operand. [...]
422      if (RecordD->isPolymorphic() && E->isGLValue()) {
423        // The subexpression is potentially evaluated; switch the context
424        // and recheck the subexpression.
425        ExprResult Result = TransformToPotentiallyEvaluated(E);
426        if (Result.isInvalid()) return ExprError();
427        E = Result.get();
428
429        // We require a vtable to query the type at run time.
430        MarkVTableUsed(TypeidLoc, RecordD);
431        WasEvaluated = true;
432      }
433    }
434
435    // C++ [expr.typeid]p4:
436    //   [...] If the type of the type-id is a reference to a possibly
437    //   cv-qualified type, the result of the typeid expression refers to a
438    //   std::type_info object representing the cv-unqualified referenced
439    //   type.
440    Qualifiers Quals;
441    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
442    if (!Context.hasSameType(T, UnqualT)) {
443      T = UnqualT;
444      E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
445    }
446  }
447
448  if (E->getType()->isVariablyModifiedType())
449    return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
450                     << E->getType());
451  else if (ActiveTemplateInstantiations.empty() &&
452           E->HasSideEffects(Context, WasEvaluated)) {
453    // The expression operand for typeid is in an unevaluated expression
454    // context, so side effects could result in unintended consequences.
455    Diag(E->getExprLoc(), WasEvaluated
456                              ? diag::warn_side_effects_typeid
457                              : diag::warn_side_effects_unevaluated_context);
458  }
459
460  return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
461                                     SourceRange(TypeidLoc, RParenLoc));
462}
463
464/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
465ExprResult
466Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
467                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
468  // Find the std::type_info type.
469  if (!getStdNamespace())
470    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
471
472  if (!CXXTypeInfoDecl) {
473    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
474    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
475    LookupQualifiedName(R, getStdNamespace());
476    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
477    // Microsoft's typeinfo doesn't have type_info in std but in the global
478    // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
479    if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
480      LookupQualifiedName(R, Context.getTranslationUnitDecl());
481      CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
482    }
483    if (!CXXTypeInfoDecl)
484      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
485  }
486
487  if (!getLangOpts().RTTI) {
488    return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
489  }
490
491  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
492
493  if (isType) {
494    // The operand is a type; handle it as such.
495    TypeSourceInfo *TInfo = nullptr;
496    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
497                                   &TInfo);
498    if (T.isNull())
499      return ExprError();
500
501    if (!TInfo)
502      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
503
504    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
505  }
506
507  // The operand is an expression.
508  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
509}
510
511/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
512/// a single GUID.
513static void
514getUuidAttrOfType(Sema &SemaRef, QualType QT,
515                  llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
516  // Optionally remove one level of pointer, reference or array indirection.
517  const Type *Ty = QT.getTypePtr();
518  if (QT->isPointerType() || QT->isReferenceType())
519    Ty = QT->getPointeeType().getTypePtr();
520  else if (QT->isArrayType())
521    Ty = Ty->getBaseElementTypeUnsafe();
522
523  const auto *RD = Ty->getAsCXXRecordDecl();
524  if (!RD)
525    return;
526
527  if (const auto *Uuid = RD->getMostRecentDecl()->getAttr<UuidAttr>()) {
528    UuidAttrs.insert(Uuid);
529    return;
530  }
531
532  // __uuidof can grab UUIDs from template arguments.
533  if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
534    const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
535    for (const TemplateArgument &TA : TAL.asArray()) {
536      const UuidAttr *UuidForTA = nullptr;
537      if (TA.getKind() == TemplateArgument::Type)
538        getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
539      else if (TA.getKind() == TemplateArgument::Declaration)
540        getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
541
542      if (UuidForTA)
543        UuidAttrs.insert(UuidForTA);
544    }
545  }
546}
547
548/// \brief Build a Microsoft __uuidof expression with a type operand.
549ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
550                                SourceLocation TypeidLoc,
551                                TypeSourceInfo *Operand,
552                                SourceLocation RParenLoc) {
553  StringRef UuidStr;
554  if (!Operand->getType()->isDependentType()) {
555    llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
556    getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
557    if (UuidAttrs.empty())
558      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
559    if (UuidAttrs.size() > 1)
560      return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
561    UuidStr = UuidAttrs.back()->getGuid();
562  }
563
564  return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, UuidStr,
565                                     SourceRange(TypeidLoc, RParenLoc));
566}
567
568/// \brief Build a Microsoft __uuidof expression with an expression operand.
569ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
570                                SourceLocation TypeidLoc,
571                                Expr *E,
572                                SourceLocation RParenLoc) {
573  StringRef UuidStr;
574  if (!E->getType()->isDependentType()) {
575    if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
576      UuidStr = "00000000-0000-0000-0000-000000000000";
577    } else {
578      llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
579      getUuidAttrOfType(*this, E->getType(), UuidAttrs);
580      if (UuidAttrs.empty())
581        return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
582      if (UuidAttrs.size() > 1)
583        return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
584      UuidStr = UuidAttrs.back()->getGuid();
585    }
586  }
587
588  return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, UuidStr,
589                                     SourceRange(TypeidLoc, RParenLoc));
590}
591
592/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
593ExprResult
594Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
595                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
596  // If MSVCGuidDecl has not been cached, do the lookup.
597  if (!MSVCGuidDecl) {
598    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
599    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
600    LookupQualifiedName(R, Context.getTranslationUnitDecl());
601    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
602    if (!MSVCGuidDecl)
603      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
604  }
605
606  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
607
608  if (isType) {
609    // The operand is a type; handle it as such.
610    TypeSourceInfo *TInfo = nullptr;
611    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
612                                   &TInfo);
613    if (T.isNull())
614      return ExprError();
615
616    if (!TInfo)
617      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
618
619    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
620  }
621
622  // The operand is an expression.
623  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
624}
625
626/// ActOnCXXBoolLiteral - Parse {true,false} literals.
627ExprResult
628Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
629  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
630         "Unknown C++ Boolean value!");
631  return new (Context)
632      CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
633}
634
635/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
636ExprResult
637Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
638  return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
639}
640
641/// ActOnCXXThrow - Parse throw expressions.
642ExprResult
643Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
644  bool IsThrownVarInScope = false;
645  if (Ex) {
646    // C++0x [class.copymove]p31:
647    //   When certain criteria are met, an implementation is allowed to omit the
648    //   copy/move construction of a class object [...]
649    //
650    //     - in a throw-expression, when the operand is the name of a
651    //       non-volatile automatic object (other than a function or catch-
652    //       clause parameter) whose scope does not extend beyond the end of the
653    //       innermost enclosing try-block (if there is one), the copy/move
654    //       operation from the operand to the exception object (15.1) can be
655    //       omitted by constructing the automatic object directly into the
656    //       exception object
657    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
658      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
659        if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
660          for( ; S; S = S->getParent()) {
661            if (S->isDeclScope(Var)) {
662              IsThrownVarInScope = true;
663              break;
664            }
665
666            if (S->getFlags() &
667                (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
668                 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
669                 Scope::TryScope))
670              break;
671          }
672        }
673      }
674  }
675
676  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
677}
678
679ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
680                               bool IsThrownVarInScope) {
681  // Don't report an error if 'throw' is used in system headers.
682  if (!getLangOpts().CXXExceptions &&
683      !getSourceManager().isInSystemHeader(OpLoc))
684    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
685
686  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
687    Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
688
689  if (Ex && !Ex->isTypeDependent()) {
690    QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
691    if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
692      return ExprError();
693
694    // Initialize the exception result.  This implicitly weeds out
695    // abstract types or types with inaccessible copy constructors.
696
697    // C++0x [class.copymove]p31:
698    //   When certain criteria are met, an implementation is allowed to omit the
699    //   copy/move construction of a class object [...]
700    //
701    //     - in a throw-expression, when the operand is the name of a
702    //       non-volatile automatic object (other than a function or
703    //       catch-clause
704    //       parameter) whose scope does not extend beyond the end of the
705    //       innermost enclosing try-block (if there is one), the copy/move
706    //       operation from the operand to the exception object (15.1) can be
707    //       omitted by constructing the automatic object directly into the
708    //       exception object
709    const VarDecl *NRVOVariable = nullptr;
710    if (IsThrownVarInScope)
711      NRVOVariable = getCopyElisionCandidate(QualType(), Ex, false);
712
713    InitializedEntity Entity = InitializedEntity::InitializeException(
714        OpLoc, ExceptionObjectTy,
715        /*NRVO=*/NRVOVariable != nullptr);
716    ExprResult Res = PerformMoveOrCopyInitialization(
717        Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
718    if (Res.isInvalid())
719      return ExprError();
720    Ex = Res.get();
721  }
722
723  return new (Context)
724      CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
725}
726
727static void
728collectPublicBases(CXXRecordDecl *RD,
729                   llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
730                   llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
731                   llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
732                   bool ParentIsPublic) {
733  for (const CXXBaseSpecifier &BS : RD->bases()) {
734    CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
735    bool NewSubobject;
736    // Virtual bases constitute the same subobject.  Non-virtual bases are
737    // always distinct subobjects.
738    if (BS.isVirtual())
739      NewSubobject = VBases.insert(BaseDecl).second;
740    else
741      NewSubobject = true;
742
743    if (NewSubobject)
744      ++SubobjectsSeen[BaseDecl];
745
746    // Only add subobjects which have public access throughout the entire chain.
747    bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
748    if (PublicPath)
749      PublicSubobjectsSeen.insert(BaseDecl);
750
751    // Recurse on to each base subobject.
752    collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
753                       PublicPath);
754  }
755}
756
757static void getUnambiguousPublicSubobjects(
758    CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
759  llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
760  llvm::SmallSet<CXXRecordDecl *, 2> VBases;
761  llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
762  SubobjectsSeen[RD] = 1;
763  PublicSubobjectsSeen.insert(RD);
764  collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
765                     /*ParentIsPublic=*/true);
766
767  for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
768    // Skip ambiguous objects.
769    if (SubobjectsSeen[PublicSubobject] > 1)
770      continue;
771
772    Objects.push_back(PublicSubobject);
773  }
774}
775
776/// CheckCXXThrowOperand - Validate the operand of a throw.
777bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
778                                QualType ExceptionObjectTy, Expr *E) {
779  //   If the type of the exception would be an incomplete type or a pointer
780  //   to an incomplete type other than (cv) void the program is ill-formed.
781  QualType Ty = ExceptionObjectTy;
782  bool isPointer = false;
783  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
784    Ty = Ptr->getPointeeType();
785    isPointer = true;
786  }
787  if (!isPointer || !Ty->isVoidType()) {
788    if (RequireCompleteType(ThrowLoc, Ty,
789                            isPointer ? diag::err_throw_incomplete_ptr
790                                      : diag::err_throw_incomplete,
791                            E->getSourceRange()))
792      return true;
793
794    if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
795                               diag::err_throw_abstract_type, E))
796      return true;
797  }
798
799  // If the exception has class type, we need additional handling.
800  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
801  if (!RD)
802    return false;
803
804  // If we are throwing a polymorphic class type or pointer thereof,
805  // exception handling will make use of the vtable.
806  MarkVTableUsed(ThrowLoc, RD);
807
808  // If a pointer is thrown, the referenced object will not be destroyed.
809  if (isPointer)
810    return false;
811
812  // If the class has a destructor, we must be able to call it.
813  if (!RD->hasIrrelevantDestructor()) {
814    if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
815      MarkFunctionReferenced(E->getExprLoc(), Destructor);
816      CheckDestructorAccess(E->getExprLoc(), Destructor,
817                            PDiag(diag::err_access_dtor_exception) << Ty);
818      if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
819        return true;
820    }
821  }
822
823  // The MSVC ABI creates a list of all types which can catch the exception
824  // object.  This list also references the appropriate copy constructor to call
825  // if the object is caught by value and has a non-trivial copy constructor.
826  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
827    // We are only interested in the public, unambiguous bases contained within
828    // the exception object.  Bases which are ambiguous or otherwise
829    // inaccessible are not catchable types.
830    llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
831    getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
832
833    for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
834      // Attempt to lookup the copy constructor.  Various pieces of machinery
835      // will spring into action, like template instantiation, which means this
836      // cannot be a simple walk of the class's decls.  Instead, we must perform
837      // lookup and overload resolution.
838      CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
839      if (!CD)
840        continue;
841
842      // Mark the constructor referenced as it is used by this throw expression.
843      MarkFunctionReferenced(E->getExprLoc(), CD);
844
845      // Skip this copy constructor if it is trivial, we don't need to record it
846      // in the catchable type data.
847      if (CD->isTrivial())
848        continue;
849
850      // The copy constructor is non-trivial, create a mapping from this class
851      // type to this constructor.
852      // N.B.  The selection of copy constructor is not sensitive to this
853      // particular throw-site.  Lookup will be performed at the catch-site to
854      // ensure that the copy constructor is, in fact, accessible (via
855      // friendship or any other means).
856      Context.addCopyConstructorForExceptionObject(Subobject, CD);
857
858      // We don't keep the instantiated default argument expressions around so
859      // we must rebuild them here.
860      for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
861        // Skip any default arguments that we've already instantiated.
862        if (Context.getDefaultArgExprForConstructor(CD, I))
863          continue;
864
865        Expr *DefaultArg =
866            BuildCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)).get();
867        Context.addDefaultArgExprForConstructor(CD, I, DefaultArg);
868      }
869    }
870  }
871
872  return false;
873}
874
875static QualType adjustCVQualifiersForCXXThisWithinLambda(
876    ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
877    DeclContext *CurSemaContext, ASTContext &ASTCtx) {
878
879  QualType ClassType = ThisTy->getPointeeType();
880  LambdaScopeInfo *CurLSI = nullptr;
881  DeclContext *CurDC = CurSemaContext;
882
883  // Iterate through the stack of lambdas starting from the innermost lambda to
884  // the outermost lambda, checking if '*this' is ever captured by copy - since
885  // that could change the cv-qualifiers of the '*this' object.
886  // The object referred to by '*this' starts out with the cv-qualifiers of its
887  // member function.  We then start with the innermost lambda and iterate
888  // outward checking to see if any lambda performs a by-copy capture of '*this'
889  // - and if so, any nested lambda must respect the 'constness' of that
890  // capturing lamdbda's call operator.
891  //
892
893  // The issue is that we cannot rely entirely on the FunctionScopeInfo stack
894  // since ScopeInfos are pushed on during parsing and treetransforming. But
895  // since a generic lambda's call operator can be instantiated anywhere (even
896  // end of the TU) we need to be able to examine its enclosing lambdas and so
897  // we use the DeclContext to get a hold of the closure-class and query it for
898  // capture information.  The reason we don't just resort to always using the
899  // DeclContext chain is that it is only mature for lambda expressions
900  // enclosing generic lambda's call operators that are being instantiated.
901
902  for (int I = FunctionScopes.size();
903       I-- && isa<LambdaScopeInfo>(FunctionScopes[I]);
904       CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
905    CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
906
907    if (!CurLSI->isCXXThisCaptured())
908        continue;
909
910    auto C = CurLSI->getCXXThisCapture();
911
912    if (C.isCopyCapture()) {
913      ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
914      if (CurLSI->CallOperator->isConst())
915        ClassType.addConst();
916      return ASTCtx.getPointerType(ClassType);
917    }
918  }
919  // We've run out of ScopeInfos but check if CurDC is a lambda (which can
920  // happen during instantiation of generic lambdas)
921  if (isLambdaCallOperator(CurDC)) {
922    assert(CurLSI);
923    assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator));
924    assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
925
926    auto IsThisCaptured =
927        [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
928      IsConst = false;
929      IsByCopy = false;
930      for (auto &&C : Closure->captures()) {
931        if (C.capturesThis()) {
932          if (C.getCaptureKind() == LCK_StarThis)
933            IsByCopy = true;
934          if (Closure->getLambdaCallOperator()->isConst())
935            IsConst = true;
936          return true;
937        }
938      }
939      return false;
940    };
941
942    bool IsByCopyCapture = false;
943    bool IsConstCapture = false;
944    CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
945    while (Closure &&
946           IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
947      if (IsByCopyCapture) {
948        ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
949        if (IsConstCapture)
950          ClassType.addConst();
951        return ASTCtx.getPointerType(ClassType);
952      }
953      Closure = isLambdaCallOperator(Closure->getParent())
954                    ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
955                    : nullptr;
956    }
957  }
958  return ASTCtx.getPointerType(ClassType);
959}
960
961QualType Sema::getCurrentThisType() {
962  DeclContext *DC = getFunctionLevelDeclContext();
963  QualType ThisTy = CXXThisTypeOverride;
964  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
965    if (method && method->isInstance())
966      ThisTy = method->getThisType(Context);
967  }
968  if (ThisTy.isNull()) {
969    if (isGenericLambdaCallOperatorSpecialization(CurContext) &&
970        CurContext->getParent()->getParent()->isRecord()) {
971      // This is a generic lambda call operator that is being instantiated
972      // within a default initializer - so use the enclosing class as 'this'.
973      // There is no enclosing member function to retrieve the 'this' pointer
974      // from.
975
976      // FIXME: This looks wrong. If we're in a lambda within a lambda within a
977      // default member initializer, we need to recurse up more parents to find
978      // the right context. Looks like we should be walking up to the parent of
979      // the closure type, checking whether that is itself a lambda, and if so,
980      // recursing, until we reach a class or a function that isn't a lambda
981      // call operator. And we should accumulate the constness of *this on the
982      // way.
983
984      QualType ClassTy = Context.getTypeDeclType(
985          cast<CXXRecordDecl>(CurContext->getParent()->getParent()));
986      // There are no cv-qualifiers for 'this' within default initializers,
987      // per [expr.prim.general]p4.
988      ThisTy = Context.getPointerType(ClassTy);
989    }
990  }
991
992  // If we are within a lambda's call operator, the cv-qualifiers of 'this'
993  // might need to be adjusted if the lambda or any of its enclosing lambda's
994  // captures '*this' by copy.
995  if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
996    return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
997                                                    CurContext, Context);
998  return ThisTy;
999}
1000
1001Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1002                                         Decl *ContextDecl,
1003                                         unsigned CXXThisTypeQuals,
1004                                         bool Enabled)
1005  : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1006{
1007  if (!Enabled || !ContextDecl)
1008    return;
1009
1010  CXXRecordDecl *Record = nullptr;
1011  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1012    Record = Template->getTemplatedDecl();
1013  else
1014    Record = cast<CXXRecordDecl>(ContextDecl);
1015
1016  // We care only for CVR qualifiers here, so cut everything else.
1017  CXXThisTypeQuals &= Qualifiers::FastMask;
1018  S.CXXThisTypeOverride
1019    = S.Context.getPointerType(
1020        S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
1021
1022  this->Enabled = true;
1023}
1024
1025
1026Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1027  if (Enabled) {
1028    S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1029  }
1030}
1031
1032static Expr *captureThis(Sema &S, ASTContext &Context, RecordDecl *RD,
1033                         QualType ThisTy, SourceLocation Loc,
1034                         const bool ByCopy) {
1035
1036  QualType AdjustedThisTy = ThisTy;
1037  // The type of the corresponding data member (not a 'this' pointer if 'by
1038  // copy').
1039  QualType CaptureThisFieldTy = ThisTy;
1040  if (ByCopy) {
1041    // If we are capturing the object referred to by '*this' by copy, ignore any
1042    // cv qualifiers inherited from the type of the member function for the type
1043    // of the closure-type's corresponding data member and any use of 'this'.
1044    CaptureThisFieldTy = ThisTy->getPointeeType();
1045    CaptureThisFieldTy.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1046    AdjustedThisTy = Context.getPointerType(CaptureThisFieldTy);
1047  }
1048
1049  FieldDecl *Field = FieldDecl::Create(
1050      Context, RD, Loc, Loc, nullptr, CaptureThisFieldTy,
1051      Context.getTrivialTypeSourceInfo(CaptureThisFieldTy, Loc), nullptr, false,
1052      ICIS_NoInit);
1053
1054  Field->setImplicit(true);
1055  Field->setAccess(AS_private);
1056  RD->addDecl(Field);
1057  Expr *This =
1058      new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/ true);
1059  if (ByCopy) {
1060    Expr *StarThis =  S.CreateBuiltinUnaryOp(Loc,
1061                                      UO_Deref,
1062                                      This).get();
1063    InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1064      nullptr, CaptureThisFieldTy, Loc);
1065    InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
1066    InitializationSequence Init(S, Entity, InitKind, StarThis);
1067    ExprResult ER = Init.Perform(S, Entity, InitKind, StarThis);
1068    if (ER.isInvalid()) return nullptr;
1069    return ER.get();
1070  }
1071  return This;
1072}
1073
1074bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1075    bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1076    const bool ByCopy) {
1077  // We don't need to capture this in an unevaluated context.
1078  if (isUnevaluatedContext() && !Explicit)
1079    return true;
1080
1081  assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1082
1083  const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ?
1084    *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
1085
1086  // Check that we can capture the *enclosing object* (referred to by '*this')
1087  // by the capturing-entity/closure (lambda/block/etc) at
1088  // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1089
1090  // Note: The *enclosing object* can only be captured by-value by a
1091  // closure that is a lambda, using the explicit notation:
1092  //    [*this] { ... }.
1093  // Every other capture of the *enclosing object* results in its by-reference
1094  // capture.
1095
1096  // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1097  // stack), we can capture the *enclosing object* only if:
1098  // - 'L' has an explicit byref or byval capture of the *enclosing object*
1099  // -  or, 'L' has an implicit capture.
1100  // AND
1101  //   -- there is no enclosing closure
1102  //   -- or, there is some enclosing closure 'E' that has already captured the
1103  //      *enclosing object*, and every intervening closure (if any) between 'E'
1104  //      and 'L' can implicitly capture the *enclosing object*.
1105  //   -- or, every enclosing closure can implicitly capture the
1106  //      *enclosing object*
1107
1108
1109  unsigned NumCapturingClosures = 0;
1110  for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) {
1111    if (CapturingScopeInfo *CSI =
1112            dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1113      if (CSI->CXXThisCaptureIndex != 0) {
1114        // 'this' is already being captured; there isn't anything more to do.
1115        break;
1116      }
1117      LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1118      if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1119        // This context can't implicitly capture 'this'; fail out.
1120        if (BuildAndDiagnose)
1121          Diag(Loc, diag::err_this_capture)
1122              << (Explicit && idx == MaxFunctionScopesIndex);
1123        return true;
1124      }
1125      if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1126          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1127          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1128          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1129          (Explicit && idx == MaxFunctionScopesIndex)) {
1130        // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1131        // iteration through can be an explicit capture, all enclosing closures,
1132        // if any, must perform implicit captures.
1133
1134        // This closure can capture 'this'; continue looking upwards.
1135        NumCapturingClosures++;
1136        continue;
1137      }
1138      // This context can't implicitly capture 'this'; fail out.
1139      if (BuildAndDiagnose)
1140        Diag(Loc, diag::err_this_capture)
1141            << (Explicit && idx == MaxFunctionScopesIndex);
1142      return true;
1143    }
1144    break;
1145  }
1146  if (!BuildAndDiagnose) return false;
1147
1148  // If we got here, then the closure at MaxFunctionScopesIndex on the
1149  // FunctionScopes stack, can capture the *enclosing object*, so capture it
1150  // (including implicit by-reference captures in any enclosing closures).
1151
1152  // In the loop below, respect the ByCopy flag only for the closure requesting
1153  // the capture (i.e. first iteration through the loop below).  Ignore it for
1154  // all enclosing closure's upto NumCapturingClosures (since they must be
1155  // implicitly capturing the *enclosing  object* by reference (see loop
1156  // above)).
1157  assert((!ByCopy ||
1158          dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1159         "Only a lambda can capture the enclosing object (referred to by "
1160         "*this) by copy");
1161  // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
1162  // contexts.
1163  QualType ThisTy = getCurrentThisType();
1164  for (unsigned idx = MaxFunctionScopesIndex; NumCapturingClosures;
1165      --idx, --NumCapturingClosures) {
1166    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1167    Expr *ThisExpr = nullptr;
1168
1169    if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
1170      // For lambda expressions, build a field and an initializing expression,
1171      // and capture the *enclosing object* by copy only if this is the first
1172      // iteration.
1173      ThisExpr = captureThis(*this, Context, LSI->Lambda, ThisTy, Loc,
1174                             ByCopy && idx == MaxFunctionScopesIndex);
1175
1176    } else if (CapturedRegionScopeInfo *RSI
1177        = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
1178      ThisExpr =
1179          captureThis(*this, Context, RSI->TheRecordDecl, ThisTy, Loc,
1180                      false/*ByCopy*/);
1181
1182    bool isNested = NumCapturingClosures > 1;
1183    CSI->addThisCapture(isNested, Loc, ThisExpr, ByCopy);
1184  }
1185  return false;
1186}
1187
1188ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1189  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1190  /// is a non-lvalue expression whose value is the address of the object for
1191  /// which the function is called.
1192
1193  QualType ThisTy = getCurrentThisType();
1194  if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
1195
1196  CheckCXXThisCapture(Loc);
1197  return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
1198}
1199
1200bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1201  // If we're outside the body of a member function, then we'll have a specified
1202  // type for 'this'.
1203  if (CXXThisTypeOverride.isNull())
1204    return false;
1205
1206  // Determine whether we're looking into a class that's currently being
1207  // defined.
1208  CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1209  return Class && Class->isBeingDefined();
1210}
1211
1212ExprResult
1213Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1214                                SourceLocation LParenLoc,
1215                                MultiExprArg exprs,
1216                                SourceLocation RParenLoc) {
1217  if (!TypeRep)
1218    return ExprError();
1219
1220  TypeSourceInfo *TInfo;
1221  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1222  if (!TInfo)
1223    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1224
1225  auto Result = BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
1226  // Avoid creating a non-type-dependent expression that contains typos.
1227  // Non-type-dependent expressions are liable to be discarded without
1228  // checking for embedded typos.
1229  if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1230      !Result.get()->isTypeDependent())
1231    Result = CorrectDelayedTyposInExpr(Result.get());
1232  return Result;
1233}
1234
1235/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
1236/// Can be interpreted either as function-style casting ("int(x)")
1237/// or class type construction ("ClassType(x,y,z)")
1238/// or creation of a value-initialized type ("int()").
1239ExprResult
1240Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1241                                SourceLocation LParenLoc,
1242                                MultiExprArg Exprs,
1243                                SourceLocation RParenLoc) {
1244  QualType Ty = TInfo->getType();
1245  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1246
1247  if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1248    return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs,
1249                                              RParenLoc);
1250  }
1251
1252  bool ListInitialization = LParenLoc.isInvalid();
1253  assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
1254         && "List initialization must have initializer list as expression.");
1255  SourceRange FullRange = SourceRange(TyBeginLoc,
1256      ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
1257
1258  // C++ [expr.type.conv]p1:
1259  // If the expression list is a single expression, the type conversion
1260  // expression is equivalent (in definedness, and if defined in meaning) to the
1261  // corresponding cast expression.
1262  if (Exprs.size() == 1 && !ListInitialization) {
1263    Expr *Arg = Exprs[0];
1264    return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
1265  }
1266
1267  // C++14 [expr.type.conv]p2: The expression T(), where T is a
1268  //   simple-type-specifier or typename-specifier for a non-array complete
1269  //   object type or the (possibly cv-qualified) void type, creates a prvalue
1270  //   of the specified type, whose value is that produced by value-initializing
1271  //   an object of type T.
1272  QualType ElemTy = Ty;
1273  if (Ty->isArrayType()) {
1274    if (!ListInitialization)
1275      return ExprError(Diag(TyBeginLoc,
1276                            diag::err_value_init_for_array_type) << FullRange);
1277    ElemTy = Context.getBaseElementType(Ty);
1278  }
1279
1280  if (!ListInitialization && Ty->isFunctionType())
1281    return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_function_type)
1282                     << FullRange);
1283
1284  if (!Ty->isVoidType() &&
1285      RequireCompleteType(TyBeginLoc, ElemTy,
1286                          diag::err_invalid_incomplete_type_use, FullRange))
1287    return ExprError();
1288
1289  if (RequireNonAbstractType(TyBeginLoc, Ty,
1290                             diag::err_allocation_of_abstract_type))
1291    return ExprError();
1292
1293  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1294  InitializationKind Kind =
1295      Exprs.size() ? ListInitialization
1296      ? InitializationKind::CreateDirectList(TyBeginLoc)
1297      : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
1298      : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
1299  InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1300  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1301
1302  if (Result.isInvalid() || !ListInitialization)
1303    return Result;
1304
1305  Expr *Inner = Result.get();
1306  if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1307    Inner = BTE->getSubExpr();
1308  if (!isa<CXXTemporaryObjectExpr>(Inner)) {
1309    // If we created a CXXTemporaryObjectExpr, that node also represents the
1310    // functional cast. Otherwise, create an explicit cast to represent
1311    // the syntactic form of a functional-style cast that was used here.
1312    //
1313    // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1314    // would give a more consistent AST representation than using a
1315    // CXXTemporaryObjectExpr. It's also weird that the functional cast
1316    // is sometimes handled by initialization and sometimes not.
1317    QualType ResultType = Result.get()->getType();
1318    Result = CXXFunctionalCastExpr::Create(
1319        Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo,
1320        CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc);
1321  }
1322
1323  return Result;
1324}
1325
1326/// doesUsualArrayDeleteWantSize - Answers whether the usual
1327/// operator delete[] for the given type has a size_t parameter.
1328static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1329                                         QualType allocType) {
1330  const RecordType *record =
1331    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1332  if (!record) return false;
1333
1334  // Try to find an operator delete[] in class scope.
1335
1336  DeclarationName deleteName =
1337    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1338  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1339  S.LookupQualifiedName(ops, record->getDecl());
1340
1341  // We're just doing this for information.
1342  ops.suppressDiagnostics();
1343
1344  // Very likely: there's no operator delete[].
1345  if (ops.empty()) return false;
1346
1347  // If it's ambiguous, it should be illegal to call operator delete[]
1348  // on this thing, so it doesn't matter if we allocate extra space or not.
1349  if (ops.isAmbiguous()) return false;
1350
1351  LookupResult::Filter filter = ops.makeFilter();
1352  while (filter.hasNext()) {
1353    NamedDecl *del = filter.next()->getUnderlyingDecl();
1354
1355    // C++0x [basic.stc.dynamic.deallocation]p2:
1356    //   A template instance is never a usual deallocation function,
1357    //   regardless of its signature.
1358    if (isa<FunctionTemplateDecl>(del)) {
1359      filter.erase();
1360      continue;
1361    }
1362
1363    // C++0x [basic.stc.dynamic.deallocation]p2:
1364    //   If class T does not declare [an operator delete[] with one
1365    //   parameter] but does declare a member deallocation function
1366    //   named operator delete[] with exactly two parameters, the
1367    //   second of which has type std::size_t, then this function
1368    //   is a usual deallocation function.
1369    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
1370      filter.erase();
1371      continue;
1372    }
1373  }
1374  filter.done();
1375
1376  if (!ops.isSingleResult()) return false;
1377
1378  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
1379  return (del->getNumParams() == 2);
1380}
1381
1382/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
1383///
1384/// E.g.:
1385/// @code new (memory) int[size][4] @endcode
1386/// or
1387/// @code ::new Foo(23, "hello") @endcode
1388///
1389/// \param StartLoc The first location of the expression.
1390/// \param UseGlobal True if 'new' was prefixed with '::'.
1391/// \param PlacementLParen Opening paren of the placement arguments.
1392/// \param PlacementArgs Placement new arguments.
1393/// \param PlacementRParen Closing paren of the placement arguments.
1394/// \param TypeIdParens If the type is in parens, the source range.
1395/// \param D The type to be allocated, as well as array dimensions.
1396/// \param Initializer The initializing expression or initializer-list, or null
1397///   if there is none.
1398ExprResult
1399Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1400                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1401                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
1402                  Declarator &D, Expr *Initializer) {
1403  bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
1404
1405  Expr *ArraySize = nullptr;
1406  // If the specified type is an array, unwrap it and save the expression.
1407  if (D.getNumTypeObjects() > 0 &&
1408      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1409     DeclaratorChunk &Chunk = D.getTypeObject(0);
1410    if (TypeContainsAuto)
1411      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1412        << D.getSourceRange());
1413    if (Chunk.Arr.hasStatic)
1414      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1415        << D.getSourceRange());
1416    if (!Chunk.Arr.NumElts)
1417      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1418        << D.getSourceRange());
1419
1420    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1421    D.DropFirstTypeObject();
1422  }
1423
1424  // Every dimension shall be of constant size.
1425  if (ArraySize) {
1426    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1427      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1428        break;
1429
1430      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1431      if (Expr *NumElts = (Expr *)Array.NumElts) {
1432        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1433          if (getLangOpts().CPlusPlus14) {
1434	    // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1435	    //   shall be a converted constant expression (5.19) of type std::size_t
1436	    //   and shall evaluate to a strictly positive value.
1437            unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1438            assert(IntWidth && "Builtin type of size 0?");
1439            llvm::APSInt Value(IntWidth);
1440            Array.NumElts
1441             = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1442                                                CCEK_NewExpr)
1443                 .get();
1444          } else {
1445            Array.NumElts
1446              = VerifyIntegerConstantExpression(NumElts, nullptr,
1447                                                diag::err_new_array_nonconst)
1448                  .get();
1449          }
1450          if (!Array.NumElts)
1451            return ExprError();
1452        }
1453      }
1454    }
1455  }
1456
1457  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1458  QualType AllocType = TInfo->getType();
1459  if (D.isInvalidType())
1460    return ExprError();
1461
1462  SourceRange DirectInitRange;
1463  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1464    DirectInitRange = List->getSourceRange();
1465
1466  return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
1467                     PlacementLParen,
1468                     PlacementArgs,
1469                     PlacementRParen,
1470                     TypeIdParens,
1471                     AllocType,
1472                     TInfo,
1473                     ArraySize,
1474                     DirectInitRange,
1475                     Initializer,
1476                     TypeContainsAuto);
1477}
1478
1479static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1480                                       Expr *Init) {
1481  if (!Init)
1482    return true;
1483  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1484    return PLE->getNumExprs() == 0;
1485  if (isa<ImplicitValueInitExpr>(Init))
1486    return true;
1487  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1488    return !CCE->isListInitialization() &&
1489           CCE->getConstructor()->isDefaultConstructor();
1490  else if (Style == CXXNewExpr::ListInit) {
1491    assert(isa<InitListExpr>(Init) &&
1492           "Shouldn't create list CXXConstructExprs for arrays.");
1493    return true;
1494  }
1495  return false;
1496}
1497
1498ExprResult
1499Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1500                  SourceLocation PlacementLParen,
1501                  MultiExprArg PlacementArgs,
1502                  SourceLocation PlacementRParen,
1503                  SourceRange TypeIdParens,
1504                  QualType AllocType,
1505                  TypeSourceInfo *AllocTypeInfo,
1506                  Expr *ArraySize,
1507                  SourceRange DirectInitRange,
1508                  Expr *Initializer,
1509                  bool TypeMayContainAuto) {
1510  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1511  SourceLocation StartLoc = Range.getBegin();
1512
1513  CXXNewExpr::InitializationStyle initStyle;
1514  if (DirectInitRange.isValid()) {
1515    assert(Initializer && "Have parens but no initializer.");
1516    initStyle = CXXNewExpr::CallInit;
1517  } else if (Initializer && isa<InitListExpr>(Initializer))
1518    initStyle = CXXNewExpr::ListInit;
1519  else {
1520    assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1521            isa<CXXConstructExpr>(Initializer)) &&
1522           "Initializer expression that cannot have been implicitly created.");
1523    initStyle = CXXNewExpr::NoInit;
1524  }
1525
1526  Expr **Inits = &Initializer;
1527  unsigned NumInits = Initializer ? 1 : 0;
1528  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1529    assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1530    Inits = List->getExprs();
1531    NumInits = List->getNumExprs();
1532  }
1533
1534  // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1535  if (TypeMayContainAuto && AllocType->isUndeducedType()) {
1536    if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1537      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1538                       << AllocType << TypeRange);
1539    if (initStyle == CXXNewExpr::ListInit ||
1540        (NumInits == 1 && isa<InitListExpr>(Inits[0])))
1541      return ExprError(Diag(Inits[0]->getLocStart(),
1542                            diag::err_auto_new_list_init)
1543                       << AllocType << TypeRange);
1544    if (NumInits > 1) {
1545      Expr *FirstBad = Inits[1];
1546      return ExprError(Diag(FirstBad->getLocStart(),
1547                            diag::err_auto_new_ctor_multiple_expressions)
1548                       << AllocType << TypeRange);
1549    }
1550    Expr *Deduce = Inits[0];
1551    QualType DeducedType;
1552    if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1553      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1554                       << AllocType << Deduce->getType()
1555                       << TypeRange << Deduce->getSourceRange());
1556    if (DeducedType.isNull())
1557      return ExprError();
1558    AllocType = DeducedType;
1559  }
1560
1561  // Per C++0x [expr.new]p5, the type being constructed may be a
1562  // typedef of an array type.
1563  if (!ArraySize) {
1564    if (const ConstantArrayType *Array
1565                              = Context.getAsConstantArrayType(AllocType)) {
1566      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1567                                         Context.getSizeType(),
1568                                         TypeRange.getEnd());
1569      AllocType = Array->getElementType();
1570    }
1571  }
1572
1573  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1574    return ExprError();
1575
1576  if (initStyle == CXXNewExpr::ListInit &&
1577      isStdInitializerList(AllocType, nullptr)) {
1578    Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1579         diag::warn_dangling_std_initializer_list)
1580        << /*at end of FE*/0 << Inits[0]->getSourceRange();
1581  }
1582
1583  // In ARC, infer 'retaining' for the allocated
1584  if (getLangOpts().ObjCAutoRefCount &&
1585      AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1586      AllocType->isObjCLifetimeType()) {
1587    AllocType = Context.getLifetimeQualifiedType(AllocType,
1588                                    AllocType->getObjCARCImplicitLifetime());
1589  }
1590
1591  QualType ResultType = Context.getPointerType(AllocType);
1592
1593  if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1594    ExprResult result = CheckPlaceholderExpr(ArraySize);
1595    if (result.isInvalid()) return ExprError();
1596    ArraySize = result.get();
1597  }
1598  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1599  //   integral or enumeration type with a non-negative value."
1600  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1601  //   enumeration type, or a class type for which a single non-explicit
1602  //   conversion function to integral or unscoped enumeration type exists.
1603  // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1604  //   std::size_t.
1605  if (ArraySize && !ArraySize->isTypeDependent()) {
1606    ExprResult ConvertedSize;
1607    if (getLangOpts().CPlusPlus14) {
1608      assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
1609
1610      ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1611						AA_Converting);
1612
1613      if (!ConvertedSize.isInvalid() &&
1614          ArraySize->getType()->getAs<RecordType>())
1615        // Diagnose the compatibility of this conversion.
1616        Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1617          << ArraySize->getType() << 0 << "'size_t'";
1618    } else {
1619      class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1620      protected:
1621        Expr *ArraySize;
1622
1623      public:
1624        SizeConvertDiagnoser(Expr *ArraySize)
1625            : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1626              ArraySize(ArraySize) {}
1627
1628        SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1629                                             QualType T) override {
1630          return S.Diag(Loc, diag::err_array_size_not_integral)
1631                   << S.getLangOpts().CPlusPlus11 << T;
1632        }
1633
1634        SemaDiagnosticBuilder diagnoseIncomplete(
1635            Sema &S, SourceLocation Loc, QualType T) override {
1636          return S.Diag(Loc, diag::err_array_size_incomplete_type)
1637                   << T << ArraySize->getSourceRange();
1638        }
1639
1640        SemaDiagnosticBuilder diagnoseExplicitConv(
1641            Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1642          return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1643        }
1644
1645        SemaDiagnosticBuilder noteExplicitConv(
1646            Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1647          return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1648                   << ConvTy->isEnumeralType() << ConvTy;
1649        }
1650
1651        SemaDiagnosticBuilder diagnoseAmbiguous(
1652            Sema &S, SourceLocation Loc, QualType T) override {
1653          return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1654        }
1655
1656        SemaDiagnosticBuilder noteAmbiguous(
1657            Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1658          return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1659                   << ConvTy->isEnumeralType() << ConvTy;
1660        }
1661
1662        SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1663                                                 QualType T,
1664                                                 QualType ConvTy) override {
1665          return S.Diag(Loc,
1666                        S.getLangOpts().CPlusPlus11
1667                          ? diag::warn_cxx98_compat_array_size_conversion
1668                          : diag::ext_array_size_conversion)
1669                   << T << ConvTy->isEnumeralType() << ConvTy;
1670        }
1671      } SizeDiagnoser(ArraySize);
1672
1673      ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1674                                                          SizeDiagnoser);
1675    }
1676    if (ConvertedSize.isInvalid())
1677      return ExprError();
1678
1679    ArraySize = ConvertedSize.get();
1680    QualType SizeType = ArraySize->getType();
1681
1682    if (!SizeType->isIntegralOrUnscopedEnumerationType())
1683      return ExprError();
1684
1685    // C++98 [expr.new]p7:
1686    //   The expression in a direct-new-declarator shall have integral type
1687    //   with a non-negative value.
1688    //
1689    // Let's see if this is a constant < 0. If so, we reject it out of
1690    // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1691    // array type.
1692    //
1693    // Note: such a construct has well-defined semantics in C++11: it throws
1694    // std::bad_array_new_length.
1695    if (!ArraySize->isValueDependent()) {
1696      llvm::APSInt Value;
1697      // We've already performed any required implicit conversion to integer or
1698      // unscoped enumeration type.
1699      if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1700        if (Value < llvm::APSInt(
1701                        llvm::APInt::getNullValue(Value.getBitWidth()),
1702                                 Value.isUnsigned())) {
1703          if (getLangOpts().CPlusPlus11)
1704            Diag(ArraySize->getLocStart(),
1705                 diag::warn_typecheck_negative_array_new_size)
1706              << ArraySize->getSourceRange();
1707          else
1708            return ExprError(Diag(ArraySize->getLocStart(),
1709                                  diag::err_typecheck_negative_array_size)
1710                             << ArraySize->getSourceRange());
1711        } else if (!AllocType->isDependentType()) {
1712          unsigned ActiveSizeBits =
1713            ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1714          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1715            if (getLangOpts().CPlusPlus11)
1716              Diag(ArraySize->getLocStart(),
1717                   diag::warn_array_new_too_large)
1718                << Value.toString(10)
1719                << ArraySize->getSourceRange();
1720            else
1721              return ExprError(Diag(ArraySize->getLocStart(),
1722                                    diag::err_array_too_large)
1723                               << Value.toString(10)
1724                               << ArraySize->getSourceRange());
1725          }
1726        }
1727      } else if (TypeIdParens.isValid()) {
1728        // Can't have dynamic array size when the type-id is in parentheses.
1729        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1730          << ArraySize->getSourceRange()
1731          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1732          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1733
1734        TypeIdParens = SourceRange();
1735      }
1736    }
1737
1738    // Note that we do *not* convert the argument in any way.  It can
1739    // be signed, larger than size_t, whatever.
1740  }
1741
1742  FunctionDecl *OperatorNew = nullptr;
1743  FunctionDecl *OperatorDelete = nullptr;
1744
1745  if (!AllocType->isDependentType() &&
1746      !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
1747      FindAllocationFunctions(StartLoc,
1748                              SourceRange(PlacementLParen, PlacementRParen),
1749                              UseGlobal, AllocType, ArraySize, PlacementArgs,
1750                              OperatorNew, OperatorDelete))
1751    return ExprError();
1752
1753  // If this is an array allocation, compute whether the usual array
1754  // deallocation function for the type has a size_t parameter.
1755  bool UsualArrayDeleteWantsSize = false;
1756  if (ArraySize && !AllocType->isDependentType())
1757    UsualArrayDeleteWantsSize
1758      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1759
1760  SmallVector<Expr *, 8> AllPlaceArgs;
1761  if (OperatorNew) {
1762    const FunctionProtoType *Proto =
1763        OperatorNew->getType()->getAs<FunctionProtoType>();
1764    VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
1765                                                    : VariadicDoesNotApply;
1766
1767    // We've already converted the placement args, just fill in any default
1768    // arguments. Skip the first parameter because we don't have a corresponding
1769    // argument.
1770    if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
1771                               PlacementArgs, AllPlaceArgs, CallType))
1772      return ExprError();
1773
1774    if (!AllPlaceArgs.empty())
1775      PlacementArgs = AllPlaceArgs;
1776
1777    // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
1778    DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
1779
1780    // FIXME: Missing call to CheckFunctionCall or equivalent
1781  }
1782
1783  // Warn if the type is over-aligned and is being allocated by global operator
1784  // new.
1785  if (PlacementArgs.empty() && OperatorNew &&
1786      (OperatorNew->isImplicit() ||
1787       (OperatorNew->getLocStart().isValid() &&
1788        getSourceManager().isInSystemHeader(OperatorNew->getLocStart())))) {
1789    if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1790      unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1791      if (Align > SuitableAlign)
1792        Diag(StartLoc, diag::warn_overaligned_type)
1793            << AllocType
1794            << unsigned(Align / Context.getCharWidth())
1795            << unsigned(SuitableAlign / Context.getCharWidth());
1796    }
1797  }
1798
1799  QualType InitType = AllocType;
1800  // Array 'new' can't have any initializers except empty parentheses.
1801  // Initializer lists are also allowed, in C++11. Rely on the parser for the
1802  // dialect distinction.
1803  if (ResultType->isArrayType() || ArraySize) {
1804    if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1805      SourceRange InitRange(Inits[0]->getLocStart(),
1806                            Inits[NumInits - 1]->getLocEnd());
1807      Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1808      return ExprError();
1809    }
1810    if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1811      // We do the initialization typechecking against the array type
1812      // corresponding to the number of initializers + 1 (to also check
1813      // default-initialization).
1814      unsigned NumElements = ILE->getNumInits() + 1;
1815      InitType = Context.getConstantArrayType(AllocType,
1816          llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1817                                              ArrayType::Normal, 0);
1818    }
1819  }
1820
1821  // If we can perform the initialization, and we've not already done so,
1822  // do it now.
1823  if (!AllocType->isDependentType() &&
1824      !Expr::hasAnyTypeDependentArguments(
1825          llvm::makeArrayRef(Inits, NumInits))) {
1826    // C++11 [expr.new]p15:
1827    //   A new-expression that creates an object of type T initializes that
1828    //   object as follows:
1829    InitializationKind Kind
1830    //     - If the new-initializer is omitted, the object is default-
1831    //       initialized (8.5); if no initialization is performed,
1832    //       the object has indeterminate value
1833      = initStyle == CXXNewExpr::NoInit
1834          ? InitializationKind::CreateDefault(TypeRange.getBegin())
1835    //     - Otherwise, the new-initializer is interpreted according to the
1836    //       initialization rules of 8.5 for direct-initialization.
1837          : initStyle == CXXNewExpr::ListInit
1838              ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1839              : InitializationKind::CreateDirect(TypeRange.getBegin(),
1840                                                 DirectInitRange.getBegin(),
1841                                                 DirectInitRange.getEnd());
1842
1843    InitializedEntity Entity
1844      = InitializedEntity::InitializeNew(StartLoc, InitType);
1845    InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1846    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1847                                          MultiExprArg(Inits, NumInits));
1848    if (FullInit.isInvalid())
1849      return ExprError();
1850
1851    // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1852    // we don't want the initialized object to be destructed.
1853    if (CXXBindTemporaryExpr *Binder =
1854            dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1855      FullInit = Binder->getSubExpr();
1856
1857    Initializer = FullInit.get();
1858  }
1859
1860  // Mark the new and delete operators as referenced.
1861  if (OperatorNew) {
1862    if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
1863      return ExprError();
1864    MarkFunctionReferenced(StartLoc, OperatorNew);
1865  }
1866  if (OperatorDelete) {
1867    if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
1868      return ExprError();
1869    MarkFunctionReferenced(StartLoc, OperatorDelete);
1870  }
1871
1872  // C++0x [expr.new]p17:
1873  //   If the new expression creates an array of objects of class type,
1874  //   access and ambiguity control are done for the destructor.
1875  QualType BaseAllocType = Context.getBaseElementType(AllocType);
1876  if (ArraySize && !BaseAllocType->isDependentType()) {
1877    if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1878      if (CXXDestructorDecl *dtor = LookupDestructor(
1879              cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1880        MarkFunctionReferenced(StartLoc, dtor);
1881        CheckDestructorAccess(StartLoc, dtor,
1882                              PDiag(diag::err_access_dtor)
1883                                << BaseAllocType);
1884        if (DiagnoseUseOfDecl(dtor, StartLoc))
1885          return ExprError();
1886      }
1887    }
1888  }
1889
1890  return new (Context)
1891      CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete,
1892                 UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
1893                 ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo,
1894                 Range, DirectInitRange);
1895}
1896
1897/// \brief Checks that a type is suitable as the allocated type
1898/// in a new-expression.
1899bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1900                              SourceRange R) {
1901  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1902  //   abstract class type or array thereof.
1903  if (AllocType->isFunctionType())
1904    return Diag(Loc, diag::err_bad_new_type)
1905      << AllocType << 0 << R;
1906  else if (AllocType->isReferenceType())
1907    return Diag(Loc, diag::err_bad_new_type)
1908      << AllocType << 1 << R;
1909  else if (!AllocType->isDependentType() &&
1910           RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1911    return true;
1912  else if (RequireNonAbstractType(Loc, AllocType,
1913                                  diag::err_allocation_of_abstract_type))
1914    return true;
1915  else if (AllocType->isVariablyModifiedType())
1916    return Diag(Loc, diag::err_variably_modified_new_type)
1917             << AllocType;
1918  else if (unsigned AddressSpace = AllocType.getAddressSpace())
1919    return Diag(Loc, diag::err_address_space_qualified_new)
1920      << AllocType.getUnqualifiedType() << AddressSpace;
1921  else if (getLangOpts().ObjCAutoRefCount) {
1922    if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1923      QualType BaseAllocType = Context.getBaseElementType(AT);
1924      if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1925          BaseAllocType->isObjCLifetimeType())
1926        return Diag(Loc, diag::err_arc_new_array_without_ownership)
1927          << BaseAllocType;
1928    }
1929  }
1930
1931  return false;
1932}
1933
1934/// \brief Determine whether the given function is a non-placement
1935/// deallocation function.
1936static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1937  if (FD->isInvalidDecl())
1938    return false;
1939
1940  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1941    return Method->isUsualDeallocationFunction();
1942
1943  if (FD->getOverloadedOperator() != OO_Delete &&
1944      FD->getOverloadedOperator() != OO_Array_Delete)
1945    return false;
1946
1947  if (FD->getNumParams() == 1)
1948    return true;
1949
1950  return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 &&
1951         S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(),
1952                                          S.Context.getSizeType());
1953}
1954
1955/// FindAllocationFunctions - Finds the overloads of operator new and delete
1956/// that are appropriate for the allocation.
1957bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1958                                   bool UseGlobal, QualType AllocType,
1959                                   bool IsArray, MultiExprArg PlaceArgs,
1960                                   FunctionDecl *&OperatorNew,
1961                                   FunctionDecl *&OperatorDelete) {
1962  // --- Choosing an allocation function ---
1963  // C++ 5.3.4p8 - 14 & 18
1964  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1965  //   in the scope of the allocated class.
1966  // 2) If an array size is given, look for operator new[], else look for
1967  //   operator new.
1968  // 3) The first argument is always size_t. Append the arguments from the
1969  //   placement form.
1970
1971  SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
1972  // We don't care about the actual value of this argument.
1973  // FIXME: Should the Sema create the expression and embed it in the syntax
1974  // tree? Or should the consumer just recalculate the value?
1975  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1976                      Context.getTargetInfo().getPointerWidth(0)),
1977                      Context.getSizeType(),
1978                      SourceLocation());
1979  AllocArgs[0] = &Size;
1980  std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
1981
1982  // C++ [expr.new]p8:
1983  //   If the allocated type is a non-array type, the allocation
1984  //   function's name is operator new and the deallocation function's
1985  //   name is operator delete. If the allocated type is an array
1986  //   type, the allocation function's name is operator new[] and the
1987  //   deallocation function's name is operator delete[].
1988  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1989                                        IsArray ? OO_Array_New : OO_New);
1990  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1991                                        IsArray ? OO_Array_Delete : OO_Delete);
1992
1993  QualType AllocElemType = Context.getBaseElementType(AllocType);
1994
1995  if (AllocElemType->isRecordType() && !UseGlobal) {
1996    CXXRecordDecl *Record
1997      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1998    if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
1999                               /*AllowMissing=*/true, OperatorNew))
2000      return true;
2001  }
2002
2003  if (!OperatorNew) {
2004    // Didn't find a member overload. Look for a global one.
2005    DeclareGlobalNewDelete();
2006    DeclContext *TUDecl = Context.getTranslationUnitDecl();
2007    bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat;
2008    if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
2009                               /*AllowMissing=*/FallbackEnabled, OperatorNew,
2010                               /*Diagnose=*/!FallbackEnabled)) {
2011      if (!FallbackEnabled)
2012        return true;
2013
2014      // MSVC will fall back on trying to find a matching global operator new
2015      // if operator new[] cannot be found.  Also, MSVC will leak by not
2016      // generating a call to operator delete or operator delete[], but we
2017      // will not replicate that bug.
2018      NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
2019      DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2020      if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
2021                               /*AllowMissing=*/false, OperatorNew))
2022      return true;
2023    }
2024  }
2025
2026  // We don't need an operator delete if we're running under
2027  // -fno-exceptions.
2028  if (!getLangOpts().Exceptions) {
2029    OperatorDelete = nullptr;
2030    return false;
2031  }
2032
2033  // C++ [expr.new]p19:
2034  //
2035  //   If the new-expression begins with a unary :: operator, the
2036  //   deallocation function's name is looked up in the global
2037  //   scope. Otherwise, if the allocated type is a class type T or an
2038  //   array thereof, the deallocation function's name is looked up in
2039  //   the scope of T. If this lookup fails to find the name, or if
2040  //   the allocated type is not a class type or array thereof, the
2041  //   deallocation function's name is looked up in the global scope.
2042  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2043  if (AllocElemType->isRecordType() && !UseGlobal) {
2044    CXXRecordDecl *RD
2045      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
2046    LookupQualifiedName(FoundDelete, RD);
2047  }
2048  if (FoundDelete.isAmbiguous())
2049    return true; // FIXME: clean up expressions?
2050
2051  if (FoundDelete.empty()) {
2052    DeclareGlobalNewDelete();
2053    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2054  }
2055
2056  FoundDelete.suppressDiagnostics();
2057
2058  SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2059
2060  // Whether we're looking for a placement operator delete is dictated
2061  // by whether we selected a placement operator new, not by whether
2062  // we had explicit placement arguments.  This matters for things like
2063  //   struct A { void *operator new(size_t, int = 0); ... };
2064  //   A *a = new A()
2065  bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
2066
2067  if (isPlacementNew) {
2068    // C++ [expr.new]p20:
2069    //   A declaration of a placement deallocation function matches the
2070    //   declaration of a placement allocation function if it has the
2071    //   same number of parameters and, after parameter transformations
2072    //   (8.3.5), all parameter types except the first are
2073    //   identical. [...]
2074    //
2075    // To perform this comparison, we compute the function type that
2076    // the deallocation function should have, and use that type both
2077    // for template argument deduction and for comparison purposes.
2078    //
2079    // FIXME: this comparison should ignore CC and the like.
2080    QualType ExpectedFunctionType;
2081    {
2082      const FunctionProtoType *Proto
2083        = OperatorNew->getType()->getAs<FunctionProtoType>();
2084
2085      SmallVector<QualType, 4> ArgTypes;
2086      ArgTypes.push_back(Context.VoidPtrTy);
2087      for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2088        ArgTypes.push_back(Proto->getParamType(I));
2089
2090      FunctionProtoType::ExtProtoInfo EPI;
2091      EPI.Variadic = Proto->isVariadic();
2092
2093      ExpectedFunctionType
2094        = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2095    }
2096
2097    for (LookupResult::iterator D = FoundDelete.begin(),
2098                             DEnd = FoundDelete.end();
2099         D != DEnd; ++D) {
2100      FunctionDecl *Fn = nullptr;
2101      if (FunctionTemplateDecl *FnTmpl
2102            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2103        // Perform template argument deduction to try to match the
2104        // expected function type.
2105        TemplateDeductionInfo Info(StartLoc);
2106        if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2107                                    Info))
2108          continue;
2109      } else
2110        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2111
2112      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
2113        Matches.push_back(std::make_pair(D.getPair(), Fn));
2114    }
2115  } else {
2116    // C++ [expr.new]p20:
2117    //   [...] Any non-placement deallocation function matches a
2118    //   non-placement allocation function. [...]
2119    for (LookupResult::iterator D = FoundDelete.begin(),
2120                             DEnd = FoundDelete.end();
2121         D != DEnd; ++D) {
2122      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
2123        if (isNonPlacementDeallocationFunction(*this, Fn))
2124          Matches.push_back(std::make_pair(D.getPair(), Fn));
2125    }
2126
2127    // C++1y [expr.new]p22:
2128    //   For a non-placement allocation function, the normal deallocation
2129    //   function lookup is used
2130    // C++1y [expr.delete]p?:
2131    //   If [...] deallocation function lookup finds both a usual deallocation
2132    //   function with only a pointer parameter and a usual deallocation
2133    //   function with both a pointer parameter and a size parameter, then the
2134    //   selected deallocation function shall be the one with two parameters.
2135    //   Otherwise, the selected deallocation function shall be the function
2136    //   with one parameter.
2137    if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
2138      if (Matches[0].second->getNumParams() == 1)
2139        Matches.erase(Matches.begin());
2140      else
2141        Matches.erase(Matches.begin() + 1);
2142      assert(Matches[0].second->getNumParams() == 2 &&
2143             "found an unexpected usual deallocation function");
2144    }
2145  }
2146
2147  // C++ [expr.new]p20:
2148  //   [...] If the lookup finds a single matching deallocation
2149  //   function, that function will be called; otherwise, no
2150  //   deallocation function will be called.
2151  if (Matches.size() == 1) {
2152    OperatorDelete = Matches[0].second;
2153
2154    // C++0x [expr.new]p20:
2155    //   If the lookup finds the two-parameter form of a usual
2156    //   deallocation function (3.7.4.2) and that function, considered
2157    //   as a placement deallocation function, would have been
2158    //   selected as a match for the allocation function, the program
2159    //   is ill-formed.
2160    if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
2161        isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2162      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
2163        << SourceRange(PlaceArgs.front()->getLocStart(),
2164                       PlaceArgs.back()->getLocEnd());
2165      if (!OperatorDelete->isImplicit())
2166        Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2167          << DeleteName;
2168    } else {
2169      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2170                            Matches[0].first);
2171    }
2172  }
2173
2174  return false;
2175}
2176
2177/// \brief Find an fitting overload for the allocation function
2178/// in the specified scope.
2179///
2180/// \param StartLoc The location of the 'new' token.
2181/// \param Range The range of the placement arguments.
2182/// \param Name The name of the function ('operator new' or 'operator new[]').
2183/// \param Args The placement arguments specified.
2184/// \param Ctx The scope in which we should search; either a class scope or the
2185///        translation unit.
2186/// \param AllowMissing If \c true, report an error if we can't find any
2187///        allocation functions. Otherwise, succeed but don't fill in \p
2188///        Operator.
2189/// \param Operator Filled in with the found allocation function. Unchanged if
2190///        no allocation function was found.
2191/// \param Diagnose If \c true, issue errors if the allocation function is not
2192///        usable.
2193bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
2194                                  DeclarationName Name, MultiExprArg Args,
2195                                  DeclContext *Ctx,
2196                                  bool AllowMissing, FunctionDecl *&Operator,
2197                                  bool Diagnose) {
2198  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
2199  LookupQualifiedName(R, Ctx);
2200  if (R.empty()) {
2201    if (AllowMissing || !Diagnose)
2202      return false;
2203    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
2204      << Name << Range;
2205  }
2206
2207  if (R.isAmbiguous())
2208    return true;
2209
2210  R.suppressDiagnostics();
2211
2212  OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal);
2213  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2214       Alloc != AllocEnd; ++Alloc) {
2215    // Even member operator new/delete are implicitly treated as
2216    // static, so don't use AddMemberCandidate.
2217    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2218
2219    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2220      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2221                                   /*ExplicitTemplateArgs=*/nullptr,
2222                                   Args, Candidates,
2223                                   /*SuppressUserConversions=*/false);
2224      continue;
2225    }
2226
2227    FunctionDecl *Fn = cast<FunctionDecl>(D);
2228    AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2229                         /*SuppressUserConversions=*/false);
2230  }
2231
2232  // Do the resolution.
2233  OverloadCandidateSet::iterator Best;
2234  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
2235  case OR_Success: {
2236    // Got one!
2237    FunctionDecl *FnDecl = Best->Function;
2238    if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
2239                              Best->FoundDecl, Diagnose) == AR_inaccessible)
2240      return true;
2241
2242    Operator = FnDecl;
2243    return false;
2244  }
2245
2246  case OR_No_Viable_Function:
2247    if (Diagnose) {
2248      Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
2249        << Name << Range;
2250      Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
2251    }
2252    return true;
2253
2254  case OR_Ambiguous:
2255    if (Diagnose) {
2256      Diag(StartLoc, diag::err_ovl_ambiguous_call)
2257        << Name << Range;
2258      Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
2259    }
2260    return true;
2261
2262  case OR_Deleted: {
2263    if (Diagnose) {
2264      Diag(StartLoc, diag::err_ovl_deleted_call)
2265        << Best->Function->isDeleted()
2266        << Name
2267        << getDeletedOrUnavailableSuffix(Best->Function)
2268        << Range;
2269      Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
2270    }
2271    return true;
2272  }
2273  }
2274  llvm_unreachable("Unreachable, bad result from BestViableFunction");
2275}
2276
2277
2278/// DeclareGlobalNewDelete - Declare the global forms of operator new and
2279/// delete. These are:
2280/// @code
2281///   // C++03:
2282///   void* operator new(std::size_t) throw(std::bad_alloc);
2283///   void* operator new[](std::size_t) throw(std::bad_alloc);
2284///   void operator delete(void *) throw();
2285///   void operator delete[](void *) throw();
2286///   // C++11:
2287///   void* operator new(std::size_t);
2288///   void* operator new[](std::size_t);
2289///   void operator delete(void *) noexcept;
2290///   void operator delete[](void *) noexcept;
2291///   // C++1y:
2292///   void* operator new(std::size_t);
2293///   void* operator new[](std::size_t);
2294///   void operator delete(void *) noexcept;
2295///   void operator delete[](void *) noexcept;
2296///   void operator delete(void *, std::size_t) noexcept;
2297///   void operator delete[](void *, std::size_t) noexcept;
2298/// @endcode
2299/// Note that the placement and nothrow forms of new are *not* implicitly
2300/// declared. Their use requires including \<new\>.
2301void Sema::DeclareGlobalNewDelete() {
2302  if (GlobalNewDeleteDeclared)
2303    return;
2304
2305  // C++ [basic.std.dynamic]p2:
2306  //   [...] The following allocation and deallocation functions (18.4) are
2307  //   implicitly declared in global scope in each translation unit of a
2308  //   program
2309  //
2310  //     C++03:
2311  //     void* operator new(std::size_t) throw(std::bad_alloc);
2312  //     void* operator new[](std::size_t) throw(std::bad_alloc);
2313  //     void  operator delete(void*) throw();
2314  //     void  operator delete[](void*) throw();
2315  //     C++11:
2316  //     void* operator new(std::size_t);
2317  //     void* operator new[](std::size_t);
2318  //     void  operator delete(void*) noexcept;
2319  //     void  operator delete[](void*) noexcept;
2320  //     C++1y:
2321  //     void* operator new(std::size_t);
2322  //     void* operator new[](std::size_t);
2323  //     void  operator delete(void*) noexcept;
2324  //     void  operator delete[](void*) noexcept;
2325  //     void  operator delete(void*, std::size_t) noexcept;
2326  //     void  operator delete[](void*, std::size_t) noexcept;
2327  //
2328  //   These implicit declarations introduce only the function names operator
2329  //   new, operator new[], operator delete, operator delete[].
2330  //
2331  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2332  // "std" or "bad_alloc" as necessary to form the exception specification.
2333  // However, we do not make these implicit declarations visible to name
2334  // lookup.
2335  if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2336    // The "std::bad_alloc" class has not yet been declared, so build it
2337    // implicitly.
2338    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2339                                        getOrCreateStdNamespace(),
2340                                        SourceLocation(), SourceLocation(),
2341                                      &PP.getIdentifierTable().get("bad_alloc"),
2342                                        nullptr);
2343    getStdBadAlloc()->setImplicit(true);
2344  }
2345
2346  GlobalNewDeleteDeclared = true;
2347
2348  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2349  QualType SizeT = Context.getSizeType();
2350
2351  DeclareGlobalAllocationFunction(
2352      Context.DeclarationNames.getCXXOperatorName(OO_New),
2353      VoidPtr, SizeT, QualType());
2354  DeclareGlobalAllocationFunction(
2355      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
2356      VoidPtr, SizeT, QualType());
2357  DeclareGlobalAllocationFunction(
2358      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
2359      Context.VoidTy, VoidPtr);
2360  DeclareGlobalAllocationFunction(
2361      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
2362      Context.VoidTy, VoidPtr);
2363  if (getLangOpts().SizedDeallocation) {
2364    DeclareGlobalAllocationFunction(
2365        Context.DeclarationNames.getCXXOperatorName(OO_Delete),
2366        Context.VoidTy, VoidPtr, Context.getSizeType());
2367    DeclareGlobalAllocationFunction(
2368        Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
2369        Context.VoidTy, VoidPtr, Context.getSizeType());
2370  }
2371}
2372
2373/// DeclareGlobalAllocationFunction - Declares a single implicit global
2374/// allocation function if it doesn't already exist.
2375void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2376                                           QualType Return,
2377                                           QualType Param1, QualType Param2) {
2378  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2379  unsigned NumParams = Param2.isNull() ? 1 : 2;
2380
2381  // Check if this function is already declared.
2382  DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2383  for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2384       Alloc != AllocEnd; ++Alloc) {
2385    // Only look at non-template functions, as it is the predefined,
2386    // non-templated allocation function we are trying to declare here.
2387    if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2388      if (Func->getNumParams() == NumParams) {
2389        QualType InitialParam1Type =
2390            Context.getCanonicalType(Func->getParamDecl(0)
2391                                         ->getType().getUnqualifiedType());
2392        QualType InitialParam2Type =
2393            NumParams == 2
2394                ? Context.getCanonicalType(Func->getParamDecl(1)
2395                                               ->getType().getUnqualifiedType())
2396                : QualType();
2397        // FIXME: Do we need to check for default arguments here?
2398        if (InitialParam1Type == Param1 &&
2399            (NumParams == 1 || InitialParam2Type == Param2)) {
2400          // Make the function visible to name lookup, even if we found it in
2401          // an unimported module. It either is an implicitly-declared global
2402          // allocation function, or is suppressing that function.
2403          Func->setHidden(false);
2404          return;
2405        }
2406      }
2407    }
2408  }
2409
2410  FunctionProtoType::ExtProtoInfo EPI;
2411
2412  QualType BadAllocType;
2413  bool HasBadAllocExceptionSpec
2414    = (Name.getCXXOverloadedOperator() == OO_New ||
2415       Name.getCXXOverloadedOperator() == OO_Array_New);
2416  if (HasBadAllocExceptionSpec) {
2417    if (!getLangOpts().CPlusPlus11) {
2418      BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2419      assert(StdBadAlloc && "Must have std::bad_alloc declared");
2420      EPI.ExceptionSpec.Type = EST_Dynamic;
2421      EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2422    }
2423  } else {
2424    EPI.ExceptionSpec =
2425        getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2426  }
2427
2428  QualType Params[] = { Param1, Param2 };
2429
2430  QualType FnType = Context.getFunctionType(
2431      Return, llvm::makeArrayRef(Params, NumParams), EPI);
2432  FunctionDecl *Alloc =
2433    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
2434                         SourceLocation(), Name,
2435                         FnType, /*TInfo=*/nullptr, SC_None, false, true);
2436  Alloc->setImplicit();
2437
2438  // Implicit sized deallocation functions always have default visibility.
2439  Alloc->addAttr(VisibilityAttr::CreateImplicit(Context,
2440                                                VisibilityAttr::Default));
2441
2442  ParmVarDecl *ParamDecls[2];
2443  for (unsigned I = 0; I != NumParams; ++I) {
2444    ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
2445                                        SourceLocation(), nullptr,
2446                                        Params[I], /*TInfo=*/nullptr,
2447                                        SC_None, nullptr);
2448    ParamDecls[I]->setImplicit();
2449  }
2450  Alloc->setParams(llvm::makeArrayRef(ParamDecls, NumParams));
2451
2452  Context.getTranslationUnitDecl()->addDecl(Alloc);
2453  IdResolver.tryAddTopLevelDecl(Alloc, Name);
2454}
2455
2456FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2457                                                  bool CanProvideSize,
2458                                                  DeclarationName Name) {
2459  DeclareGlobalNewDelete();
2460
2461  LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2462  LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2463
2464  // C++ [expr.new]p20:
2465  //   [...] Any non-placement deallocation function matches a
2466  //   non-placement allocation function. [...]
2467  llvm::SmallVector<FunctionDecl*, 2> Matches;
2468  for (LookupResult::iterator D = FoundDelete.begin(),
2469                           DEnd = FoundDelete.end();
2470       D != DEnd; ++D) {
2471    if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D))
2472      if (isNonPlacementDeallocationFunction(*this, Fn))
2473        Matches.push_back(Fn);
2474  }
2475
2476  // C++1y [expr.delete]p?:
2477  //   If the type is complete and deallocation function lookup finds both a
2478  //   usual deallocation function with only a pointer parameter and a usual
2479  //   deallocation function with both a pointer parameter and a size
2480  //   parameter, then the selected deallocation function shall be the one
2481  //   with two parameters.  Otherwise, the selected deallocation function
2482  //   shall be the function with one parameter.
2483  if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
2484    unsigned NumArgs = CanProvideSize ? 2 : 1;
2485    if (Matches[0]->getNumParams() != NumArgs)
2486      Matches.erase(Matches.begin());
2487    else
2488      Matches.erase(Matches.begin() + 1);
2489    assert(Matches[0]->getNumParams() == NumArgs &&
2490           "found an unexpected usual deallocation function");
2491  }
2492
2493  if (getLangOpts().CUDA)
2494    EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2495
2496  assert(Matches.size() == 1 &&
2497         "unexpectedly have multiple usual deallocation functions");
2498  return Matches.front();
2499}
2500
2501bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2502                                    DeclarationName Name,
2503                                    FunctionDecl* &Operator, bool Diagnose) {
2504  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2505  // Try to find operator delete/operator delete[] in class scope.
2506  LookupQualifiedName(Found, RD);
2507
2508  if (Found.isAmbiguous())
2509    return true;
2510
2511  Found.suppressDiagnostics();
2512
2513  SmallVector<DeclAccessPair,4> Matches;
2514  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2515       F != FEnd; ++F) {
2516    NamedDecl *ND = (*F)->getUnderlyingDecl();
2517
2518    // Ignore template operator delete members from the check for a usual
2519    // deallocation function.
2520    if (isa<FunctionTemplateDecl>(ND))
2521      continue;
2522
2523    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
2524      Matches.push_back(F.getPair());
2525  }
2526
2527  if (getLangOpts().CUDA)
2528    EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2529
2530  // There's exactly one suitable operator;  pick it.
2531  if (Matches.size() == 1) {
2532    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
2533
2534    if (Operator->isDeleted()) {
2535      if (Diagnose) {
2536        Diag(StartLoc, diag::err_deleted_function_use);
2537        NoteDeletedFunction(Operator);
2538      }
2539      return true;
2540    }
2541
2542    if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2543                              Matches[0], Diagnose) == AR_inaccessible)
2544      return true;
2545
2546    return false;
2547
2548  // We found multiple suitable operators;  complain about the ambiguity.
2549  } else if (!Matches.empty()) {
2550    if (Diagnose) {
2551      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2552        << Name << RD;
2553
2554      for (SmallVectorImpl<DeclAccessPair>::iterator
2555             F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
2556        Diag((*F)->getUnderlyingDecl()->getLocation(),
2557             diag::note_member_declared_here) << Name;
2558    }
2559    return true;
2560  }
2561
2562  // We did find operator delete/operator delete[] declarations, but
2563  // none of them were suitable.
2564  if (!Found.empty()) {
2565    if (Diagnose) {
2566      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2567        << Name << RD;
2568
2569      for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2570           F != FEnd; ++F)
2571        Diag((*F)->getUnderlyingDecl()->getLocation(),
2572             diag::note_member_declared_here) << Name;
2573    }
2574    return true;
2575  }
2576
2577  Operator = nullptr;
2578  return false;
2579}
2580
2581namespace {
2582/// \brief Checks whether delete-expression, and new-expression used for
2583///  initializing deletee have the same array form.
2584class MismatchingNewDeleteDetector {
2585public:
2586  enum MismatchResult {
2587    /// Indicates that there is no mismatch or a mismatch cannot be proven.
2588    NoMismatch,
2589    /// Indicates that variable is initialized with mismatching form of \a new.
2590    VarInitMismatches,
2591    /// Indicates that member is initialized with mismatching form of \a new.
2592    MemberInitMismatches,
2593    /// Indicates that 1 or more constructors' definitions could not been
2594    /// analyzed, and they will be checked again at the end of translation unit.
2595    AnalyzeLater
2596  };
2597
2598  /// \param EndOfTU True, if this is the final analysis at the end of
2599  /// translation unit. False, if this is the initial analysis at the point
2600  /// delete-expression was encountered.
2601  explicit MismatchingNewDeleteDetector(bool EndOfTU)
2602      : IsArrayForm(false), Field(nullptr), EndOfTU(EndOfTU),
2603        HasUndefinedConstructors(false) {}
2604
2605  /// \brief Checks whether pointee of a delete-expression is initialized with
2606  /// matching form of new-expression.
2607  ///
2608  /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
2609  /// point where delete-expression is encountered, then a warning will be
2610  /// issued immediately. If return value is \c AnalyzeLater at the point where
2611  /// delete-expression is seen, then member will be analyzed at the end of
2612  /// translation unit. \c AnalyzeLater is returned iff at least one constructor
2613  /// couldn't be analyzed. If at least one constructor initializes the member
2614  /// with matching type of new, the return value is \c NoMismatch.
2615  MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
2616  /// \brief Analyzes a class member.
2617  /// \param Field Class member to analyze.
2618  /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
2619  /// for deleting the \p Field.
2620  MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
2621  /// List of mismatching new-expressions used for initialization of the pointee
2622  llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
2623  /// Indicates whether delete-expression was in array form.
2624  bool IsArrayForm;
2625  FieldDecl *Field;
2626
2627private:
2628  const bool EndOfTU;
2629  /// \brief Indicates that there is at least one constructor without body.
2630  bool HasUndefinedConstructors;
2631  /// \brief Returns \c CXXNewExpr from given initialization expression.
2632  /// \param E Expression used for initializing pointee in delete-expression.
2633  /// E can be a single-element \c InitListExpr consisting of new-expression.
2634  const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
2635  /// \brief Returns whether member is initialized with mismatching form of
2636  /// \c new either by the member initializer or in-class initialization.
2637  ///
2638  /// If bodies of all constructors are not visible at the end of translation
2639  /// unit or at least one constructor initializes member with the matching
2640  /// form of \c new, mismatch cannot be proven, and this function will return
2641  /// \c NoMismatch.
2642  MismatchResult analyzeMemberExpr(const MemberExpr *ME);
2643  /// \brief Returns whether variable is initialized with mismatching form of
2644  /// \c new.
2645  ///
2646  /// If variable is initialized with matching form of \c new or variable is not
2647  /// initialized with a \c new expression, this function will return true.
2648  /// If variable is initialized with mismatching form of \c new, returns false.
2649  /// \param D Variable to analyze.
2650  bool hasMatchingVarInit(const DeclRefExpr *D);
2651  /// \brief Checks whether the constructor initializes pointee with mismatching
2652  /// form of \c new.
2653  ///
2654  /// Returns true, if member is initialized with matching form of \c new in
2655  /// member initializer list. Returns false, if member is initialized with the
2656  /// matching form of \c new in this constructor's initializer or given
2657  /// constructor isn't defined at the point where delete-expression is seen, or
2658  /// member isn't initialized by the constructor.
2659  bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
2660  /// \brief Checks whether member is initialized with matching form of
2661  /// \c new in member initializer list.
2662  bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
2663  /// Checks whether member is initialized with mismatching form of \c new by
2664  /// in-class initializer.
2665  MismatchResult analyzeInClassInitializer();
2666};
2667}
2668
2669MismatchingNewDeleteDetector::MismatchResult
2670MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
2671  NewExprs.clear();
2672  assert(DE && "Expected delete-expression");
2673  IsArrayForm = DE->isArrayForm();
2674  const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
2675  if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
2676    return analyzeMemberExpr(ME);
2677  } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
2678    if (!hasMatchingVarInit(D))
2679      return VarInitMismatches;
2680  }
2681  return NoMismatch;
2682}
2683
2684const CXXNewExpr *
2685MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
2686  assert(E != nullptr && "Expected a valid initializer expression");
2687  E = E->IgnoreParenImpCasts();
2688  if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
2689    if (ILE->getNumInits() == 1)
2690      E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
2691  }
2692
2693  return dyn_cast_or_null<const CXXNewExpr>(E);
2694}
2695
2696bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
2697    const CXXCtorInitializer *CI) {
2698  const CXXNewExpr *NE = nullptr;
2699  if (Field == CI->getMember() &&
2700      (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
2701    if (NE->isArray() == IsArrayForm)
2702      return true;
2703    else
2704      NewExprs.push_back(NE);
2705  }
2706  return false;
2707}
2708
2709bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
2710    const CXXConstructorDecl *CD) {
2711  if (CD->isImplicit())
2712    return false;
2713  const FunctionDecl *Definition = CD;
2714  if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
2715    HasUndefinedConstructors = true;
2716    return EndOfTU;
2717  }
2718  for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
2719    if (hasMatchingNewInCtorInit(CI))
2720      return true;
2721  }
2722  return false;
2723}
2724
2725MismatchingNewDeleteDetector::MismatchResult
2726MismatchingNewDeleteDetector::analyzeInClassInitializer() {
2727  assert(Field != nullptr && "This should be called only for members");
2728  const Expr *InitExpr = Field->getInClassInitializer();
2729  if (!InitExpr)
2730    return EndOfTU ? NoMismatch : AnalyzeLater;
2731  if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
2732    if (NE->isArray() != IsArrayForm) {
2733      NewExprs.push_back(NE);
2734      return MemberInitMismatches;
2735    }
2736  }
2737  return NoMismatch;
2738}
2739
2740MismatchingNewDeleteDetector::MismatchResult
2741MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
2742                                           bool DeleteWasArrayForm) {
2743  assert(Field != nullptr && "Analysis requires a valid class member.");
2744  this->Field = Field;
2745  IsArrayForm = DeleteWasArrayForm;
2746  const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
2747  for (const auto *CD : RD->ctors()) {
2748    if (hasMatchingNewInCtor(CD))
2749      return NoMismatch;
2750  }
2751  if (HasUndefinedConstructors)
2752    return EndOfTU ? NoMismatch : AnalyzeLater;
2753  if (!NewExprs.empty())
2754    return MemberInitMismatches;
2755  return Field->hasInClassInitializer() ? analyzeInClassInitializer()
2756                                        : NoMismatch;
2757}
2758
2759MismatchingNewDeleteDetector::MismatchResult
2760MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
2761  assert(ME != nullptr && "Expected a member expression");
2762  if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2763    return analyzeField(F, IsArrayForm);
2764  return NoMismatch;
2765}
2766
2767bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
2768  const CXXNewExpr *NE = nullptr;
2769  if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
2770    if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
2771        NE->isArray() != IsArrayForm) {
2772      NewExprs.push_back(NE);
2773    }
2774  }
2775  return NewExprs.empty();
2776}
2777
2778static void
2779DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
2780                            const MismatchingNewDeleteDetector &Detector) {
2781  SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
2782  FixItHint H;
2783  if (!Detector.IsArrayForm)
2784    H = FixItHint::CreateInsertion(EndOfDelete, "[]");
2785  else {
2786    SourceLocation RSquare = Lexer::findLocationAfterToken(
2787        DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
2788        SemaRef.getLangOpts(), true);
2789    if (RSquare.isValid())
2790      H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
2791  }
2792  SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
2793      << Detector.IsArrayForm << H;
2794
2795  for (const auto *NE : Detector.NewExprs)
2796    SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
2797        << Detector.IsArrayForm;
2798}
2799
2800void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
2801  if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
2802    return;
2803  MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
2804  switch (Detector.analyzeDeleteExpr(DE)) {
2805  case MismatchingNewDeleteDetector::VarInitMismatches:
2806  case MismatchingNewDeleteDetector::MemberInitMismatches: {
2807    DiagnoseMismatchedNewDelete(*this, DE->getLocStart(), Detector);
2808    break;
2809  }
2810  case MismatchingNewDeleteDetector::AnalyzeLater: {
2811    DeleteExprs[Detector.Field].push_back(
2812        std::make_pair(DE->getLocStart(), DE->isArrayForm()));
2813    break;
2814  }
2815  case MismatchingNewDeleteDetector::NoMismatch:
2816    break;
2817  }
2818}
2819
2820void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
2821                                     bool DeleteWasArrayForm) {
2822  MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
2823  switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
2824  case MismatchingNewDeleteDetector::VarInitMismatches:
2825    llvm_unreachable("This analysis should have been done for class members.");
2826  case MismatchingNewDeleteDetector::AnalyzeLater:
2827    llvm_unreachable("Analysis cannot be postponed any point beyond end of "
2828                     "translation unit.");
2829  case MismatchingNewDeleteDetector::MemberInitMismatches:
2830    DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
2831    break;
2832  case MismatchingNewDeleteDetector::NoMismatch:
2833    break;
2834  }
2835}
2836
2837/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2838/// @code ::delete ptr; @endcode
2839/// or
2840/// @code delete [] ptr; @endcode
2841ExprResult
2842Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2843                     bool ArrayForm, Expr *ExE) {
2844  // C++ [expr.delete]p1:
2845  //   The operand shall have a pointer type, or a class type having a single
2846  //   non-explicit conversion function to a pointer type. The result has type
2847  //   void.
2848  //
2849  // DR599 amends "pointer type" to "pointer to object type" in both cases.
2850
2851  ExprResult Ex = ExE;
2852  FunctionDecl *OperatorDelete = nullptr;
2853  bool ArrayFormAsWritten = ArrayForm;
2854  bool UsualArrayDeleteWantsSize = false;
2855
2856  if (!Ex.get()->isTypeDependent()) {
2857    // Perform lvalue-to-rvalue cast, if needed.
2858    Ex = DefaultLvalueConversion(Ex.get());
2859    if (Ex.isInvalid())
2860      return ExprError();
2861
2862    QualType Type = Ex.get()->getType();
2863
2864    class DeleteConverter : public ContextualImplicitConverter {
2865    public:
2866      DeleteConverter() : ContextualImplicitConverter(false, true) {}
2867
2868      bool match(QualType ConvType) override {
2869        // FIXME: If we have an operator T* and an operator void*, we must pick
2870        // the operator T*.
2871        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2872          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2873            return true;
2874        return false;
2875      }
2876
2877      SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
2878                                            QualType T) override {
2879        return S.Diag(Loc, diag::err_delete_operand) << T;
2880      }
2881
2882      SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
2883                                               QualType T) override {
2884        return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
2885      }
2886
2887      SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
2888                                                 QualType T,
2889                                                 QualType ConvTy) override {
2890        return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
2891      }
2892
2893      SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
2894                                             QualType ConvTy) override {
2895        return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2896          << ConvTy;
2897      }
2898
2899      SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
2900                                              QualType T) override {
2901        return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
2902      }
2903
2904      SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
2905                                          QualType ConvTy) override {
2906        return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2907          << ConvTy;
2908      }
2909
2910      SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2911                                               QualType T,
2912                                               QualType ConvTy) override {
2913        llvm_unreachable("conversion functions are permitted");
2914      }
2915    } Converter;
2916
2917    Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
2918    if (Ex.isInvalid())
2919      return ExprError();
2920    Type = Ex.get()->getType();
2921    if (!Converter.match(Type))
2922      // FIXME: PerformContextualImplicitConversion should return ExprError
2923      //        itself in this case.
2924      return ExprError();
2925
2926    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2927    QualType PointeeElem = Context.getBaseElementType(Pointee);
2928
2929    if (unsigned AddressSpace = Pointee.getAddressSpace())
2930      return Diag(Ex.get()->getLocStart(),
2931                  diag::err_address_space_qualified_delete)
2932               << Pointee.getUnqualifiedType() << AddressSpace;
2933
2934    CXXRecordDecl *PointeeRD = nullptr;
2935    if (Pointee->isVoidType() && !isSFINAEContext()) {
2936      // The C++ standard bans deleting a pointer to a non-object type, which
2937      // effectively bans deletion of "void*". However, most compilers support
2938      // this, so we treat it as a warning unless we're in a SFINAE context.
2939      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2940        << Type << Ex.get()->getSourceRange();
2941    } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2942      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2943        << Type << Ex.get()->getSourceRange());
2944    } else if (!Pointee->isDependentType()) {
2945      // FIXME: This can result in errors if the definition was imported from a
2946      // module but is hidden.
2947      if (!RequireCompleteType(StartLoc, Pointee,
2948                               diag::warn_delete_incomplete, Ex.get())) {
2949        if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2950          PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2951      }
2952    }
2953
2954    if (Pointee->isArrayType() && !ArrayForm) {
2955      Diag(StartLoc, diag::warn_delete_array_type)
2956          << Type << Ex.get()->getSourceRange()
2957          << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
2958      ArrayForm = true;
2959    }
2960
2961    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2962                                      ArrayForm ? OO_Array_Delete : OO_Delete);
2963
2964    if (PointeeRD) {
2965      if (!UseGlobal &&
2966          FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2967                                   OperatorDelete))
2968        return ExprError();
2969
2970      // If we're allocating an array of records, check whether the
2971      // usual operator delete[] has a size_t parameter.
2972      if (ArrayForm) {
2973        // If the user specifically asked to use the global allocator,
2974        // we'll need to do the lookup into the class.
2975        if (UseGlobal)
2976          UsualArrayDeleteWantsSize =
2977            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2978
2979        // Otherwise, the usual operator delete[] should be the
2980        // function we just found.
2981        else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
2982          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2983      }
2984
2985      if (!PointeeRD->hasIrrelevantDestructor())
2986        if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2987          MarkFunctionReferenced(StartLoc,
2988                                    const_cast<CXXDestructorDecl*>(Dtor));
2989          if (DiagnoseUseOfDecl(Dtor, StartLoc))
2990            return ExprError();
2991        }
2992
2993      CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
2994                           /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
2995                           /*WarnOnNonAbstractTypes=*/!ArrayForm,
2996                           SourceLocation());
2997    }
2998
2999    if (!OperatorDelete)
3000      // Look for a global declaration.
3001      OperatorDelete = FindUsualDeallocationFunction(
3002          StartLoc, isCompleteType(StartLoc, Pointee) &&
3003                    (!ArrayForm || UsualArrayDeleteWantsSize ||
3004                     Pointee.isDestructedType()),
3005          DeleteName);
3006
3007    MarkFunctionReferenced(StartLoc, OperatorDelete);
3008
3009    // Check access and ambiguity of operator delete and destructor.
3010    if (PointeeRD) {
3011      if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3012          CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3013                      PDiag(diag::err_access_dtor) << PointeeElem);
3014      }
3015    }
3016  }
3017
3018  CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3019      Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3020      UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3021  AnalyzeDeleteExprMismatch(Result);
3022  return Result;
3023}
3024
3025void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3026                                bool IsDelete, bool CallCanBeVirtual,
3027                                bool WarnOnNonAbstractTypes,
3028                                SourceLocation DtorLoc) {
3029  if (!dtor || dtor->isVirtual() || !CallCanBeVirtual)
3030    return;
3031
3032  // C++ [expr.delete]p3:
3033  //   In the first alternative (delete object), if the static type of the
3034  //   object to be deleted is different from its dynamic type, the static
3035  //   type shall be a base class of the dynamic type of the object to be
3036  //   deleted and the static type shall have a virtual destructor or the
3037  //   behavior is undefined.
3038  //
3039  const CXXRecordDecl *PointeeRD = dtor->getParent();
3040  // Note: a final class cannot be derived from, no issue there
3041  if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3042    return;
3043
3044  QualType ClassType = dtor->getThisType(Context)->getPointeeType();
3045  if (PointeeRD->isAbstract()) {
3046    // If the class is abstract, we warn by default, because we're
3047    // sure the code has undefined behavior.
3048    Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3049                                                           << ClassType;
3050  } else if (WarnOnNonAbstractTypes) {
3051    // Otherwise, if this is not an array delete, it's a bit suspect,
3052    // but not necessarily wrong.
3053    Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3054                                                  << ClassType;
3055  }
3056  if (!IsDelete) {
3057    std::string TypeStr;
3058    ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3059    Diag(DtorLoc, diag::note_delete_non_virtual)
3060        << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3061  }
3062}
3063
3064Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3065                                                   SourceLocation StmtLoc,
3066                                                   ConditionKind CK) {
3067  ExprResult E =
3068      CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3069  if (E.isInvalid())
3070    return ConditionError();
3071  return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3072                         CK == ConditionKind::ConstexprIf);
3073}
3074
3075/// \brief Check the use of the given variable as a C++ condition in an if,
3076/// while, do-while, or switch statement.
3077ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3078                                        SourceLocation StmtLoc,
3079                                        ConditionKind CK) {
3080  if (ConditionVar->isInvalidDecl())
3081    return ExprError();
3082
3083  QualType T = ConditionVar->getType();
3084
3085  // C++ [stmt.select]p2:
3086  //   The declarator shall not specify a function or an array.
3087  if (T->isFunctionType())
3088    return ExprError(Diag(ConditionVar->getLocation(),
3089                          diag::err_invalid_use_of_function_type)
3090                       << ConditionVar->getSourceRange());
3091  else if (T->isArrayType())
3092    return ExprError(Diag(ConditionVar->getLocation(),
3093                          diag::err_invalid_use_of_array_type)
3094                     << ConditionVar->getSourceRange());
3095
3096  ExprResult Condition = DeclRefExpr::Create(
3097      Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
3098      /*enclosing*/ false, ConditionVar->getLocation(),
3099      ConditionVar->getType().getNonReferenceType(), VK_LValue);
3100
3101  MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
3102
3103  switch (CK) {
3104  case ConditionKind::Boolean:
3105    return CheckBooleanCondition(StmtLoc, Condition.get());
3106
3107  case ConditionKind::ConstexprIf:
3108    return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3109
3110  case ConditionKind::Switch:
3111    return CheckSwitchCondition(StmtLoc, Condition.get());
3112  }
3113
3114  llvm_unreachable("unexpected condition kind");
3115}
3116
3117/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3118ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3119  // C++ 6.4p4:
3120  // The value of a condition that is an initialized declaration in a statement
3121  // other than a switch statement is the value of the declared variable
3122  // implicitly converted to type bool. If that conversion is ill-formed, the
3123  // program is ill-formed.
3124  // The value of a condition that is an expression is the value of the
3125  // expression, implicitly converted to bool.
3126  //
3127  // FIXME: Return this value to the caller so they don't need to recompute it.
3128  llvm::APSInt Value(/*BitWidth*/1);
3129  return (IsConstexpr && !CondExpr->isValueDependent())
3130             ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value,
3131                                                CCEK_ConstexprIf)
3132             : PerformContextuallyConvertToBool(CondExpr);
3133}
3134
3135/// Helper function to determine whether this is the (deprecated) C++
3136/// conversion from a string literal to a pointer to non-const char or
3137/// non-const wchar_t (for narrow and wide string literals,
3138/// respectively).
3139bool
3140Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3141  // Look inside the implicit cast, if it exists.
3142  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3143    From = Cast->getSubExpr();
3144
3145  // A string literal (2.13.4) that is not a wide string literal can
3146  // be converted to an rvalue of type "pointer to char"; a wide
3147  // string literal can be converted to an rvalue of type "pointer
3148  // to wchar_t" (C++ 4.2p2).
3149  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3150    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3151      if (const BuiltinType *ToPointeeType
3152          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3153        // This conversion is considered only when there is an
3154        // explicit appropriate pointer target type (C++ 4.2p2).
3155        if (!ToPtrType->getPointeeType().hasQualifiers()) {
3156          switch (StrLit->getKind()) {
3157            case StringLiteral::UTF8:
3158            case StringLiteral::UTF16:
3159            case StringLiteral::UTF32:
3160              // We don't allow UTF literals to be implicitly converted
3161              break;
3162            case StringLiteral::Ascii:
3163              return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3164                      ToPointeeType->getKind() == BuiltinType::Char_S);
3165            case StringLiteral::Wide:
3166              return Context.typesAreCompatible(Context.getWideCharType(),
3167                                                QualType(ToPointeeType, 0));
3168          }
3169        }
3170      }
3171
3172  return false;
3173}
3174
3175static ExprResult BuildCXXCastArgument(Sema &S,
3176                                       SourceLocation CastLoc,
3177                                       QualType Ty,
3178                                       CastKind Kind,
3179                                       CXXMethodDecl *Method,
3180                                       DeclAccessPair FoundDecl,
3181                                       bool HadMultipleCandidates,
3182                                       Expr *From) {
3183  switch (Kind) {
3184  default: llvm_unreachable("Unhandled cast kind!");
3185  case CK_ConstructorConversion: {
3186    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3187    SmallVector<Expr*, 8> ConstructorArgs;
3188
3189    if (S.RequireNonAbstractType(CastLoc, Ty,
3190                                 diag::err_allocation_of_abstract_type))
3191      return ExprError();
3192
3193    if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
3194      return ExprError();
3195
3196    S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
3197                             InitializedEntity::InitializeTemporary(Ty));
3198    if (S.DiagnoseUseOfDecl(Method, CastLoc))
3199      return ExprError();
3200
3201    ExprResult Result = S.BuildCXXConstructExpr(
3202        CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
3203        ConstructorArgs, HadMultipleCandidates,
3204        /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3205        CXXConstructExpr::CK_Complete, SourceRange());
3206    if (Result.isInvalid())
3207      return ExprError();
3208
3209    return S.MaybeBindToTemporary(Result.getAs<Expr>());
3210  }
3211
3212  case CK_UserDefinedConversion: {
3213    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
3214
3215    S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
3216    if (S.DiagnoseUseOfDecl(Method, CastLoc))
3217      return ExprError();
3218
3219    // Create an implicit call expr that calls it.
3220    CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
3221    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
3222                                                 HadMultipleCandidates);
3223    if (Result.isInvalid())
3224      return ExprError();
3225    // Record usage of conversion in an implicit cast.
3226    Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
3227                                      CK_UserDefinedConversion, Result.get(),
3228                                      nullptr, Result.get()->getValueKind());
3229
3230    return S.MaybeBindToTemporary(Result.get());
3231  }
3232  }
3233}
3234
3235/// PerformImplicitConversion - Perform an implicit conversion of the
3236/// expression From to the type ToType using the pre-computed implicit
3237/// conversion sequence ICS. Returns the converted
3238/// expression. Action is the kind of conversion we're performing,
3239/// used in the error message.
3240ExprResult
3241Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3242                                const ImplicitConversionSequence &ICS,
3243                                AssignmentAction Action,
3244                                CheckedConversionKind CCK) {
3245  switch (ICS.getKind()) {
3246  case ImplicitConversionSequence::StandardConversion: {
3247    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
3248                                               Action, CCK);
3249    if (Res.isInvalid())
3250      return ExprError();
3251    From = Res.get();
3252    break;
3253  }
3254
3255  case ImplicitConversionSequence::UserDefinedConversion: {
3256
3257      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
3258      CastKind CastKind;
3259      QualType BeforeToType;
3260      assert(FD && "no conversion function for user-defined conversion seq");
3261      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
3262        CastKind = CK_UserDefinedConversion;
3263
3264        // If the user-defined conversion is specified by a conversion function,
3265        // the initial standard conversion sequence converts the source type to
3266        // the implicit object parameter of the conversion function.
3267        BeforeToType = Context.getTagDeclType(Conv->getParent());
3268      } else {
3269        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
3270        CastKind = CK_ConstructorConversion;
3271        // Do no conversion if dealing with ... for the first conversion.
3272        if (!ICS.UserDefined.EllipsisConversion) {
3273          // If the user-defined conversion is specified by a constructor, the
3274          // initial standard conversion sequence converts the source type to
3275          // the type required by the argument of the constructor
3276          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
3277        }
3278      }
3279      // Watch out for ellipsis conversion.
3280      if (!ICS.UserDefined.EllipsisConversion) {
3281        ExprResult Res =
3282          PerformImplicitConversion(From, BeforeToType,
3283                                    ICS.UserDefined.Before, AA_Converting,
3284                                    CCK);
3285        if (Res.isInvalid())
3286          return ExprError();
3287        From = Res.get();
3288      }
3289
3290      ExprResult CastArg
3291        = BuildCXXCastArgument(*this,
3292                               From->getLocStart(),
3293                               ToType.getNonReferenceType(),
3294                               CastKind, cast<CXXMethodDecl>(FD),
3295                               ICS.UserDefined.FoundConversionFunction,
3296                               ICS.UserDefined.HadMultipleCandidates,
3297                               From);
3298
3299      if (CastArg.isInvalid())
3300        return ExprError();
3301
3302      From = CastArg.get();
3303
3304      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
3305                                       AA_Converting, CCK);
3306  }
3307
3308  case ImplicitConversionSequence::AmbiguousConversion:
3309    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
3310                          PDiag(diag::err_typecheck_ambiguous_condition)
3311                            << From->getSourceRange());
3312     return ExprError();
3313
3314  case ImplicitConversionSequence::EllipsisConversion:
3315    llvm_unreachable("Cannot perform an ellipsis conversion");
3316
3317  case ImplicitConversionSequence::BadConversion:
3318    return ExprError();
3319  }
3320
3321  // Everything went well.
3322  return From;
3323}
3324
3325/// PerformImplicitConversion - Perform an implicit conversion of the
3326/// expression From to the type ToType by following the standard
3327/// conversion sequence SCS. Returns the converted
3328/// expression. Flavor is the context in which we're performing this
3329/// conversion, for use in error messages.
3330ExprResult
3331Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3332                                const StandardConversionSequence& SCS,
3333                                AssignmentAction Action,
3334                                CheckedConversionKind CCK) {
3335  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
3336
3337  // Overall FIXME: we are recomputing too many types here and doing far too
3338  // much extra work. What this means is that we need to keep track of more
3339  // information that is computed when we try the implicit conversion initially,
3340  // so that we don't need to recompute anything here.
3341  QualType FromType = From->getType();
3342
3343  if (SCS.CopyConstructor) {
3344    // FIXME: When can ToType be a reference type?
3345    assert(!ToType->isReferenceType());
3346    if (SCS.Second == ICK_Derived_To_Base) {
3347      SmallVector<Expr*, 8> ConstructorArgs;
3348      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
3349                                  From, /*FIXME:ConstructLoc*/SourceLocation(),
3350                                  ConstructorArgs))
3351        return ExprError();
3352      return BuildCXXConstructExpr(
3353          /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3354          SCS.FoundCopyConstructor, SCS.CopyConstructor,
3355          ConstructorArgs, /*HadMultipleCandidates*/ false,
3356          /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3357          CXXConstructExpr::CK_Complete, SourceRange());
3358    }
3359    return BuildCXXConstructExpr(
3360        /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3361        SCS.FoundCopyConstructor, SCS.CopyConstructor,
3362        From, /*HadMultipleCandidates*/ false,
3363        /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3364        CXXConstructExpr::CK_Complete, SourceRange());
3365  }
3366
3367  // Resolve overloaded function references.
3368  if (Context.hasSameType(FromType, Context.OverloadTy)) {
3369    DeclAccessPair Found;
3370    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
3371                                                          true, Found);
3372    if (!Fn)
3373      return ExprError();
3374
3375    if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
3376      return ExprError();
3377
3378    From = FixOverloadedFunctionReference(From, Found, Fn);
3379    FromType = From->getType();
3380  }
3381
3382  // If we're converting to an atomic type, first convert to the corresponding
3383  // non-atomic type.
3384  QualType ToAtomicType;
3385  if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
3386    ToAtomicType = ToType;
3387    ToType = ToAtomic->getValueType();
3388  }
3389
3390  QualType InitialFromType = FromType;
3391  // Perform the first implicit conversion.
3392  switch (SCS.First) {
3393  case ICK_Identity:
3394    if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
3395      FromType = FromAtomic->getValueType().getUnqualifiedType();
3396      From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
3397                                      From, /*BasePath=*/nullptr, VK_RValue);
3398    }
3399    break;
3400
3401  case ICK_Lvalue_To_Rvalue: {
3402    assert(From->getObjectKind() != OK_ObjCProperty);
3403    ExprResult FromRes = DefaultLvalueConversion(From);
3404    assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
3405    From = FromRes.get();
3406    FromType = From->getType();
3407    break;
3408  }
3409
3410  case ICK_Array_To_Pointer:
3411    FromType = Context.getArrayDecayedType(FromType);
3412    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
3413                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
3414    break;
3415
3416  case ICK_Function_To_Pointer:
3417    FromType = Context.getPointerType(FromType);
3418    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
3419                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
3420    break;
3421
3422  default:
3423    llvm_unreachable("Improper first standard conversion");
3424  }
3425
3426  // Perform the second implicit conversion
3427  switch (SCS.Second) {
3428  case ICK_Identity:
3429    // C++ [except.spec]p5:
3430    //   [For] assignment to and initialization of pointers to functions,
3431    //   pointers to member functions, and references to functions: the
3432    //   target entity shall allow at least the exceptions allowed by the
3433    //   source value in the assignment or initialization.
3434    switch (Action) {
3435    case AA_Assigning:
3436    case AA_Initializing:
3437      // Note, function argument passing and returning are initialization.
3438    case AA_Passing:
3439    case AA_Returning:
3440    case AA_Sending:
3441    case AA_Passing_CFAudited:
3442      if (CheckExceptionSpecCompatibility(From, ToType))
3443        return ExprError();
3444      break;
3445
3446    case AA_Casting:
3447    case AA_Converting:
3448      // Casts and implicit conversions are not initialization, so are not
3449      // checked for exception specification mismatches.
3450      break;
3451    }
3452    // Nothing else to do.
3453    break;
3454
3455  case ICK_NoReturn_Adjustment:
3456    // If both sides are functions (or pointers/references to them), there could
3457    // be incompatible exception declarations.
3458    if (CheckExceptionSpecCompatibility(From, ToType))
3459      return ExprError();
3460
3461    From = ImpCastExprToType(From, ToType, CK_NoOp,
3462                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
3463    break;
3464
3465  case ICK_Integral_Promotion:
3466  case ICK_Integral_Conversion:
3467    if (ToType->isBooleanType()) {
3468      assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
3469             SCS.Second == ICK_Integral_Promotion &&
3470             "only enums with fixed underlying type can promote to bool");
3471      From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
3472                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
3473    } else {
3474      From = ImpCastExprToType(From, ToType, CK_IntegralCast,
3475                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
3476    }
3477    break;
3478
3479  case ICK_Floating_Promotion:
3480  case ICK_Floating_Conversion:
3481    From = ImpCastExprToType(From, ToType, CK_FloatingCast,
3482                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
3483    break;
3484
3485  case ICK_Complex_Promotion:
3486  case ICK_Complex_Conversion: {
3487    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
3488    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
3489    CastKind CK;
3490    if (FromEl->isRealFloatingType()) {
3491      if (ToEl->isRealFloatingType())
3492        CK = CK_FloatingComplexCast;
3493      else
3494        CK = CK_FloatingComplexToIntegralComplex;
3495    } else if (ToEl->isRealFloatingType()) {
3496      CK = CK_IntegralComplexToFloatingComplex;
3497    } else {
3498      CK = CK_IntegralComplexCast;
3499    }
3500    From = ImpCastExprToType(From, ToType, CK,
3501                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
3502    break;
3503  }
3504
3505  case ICK_Floating_Integral:
3506    if (ToType->isRealFloatingType())
3507      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
3508                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
3509    else
3510      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
3511                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
3512    break;
3513
3514  case ICK_Compatible_Conversion:
3515      From = ImpCastExprToType(From, ToType, CK_NoOp,
3516                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
3517    break;
3518
3519  case ICK_Writeback_Conversion:
3520  case ICK_Pointer_Conversion: {
3521    if (SCS.IncompatibleObjC && Action != AA_Casting) {
3522      // Diagnose incompatible Objective-C conversions
3523      if (Action == AA_Initializing || Action == AA_Assigning)
3524        Diag(From->getLocStart(),
3525             diag::ext_typecheck_convert_incompatible_pointer)
3526          << ToType << From->getType() << Action
3527          << From->getSourceRange() << 0;
3528      else
3529        Diag(From->getLocStart(),
3530             diag::ext_typecheck_convert_incompatible_pointer)
3531          << From->getType() << ToType << Action
3532          << From->getSourceRange() << 0;
3533
3534      if (From->getType()->isObjCObjectPointerType() &&
3535          ToType->isObjCObjectPointerType())
3536        EmitRelatedResultTypeNote(From);
3537    }
3538    else if (getLangOpts().ObjCAutoRefCount &&
3539             !CheckObjCARCUnavailableWeakConversion(ToType,
3540                                                    From->getType())) {
3541      if (Action == AA_Initializing)
3542        Diag(From->getLocStart(),
3543             diag::err_arc_weak_unavailable_assign);
3544      else
3545        Diag(From->getLocStart(),
3546             diag::err_arc_convesion_of_weak_unavailable)
3547          << (Action == AA_Casting) << From->getType() << ToType
3548          << From->getSourceRange();
3549    }
3550
3551    CastKind Kind = CK_Invalid;
3552    CXXCastPath BasePath;
3553    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
3554      return ExprError();
3555
3556    // Make sure we extend blocks if necessary.
3557    // FIXME: doing this here is really ugly.
3558    if (Kind == CK_BlockPointerToObjCPointerCast) {
3559      ExprResult E = From;
3560      (void) PrepareCastToObjCObjectPointer(E);
3561      From = E.get();
3562    }
3563    if (getLangOpts().ObjCAutoRefCount)
3564      CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
3565    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
3566             .get();
3567    break;
3568  }
3569
3570  case ICK_Pointer_Member: {
3571    CastKind Kind = CK_Invalid;
3572    CXXCastPath BasePath;
3573    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
3574      return ExprError();
3575    if (CheckExceptionSpecCompatibility(From, ToType))
3576      return ExprError();
3577
3578    // We may not have been able to figure out what this member pointer resolved
3579    // to up until this exact point.  Attempt to lock-in it's inheritance model.
3580    if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3581      (void)isCompleteType(From->getExprLoc(), From->getType());
3582      (void)isCompleteType(From->getExprLoc(), ToType);
3583    }
3584
3585    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
3586             .get();
3587    break;
3588  }
3589
3590  case ICK_Boolean_Conversion:
3591    // Perform half-to-boolean conversion via float.
3592    if (From->getType()->isHalfType()) {
3593      From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
3594      FromType = Context.FloatTy;
3595    }
3596
3597    From = ImpCastExprToType(From, Context.BoolTy,
3598                             ScalarTypeToBooleanCastKind(FromType),
3599                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
3600    break;
3601
3602  case ICK_Derived_To_Base: {
3603    CXXCastPath BasePath;
3604    if (CheckDerivedToBaseConversion(From->getType(),
3605                                     ToType.getNonReferenceType(),
3606                                     From->getLocStart(),
3607                                     From->getSourceRange(),
3608                                     &BasePath,
3609                                     CStyle))
3610      return ExprError();
3611
3612    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
3613                      CK_DerivedToBase, From->getValueKind(),
3614                      &BasePath, CCK).get();
3615    break;
3616  }
3617
3618  case ICK_Vector_Conversion:
3619    From = ImpCastExprToType(From, ToType, CK_BitCast,
3620                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
3621    break;
3622
3623  case ICK_Vector_Splat: {
3624    // Vector splat from any arithmetic type to a vector.
3625    Expr *Elem = prepareVectorSplat(ToType, From).get();
3626    From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue,
3627                             /*BasePath=*/nullptr, CCK).get();
3628    break;
3629  }
3630
3631  case ICK_Complex_Real:
3632    // Case 1.  x -> _Complex y
3633    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
3634      QualType ElType = ToComplex->getElementType();
3635      bool isFloatingComplex = ElType->isRealFloatingType();
3636
3637      // x -> y
3638      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
3639        // do nothing
3640      } else if (From->getType()->isRealFloatingType()) {
3641        From = ImpCastExprToType(From, ElType,
3642                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
3643      } else {
3644        assert(From->getType()->isIntegerType());
3645        From = ImpCastExprToType(From, ElType,
3646                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
3647      }
3648      // y -> _Complex y
3649      From = ImpCastExprToType(From, ToType,
3650                   isFloatingComplex ? CK_FloatingRealToComplex
3651                                     : CK_IntegralRealToComplex).get();
3652
3653    // Case 2.  _Complex x -> y
3654    } else {
3655      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
3656      assert(FromComplex);
3657
3658      QualType ElType = FromComplex->getElementType();
3659      bool isFloatingComplex = ElType->isRealFloatingType();
3660
3661      // _Complex x -> x
3662      From = ImpCastExprToType(From, ElType,
3663                   isFloatingComplex ? CK_FloatingComplexToReal
3664                                     : CK_IntegralComplexToReal,
3665                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
3666
3667      // x -> y
3668      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
3669        // do nothing
3670      } else if (ToType->isRealFloatingType()) {
3671        From = ImpCastExprToType(From, ToType,
3672                   isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
3673                                 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3674      } else {
3675        assert(ToType->isIntegerType());
3676        From = ImpCastExprToType(From, ToType,
3677                   isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
3678                                 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3679      }
3680    }
3681    break;
3682
3683  case ICK_Block_Pointer_Conversion: {
3684    From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
3685                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
3686    break;
3687  }
3688
3689  case ICK_TransparentUnionConversion: {
3690    ExprResult FromRes = From;
3691    Sema::AssignConvertType ConvTy =
3692      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
3693    if (FromRes.isInvalid())
3694      return ExprError();
3695    From = FromRes.get();
3696    assert ((ConvTy == Sema::Compatible) &&
3697            "Improper transparent union conversion");
3698    (void)ConvTy;
3699    break;
3700  }
3701
3702  case ICK_Zero_Event_Conversion:
3703    From = ImpCastExprToType(From, ToType,
3704                             CK_ZeroToOCLEvent,
3705                             From->getValueKind()).get();
3706    break;
3707
3708  case ICK_Lvalue_To_Rvalue:
3709  case ICK_Array_To_Pointer:
3710  case ICK_Function_To_Pointer:
3711  case ICK_Qualification:
3712  case ICK_Num_Conversion_Kinds:
3713  case ICK_C_Only_Conversion:
3714    llvm_unreachable("Improper second standard conversion");
3715  }
3716
3717  switch (SCS.Third) {
3718  case ICK_Identity:
3719    // Nothing to do.
3720    break;
3721
3722  case ICK_Qualification: {
3723    // The qualification keeps the category of the inner expression, unless the
3724    // target type isn't a reference.
3725    ExprValueKind VK = ToType->isReferenceType() ?
3726                                  From->getValueKind() : VK_RValue;
3727    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
3728                             CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get();
3729
3730    if (SCS.DeprecatedStringLiteralToCharPtr &&
3731        !getLangOpts().WritableStrings) {
3732      Diag(From->getLocStart(), getLangOpts().CPlusPlus11
3733           ? diag::ext_deprecated_string_literal_conversion
3734           : diag::warn_deprecated_string_literal_conversion)
3735        << ToType.getNonReferenceType();
3736    }
3737
3738    break;
3739  }
3740
3741  default:
3742    llvm_unreachable("Improper third standard conversion");
3743  }
3744
3745  // If this conversion sequence involved a scalar -> atomic conversion, perform
3746  // that conversion now.
3747  if (!ToAtomicType.isNull()) {
3748    assert(Context.hasSameType(
3749        ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
3750    From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
3751                             VK_RValue, nullptr, CCK).get();
3752  }
3753
3754  // If this conversion sequence succeeded and involved implicitly converting a
3755  // _Nullable type to a _Nonnull one, complain.
3756  if (CCK == CCK_ImplicitConversion)
3757    diagnoseNullableToNonnullConversion(ToType, InitialFromType,
3758                                        From->getLocStart());
3759
3760  return From;
3761}
3762
3763/// \brief Check the completeness of a type in a unary type trait.
3764///
3765/// If the particular type trait requires a complete type, tries to complete
3766/// it. If completing the type fails, a diagnostic is emitted and false
3767/// returned. If completing the type succeeds or no completion was required,
3768/// returns true.
3769static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
3770                                                SourceLocation Loc,
3771                                                QualType ArgTy) {
3772  // C++0x [meta.unary.prop]p3:
3773  //   For all of the class templates X declared in this Clause, instantiating
3774  //   that template with a template argument that is a class template
3775  //   specialization may result in the implicit instantiation of the template
3776  //   argument if and only if the semantics of X require that the argument
3777  //   must be a complete type.
3778  // We apply this rule to all the type trait expressions used to implement
3779  // these class templates. We also try to follow any GCC documented behavior
3780  // in these expressions to ensure portability of standard libraries.
3781  switch (UTT) {
3782  default: llvm_unreachable("not a UTT");
3783    // is_complete_type somewhat obviously cannot require a complete type.
3784  case UTT_IsCompleteType:
3785    // Fall-through
3786
3787    // These traits are modeled on the type predicates in C++0x
3788    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
3789    // requiring a complete type, as whether or not they return true cannot be
3790    // impacted by the completeness of the type.
3791  case UTT_IsVoid:
3792  case UTT_IsIntegral:
3793  case UTT_IsFloatingPoint:
3794  case UTT_IsArray:
3795  case UTT_IsPointer:
3796  case UTT_IsLvalueReference:
3797  case UTT_IsRvalueReference:
3798  case UTT_IsMemberFunctionPointer:
3799  case UTT_IsMemberObjectPointer:
3800  case UTT_IsEnum:
3801  case UTT_IsUnion:
3802  case UTT_IsClass:
3803  case UTT_IsFunction:
3804  case UTT_IsReference:
3805  case UTT_IsArithmetic:
3806  case UTT_IsFundamental:
3807  case UTT_IsObject:
3808  case UTT_IsScalar:
3809  case UTT_IsCompound:
3810  case UTT_IsMemberPointer:
3811    // Fall-through
3812
3813    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
3814    // which requires some of its traits to have the complete type. However,
3815    // the completeness of the type cannot impact these traits' semantics, and
3816    // so they don't require it. This matches the comments on these traits in
3817    // Table 49.
3818  case UTT_IsConst:
3819  case UTT_IsVolatile:
3820  case UTT_IsSigned:
3821  case UTT_IsUnsigned:
3822
3823  // This type trait always returns false, checking the type is moot.
3824  case UTT_IsInterfaceClass:
3825    return true;
3826
3827  // C++14 [meta.unary.prop]:
3828  //   If T is a non-union class type, T shall be a complete type.
3829  case UTT_IsEmpty:
3830  case UTT_IsPolymorphic:
3831  case UTT_IsAbstract:
3832    if (const auto *RD = ArgTy->getAsCXXRecordDecl())
3833      if (!RD->isUnion())
3834        return !S.RequireCompleteType(
3835            Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
3836    return true;
3837
3838  // C++14 [meta.unary.prop]:
3839  //   If T is a class type, T shall be a complete type.
3840  case UTT_IsFinal:
3841  case UTT_IsSealed:
3842    if (ArgTy->getAsCXXRecordDecl())
3843      return !S.RequireCompleteType(
3844          Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
3845    return true;
3846
3847  // C++0x [meta.unary.prop] Table 49 requires the following traits to be
3848  // applied to a complete type.
3849  case UTT_IsTrivial:
3850  case UTT_IsTriviallyCopyable:
3851  case UTT_IsStandardLayout:
3852  case UTT_IsPOD:
3853  case UTT_IsLiteral:
3854
3855  case UTT_IsDestructible:
3856  case UTT_IsNothrowDestructible:
3857    // Fall-through
3858
3859    // These trait expressions are designed to help implement predicates in
3860    // [meta.unary.prop] despite not being named the same. They are specified
3861    // by both GCC and the Embarcadero C++ compiler, and require the complete
3862    // type due to the overarching C++0x type predicates being implemented
3863    // requiring the complete type.
3864  case UTT_HasNothrowAssign:
3865  case UTT_HasNothrowMoveAssign:
3866  case UTT_HasNothrowConstructor:
3867  case UTT_HasNothrowCopy:
3868  case UTT_HasTrivialAssign:
3869  case UTT_HasTrivialMoveAssign:
3870  case UTT_HasTrivialDefaultConstructor:
3871  case UTT_HasTrivialMoveConstructor:
3872  case UTT_HasTrivialCopy:
3873  case UTT_HasTrivialDestructor:
3874  case UTT_HasVirtualDestructor:
3875    // Arrays of unknown bound are expressly allowed.
3876    QualType ElTy = ArgTy;
3877    if (ArgTy->isIncompleteArrayType())
3878      ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
3879
3880    // The void type is expressly allowed.
3881    if (ElTy->isVoidType())
3882      return true;
3883
3884    return !S.RequireCompleteType(
3885      Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
3886  }
3887}
3888
3889static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
3890                               Sema &Self, SourceLocation KeyLoc, ASTContext &C,
3891                               bool (CXXRecordDecl::*HasTrivial)() const,
3892                               bool (CXXRecordDecl::*HasNonTrivial)() const,
3893                               bool (CXXMethodDecl::*IsDesiredOp)() const)
3894{
3895  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3896  if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
3897    return true;
3898
3899  DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
3900  DeclarationNameInfo NameInfo(Name, KeyLoc);
3901  LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
3902  if (Self.LookupQualifiedName(Res, RD)) {
3903    bool FoundOperator = false;
3904    Res.suppressDiagnostics();
3905    for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3906         Op != OpEnd; ++Op) {
3907      if (isa<FunctionTemplateDecl>(*Op))
3908        continue;
3909
3910      CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3911      if((Operator->*IsDesiredOp)()) {
3912        FoundOperator = true;
3913        const FunctionProtoType *CPT =
3914          Operator->getType()->getAs<FunctionProtoType>();
3915        CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3916        if (!CPT || !CPT->isNothrow(C))
3917          return false;
3918      }
3919    }
3920    return FoundOperator;
3921  }
3922  return false;
3923}
3924
3925static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
3926                                   SourceLocation KeyLoc, QualType T) {
3927  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3928
3929  ASTContext &C = Self.Context;
3930  switch(UTT) {
3931  default: llvm_unreachable("not a UTT");
3932    // Type trait expressions corresponding to the primary type category
3933    // predicates in C++0x [meta.unary.cat].
3934  case UTT_IsVoid:
3935    return T->isVoidType();
3936  case UTT_IsIntegral:
3937    return T->isIntegralType(C);
3938  case UTT_IsFloatingPoint:
3939    return T->isFloatingType();
3940  case UTT_IsArray:
3941    return T->isArrayType();
3942  case UTT_IsPointer:
3943    return T->isPointerType();
3944  case UTT_IsLvalueReference:
3945    return T->isLValueReferenceType();
3946  case UTT_IsRvalueReference:
3947    return T->isRValueReferenceType();
3948  case UTT_IsMemberFunctionPointer:
3949    return T->isMemberFunctionPointerType();
3950  case UTT_IsMemberObjectPointer:
3951    return T->isMemberDataPointerType();
3952  case UTT_IsEnum:
3953    return T->isEnumeralType();
3954  case UTT_IsUnion:
3955    return T->isUnionType();
3956  case UTT_IsClass:
3957    return T->isClassType() || T->isStructureType() || T->isInterfaceType();
3958  case UTT_IsFunction:
3959    return T->isFunctionType();
3960
3961    // Type trait expressions which correspond to the convenient composition
3962    // predicates in C++0x [meta.unary.comp].
3963  case UTT_IsReference:
3964    return T->isReferenceType();
3965  case UTT_IsArithmetic:
3966    return T->isArithmeticType() && !T->isEnumeralType();
3967  case UTT_IsFundamental:
3968    return T->isFundamentalType();
3969  case UTT_IsObject:
3970    return T->isObjectType();
3971  case UTT_IsScalar:
3972    // Note: semantic analysis depends on Objective-C lifetime types to be
3973    // considered scalar types. However, such types do not actually behave
3974    // like scalar types at run time (since they may require retain/release
3975    // operations), so we report them as non-scalar.
3976    if (T->isObjCLifetimeType()) {
3977      switch (T.getObjCLifetime()) {
3978      case Qualifiers::OCL_None:
3979      case Qualifiers::OCL_ExplicitNone:
3980        return true;
3981
3982      case Qualifiers::OCL_Strong:
3983      case Qualifiers::OCL_Weak:
3984      case Qualifiers::OCL_Autoreleasing:
3985        return false;
3986      }
3987    }
3988
3989    return T->isScalarType();
3990  case UTT_IsCompound:
3991    return T->isCompoundType();
3992  case UTT_IsMemberPointer:
3993    return T->isMemberPointerType();
3994
3995    // Type trait expressions which correspond to the type property predicates
3996    // in C++0x [meta.unary.prop].
3997  case UTT_IsConst:
3998    return T.isConstQualified();
3999  case UTT_IsVolatile:
4000    return T.isVolatileQualified();
4001  case UTT_IsTrivial:
4002    return T.isTrivialType(C);
4003  case UTT_IsTriviallyCopyable:
4004    return T.isTriviallyCopyableType(C);
4005  case UTT_IsStandardLayout:
4006    return T->isStandardLayoutType();
4007  case UTT_IsPOD:
4008    return T.isPODType(C);
4009  case UTT_IsLiteral:
4010    return T->isLiteralType(C);
4011  case UTT_IsEmpty:
4012    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4013      return !RD->isUnion() && RD->isEmpty();
4014    return false;
4015  case UTT_IsPolymorphic:
4016    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4017      return !RD->isUnion() && RD->isPolymorphic();
4018    return false;
4019  case UTT_IsAbstract:
4020    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4021      return !RD->isUnion() && RD->isAbstract();
4022    return false;
4023  // __is_interface_class only returns true when CL is invoked in /CLR mode and
4024  // even then only when it is used with the 'interface struct ...' syntax
4025  // Clang doesn't support /CLR which makes this type trait moot.
4026  case UTT_IsInterfaceClass:
4027    return false;
4028  case UTT_IsFinal:
4029  case UTT_IsSealed:
4030    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4031      return RD->hasAttr<FinalAttr>();
4032    return false;
4033  case UTT_IsSigned:
4034    return T->isSignedIntegerType();
4035  case UTT_IsUnsigned:
4036    return T->isUnsignedIntegerType();
4037
4038    // Type trait expressions which query classes regarding their construction,
4039    // destruction, and copying. Rather than being based directly on the
4040    // related type predicates in the standard, they are specified by both
4041    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4042    // specifications.
4043    //
4044    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4045    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4046    //
4047    // Note that these builtins do not behave as documented in g++: if a class
4048    // has both a trivial and a non-trivial special member of a particular kind,
4049    // they return false! For now, we emulate this behavior.
4050    // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4051    // does not correctly compute triviality in the presence of multiple special
4052    // members of the same kind. Revisit this once the g++ bug is fixed.
4053  case UTT_HasTrivialDefaultConstructor:
4054    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4055    //   If __is_pod (type) is true then the trait is true, else if type is
4056    //   a cv class or union type (or array thereof) with a trivial default
4057    //   constructor ([class.ctor]) then the trait is true, else it is false.
4058    if (T.isPODType(C))
4059      return true;
4060    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4061      return RD->hasTrivialDefaultConstructor() &&
4062             !RD->hasNonTrivialDefaultConstructor();
4063    return false;
4064  case UTT_HasTrivialMoveConstructor:
4065    //  This trait is implemented by MSVC 2012 and needed to parse the
4066    //  standard library headers. Specifically this is used as the logic
4067    //  behind std::is_trivially_move_constructible (20.9.4.3).
4068    if (T.isPODType(C))
4069      return true;
4070    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4071      return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4072    return false;
4073  case UTT_HasTrivialCopy:
4074    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4075    //   If __is_pod (type) is true or type is a reference type then
4076    //   the trait is true, else if type is a cv class or union type
4077    //   with a trivial copy constructor ([class.copy]) then the trait
4078    //   is true, else it is false.
4079    if (T.isPODType(C) || T->isReferenceType())
4080      return true;
4081    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4082      return RD->hasTrivialCopyConstructor() &&
4083             !RD->hasNonTrivialCopyConstructor();
4084    return false;
4085  case UTT_HasTrivialMoveAssign:
4086    //  This trait is implemented by MSVC 2012 and needed to parse the
4087    //  standard library headers. Specifically it is used as the logic
4088    //  behind std::is_trivially_move_assignable (20.9.4.3)
4089    if (T.isPODType(C))
4090      return true;
4091    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4092      return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4093    return false;
4094  case UTT_HasTrivialAssign:
4095    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4096    //   If type is const qualified or is a reference type then the
4097    //   trait is false. Otherwise if __is_pod (type) is true then the
4098    //   trait is true, else if type is a cv class or union type with
4099    //   a trivial copy assignment ([class.copy]) then the trait is
4100    //   true, else it is false.
4101    // Note: the const and reference restrictions are interesting,
4102    // given that const and reference members don't prevent a class
4103    // from having a trivial copy assignment operator (but do cause
4104    // errors if the copy assignment operator is actually used, q.v.
4105    // [class.copy]p12).
4106
4107    if (T.isConstQualified())
4108      return false;
4109    if (T.isPODType(C))
4110      return true;
4111    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4112      return RD->hasTrivialCopyAssignment() &&
4113             !RD->hasNonTrivialCopyAssignment();
4114    return false;
4115  case UTT_IsDestructible:
4116  case UTT_IsNothrowDestructible:
4117    // C++14 [meta.unary.prop]:
4118    //   For reference types, is_destructible<T>::value is true.
4119    if (T->isReferenceType())
4120      return true;
4121
4122    // Objective-C++ ARC: autorelease types don't require destruction.
4123    if (T->isObjCLifetimeType() &&
4124        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4125      return true;
4126
4127    // C++14 [meta.unary.prop]:
4128    //   For incomplete types and function types, is_destructible<T>::value is
4129    //   false.
4130    if (T->isIncompleteType() || T->isFunctionType())
4131      return false;
4132
4133    // C++14 [meta.unary.prop]:
4134    //   For object types and given U equal to remove_all_extents_t<T>, if the
4135    //   expression std::declval<U&>().~U() is well-formed when treated as an
4136    //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
4137    if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4138      CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
4139      if (!Destructor)
4140        return false;
4141      //  C++14 [dcl.fct.def.delete]p2:
4142      //    A program that refers to a deleted function implicitly or
4143      //    explicitly, other than to declare it, is ill-formed.
4144      if (Destructor->isDeleted())
4145        return false;
4146      if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
4147        return false;
4148      if (UTT == UTT_IsNothrowDestructible) {
4149        const FunctionProtoType *CPT =
4150            Destructor->getType()->getAs<FunctionProtoType>();
4151        CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4152        if (!CPT || !CPT->isNothrow(C))
4153          return false;
4154      }
4155    }
4156    return true;
4157
4158  case UTT_HasTrivialDestructor:
4159    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4160    //   If __is_pod (type) is true or type is a reference type
4161    //   then the trait is true, else if type is a cv class or union
4162    //   type (or array thereof) with a trivial destructor
4163    //   ([class.dtor]) then the trait is true, else it is
4164    //   false.
4165    if (T.isPODType(C) || T->isReferenceType())
4166      return true;
4167
4168    // Objective-C++ ARC: autorelease types don't require destruction.
4169    if (T->isObjCLifetimeType() &&
4170        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4171      return true;
4172
4173    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4174      return RD->hasTrivialDestructor();
4175    return false;
4176  // TODO: Propagate nothrowness for implicitly declared special members.
4177  case UTT_HasNothrowAssign:
4178    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4179    //   If type is const qualified or is a reference type then the
4180    //   trait is false. Otherwise if __has_trivial_assign (type)
4181    //   is true then the trait is true, else if type is a cv class
4182    //   or union type with copy assignment operators that are known
4183    //   not to throw an exception then the trait is true, else it is
4184    //   false.
4185    if (C.getBaseElementType(T).isConstQualified())
4186      return false;
4187    if (T->isReferenceType())
4188      return false;
4189    if (T.isPODType(C) || T->isObjCLifetimeType())
4190      return true;
4191
4192    if (const RecordType *RT = T->getAs<RecordType>())
4193      return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4194                                &CXXRecordDecl::hasTrivialCopyAssignment,
4195                                &CXXRecordDecl::hasNonTrivialCopyAssignment,
4196                                &CXXMethodDecl::isCopyAssignmentOperator);
4197    return false;
4198  case UTT_HasNothrowMoveAssign:
4199    //  This trait is implemented by MSVC 2012 and needed to parse the
4200    //  standard library headers. Specifically this is used as the logic
4201    //  behind std::is_nothrow_move_assignable (20.9.4.3).
4202    if (T.isPODType(C))
4203      return true;
4204
4205    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
4206      return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4207                                &CXXRecordDecl::hasTrivialMoveAssignment,
4208                                &CXXRecordDecl::hasNonTrivialMoveAssignment,
4209                                &CXXMethodDecl::isMoveAssignmentOperator);
4210    return false;
4211  case UTT_HasNothrowCopy:
4212    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4213    //   If __has_trivial_copy (type) is true then the trait is true, else
4214    //   if type is a cv class or union type with copy constructors that are
4215    //   known not to throw an exception then the trait is true, else it is
4216    //   false.
4217    if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
4218      return true;
4219    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
4220      if (RD->hasTrivialCopyConstructor() &&
4221          !RD->hasNonTrivialCopyConstructor())
4222        return true;
4223
4224      bool FoundConstructor = false;
4225      unsigned FoundTQs;
4226      for (const auto *ND : Self.LookupConstructors(RD)) {
4227        // A template constructor is never a copy constructor.
4228        // FIXME: However, it may actually be selected at the actual overload
4229        // resolution point.
4230        if (isa<FunctionTemplateDecl>(ND))
4231          continue;
4232        const CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(ND);
4233        if (Constructor->isCopyConstructor(FoundTQs)) {
4234          FoundConstructor = true;
4235          const FunctionProtoType *CPT
4236              = Constructor->getType()->getAs<FunctionProtoType>();
4237          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4238          if (!CPT)
4239            return false;
4240          // TODO: check whether evaluating default arguments can throw.
4241          // For now, we'll be conservative and assume that they can throw.
4242          if (!CPT->isNothrow(C) || CPT->getNumParams() > 1)
4243            return false;
4244        }
4245      }
4246
4247      return FoundConstructor;
4248    }
4249    return false;
4250  case UTT_HasNothrowConstructor:
4251    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4252    //   If __has_trivial_constructor (type) is true then the trait is
4253    //   true, else if type is a cv class or union type (or array
4254    //   thereof) with a default constructor that is known not to
4255    //   throw an exception then the trait is true, else it is false.
4256    if (T.isPODType(C) || T->isObjCLifetimeType())
4257      return true;
4258    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4259      if (RD->hasTrivialDefaultConstructor() &&
4260          !RD->hasNonTrivialDefaultConstructor())
4261        return true;
4262
4263      bool FoundConstructor = false;
4264      for (const auto *ND : Self.LookupConstructors(RD)) {
4265        // FIXME: In C++0x, a constructor template can be a default constructor.
4266        if (isa<FunctionTemplateDecl>(ND))
4267          continue;
4268        const CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(ND);
4269        if (Constructor->isDefaultConstructor()) {
4270          FoundConstructor = true;
4271          const FunctionProtoType *CPT
4272              = Constructor->getType()->getAs<FunctionProtoType>();
4273          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4274          if (!CPT)
4275            return false;
4276          // FIXME: check whether evaluating default arguments can throw.
4277          // For now, we'll be conservative and assume that they can throw.
4278          if (!CPT->isNothrow(C) || CPT->getNumParams() > 0)
4279            return false;
4280        }
4281      }
4282      return FoundConstructor;
4283    }
4284    return false;
4285  case UTT_HasVirtualDestructor:
4286    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4287    //   If type is a class type with a virtual destructor ([class.dtor])
4288    //   then the trait is true, else it is false.
4289    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4290      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
4291        return Destructor->isVirtual();
4292    return false;
4293
4294    // These type trait expressions are modeled on the specifications for the
4295    // Embarcadero C++0x type trait functions:
4296    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4297  case UTT_IsCompleteType:
4298    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
4299    //   Returns True if and only if T is a complete type at the point of the
4300    //   function call.
4301    return !T->isIncompleteType();
4302  }
4303}
4304
4305/// \brief Determine whether T has a non-trivial Objective-C lifetime in
4306/// ARC mode.
4307static bool hasNontrivialObjCLifetime(QualType T) {
4308  switch (T.getObjCLifetime()) {
4309  case Qualifiers::OCL_ExplicitNone:
4310    return false;
4311
4312  case Qualifiers::OCL_Strong:
4313  case Qualifiers::OCL_Weak:
4314  case Qualifiers::OCL_Autoreleasing:
4315    return true;
4316
4317  case Qualifiers::OCL_None:
4318    return T->isObjCLifetimeType();
4319  }
4320
4321  llvm_unreachable("Unknown ObjC lifetime qualifier");
4322}
4323
4324static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4325                                    QualType RhsT, SourceLocation KeyLoc);
4326
4327static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
4328                              ArrayRef<TypeSourceInfo *> Args,
4329                              SourceLocation RParenLoc) {
4330  if (Kind <= UTT_Last)
4331    return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
4332
4333  if (Kind <= BTT_Last)
4334    return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
4335                                   Args[1]->getType(), RParenLoc);
4336
4337  switch (Kind) {
4338  case clang::TT_IsConstructible:
4339  case clang::TT_IsNothrowConstructible:
4340  case clang::TT_IsTriviallyConstructible: {
4341    // C++11 [meta.unary.prop]:
4342    //   is_trivially_constructible is defined as:
4343    //
4344    //     is_constructible<T, Args...>::value is true and the variable
4345    //     definition for is_constructible, as defined below, is known to call
4346    //     no operation that is not trivial.
4347    //
4348    //   The predicate condition for a template specialization
4349    //   is_constructible<T, Args...> shall be satisfied if and only if the
4350    //   following variable definition would be well-formed for some invented
4351    //   variable t:
4352    //
4353    //     T t(create<Args>()...);
4354    assert(!Args.empty());
4355
4356    // Precondition: T and all types in the parameter pack Args shall be
4357    // complete types, (possibly cv-qualified) void, or arrays of
4358    // unknown bound.
4359    for (const auto *TSI : Args) {
4360      QualType ArgTy = TSI->getType();
4361      if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
4362        continue;
4363
4364      if (S.RequireCompleteType(KWLoc, ArgTy,
4365          diag::err_incomplete_type_used_in_type_trait_expr))
4366        return false;
4367    }
4368
4369    // Make sure the first argument is not incomplete nor a function type.
4370    QualType T = Args[0]->getType();
4371    if (T->isIncompleteType() || T->isFunctionType())
4372      return false;
4373
4374    // Make sure the first argument is not an abstract type.
4375    CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4376    if (RD && RD->isAbstract())
4377      return false;
4378
4379    SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
4380    SmallVector<Expr *, 2> ArgExprs;
4381    ArgExprs.reserve(Args.size() - 1);
4382    for (unsigned I = 1, N = Args.size(); I != N; ++I) {
4383      QualType ArgTy = Args[I]->getType();
4384      if (ArgTy->isObjectType() || ArgTy->isFunctionType())
4385        ArgTy = S.Context.getRValueReferenceType(ArgTy);
4386      OpaqueArgExprs.push_back(
4387          OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
4388                          ArgTy.getNonLValueExprType(S.Context),
4389                          Expr::getValueKindForType(ArgTy)));
4390    }
4391    for (Expr &E : OpaqueArgExprs)
4392      ArgExprs.push_back(&E);
4393
4394    // Perform the initialization in an unevaluated context within a SFINAE
4395    // trap at translation unit scope.
4396    EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
4397    Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
4398    Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
4399    InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
4400    InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
4401                                                                 RParenLoc));
4402    InitializationSequence Init(S, To, InitKind, ArgExprs);
4403    if (Init.Failed())
4404      return false;
4405
4406    ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
4407    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4408      return false;
4409
4410    if (Kind == clang::TT_IsConstructible)
4411      return true;
4412
4413    if (Kind == clang::TT_IsNothrowConstructible)
4414      return S.canThrow(Result.get()) == CT_Cannot;
4415
4416    if (Kind == clang::TT_IsTriviallyConstructible) {
4417      // Under Objective-C ARC, if the destination has non-trivial Objective-C
4418      // lifetime, this is a non-trivial construction.
4419      if (S.getLangOpts().ObjCAutoRefCount &&
4420          hasNontrivialObjCLifetime(T.getNonReferenceType()))
4421        return false;
4422
4423      // The initialization succeeded; now make sure there are no non-trivial
4424      // calls.
4425      return !Result.get()->hasNonTrivialCall(S.Context);
4426    }
4427
4428    llvm_unreachable("unhandled type trait");
4429    return false;
4430  }
4431    default: llvm_unreachable("not a TT");
4432  }
4433
4434  return false;
4435}
4436
4437ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
4438                                ArrayRef<TypeSourceInfo *> Args,
4439                                SourceLocation RParenLoc) {
4440  QualType ResultType = Context.getLogicalOperationType();
4441
4442  if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
4443                               *this, Kind, KWLoc, Args[0]->getType()))
4444    return ExprError();
4445
4446  bool Dependent = false;
4447  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4448    if (Args[I]->getType()->isDependentType()) {
4449      Dependent = true;
4450      break;
4451    }
4452  }
4453
4454  bool Result = false;
4455  if (!Dependent)
4456    Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
4457
4458  return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
4459                               RParenLoc, Result);
4460}
4461
4462ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
4463                                ArrayRef<ParsedType> Args,
4464                                SourceLocation RParenLoc) {
4465  SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
4466  ConvertedArgs.reserve(Args.size());
4467
4468  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4469    TypeSourceInfo *TInfo;
4470    QualType T = GetTypeFromParser(Args[I], &TInfo);
4471    if (!TInfo)
4472      TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
4473
4474    ConvertedArgs.push_back(TInfo);
4475  }
4476
4477  return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
4478}
4479
4480static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4481                                    QualType RhsT, SourceLocation KeyLoc) {
4482  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
4483         "Cannot evaluate traits of dependent types");
4484
4485  switch(BTT) {
4486  case BTT_IsBaseOf: {
4487    // C++0x [meta.rel]p2
4488    // Base is a base class of Derived without regard to cv-qualifiers or
4489    // Base and Derived are not unions and name the same class type without
4490    // regard to cv-qualifiers.
4491
4492    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
4493    if (!lhsRecord) return false;
4494
4495    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
4496    if (!rhsRecord) return false;
4497
4498    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
4499             == (lhsRecord == rhsRecord));
4500
4501    if (lhsRecord == rhsRecord)
4502      return !lhsRecord->getDecl()->isUnion();
4503
4504    // C++0x [meta.rel]p2:
4505    //   If Base and Derived are class types and are different types
4506    //   (ignoring possible cv-qualifiers) then Derived shall be a
4507    //   complete type.
4508    if (Self.RequireCompleteType(KeyLoc, RhsT,
4509                          diag::err_incomplete_type_used_in_type_trait_expr))
4510      return false;
4511
4512    return cast<CXXRecordDecl>(rhsRecord->getDecl())
4513      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
4514  }
4515  case BTT_IsSame:
4516    return Self.Context.hasSameType(LhsT, RhsT);
4517  case BTT_TypeCompatible:
4518    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
4519                                           RhsT.getUnqualifiedType());
4520  case BTT_IsConvertible:
4521  case BTT_IsConvertibleTo: {
4522    // C++0x [meta.rel]p4:
4523    //   Given the following function prototype:
4524    //
4525    //     template <class T>
4526    //       typename add_rvalue_reference<T>::type create();
4527    //
4528    //   the predicate condition for a template specialization
4529    //   is_convertible<From, To> shall be satisfied if and only if
4530    //   the return expression in the following code would be
4531    //   well-formed, including any implicit conversions to the return
4532    //   type of the function:
4533    //
4534    //     To test() {
4535    //       return create<From>();
4536    //     }
4537    //
4538    //   Access checking is performed as if in a context unrelated to To and
4539    //   From. Only the validity of the immediate context of the expression
4540    //   of the return-statement (including conversions to the return type)
4541    //   is considered.
4542    //
4543    // We model the initialization as a copy-initialization of a temporary
4544    // of the appropriate type, which for this expression is identical to the
4545    // return statement (since NRVO doesn't apply).
4546
4547    // Functions aren't allowed to return function or array types.
4548    if (RhsT->isFunctionType() || RhsT->isArrayType())
4549      return false;
4550
4551    // A return statement in a void function must have void type.
4552    if (RhsT->isVoidType())
4553      return LhsT->isVoidType();
4554
4555    // A function definition requires a complete, non-abstract return type.
4556    if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
4557      return false;
4558
4559    // Compute the result of add_rvalue_reference.
4560    if (LhsT->isObjectType() || LhsT->isFunctionType())
4561      LhsT = Self.Context.getRValueReferenceType(LhsT);
4562
4563    // Build a fake source and destination for initialization.
4564    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
4565    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
4566                         Expr::getValueKindForType(LhsT));
4567    Expr *FromPtr = &From;
4568    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
4569                                                           SourceLocation()));
4570
4571    // Perform the initialization in an unevaluated context within a SFINAE
4572    // trap at translation unit scope.
4573    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
4574    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
4575    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
4576    InitializationSequence Init(Self, To, Kind, FromPtr);
4577    if (Init.Failed())
4578      return false;
4579
4580    ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
4581    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
4582  }
4583
4584  case BTT_IsAssignable:
4585  case BTT_IsNothrowAssignable:
4586  case BTT_IsTriviallyAssignable: {
4587    // C++11 [meta.unary.prop]p3:
4588    //   is_trivially_assignable is defined as:
4589    //     is_assignable<T, U>::value is true and the assignment, as defined by
4590    //     is_assignable, is known to call no operation that is not trivial
4591    //
4592    //   is_assignable is defined as:
4593    //     The expression declval<T>() = declval<U>() is well-formed when
4594    //     treated as an unevaluated operand (Clause 5).
4595    //
4596    //   For both, T and U shall be complete types, (possibly cv-qualified)
4597    //   void, or arrays of unknown bound.
4598    if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
4599        Self.RequireCompleteType(KeyLoc, LhsT,
4600          diag::err_incomplete_type_used_in_type_trait_expr))
4601      return false;
4602    if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
4603        Self.RequireCompleteType(KeyLoc, RhsT,
4604          diag::err_incomplete_type_used_in_type_trait_expr))
4605      return false;
4606
4607    // cv void is never assignable.
4608    if (LhsT->isVoidType() || RhsT->isVoidType())
4609      return false;
4610
4611    // Build expressions that emulate the effect of declval<T>() and
4612    // declval<U>().
4613    if (LhsT->isObjectType() || LhsT->isFunctionType())
4614      LhsT = Self.Context.getRValueReferenceType(LhsT);
4615    if (RhsT->isObjectType() || RhsT->isFunctionType())
4616      RhsT = Self.Context.getRValueReferenceType(RhsT);
4617    OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
4618                        Expr::getValueKindForType(LhsT));
4619    OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
4620                        Expr::getValueKindForType(RhsT));
4621
4622    // Attempt the assignment in an unevaluated context within a SFINAE
4623    // trap at translation unit scope.
4624    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
4625    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
4626    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
4627    ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
4628                                        &Rhs);
4629    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4630      return false;
4631
4632    if (BTT == BTT_IsAssignable)
4633      return true;
4634
4635    if (BTT == BTT_IsNothrowAssignable)
4636      return Self.canThrow(Result.get()) == CT_Cannot;
4637
4638    if (BTT == BTT_IsTriviallyAssignable) {
4639      // Under Objective-C ARC, if the destination has non-trivial Objective-C
4640      // lifetime, this is a non-trivial assignment.
4641      if (Self.getLangOpts().ObjCAutoRefCount &&
4642          hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
4643        return false;
4644
4645      return !Result.get()->hasNonTrivialCall(Self.Context);
4646    }
4647
4648    llvm_unreachable("unhandled type trait");
4649    return false;
4650  }
4651    default: llvm_unreachable("not a BTT");
4652  }
4653  llvm_unreachable("Unknown type trait or not implemented");
4654}
4655
4656ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
4657                                     SourceLocation KWLoc,
4658                                     ParsedType Ty,
4659                                     Expr* DimExpr,
4660                                     SourceLocation RParen) {
4661  TypeSourceInfo *TSInfo;
4662  QualType T = GetTypeFromParser(Ty, &TSInfo);
4663  if (!TSInfo)
4664    TSInfo = Context.getTrivialTypeSourceInfo(T);
4665
4666  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
4667}
4668
4669static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
4670                                           QualType T, Expr *DimExpr,
4671                                           SourceLocation KeyLoc) {
4672  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4673
4674  switch(ATT) {
4675  case ATT_ArrayRank:
4676    if (T->isArrayType()) {
4677      unsigned Dim = 0;
4678      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
4679        ++Dim;
4680        T = AT->getElementType();
4681      }
4682      return Dim;
4683    }
4684    return 0;
4685
4686  case ATT_ArrayExtent: {
4687    llvm::APSInt Value;
4688    uint64_t Dim;
4689    if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
4690          diag::err_dimension_expr_not_constant_integer,
4691          false).isInvalid())
4692      return 0;
4693    if (Value.isSigned() && Value.isNegative()) {
4694      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
4695        << DimExpr->getSourceRange();
4696      return 0;
4697    }
4698    Dim = Value.getLimitedValue();
4699
4700    if (T->isArrayType()) {
4701      unsigned D = 0;
4702      bool Matched = false;
4703      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
4704        if (Dim == D) {
4705          Matched = true;
4706          break;
4707        }
4708        ++D;
4709        T = AT->getElementType();
4710      }
4711
4712      if (Matched && T->isArrayType()) {
4713        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
4714          return CAT->getSize().getLimitedValue();
4715      }
4716    }
4717    return 0;
4718  }
4719  }
4720  llvm_unreachable("Unknown type trait or not implemented");
4721}
4722
4723ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
4724                                     SourceLocation KWLoc,
4725                                     TypeSourceInfo *TSInfo,
4726                                     Expr* DimExpr,
4727                                     SourceLocation RParen) {
4728  QualType T = TSInfo->getType();
4729
4730  // FIXME: This should likely be tracked as an APInt to remove any host
4731  // assumptions about the width of size_t on the target.
4732  uint64_t Value = 0;
4733  if (!T->isDependentType())
4734    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
4735
4736  // While the specification for these traits from the Embarcadero C++
4737  // compiler's documentation says the return type is 'unsigned int', Clang
4738  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
4739  // compiler, there is no difference. On several other platforms this is an
4740  // important distinction.
4741  return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
4742                                          RParen, Context.getSizeType());
4743}
4744
4745ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
4746                                      SourceLocation KWLoc,
4747                                      Expr *Queried,
4748                                      SourceLocation RParen) {
4749  // If error parsing the expression, ignore.
4750  if (!Queried)
4751    return ExprError();
4752
4753  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
4754
4755  return Result;
4756}
4757
4758static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
4759  switch (ET) {
4760  case ET_IsLValueExpr: return E->isLValue();
4761  case ET_IsRValueExpr: return E->isRValue();
4762  }
4763  llvm_unreachable("Expression trait not covered by switch");
4764}
4765
4766ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
4767                                      SourceLocation KWLoc,
4768                                      Expr *Queried,
4769                                      SourceLocation RParen) {
4770  if (Queried->isTypeDependent()) {
4771    // Delay type-checking for type-dependent expressions.
4772  } else if (Queried->getType()->isPlaceholderType()) {
4773    ExprResult PE = CheckPlaceholderExpr(Queried);
4774    if (PE.isInvalid()) return ExprError();
4775    return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
4776  }
4777
4778  bool Value = EvaluateExpressionTrait(ET, Queried);
4779
4780  return new (Context)
4781      ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
4782}
4783
4784QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
4785                                            ExprValueKind &VK,
4786                                            SourceLocation Loc,
4787                                            bool isIndirect) {
4788  assert(!LHS.get()->getType()->isPlaceholderType() &&
4789         !RHS.get()->getType()->isPlaceholderType() &&
4790         "placeholders should have been weeded out by now");
4791
4792  // The LHS undergoes lvalue conversions if this is ->*.
4793  if (isIndirect) {
4794    LHS = DefaultLvalueConversion(LHS.get());
4795    if (LHS.isInvalid()) return QualType();
4796  }
4797
4798  // The RHS always undergoes lvalue conversions.
4799  RHS = DefaultLvalueConversion(RHS.get());
4800  if (RHS.isInvalid()) return QualType();
4801
4802  const char *OpSpelling = isIndirect ? "->*" : ".*";
4803  // C++ 5.5p2
4804  //   The binary operator .* [p3: ->*] binds its second operand, which shall
4805  //   be of type "pointer to member of T" (where T is a completely-defined
4806  //   class type) [...]
4807  QualType RHSType = RHS.get()->getType();
4808  const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
4809  if (!MemPtr) {
4810    Diag(Loc, diag::err_bad_memptr_rhs)
4811      << OpSpelling << RHSType << RHS.get()->getSourceRange();
4812    return QualType();
4813  }
4814
4815  QualType Class(MemPtr->getClass(), 0);
4816
4817  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
4818  // member pointer points must be completely-defined. However, there is no
4819  // reason for this semantic distinction, and the rule is not enforced by
4820  // other compilers. Therefore, we do not check this property, as it is
4821  // likely to be considered a defect.
4822
4823  // C++ 5.5p2
4824  //   [...] to its first operand, which shall be of class T or of a class of
4825  //   which T is an unambiguous and accessible base class. [p3: a pointer to
4826  //   such a class]
4827  QualType LHSType = LHS.get()->getType();
4828  if (isIndirect) {
4829    if (const PointerType *Ptr = LHSType->getAs<PointerType>())
4830      LHSType = Ptr->getPointeeType();
4831    else {
4832      Diag(Loc, diag::err_bad_memptr_lhs)
4833        << OpSpelling << 1 << LHSType
4834        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
4835      return QualType();
4836    }
4837  }
4838
4839  if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
4840    // If we want to check the hierarchy, we need a complete type.
4841    if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
4842                            OpSpelling, (int)isIndirect)) {
4843      return QualType();
4844    }
4845
4846    if (!IsDerivedFrom(Loc, LHSType, Class)) {
4847      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
4848        << (int)isIndirect << LHS.get()->getType();
4849      return QualType();
4850    }
4851
4852    CXXCastPath BasePath;
4853    if (CheckDerivedToBaseConversion(LHSType, Class, Loc,
4854                                     SourceRange(LHS.get()->getLocStart(),
4855                                                 RHS.get()->getLocEnd()),
4856                                     &BasePath))
4857      return QualType();
4858
4859    // Cast LHS to type of use.
4860    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
4861    ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
4862    LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
4863                            &BasePath);
4864  }
4865
4866  if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
4867    // Diagnose use of pointer-to-member type which when used as
4868    // the functional cast in a pointer-to-member expression.
4869    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
4870     return QualType();
4871  }
4872
4873  // C++ 5.5p2
4874  //   The result is an object or a function of the type specified by the
4875  //   second operand.
4876  // The cv qualifiers are the union of those in the pointer and the left side,
4877  // in accordance with 5.5p5 and 5.2.5.
4878  QualType Result = MemPtr->getPointeeType();
4879  Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
4880
4881  // C++0x [expr.mptr.oper]p6:
4882  //   In a .* expression whose object expression is an rvalue, the program is
4883  //   ill-formed if the second operand is a pointer to member function with
4884  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
4885  //   expression is an lvalue, the program is ill-formed if the second operand
4886  //   is a pointer to member function with ref-qualifier &&.
4887  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
4888    switch (Proto->getRefQualifier()) {
4889    case RQ_None:
4890      // Do nothing
4891      break;
4892
4893    case RQ_LValue:
4894      if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
4895        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4896          << RHSType << 1 << LHS.get()->getSourceRange();
4897      break;
4898
4899    case RQ_RValue:
4900      if (isIndirect || !LHS.get()->Classify(Context).isRValue())
4901        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4902          << RHSType << 0 << LHS.get()->getSourceRange();
4903      break;
4904    }
4905  }
4906
4907  // C++ [expr.mptr.oper]p6:
4908  //   The result of a .* expression whose second operand is a pointer
4909  //   to a data member is of the same value category as its
4910  //   first operand. The result of a .* expression whose second
4911  //   operand is a pointer to a member function is a prvalue. The
4912  //   result of an ->* expression is an lvalue if its second operand
4913  //   is a pointer to data member and a prvalue otherwise.
4914  if (Result->isFunctionType()) {
4915    VK = VK_RValue;
4916    return Context.BoundMemberTy;
4917  } else if (isIndirect) {
4918    VK = VK_LValue;
4919  } else {
4920    VK = LHS.get()->getValueKind();
4921  }
4922
4923  return Result;
4924}
4925
4926/// \brief Try to convert a type to another according to C++11 5.16p3.
4927///
4928/// This is part of the parameter validation for the ? operator. If either
4929/// value operand is a class type, the two operands are attempted to be
4930/// converted to each other. This function does the conversion in one direction.
4931/// It returns true if the program is ill-formed and has already been diagnosed
4932/// as such.
4933static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
4934                                SourceLocation QuestionLoc,
4935                                bool &HaveConversion,
4936                                QualType &ToType) {
4937  HaveConversion = false;
4938  ToType = To->getType();
4939
4940  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
4941                                                           SourceLocation());
4942  // C++11 5.16p3
4943  //   The process for determining whether an operand expression E1 of type T1
4944  //   can be converted to match an operand expression E2 of type T2 is defined
4945  //   as follows:
4946  //   -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
4947  //      implicitly converted to type "lvalue reference to T2", subject to the
4948  //      constraint that in the conversion the reference must bind directly to
4949  //      an lvalue.
4950  //   -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
4951  //      implicitly conveted to the type "rvalue reference to R2", subject to
4952  //      the constraint that the reference must bind directly.
4953  if (To->isLValue() || To->isXValue()) {
4954    QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType)
4955                                : Self.Context.getRValueReferenceType(ToType);
4956
4957    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4958
4959    InitializationSequence InitSeq(Self, Entity, Kind, From);
4960    if (InitSeq.isDirectReferenceBinding()) {
4961      ToType = T;
4962      HaveConversion = true;
4963      return false;
4964    }
4965
4966    if (InitSeq.isAmbiguous())
4967      return InitSeq.Diagnose(Self, Entity, Kind, From);
4968  }
4969
4970  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
4971  //      -- if E1 and E2 have class type, and the underlying class types are
4972  //         the same or one is a base class of the other:
4973  QualType FTy = From->getType();
4974  QualType TTy = To->getType();
4975  const RecordType *FRec = FTy->getAs<RecordType>();
4976  const RecordType *TRec = TTy->getAs<RecordType>();
4977  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
4978                       Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
4979  if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
4980                       Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
4981    //         E1 can be converted to match E2 if the class of T2 is the
4982    //         same type as, or a base class of, the class of T1, and
4983    //         [cv2 > cv1].
4984    if (FRec == TRec || FDerivedFromT) {
4985      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
4986        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4987        InitializationSequence InitSeq(Self, Entity, Kind, From);
4988        if (InitSeq) {
4989          HaveConversion = true;
4990          return false;
4991        }
4992
4993        if (InitSeq.isAmbiguous())
4994          return InitSeq.Diagnose(Self, Entity, Kind, From);
4995      }
4996    }
4997
4998    return false;
4999  }
5000
5001  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
5002  //        implicitly converted to the type that expression E2 would have
5003  //        if E2 were converted to an rvalue (or the type it has, if E2 is
5004  //        an rvalue).
5005  //
5006  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
5007  // to the array-to-pointer or function-to-pointer conversions.
5008  if (!TTy->getAs<TagType>())
5009    TTy = TTy.getUnqualifiedType();
5010
5011  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5012  InitializationSequence InitSeq(Self, Entity, Kind, From);
5013  HaveConversion = !InitSeq.Failed();
5014  ToType = TTy;
5015  if (InitSeq.isAmbiguous())
5016    return InitSeq.Diagnose(Self, Entity, Kind, From);
5017
5018  return false;
5019}
5020
5021/// \brief Try to find a common type for two according to C++0x 5.16p5.
5022///
5023/// This is part of the parameter validation for the ? operator. If either
5024/// value operand is a class type, overload resolution is used to find a
5025/// conversion to a common type.
5026static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
5027                                    SourceLocation QuestionLoc) {
5028  Expr *Args[2] = { LHS.get(), RHS.get() };
5029  OverloadCandidateSet CandidateSet(QuestionLoc,
5030                                    OverloadCandidateSet::CSK_Operator);
5031  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
5032                                    CandidateSet);
5033
5034  OverloadCandidateSet::iterator Best;
5035  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
5036    case OR_Success: {
5037      // We found a match. Perform the conversions on the arguments and move on.
5038      ExprResult LHSRes =
5039        Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
5040                                       Best->Conversions[0], Sema::AA_Converting);
5041      if (LHSRes.isInvalid())
5042        break;
5043      LHS = LHSRes;
5044
5045      ExprResult RHSRes =
5046        Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
5047                                       Best->Conversions[1], Sema::AA_Converting);
5048      if (RHSRes.isInvalid())
5049        break;
5050      RHS = RHSRes;
5051      if (Best->Function)
5052        Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
5053      return false;
5054    }
5055
5056    case OR_No_Viable_Function:
5057
5058      // Emit a better diagnostic if one of the expressions is a null pointer
5059      // constant and the other is a pointer type. In this case, the user most
5060      // likely forgot to take the address of the other expression.
5061      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5062        return true;
5063
5064      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5065        << LHS.get()->getType() << RHS.get()->getType()
5066        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5067      return true;
5068
5069    case OR_Ambiguous:
5070      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
5071        << LHS.get()->getType() << RHS.get()->getType()
5072        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5073      // FIXME: Print the possible common types by printing the return types of
5074      // the viable candidates.
5075      break;
5076
5077    case OR_Deleted:
5078      llvm_unreachable("Conditional operator has only built-in overloads");
5079  }
5080  return true;
5081}
5082
5083/// \brief Perform an "extended" implicit conversion as returned by
5084/// TryClassUnification.
5085static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
5086  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5087  InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
5088                                                           SourceLocation());
5089  Expr *Arg = E.get();
5090  InitializationSequence InitSeq(Self, Entity, Kind, Arg);
5091  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
5092  if (Result.isInvalid())
5093    return true;
5094
5095  E = Result;
5096  return false;
5097}
5098
5099/// \brief Check the operands of ?: under C++ semantics.
5100///
5101/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
5102/// extension. In this case, LHS == Cond. (But they're not aliases.)
5103QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5104                                           ExprResult &RHS, ExprValueKind &VK,
5105                                           ExprObjectKind &OK,
5106                                           SourceLocation QuestionLoc) {
5107  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
5108  // interface pointers.
5109
5110  // C++11 [expr.cond]p1
5111  //   The first expression is contextually converted to bool.
5112  if (!Cond.get()->isTypeDependent()) {
5113    ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
5114    if (CondRes.isInvalid())
5115      return QualType();
5116    Cond = CondRes;
5117  }
5118
5119  // Assume r-value.
5120  VK = VK_RValue;
5121  OK = OK_Ordinary;
5122
5123  // Either of the arguments dependent?
5124  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
5125    return Context.DependentTy;
5126
5127  // C++11 [expr.cond]p2
5128  //   If either the second or the third operand has type (cv) void, ...
5129  QualType LTy = LHS.get()->getType();
5130  QualType RTy = RHS.get()->getType();
5131  bool LVoid = LTy->isVoidType();
5132  bool RVoid = RTy->isVoidType();
5133  if (LVoid || RVoid) {
5134    //   ... one of the following shall hold:
5135    //   -- The second or the third operand (but not both) is a (possibly
5136    //      parenthesized) throw-expression; the result is of the type
5137    //      and value category of the other.
5138    bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
5139    bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
5140    if (LThrow != RThrow) {
5141      Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
5142      VK = NonThrow->getValueKind();
5143      // DR (no number yet): the result is a bit-field if the
5144      // non-throw-expression operand is a bit-field.
5145      OK = NonThrow->getObjectKind();
5146      return NonThrow->getType();
5147    }
5148
5149    //   -- Both the second and third operands have type void; the result is of
5150    //      type void and is a prvalue.
5151    if (LVoid && RVoid)
5152      return Context.VoidTy;
5153
5154    // Neither holds, error.
5155    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
5156      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
5157      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5158    return QualType();
5159  }
5160
5161  // Neither is void.
5162
5163  // C++11 [expr.cond]p3
5164  //   Otherwise, if the second and third operand have different types, and
5165  //   either has (cv) class type [...] an attempt is made to convert each of
5166  //   those operands to the type of the other.
5167  if (!Context.hasSameType(LTy, RTy) &&
5168      (LTy->isRecordType() || RTy->isRecordType())) {
5169    // These return true if a single direction is already ambiguous.
5170    QualType L2RType, R2LType;
5171    bool HaveL2R, HaveR2L;
5172    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
5173      return QualType();
5174    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
5175      return QualType();
5176
5177    //   If both can be converted, [...] the program is ill-formed.
5178    if (HaveL2R && HaveR2L) {
5179      Diag(QuestionLoc, diag::err_conditional_ambiguous)
5180        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5181      return QualType();
5182    }
5183
5184    //   If exactly one conversion is possible, that conversion is applied to
5185    //   the chosen operand and the converted operands are used in place of the
5186    //   original operands for the remainder of this section.
5187    if (HaveL2R) {
5188      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
5189        return QualType();
5190      LTy = LHS.get()->getType();
5191    } else if (HaveR2L) {
5192      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
5193        return QualType();
5194      RTy = RHS.get()->getType();
5195    }
5196  }
5197
5198  // C++11 [expr.cond]p3
5199  //   if both are glvalues of the same value category and the same type except
5200  //   for cv-qualification, an attempt is made to convert each of those
5201  //   operands to the type of the other.
5202  ExprValueKind LVK = LHS.get()->getValueKind();
5203  ExprValueKind RVK = RHS.get()->getValueKind();
5204  if (!Context.hasSameType(LTy, RTy) &&
5205      Context.hasSameUnqualifiedType(LTy, RTy) &&
5206      LVK == RVK && LVK != VK_RValue) {
5207    // Since the unqualified types are reference-related and we require the
5208    // result to be as if a reference bound directly, the only conversion
5209    // we can perform is to add cv-qualifiers.
5210    Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
5211    Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
5212    if (RCVR.isStrictSupersetOf(LCVR)) {
5213      LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
5214      LTy = LHS.get()->getType();
5215    }
5216    else if (LCVR.isStrictSupersetOf(RCVR)) {
5217      RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
5218      RTy = RHS.get()->getType();
5219    }
5220  }
5221
5222  // C++11 [expr.cond]p4
5223  //   If the second and third operands are glvalues of the same value
5224  //   category and have the same type, the result is of that type and
5225  //   value category and it is a bit-field if the second or the third
5226  //   operand is a bit-field, or if both are bit-fields.
5227  // We only extend this to bitfields, not to the crazy other kinds of
5228  // l-values.
5229  bool Same = Context.hasSameType(LTy, RTy);
5230  if (Same && LVK == RVK && LVK != VK_RValue &&
5231      LHS.get()->isOrdinaryOrBitFieldObject() &&
5232      RHS.get()->isOrdinaryOrBitFieldObject()) {
5233    VK = LHS.get()->getValueKind();
5234    if (LHS.get()->getObjectKind() == OK_BitField ||
5235        RHS.get()->getObjectKind() == OK_BitField)
5236      OK = OK_BitField;
5237    return LTy;
5238  }
5239
5240  // C++11 [expr.cond]p5
5241  //   Otherwise, the result is a prvalue. If the second and third operands
5242  //   do not have the same type, and either has (cv) class type, ...
5243  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
5244    //   ... overload resolution is used to determine the conversions (if any)
5245    //   to be applied to the operands. If the overload resolution fails, the
5246    //   program is ill-formed.
5247    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
5248      return QualType();
5249  }
5250
5251  // C++11 [expr.cond]p6
5252  //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
5253  //   conversions are performed on the second and third operands.
5254  LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
5255  RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
5256  if (LHS.isInvalid() || RHS.isInvalid())
5257    return QualType();
5258  LTy = LHS.get()->getType();
5259  RTy = RHS.get()->getType();
5260
5261  //   After those conversions, one of the following shall hold:
5262  //   -- The second and third operands have the same type; the result
5263  //      is of that type. If the operands have class type, the result
5264  //      is a prvalue temporary of the result type, which is
5265  //      copy-initialized from either the second operand or the third
5266  //      operand depending on the value of the first operand.
5267  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
5268    if (LTy->isRecordType()) {
5269      // The operands have class type. Make a temporary copy.
5270      if (RequireNonAbstractType(QuestionLoc, LTy,
5271                                 diag::err_allocation_of_abstract_type))
5272        return QualType();
5273      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
5274
5275      ExprResult LHSCopy = PerformCopyInitialization(Entity,
5276                                                     SourceLocation(),
5277                                                     LHS);
5278      if (LHSCopy.isInvalid())
5279        return QualType();
5280
5281      ExprResult RHSCopy = PerformCopyInitialization(Entity,
5282                                                     SourceLocation(),
5283                                                     RHS);
5284      if (RHSCopy.isInvalid())
5285        return QualType();
5286
5287      LHS = LHSCopy;
5288      RHS = RHSCopy;
5289    }
5290
5291    return LTy;
5292  }
5293
5294  // Extension: conditional operator involving vector types.
5295  if (LTy->isVectorType() || RTy->isVectorType())
5296    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
5297                               /*AllowBothBool*/true,
5298                               /*AllowBoolConversions*/false);
5299
5300  //   -- The second and third operands have arithmetic or enumeration type;
5301  //      the usual arithmetic conversions are performed to bring them to a
5302  //      common type, and the result is of that type.
5303  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
5304    QualType ResTy = UsualArithmeticConversions(LHS, RHS);
5305    if (LHS.isInvalid() || RHS.isInvalid())
5306      return QualType();
5307    if (ResTy.isNull()) {
5308      Diag(QuestionLoc,
5309           diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
5310        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5311      return QualType();
5312    }
5313
5314    LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
5315    RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
5316
5317    return ResTy;
5318  }
5319
5320  //   -- The second and third operands have pointer type, or one has pointer
5321  //      type and the other is a null pointer constant, or both are null
5322  //      pointer constants, at least one of which is non-integral; pointer
5323  //      conversions and qualification conversions are performed to bring them
5324  //      to their composite pointer type. The result is of the composite
5325  //      pointer type.
5326  //   -- The second and third operands have pointer to member type, or one has
5327  //      pointer to member type and the other is a null pointer constant;
5328  //      pointer to member conversions and qualification conversions are
5329  //      performed to bring them to a common type, whose cv-qualification
5330  //      shall match the cv-qualification of either the second or the third
5331  //      operand. The result is of the common type.
5332  bool NonStandardCompositeType = false;
5333  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
5334                                 isSFINAEContext() ? nullptr
5335                                                   : &NonStandardCompositeType);
5336  if (!Composite.isNull()) {
5337    if (NonStandardCompositeType)
5338      Diag(QuestionLoc,
5339           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
5340        << LTy << RTy << Composite
5341        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5342
5343    return Composite;
5344  }
5345
5346  // Similarly, attempt to find composite type of two objective-c pointers.
5347  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
5348  if (!Composite.isNull())
5349    return Composite;
5350
5351  // Check if we are using a null with a non-pointer type.
5352  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5353    return QualType();
5354
5355  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5356    << LHS.get()->getType() << RHS.get()->getType()
5357    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5358  return QualType();
5359}
5360
5361/// \brief Find a merged pointer type and convert the two expressions to it.
5362///
5363/// This finds the composite pointer type (or member pointer type) for @p E1
5364/// and @p E2 according to C++11 5.9p2. It converts both expressions to this
5365/// type and returns it.
5366/// It does not emit diagnostics.
5367///
5368/// \param Loc The location of the operator requiring these two expressions to
5369/// be converted to the composite pointer type.
5370///
5371/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
5372/// a non-standard (but still sane) composite type to which both expressions
5373/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
5374/// will be set true.
5375QualType Sema::FindCompositePointerType(SourceLocation Loc,
5376                                        Expr *&E1, Expr *&E2,
5377                                        bool *NonStandardCompositeType) {
5378  if (NonStandardCompositeType)
5379    *NonStandardCompositeType = false;
5380
5381  assert(getLangOpts().CPlusPlus && "This function assumes C++");
5382  QualType T1 = E1->getType(), T2 = E2->getType();
5383
5384  // C++11 5.9p2
5385  //   Pointer conversions and qualification conversions are performed on
5386  //   pointer operands to bring them to their composite pointer type. If
5387  //   one operand is a null pointer constant, the composite pointer type is
5388  //   std::nullptr_t if the other operand is also a null pointer constant or,
5389  //   if the other operand is a pointer, the type of the other operand.
5390  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
5391      !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
5392    if (T1->isNullPtrType() &&
5393        E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5394      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
5395      return T1;
5396    }
5397    if (T2->isNullPtrType() &&
5398        E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5399      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
5400      return T2;
5401    }
5402    return QualType();
5403  }
5404
5405  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5406    if (T2->isMemberPointerType())
5407      E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get();
5408    else
5409      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
5410    return T2;
5411  }
5412  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5413    if (T1->isMemberPointerType())
5414      E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get();
5415    else
5416      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
5417    return T1;
5418  }
5419
5420  // Now both have to be pointers or member pointers.
5421  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
5422      (!T2->isPointerType() && !T2->isMemberPointerType()))
5423    return QualType();
5424
5425  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
5426  //   the other has type "pointer to cv2 T" and the composite pointer type is
5427  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
5428  //   Otherwise, the composite pointer type is a pointer type similar to the
5429  //   type of one of the operands, with a cv-qualification signature that is
5430  //   the union of the cv-qualification signatures of the operand types.
5431  // In practice, the first part here is redundant; it's subsumed by the second.
5432  // What we do here is, we build the two possible composite types, and try the
5433  // conversions in both directions. If only one works, or if the two composite
5434  // types are the same, we have succeeded.
5435  // FIXME: extended qualifiers?
5436  typedef SmallVector<unsigned, 4> QualifierVector;
5437  QualifierVector QualifierUnion;
5438  typedef SmallVector<std::pair<const Type *, const Type *>, 4>
5439      ContainingClassVector;
5440  ContainingClassVector MemberOfClass;
5441  QualType Composite1 = Context.getCanonicalType(T1),
5442           Composite2 = Context.getCanonicalType(T2);
5443  unsigned NeedConstBefore = 0;
5444  do {
5445    const PointerType *Ptr1, *Ptr2;
5446    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
5447        (Ptr2 = Composite2->getAs<PointerType>())) {
5448      Composite1 = Ptr1->getPointeeType();
5449      Composite2 = Ptr2->getPointeeType();
5450
5451      // If we're allowed to create a non-standard composite type, keep track
5452      // of where we need to fill in additional 'const' qualifiers.
5453      if (NonStandardCompositeType &&
5454          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
5455        NeedConstBefore = QualifierUnion.size();
5456
5457      QualifierUnion.push_back(
5458                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
5459      MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
5460      continue;
5461    }
5462
5463    const MemberPointerType *MemPtr1, *MemPtr2;
5464    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
5465        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
5466      Composite1 = MemPtr1->getPointeeType();
5467      Composite2 = MemPtr2->getPointeeType();
5468
5469      // If we're allowed to create a non-standard composite type, keep track
5470      // of where we need to fill in additional 'const' qualifiers.
5471      if (NonStandardCompositeType &&
5472          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
5473        NeedConstBefore = QualifierUnion.size();
5474
5475      QualifierUnion.push_back(
5476                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
5477      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
5478                                             MemPtr2->getClass()));
5479      continue;
5480    }
5481
5482    // FIXME: block pointer types?
5483
5484    // Cannot unwrap any more types.
5485    break;
5486  } while (true);
5487
5488  if (NeedConstBefore && NonStandardCompositeType) {
5489    // Extension: Add 'const' to qualifiers that come before the first qualifier
5490    // mismatch, so that our (non-standard!) composite type meets the
5491    // requirements of C++ [conv.qual]p4 bullet 3.
5492    for (unsigned I = 0; I != NeedConstBefore; ++I) {
5493      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
5494        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
5495        *NonStandardCompositeType = true;
5496      }
5497    }
5498  }
5499
5500  // Rewrap the composites as pointers or member pointers with the union CVRs.
5501  ContainingClassVector::reverse_iterator MOC
5502    = MemberOfClass.rbegin();
5503  for (QualifierVector::reverse_iterator
5504         I = QualifierUnion.rbegin(),
5505         E = QualifierUnion.rend();
5506       I != E; (void)++I, ++MOC) {
5507    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
5508    if (MOC->first && MOC->second) {
5509      // Rebuild member pointer type
5510      Composite1 = Context.getMemberPointerType(
5511                                    Context.getQualifiedType(Composite1, Quals),
5512                                    MOC->first);
5513      Composite2 = Context.getMemberPointerType(
5514                                    Context.getQualifiedType(Composite2, Quals),
5515                                    MOC->second);
5516    } else {
5517      // Rebuild pointer type
5518      Composite1
5519        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
5520      Composite2
5521        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
5522    }
5523  }
5524
5525  // Try to convert to the first composite pointer type.
5526  InitializedEntity Entity1
5527    = InitializedEntity::InitializeTemporary(Composite1);
5528  InitializationKind Kind
5529    = InitializationKind::CreateCopy(Loc, SourceLocation());
5530  InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
5531  InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
5532
5533  if (E1ToC1 && E2ToC1) {
5534    // Conversion to Composite1 is viable.
5535    if (!Context.hasSameType(Composite1, Composite2)) {
5536      // Composite2 is a different type from Composite1. Check whether
5537      // Composite2 is also viable.
5538      InitializedEntity Entity2
5539        = InitializedEntity::InitializeTemporary(Composite2);
5540      InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
5541      InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
5542      if (E1ToC2 && E2ToC2) {
5543        // Both Composite1 and Composite2 are viable and are different;
5544        // this is an ambiguity.
5545        return QualType();
5546      }
5547    }
5548
5549    // Convert E1 to Composite1
5550    ExprResult E1Result
5551      = E1ToC1.Perform(*this, Entity1, Kind, E1);
5552    if (E1Result.isInvalid())
5553      return QualType();
5554    E1 = E1Result.getAs<Expr>();
5555
5556    // Convert E2 to Composite1
5557    ExprResult E2Result
5558      = E2ToC1.Perform(*this, Entity1, Kind, E2);
5559    if (E2Result.isInvalid())
5560      return QualType();
5561    E2 = E2Result.getAs<Expr>();
5562
5563    return Composite1;
5564  }
5565
5566  // Check whether Composite2 is viable.
5567  InitializedEntity Entity2
5568    = InitializedEntity::InitializeTemporary(Composite2);
5569  InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
5570  InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
5571  if (!E1ToC2 || !E2ToC2)
5572    return QualType();
5573
5574  // Convert E1 to Composite2
5575  ExprResult E1Result
5576    = E1ToC2.Perform(*this, Entity2, Kind, E1);
5577  if (E1Result.isInvalid())
5578    return QualType();
5579  E1 = E1Result.getAs<Expr>();
5580
5581  // Convert E2 to Composite2
5582  ExprResult E2Result
5583    = E2ToC2.Perform(*this, Entity2, Kind, E2);
5584  if (E2Result.isInvalid())
5585    return QualType();
5586  E2 = E2Result.getAs<Expr>();
5587
5588  return Composite2;
5589}
5590
5591ExprResult Sema::MaybeBindToTemporary(Expr *E) {
5592  if (!E)
5593    return ExprError();
5594
5595  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
5596
5597  // If the result is a glvalue, we shouldn't bind it.
5598  if (!E->isRValue())
5599    return E;
5600
5601  // In ARC, calls that return a retainable type can return retained,
5602  // in which case we have to insert a consuming cast.
5603  if (getLangOpts().ObjCAutoRefCount &&
5604      E->getType()->isObjCRetainableType()) {
5605
5606    bool ReturnsRetained;
5607
5608    // For actual calls, we compute this by examining the type of the
5609    // called value.
5610    if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
5611      Expr *Callee = Call->getCallee()->IgnoreParens();
5612      QualType T = Callee->getType();
5613
5614      if (T == Context.BoundMemberTy) {
5615        // Handle pointer-to-members.
5616        if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
5617          T = BinOp->getRHS()->getType();
5618        else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
5619          T = Mem->getMemberDecl()->getType();
5620      }
5621
5622      if (const PointerType *Ptr = T->getAs<PointerType>())
5623        T = Ptr->getPointeeType();
5624      else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
5625        T = Ptr->getPointeeType();
5626      else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
5627        T = MemPtr->getPointeeType();
5628
5629      const FunctionType *FTy = T->getAs<FunctionType>();
5630      assert(FTy && "call to value not of function type?");
5631      ReturnsRetained = FTy->getExtInfo().getProducesResult();
5632
5633    // ActOnStmtExpr arranges things so that StmtExprs of retainable
5634    // type always produce a +1 object.
5635    } else if (isa<StmtExpr>(E)) {
5636      ReturnsRetained = true;
5637
5638    // We hit this case with the lambda conversion-to-block optimization;
5639    // we don't want any extra casts here.
5640    } else if (isa<CastExpr>(E) &&
5641               isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
5642      return E;
5643
5644    // For message sends and property references, we try to find an
5645    // actual method.  FIXME: we should infer retention by selector in
5646    // cases where we don't have an actual method.
5647    } else {
5648      ObjCMethodDecl *D = nullptr;
5649      if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
5650        D = Send->getMethodDecl();
5651      } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
5652        D = BoxedExpr->getBoxingMethod();
5653      } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
5654        D = ArrayLit->getArrayWithObjectsMethod();
5655      } else if (ObjCDictionaryLiteral *DictLit
5656                                        = dyn_cast<ObjCDictionaryLiteral>(E)) {
5657        D = DictLit->getDictWithObjectsMethod();
5658      }
5659
5660      ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
5661
5662      // Don't do reclaims on performSelector calls; despite their
5663      // return type, the invoked method doesn't necessarily actually
5664      // return an object.
5665      if (!ReturnsRetained &&
5666          D && D->getMethodFamily() == OMF_performSelector)
5667        return E;
5668    }
5669
5670    // Don't reclaim an object of Class type.
5671    if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
5672      return E;
5673
5674    Cleanup.setExprNeedsCleanups(true);
5675
5676    CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
5677                                   : CK_ARCReclaimReturnedObject);
5678    return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
5679                                    VK_RValue);
5680  }
5681
5682  if (!getLangOpts().CPlusPlus)
5683    return E;
5684
5685  // Search for the base element type (cf. ASTContext::getBaseElementType) with
5686  // a fast path for the common case that the type is directly a RecordType.
5687  const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
5688  const RecordType *RT = nullptr;
5689  while (!RT) {
5690    switch (T->getTypeClass()) {
5691    case Type::Record:
5692      RT = cast<RecordType>(T);
5693      break;
5694    case Type::ConstantArray:
5695    case Type::IncompleteArray:
5696    case Type::VariableArray:
5697    case Type::DependentSizedArray:
5698      T = cast<ArrayType>(T)->getElementType().getTypePtr();
5699      break;
5700    default:
5701      return E;
5702    }
5703  }
5704
5705  // That should be enough to guarantee that this type is complete, if we're
5706  // not processing a decltype expression.
5707  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5708  if (RD->isInvalidDecl() || RD->isDependentContext())
5709    return E;
5710
5711  bool IsDecltype = ExprEvalContexts.back().IsDecltype;
5712  CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
5713
5714  if (Destructor) {
5715    MarkFunctionReferenced(E->getExprLoc(), Destructor);
5716    CheckDestructorAccess(E->getExprLoc(), Destructor,
5717                          PDiag(diag::err_access_dtor_temp)
5718                            << E->getType());
5719    if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
5720      return ExprError();
5721
5722    // If destructor is trivial, we can avoid the extra copy.
5723    if (Destructor->isTrivial())
5724      return E;
5725
5726    // We need a cleanup, but we don't need to remember the temporary.
5727    Cleanup.setExprNeedsCleanups(true);
5728  }
5729
5730  CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
5731  CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
5732
5733  if (IsDecltype)
5734    ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
5735
5736  return Bind;
5737}
5738
5739ExprResult
5740Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
5741  if (SubExpr.isInvalid())
5742    return ExprError();
5743
5744  return MaybeCreateExprWithCleanups(SubExpr.get());
5745}
5746
5747Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
5748  assert(SubExpr && "subexpression can't be null!");
5749
5750  CleanupVarDeclMarking();
5751
5752  unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
5753  assert(ExprCleanupObjects.size() >= FirstCleanup);
5754  assert(Cleanup.exprNeedsCleanups() ||
5755         ExprCleanupObjects.size() == FirstCleanup);
5756  if (!Cleanup.exprNeedsCleanups())
5757    return SubExpr;
5758
5759  auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
5760                                     ExprCleanupObjects.size() - FirstCleanup);
5761
5762  auto *E = ExprWithCleanups::Create(
5763      Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
5764  DiscardCleanupsInEvaluationContext();
5765
5766  return E;
5767}
5768
5769Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
5770  assert(SubStmt && "sub-statement can't be null!");
5771
5772  CleanupVarDeclMarking();
5773
5774  if (!Cleanup.exprNeedsCleanups())
5775    return SubStmt;
5776
5777  // FIXME: In order to attach the temporaries, wrap the statement into
5778  // a StmtExpr; currently this is only used for asm statements.
5779  // This is hacky, either create a new CXXStmtWithTemporaries statement or
5780  // a new AsmStmtWithTemporaries.
5781  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
5782                                                      SourceLocation(),
5783                                                      SourceLocation());
5784  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
5785                                   SourceLocation());
5786  return MaybeCreateExprWithCleanups(E);
5787}
5788
5789/// Process the expression contained within a decltype. For such expressions,
5790/// certain semantic checks on temporaries are delayed until this point, and
5791/// are omitted for the 'topmost' call in the decltype expression. If the
5792/// topmost call bound a temporary, strip that temporary off the expression.
5793ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
5794  assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
5795
5796  // C++11 [expr.call]p11:
5797  //   If a function call is a prvalue of object type,
5798  // -- if the function call is either
5799  //   -- the operand of a decltype-specifier, or
5800  //   -- the right operand of a comma operator that is the operand of a
5801  //      decltype-specifier,
5802  //   a temporary object is not introduced for the prvalue.
5803
5804  // Recursively rebuild ParenExprs and comma expressions to strip out the
5805  // outermost CXXBindTemporaryExpr, if any.
5806  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5807    ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
5808    if (SubExpr.isInvalid())
5809      return ExprError();
5810    if (SubExpr.get() == PE->getSubExpr())
5811      return E;
5812    return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
5813  }
5814  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5815    if (BO->getOpcode() == BO_Comma) {
5816      ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
5817      if (RHS.isInvalid())
5818        return ExprError();
5819      if (RHS.get() == BO->getRHS())
5820        return E;
5821      return new (Context) BinaryOperator(
5822          BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
5823          BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable());
5824    }
5825  }
5826
5827  CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
5828  CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
5829                              : nullptr;
5830  if (TopCall)
5831    E = TopCall;
5832  else
5833    TopBind = nullptr;
5834
5835  // Disable the special decltype handling now.
5836  ExprEvalContexts.back().IsDecltype = false;
5837
5838  // In MS mode, don't perform any extra checking of call return types within a
5839  // decltype expression.
5840  if (getLangOpts().MSVCCompat)
5841    return E;
5842
5843  // Perform the semantic checks we delayed until this point.
5844  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
5845       I != N; ++I) {
5846    CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
5847    if (Call == TopCall)
5848      continue;
5849
5850    if (CheckCallReturnType(Call->getCallReturnType(Context),
5851                            Call->getLocStart(),
5852                            Call, Call->getDirectCallee()))
5853      return ExprError();
5854  }
5855
5856  // Now all relevant types are complete, check the destructors are accessible
5857  // and non-deleted, and annotate them on the temporaries.
5858  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
5859       I != N; ++I) {
5860    CXXBindTemporaryExpr *Bind =
5861      ExprEvalContexts.back().DelayedDecltypeBinds[I];
5862    if (Bind == TopBind)
5863      continue;
5864
5865    CXXTemporary *Temp = Bind->getTemporary();
5866
5867    CXXRecordDecl *RD =
5868      Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5869    CXXDestructorDecl *Destructor = LookupDestructor(RD);
5870    Temp->setDestructor(Destructor);
5871
5872    MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
5873    CheckDestructorAccess(Bind->getExprLoc(), Destructor,
5874                          PDiag(diag::err_access_dtor_temp)
5875                            << Bind->getType());
5876    if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
5877      return ExprError();
5878
5879    // We need a cleanup, but we don't need to remember the temporary.
5880    Cleanup.setExprNeedsCleanups(true);
5881  }
5882
5883  // Possibly strip off the top CXXBindTemporaryExpr.
5884  return E;
5885}
5886
5887/// Note a set of 'operator->' functions that were used for a member access.
5888static void noteOperatorArrows(Sema &S,
5889                               ArrayRef<FunctionDecl *> OperatorArrows) {
5890  unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
5891  // FIXME: Make this configurable?
5892  unsigned Limit = 9;
5893  if (OperatorArrows.size() > Limit) {
5894    // Produce Limit-1 normal notes and one 'skipping' note.
5895    SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
5896    SkipCount = OperatorArrows.size() - (Limit - 1);
5897  }
5898
5899  for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
5900    if (I == SkipStart) {
5901      S.Diag(OperatorArrows[I]->getLocation(),
5902             diag::note_operator_arrows_suppressed)
5903          << SkipCount;
5904      I += SkipCount;
5905    } else {
5906      S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
5907          << OperatorArrows[I]->getCallResultType();
5908      ++I;
5909    }
5910  }
5911}
5912
5913ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
5914                                              SourceLocation OpLoc,
5915                                              tok::TokenKind OpKind,
5916                                              ParsedType &ObjectType,
5917                                              bool &MayBePseudoDestructor) {
5918  // Since this might be a postfix expression, get rid of ParenListExprs.
5919  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
5920  if (Result.isInvalid()) return ExprError();
5921  Base = Result.get();
5922
5923  Result = CheckPlaceholderExpr(Base);
5924  if (Result.isInvalid()) return ExprError();
5925  Base = Result.get();
5926
5927  QualType BaseType = Base->getType();
5928  MayBePseudoDestructor = false;
5929  if (BaseType->isDependentType()) {
5930    // If we have a pointer to a dependent type and are using the -> operator,
5931    // the object type is the type that the pointer points to. We might still
5932    // have enough information about that type to do something useful.
5933    if (OpKind == tok::arrow)
5934      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
5935        BaseType = Ptr->getPointeeType();
5936
5937    ObjectType = ParsedType::make(BaseType);
5938    MayBePseudoDestructor = true;
5939    return Base;
5940  }
5941
5942  // C++ [over.match.oper]p8:
5943  //   [...] When operator->returns, the operator-> is applied  to the value
5944  //   returned, with the original second operand.
5945  if (OpKind == tok::arrow) {
5946    QualType StartingType = BaseType;
5947    bool NoArrowOperatorFound = false;
5948    bool FirstIteration = true;
5949    FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
5950    // The set of types we've considered so far.
5951    llvm::SmallPtrSet<CanQualType,8> CTypes;
5952    SmallVector<FunctionDecl*, 8> OperatorArrows;
5953    CTypes.insert(Context.getCanonicalType(BaseType));
5954
5955    while (BaseType->isRecordType()) {
5956      if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
5957        Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
5958          << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
5959        noteOperatorArrows(*this, OperatorArrows);
5960        Diag(OpLoc, diag::note_operator_arrow_depth)
5961          << getLangOpts().ArrowDepth;
5962        return ExprError();
5963      }
5964
5965      Result = BuildOverloadedArrowExpr(
5966          S, Base, OpLoc,
5967          // When in a template specialization and on the first loop iteration,
5968          // potentially give the default diagnostic (with the fixit in a
5969          // separate note) instead of having the error reported back to here
5970          // and giving a diagnostic with a fixit attached to the error itself.
5971          (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
5972              ? nullptr
5973              : &NoArrowOperatorFound);
5974      if (Result.isInvalid()) {
5975        if (NoArrowOperatorFound) {
5976          if (FirstIteration) {
5977            Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5978              << BaseType << 1 << Base->getSourceRange()
5979              << FixItHint::CreateReplacement(OpLoc, ".");
5980            OpKind = tok::period;
5981            break;
5982          }
5983          Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5984            << BaseType << Base->getSourceRange();
5985          CallExpr *CE = dyn_cast<CallExpr>(Base);
5986          if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
5987            Diag(CD->getLocStart(),
5988                 diag::note_member_reference_arrow_from_operator_arrow);
5989          }
5990        }
5991        return ExprError();
5992      }
5993      Base = Result.get();
5994      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
5995        OperatorArrows.push_back(OpCall->getDirectCallee());
5996      BaseType = Base->getType();
5997      CanQualType CBaseType = Context.getCanonicalType(BaseType);
5998      if (!CTypes.insert(CBaseType).second) {
5999        Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
6000        noteOperatorArrows(*this, OperatorArrows);
6001        return ExprError();
6002      }
6003      FirstIteration = false;
6004    }
6005
6006    if (OpKind == tok::arrow &&
6007        (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
6008      BaseType = BaseType->getPointeeType();
6009  }
6010
6011  // Objective-C properties allow "." access on Objective-C pointer types,
6012  // so adjust the base type to the object type itself.
6013  if (BaseType->isObjCObjectPointerType())
6014    BaseType = BaseType->getPointeeType();
6015
6016  // C++ [basic.lookup.classref]p2:
6017  //   [...] If the type of the object expression is of pointer to scalar
6018  //   type, the unqualified-id is looked up in the context of the complete
6019  //   postfix-expression.
6020  //
6021  // This also indicates that we could be parsing a pseudo-destructor-name.
6022  // Note that Objective-C class and object types can be pseudo-destructor
6023  // expressions or normal member (ivar or property) access expressions, and
6024  // it's legal for the type to be incomplete if this is a pseudo-destructor
6025  // call.  We'll do more incomplete-type checks later in the lookup process,
6026  // so just skip this check for ObjC types.
6027  if (BaseType->isObjCObjectOrInterfaceType()) {
6028    ObjectType = ParsedType::make(BaseType);
6029    MayBePseudoDestructor = true;
6030    return Base;
6031  } else if (!BaseType->isRecordType()) {
6032    ObjectType = nullptr;
6033    MayBePseudoDestructor = true;
6034    return Base;
6035  }
6036
6037  // The object type must be complete (or dependent), or
6038  // C++11 [expr.prim.general]p3:
6039  //   Unlike the object expression in other contexts, *this is not required to
6040  //   be of complete type for purposes of class member access (5.2.5) outside
6041  //   the member function body.
6042  if (!BaseType->isDependentType() &&
6043      !isThisOutsideMemberFunctionBody(BaseType) &&
6044      RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
6045    return ExprError();
6046
6047  // C++ [basic.lookup.classref]p2:
6048  //   If the id-expression in a class member access (5.2.5) is an
6049  //   unqualified-id, and the type of the object expression is of a class
6050  //   type C (or of pointer to a class type C), the unqualified-id is looked
6051  //   up in the scope of class C. [...]
6052  ObjectType = ParsedType::make(BaseType);
6053  return Base;
6054}
6055
6056static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
6057                   tok::TokenKind& OpKind, SourceLocation OpLoc) {
6058  if (Base->hasPlaceholderType()) {
6059    ExprResult result = S.CheckPlaceholderExpr(Base);
6060    if (result.isInvalid()) return true;
6061    Base = result.get();
6062  }
6063  ObjectType = Base->getType();
6064
6065  // C++ [expr.pseudo]p2:
6066  //   The left-hand side of the dot operator shall be of scalar type. The
6067  //   left-hand side of the arrow operator shall be of pointer to scalar type.
6068  //   This scalar type is the object type.
6069  // Note that this is rather different from the normal handling for the
6070  // arrow operator.
6071  if (OpKind == tok::arrow) {
6072    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
6073      ObjectType = Ptr->getPointeeType();
6074    } else if (!Base->isTypeDependent()) {
6075      // The user wrote "p->" when they probably meant "p."; fix it.
6076      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6077        << ObjectType << true
6078        << FixItHint::CreateReplacement(OpLoc, ".");
6079      if (S.isSFINAEContext())
6080        return true;
6081
6082      OpKind = tok::period;
6083    }
6084  }
6085
6086  return false;
6087}
6088
6089ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
6090                                           SourceLocation OpLoc,
6091                                           tok::TokenKind OpKind,
6092                                           const CXXScopeSpec &SS,
6093                                           TypeSourceInfo *ScopeTypeInfo,
6094                                           SourceLocation CCLoc,
6095                                           SourceLocation TildeLoc,
6096                                         PseudoDestructorTypeStorage Destructed) {
6097  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
6098
6099  QualType ObjectType;
6100  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
6101    return ExprError();
6102
6103  if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
6104      !ObjectType->isVectorType()) {
6105    if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
6106      Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
6107    else {
6108      Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
6109        << ObjectType << Base->getSourceRange();
6110      return ExprError();
6111    }
6112  }
6113
6114  // C++ [expr.pseudo]p2:
6115  //   [...] The cv-unqualified versions of the object type and of the type
6116  //   designated by the pseudo-destructor-name shall be the same type.
6117  if (DestructedTypeInfo) {
6118    QualType DestructedType = DestructedTypeInfo->getType();
6119    SourceLocation DestructedTypeStart
6120      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
6121    if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
6122      if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
6123        Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
6124          << ObjectType << DestructedType << Base->getSourceRange()
6125          << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
6126
6127        // Recover by setting the destructed type to the object type.
6128        DestructedType = ObjectType;
6129        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
6130                                                           DestructedTypeStart);
6131        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
6132      } else if (DestructedType.getObjCLifetime() !=
6133                                                ObjectType.getObjCLifetime()) {
6134
6135        if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
6136          // Okay: just pretend that the user provided the correctly-qualified
6137          // type.
6138        } else {
6139          Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
6140            << ObjectType << DestructedType << Base->getSourceRange()
6141            << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
6142        }
6143
6144        // Recover by setting the destructed type to the object type.
6145        DestructedType = ObjectType;
6146        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
6147                                                           DestructedTypeStart);
6148        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
6149      }
6150    }
6151  }
6152
6153  // C++ [expr.pseudo]p2:
6154  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
6155  //   form
6156  //
6157  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
6158  //
6159  //   shall designate the same scalar type.
6160  if (ScopeTypeInfo) {
6161    QualType ScopeType = ScopeTypeInfo->getType();
6162    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
6163        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
6164
6165      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
6166           diag::err_pseudo_dtor_type_mismatch)
6167        << ObjectType << ScopeType << Base->getSourceRange()
6168        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
6169
6170      ScopeType = QualType();
6171      ScopeTypeInfo = nullptr;
6172    }
6173  }
6174
6175  Expr *Result
6176    = new (Context) CXXPseudoDestructorExpr(Context, Base,
6177                                            OpKind == tok::arrow, OpLoc,
6178                                            SS.getWithLocInContext(Context),
6179                                            ScopeTypeInfo,
6180                                            CCLoc,
6181                                            TildeLoc,
6182                                            Destructed);
6183
6184  return Result;
6185}
6186
6187ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6188                                           SourceLocation OpLoc,
6189                                           tok::TokenKind OpKind,
6190                                           CXXScopeSpec &SS,
6191                                           UnqualifiedId &FirstTypeName,
6192                                           SourceLocation CCLoc,
6193                                           SourceLocation TildeLoc,
6194                                           UnqualifiedId &SecondTypeName) {
6195  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
6196          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
6197         "Invalid first type name in pseudo-destructor");
6198  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
6199          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
6200         "Invalid second type name in pseudo-destructor");
6201
6202  QualType ObjectType;
6203  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
6204    return ExprError();
6205
6206  // Compute the object type that we should use for name lookup purposes. Only
6207  // record types and dependent types matter.
6208  ParsedType ObjectTypePtrForLookup;
6209  if (!SS.isSet()) {
6210    if (ObjectType->isRecordType())
6211      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
6212    else if (ObjectType->isDependentType())
6213      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
6214  }
6215
6216  // Convert the name of the type being destructed (following the ~) into a
6217  // type (with source-location information).
6218  QualType DestructedType;
6219  TypeSourceInfo *DestructedTypeInfo = nullptr;
6220  PseudoDestructorTypeStorage Destructed;
6221  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
6222    ParsedType T = getTypeName(*SecondTypeName.Identifier,
6223                               SecondTypeName.StartLocation,
6224                               S, &SS, true, false, ObjectTypePtrForLookup);
6225    if (!T &&
6226        ((SS.isSet() && !computeDeclContext(SS, false)) ||
6227         (!SS.isSet() && ObjectType->isDependentType()))) {
6228      // The name of the type being destroyed is a dependent name, and we
6229      // couldn't find anything useful in scope. Just store the identifier and
6230      // it's location, and we'll perform (qualified) name lookup again at
6231      // template instantiation time.
6232      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
6233                                               SecondTypeName.StartLocation);
6234    } else if (!T) {
6235      Diag(SecondTypeName.StartLocation,
6236           diag::err_pseudo_dtor_destructor_non_type)
6237        << SecondTypeName.Identifier << ObjectType;
6238      if (isSFINAEContext())
6239        return ExprError();
6240
6241      // Recover by assuming we had the right type all along.
6242      DestructedType = ObjectType;
6243    } else
6244      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
6245  } else {
6246    // Resolve the template-id to a type.
6247    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
6248    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6249                                       TemplateId->NumArgs);
6250    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
6251                                       TemplateId->TemplateKWLoc,
6252                                       TemplateId->Template,
6253                                       TemplateId->TemplateNameLoc,
6254                                       TemplateId->LAngleLoc,
6255                                       TemplateArgsPtr,
6256                                       TemplateId->RAngleLoc);
6257    if (T.isInvalid() || !T.get()) {
6258      // Recover by assuming we had the right type all along.
6259      DestructedType = ObjectType;
6260    } else
6261      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
6262  }
6263
6264  // If we've performed some kind of recovery, (re-)build the type source
6265  // information.
6266  if (!DestructedType.isNull()) {
6267    if (!DestructedTypeInfo)
6268      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
6269                                                  SecondTypeName.StartLocation);
6270    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
6271  }
6272
6273  // Convert the name of the scope type (the type prior to '::') into a type.
6274  TypeSourceInfo *ScopeTypeInfo = nullptr;
6275  QualType ScopeType;
6276  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
6277      FirstTypeName.Identifier) {
6278    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
6279      ParsedType T = getTypeName(*FirstTypeName.Identifier,
6280                                 FirstTypeName.StartLocation,
6281                                 S, &SS, true, false, ObjectTypePtrForLookup);
6282      if (!T) {
6283        Diag(FirstTypeName.StartLocation,
6284             diag::err_pseudo_dtor_destructor_non_type)
6285          << FirstTypeName.Identifier << ObjectType;
6286
6287        if (isSFINAEContext())
6288          return ExprError();
6289
6290        // Just drop this type. It's unnecessary anyway.
6291        ScopeType = QualType();
6292      } else
6293        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
6294    } else {
6295      // Resolve the template-id to a type.
6296      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
6297      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6298                                         TemplateId->NumArgs);
6299      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
6300                                         TemplateId->TemplateKWLoc,
6301                                         TemplateId->Template,
6302                                         TemplateId->TemplateNameLoc,
6303                                         TemplateId->LAngleLoc,
6304                                         TemplateArgsPtr,
6305                                         TemplateId->RAngleLoc);
6306      if (T.isInvalid() || !T.get()) {
6307        // Recover by dropping this type.
6308        ScopeType = QualType();
6309      } else
6310        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
6311    }
6312  }
6313
6314  if (!ScopeType.isNull() && !ScopeTypeInfo)
6315    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
6316                                                  FirstTypeName.StartLocation);
6317
6318
6319  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
6320                                   ScopeTypeInfo, CCLoc, TildeLoc,
6321                                   Destructed);
6322}
6323
6324ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6325                                           SourceLocation OpLoc,
6326                                           tok::TokenKind OpKind,
6327                                           SourceLocation TildeLoc,
6328                                           const DeclSpec& DS) {
6329  QualType ObjectType;
6330  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
6331    return ExprError();
6332
6333  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
6334                                 false);
6335
6336  TypeLocBuilder TLB;
6337  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
6338  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
6339  TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
6340  PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
6341
6342  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
6343                                   nullptr, SourceLocation(), TildeLoc,
6344                                   Destructed);
6345}
6346
6347ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
6348                                        CXXConversionDecl *Method,
6349                                        bool HadMultipleCandidates) {
6350  if (Method->getParent()->isLambda() &&
6351      Method->getConversionType()->isBlockPointerType()) {
6352    // This is a lambda coversion to block pointer; check if the argument
6353    // is a LambdaExpr.
6354    Expr *SubE = E;
6355    CastExpr *CE = dyn_cast<CastExpr>(SubE);
6356    if (CE && CE->getCastKind() == CK_NoOp)
6357      SubE = CE->getSubExpr();
6358    SubE = SubE->IgnoreParens();
6359    if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
6360      SubE = BE->getSubExpr();
6361    if (isa<LambdaExpr>(SubE)) {
6362      // For the conversion to block pointer on a lambda expression, we
6363      // construct a special BlockLiteral instead; this doesn't really make
6364      // a difference in ARC, but outside of ARC the resulting block literal
6365      // follows the normal lifetime rules for block literals instead of being
6366      // autoreleased.
6367      DiagnosticErrorTrap Trap(Diags);
6368      PushExpressionEvaluationContext(PotentiallyEvaluated);
6369      ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
6370                                                     E->getExprLoc(),
6371                                                     Method, E);
6372      PopExpressionEvaluationContext();
6373
6374      if (Exp.isInvalid())
6375        Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
6376      return Exp;
6377    }
6378  }
6379
6380  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
6381                                          FoundDecl, Method);
6382  if (Exp.isInvalid())
6383    return true;
6384
6385  MemberExpr *ME = new (Context) MemberExpr(
6386      Exp.get(), /*IsArrow=*/false, SourceLocation(), Method, SourceLocation(),
6387      Context.BoundMemberTy, VK_RValue, OK_Ordinary);
6388  if (HadMultipleCandidates)
6389    ME->setHadMultipleCandidates(true);
6390  MarkMemberReferenced(ME);
6391
6392  QualType ResultType = Method->getReturnType();
6393  ExprValueKind VK = Expr::getValueKindForType(ResultType);
6394  ResultType = ResultType.getNonLValueExprType(Context);
6395
6396  CXXMemberCallExpr *CE =
6397    new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
6398                                    Exp.get()->getLocEnd());
6399  return CE;
6400}
6401
6402ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
6403                                      SourceLocation RParen) {
6404  // If the operand is an unresolved lookup expression, the expression is ill-
6405  // formed per [over.over]p1, because overloaded function names cannot be used
6406  // without arguments except in explicit contexts.
6407  ExprResult R = CheckPlaceholderExpr(Operand);
6408  if (R.isInvalid())
6409    return R;
6410
6411  // The operand may have been modified when checking the placeholder type.
6412  Operand = R.get();
6413
6414  if (ActiveTemplateInstantiations.empty() &&
6415      Operand->HasSideEffects(Context, false)) {
6416    // The expression operand for noexcept is in an unevaluated expression
6417    // context, so side effects could result in unintended consequences.
6418    Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
6419  }
6420
6421  CanThrowResult CanThrow = canThrow(Operand);
6422  return new (Context)
6423      CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
6424}
6425
6426ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
6427                                   Expr *Operand, SourceLocation RParen) {
6428  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
6429}
6430
6431static bool IsSpecialDiscardedValue(Expr *E) {
6432  // In C++11, discarded-value expressions of a certain form are special,
6433  // according to [expr]p10:
6434  //   The lvalue-to-rvalue conversion (4.1) is applied only if the
6435  //   expression is an lvalue of volatile-qualified type and it has
6436  //   one of the following forms:
6437  E = E->IgnoreParens();
6438
6439  //   - id-expression (5.1.1),
6440  if (isa<DeclRefExpr>(E))
6441    return true;
6442
6443  //   - subscripting (5.2.1),
6444  if (isa<ArraySubscriptExpr>(E))
6445    return true;
6446
6447  //   - class member access (5.2.5),
6448  if (isa<MemberExpr>(E))
6449    return true;
6450
6451  //   - indirection (5.3.1),
6452  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
6453    if (UO->getOpcode() == UO_Deref)
6454      return true;
6455
6456  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6457    //   - pointer-to-member operation (5.5),
6458    if (BO->isPtrMemOp())
6459      return true;
6460
6461    //   - comma expression (5.18) where the right operand is one of the above.
6462    if (BO->getOpcode() == BO_Comma)
6463      return IsSpecialDiscardedValue(BO->getRHS());
6464  }
6465
6466  //   - conditional expression (5.16) where both the second and the third
6467  //     operands are one of the above, or
6468  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
6469    return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
6470           IsSpecialDiscardedValue(CO->getFalseExpr());
6471  // The related edge case of "*x ?: *x".
6472  if (BinaryConditionalOperator *BCO =
6473          dyn_cast<BinaryConditionalOperator>(E)) {
6474    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
6475      return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
6476             IsSpecialDiscardedValue(BCO->getFalseExpr());
6477  }
6478
6479  // Objective-C++ extensions to the rule.
6480  if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
6481    return true;
6482
6483  return false;
6484}
6485
6486/// Perform the conversions required for an expression used in a
6487/// context that ignores the result.
6488ExprResult Sema::IgnoredValueConversions(Expr *E) {
6489  if (E->hasPlaceholderType()) {
6490    ExprResult result = CheckPlaceholderExpr(E);
6491    if (result.isInvalid()) return E;
6492    E = result.get();
6493  }
6494
6495  // C99 6.3.2.1:
6496  //   [Except in specific positions,] an lvalue that does not have
6497  //   array type is converted to the value stored in the
6498  //   designated object (and is no longer an lvalue).
6499  if (E->isRValue()) {
6500    // In C, function designators (i.e. expressions of function type)
6501    // are r-values, but we still want to do function-to-pointer decay
6502    // on them.  This is both technically correct and convenient for
6503    // some clients.
6504    if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
6505      return DefaultFunctionArrayConversion(E);
6506
6507    return E;
6508  }
6509
6510  if (getLangOpts().CPlusPlus)  {
6511    // The C++11 standard defines the notion of a discarded-value expression;
6512    // normally, we don't need to do anything to handle it, but if it is a
6513    // volatile lvalue with a special form, we perform an lvalue-to-rvalue
6514    // conversion.
6515    if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
6516        E->getType().isVolatileQualified() &&
6517        IsSpecialDiscardedValue(E)) {
6518      ExprResult Res = DefaultLvalueConversion(E);
6519      if (Res.isInvalid())
6520        return E;
6521      E = Res.get();
6522    }
6523    return E;
6524  }
6525
6526  // GCC seems to also exclude expressions of incomplete enum type.
6527  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
6528    if (!T->getDecl()->isComplete()) {
6529      // FIXME: stupid workaround for a codegen bug!
6530      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
6531      return E;
6532    }
6533  }
6534
6535  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
6536  if (Res.isInvalid())
6537    return E;
6538  E = Res.get();
6539
6540  if (!E->getType()->isVoidType())
6541    RequireCompleteType(E->getExprLoc(), E->getType(),
6542                        diag::err_incomplete_type);
6543  return E;
6544}
6545
6546// If we can unambiguously determine whether Var can never be used
6547// in a constant expression, return true.
6548//  - if the variable and its initializer are non-dependent, then
6549//    we can unambiguously check if the variable is a constant expression.
6550//  - if the initializer is not value dependent - we can determine whether
6551//    it can be used to initialize a constant expression.  If Init can not
6552//    be used to initialize a constant expression we conclude that Var can
6553//    never be a constant expression.
6554//  - FXIME: if the initializer is dependent, we can still do some analysis and
6555//    identify certain cases unambiguously as non-const by using a Visitor:
6556//      - such as those that involve odr-use of a ParmVarDecl, involve a new
6557//        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
6558static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
6559    ASTContext &Context) {
6560  if (isa<ParmVarDecl>(Var)) return true;
6561  const VarDecl *DefVD = nullptr;
6562
6563  // If there is no initializer - this can not be a constant expression.
6564  if (!Var->getAnyInitializer(DefVD)) return true;
6565  assert(DefVD);
6566  if (DefVD->isWeak()) return false;
6567  EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
6568
6569  Expr *Init = cast<Expr>(Eval->Value);
6570
6571  if (Var->getType()->isDependentType() || Init->isValueDependent()) {
6572    // FIXME: Teach the constant evaluator to deal with the non-dependent parts
6573    // of value-dependent expressions, and use it here to determine whether the
6574    // initializer is a potential constant expression.
6575    return false;
6576  }
6577
6578  return !IsVariableAConstantExpression(Var, Context);
6579}
6580
6581/// \brief Check if the current lambda has any potential captures
6582/// that must be captured by any of its enclosing lambdas that are ready to
6583/// capture. If there is a lambda that can capture a nested
6584/// potential-capture, go ahead and do so.  Also, check to see if any
6585/// variables are uncaptureable or do not involve an odr-use so do not
6586/// need to be captured.
6587
6588static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
6589    Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
6590
6591  assert(!S.isUnevaluatedContext());
6592  assert(S.CurContext->isDependentContext());
6593  assert(CurrentLSI->CallOperator == S.CurContext &&
6594      "The current call operator must be synchronized with Sema's CurContext");
6595
6596  const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
6597
6598  ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef(
6599      S.FunctionScopes.data(), S.FunctionScopes.size());
6600
6601  // All the potentially captureable variables in the current nested
6602  // lambda (within a generic outer lambda), must be captured by an
6603  // outer lambda that is enclosed within a non-dependent context.
6604  const unsigned NumPotentialCaptures =
6605      CurrentLSI->getNumPotentialVariableCaptures();
6606  for (unsigned I = 0; I != NumPotentialCaptures; ++I) {
6607    Expr *VarExpr = nullptr;
6608    VarDecl *Var = nullptr;
6609    CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
6610    // If the variable is clearly identified as non-odr-used and the full
6611    // expression is not instantiation dependent, only then do we not
6612    // need to check enclosing lambda's for speculative captures.
6613    // For e.g.:
6614    // Even though 'x' is not odr-used, it should be captured.
6615    // int test() {
6616    //   const int x = 10;
6617    //   auto L = [=](auto a) {
6618    //     (void) +x + a;
6619    //   };
6620    // }
6621    if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
6622        !IsFullExprInstantiationDependent)
6623      continue;
6624
6625    // If we have a capture-capable lambda for the variable, go ahead and
6626    // capture the variable in that lambda (and all its enclosing lambdas).
6627    if (const Optional<unsigned> Index =
6628            getStackIndexOfNearestEnclosingCaptureCapableLambda(
6629                FunctionScopesArrayRef, Var, S)) {
6630      const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
6631      MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S,
6632                         &FunctionScopeIndexOfCapturableLambda);
6633    }
6634    const bool IsVarNeverAConstantExpression =
6635        VariableCanNeverBeAConstantExpression(Var, S.Context);
6636    if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
6637      // This full expression is not instantiation dependent or the variable
6638      // can not be used in a constant expression - which means
6639      // this variable must be odr-used here, so diagnose a
6640      // capture violation early, if the variable is un-captureable.
6641      // This is purely for diagnosing errors early.  Otherwise, this
6642      // error would get diagnosed when the lambda becomes capture ready.
6643      QualType CaptureType, DeclRefType;
6644      SourceLocation ExprLoc = VarExpr->getExprLoc();
6645      if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
6646                          /*EllipsisLoc*/ SourceLocation(),
6647                          /*BuildAndDiagnose*/false, CaptureType,
6648                          DeclRefType, nullptr)) {
6649        // We will never be able to capture this variable, and we need
6650        // to be able to in any and all instantiations, so diagnose it.
6651        S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
6652                          /*EllipsisLoc*/ SourceLocation(),
6653                          /*BuildAndDiagnose*/true, CaptureType,
6654                          DeclRefType, nullptr);
6655      }
6656    }
6657  }
6658
6659  // Check if 'this' needs to be captured.
6660  if (CurrentLSI->hasPotentialThisCapture()) {
6661    // If we have a capture-capable lambda for 'this', go ahead and capture
6662    // 'this' in that lambda (and all its enclosing lambdas).
6663    if (const Optional<unsigned> Index =
6664            getStackIndexOfNearestEnclosingCaptureCapableLambda(
6665                FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) {
6666      const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
6667      S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
6668                            /*Explicit*/ false, /*BuildAndDiagnose*/ true,
6669                            &FunctionScopeIndexOfCapturableLambda);
6670    }
6671  }
6672
6673  // Reset all the potential captures at the end of each full-expression.
6674  CurrentLSI->clearPotentialCaptures();
6675}
6676
6677static ExprResult attemptRecovery(Sema &SemaRef,
6678                                  const TypoCorrectionConsumer &Consumer,
6679                                  const TypoCorrection &TC) {
6680  LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
6681                 Consumer.getLookupResult().getLookupKind());
6682  const CXXScopeSpec *SS = Consumer.getSS();
6683  CXXScopeSpec NewSS;
6684
6685  // Use an approprate CXXScopeSpec for building the expr.
6686  if (auto *NNS = TC.getCorrectionSpecifier())
6687    NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
6688  else if (SS && !TC.WillReplaceSpecifier())
6689    NewSS = *SS;
6690
6691  if (auto *ND = TC.getFoundDecl()) {
6692    R.setLookupName(ND->getDeclName());
6693    R.addDecl(ND);
6694    if (ND->isCXXClassMember()) {
6695      // Figure out the correct naming class to add to the LookupResult.
6696      CXXRecordDecl *Record = nullptr;
6697      if (auto *NNS = TC.getCorrectionSpecifier())
6698        Record = NNS->getAsType()->getAsCXXRecordDecl();
6699      if (!Record)
6700        Record =
6701            dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
6702      if (Record)
6703        R.setNamingClass(Record);
6704
6705      // Detect and handle the case where the decl might be an implicit
6706      // member.
6707      bool MightBeImplicitMember;
6708      if (!Consumer.isAddressOfOperand())
6709        MightBeImplicitMember = true;
6710      else if (!NewSS.isEmpty())
6711        MightBeImplicitMember = false;
6712      else if (R.isOverloadedResult())
6713        MightBeImplicitMember = false;
6714      else if (R.isUnresolvableResult())
6715        MightBeImplicitMember = true;
6716      else
6717        MightBeImplicitMember = isa<FieldDecl>(ND) ||
6718                                isa<IndirectFieldDecl>(ND) ||
6719                                isa<MSPropertyDecl>(ND);
6720
6721      if (MightBeImplicitMember)
6722        return SemaRef.BuildPossibleImplicitMemberExpr(
6723            NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
6724            /*TemplateArgs*/ nullptr, /*S*/ nullptr);
6725    } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
6726      return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
6727                                        Ivar->getIdentifier());
6728    }
6729  }
6730
6731  return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
6732                                          /*AcceptInvalidDecl*/ true);
6733}
6734
6735namespace {
6736class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
6737  llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
6738
6739public:
6740  explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
6741      : TypoExprs(TypoExprs) {}
6742  bool VisitTypoExpr(TypoExpr *TE) {
6743    TypoExprs.insert(TE);
6744    return true;
6745  }
6746};
6747
6748class TransformTypos : public TreeTransform<TransformTypos> {
6749  typedef TreeTransform<TransformTypos> BaseTransform;
6750
6751  VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
6752                     // process of being initialized.
6753  llvm::function_ref<ExprResult(Expr *)> ExprFilter;
6754  llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
6755  llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
6756  llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
6757
6758  /// \brief Emit diagnostics for all of the TypoExprs encountered.
6759  /// If the TypoExprs were successfully corrected, then the diagnostics should
6760  /// suggest the corrections. Otherwise the diagnostics will not suggest
6761  /// anything (having been passed an empty TypoCorrection).
6762  void EmitAllDiagnostics() {
6763    for (auto E : TypoExprs) {
6764      TypoExpr *TE = cast<TypoExpr>(E);
6765      auto &State = SemaRef.getTypoExprState(TE);
6766      if (State.DiagHandler) {
6767        TypoCorrection TC = State.Consumer->getCurrentCorrection();
6768        ExprResult Replacement = TransformCache[TE];
6769
6770        // Extract the NamedDecl from the transformed TypoExpr and add it to the
6771        // TypoCorrection, replacing the existing decls. This ensures the right
6772        // NamedDecl is used in diagnostics e.g. in the case where overload
6773        // resolution was used to select one from several possible decls that
6774        // had been stored in the TypoCorrection.
6775        if (auto *ND = getDeclFromExpr(
6776                Replacement.isInvalid() ? nullptr : Replacement.get()))
6777          TC.setCorrectionDecl(ND);
6778
6779        State.DiagHandler(TC);
6780      }
6781      SemaRef.clearDelayedTypo(TE);
6782    }
6783  }
6784
6785  /// \brief If corrections for the first TypoExpr have been exhausted for a
6786  /// given combination of the other TypoExprs, retry those corrections against
6787  /// the next combination of substitutions for the other TypoExprs by advancing
6788  /// to the next potential correction of the second TypoExpr. For the second
6789  /// and subsequent TypoExprs, if its stream of corrections has been exhausted,
6790  /// the stream is reset and the next TypoExpr's stream is advanced by one (a
6791  /// TypoExpr's correction stream is advanced by removing the TypoExpr from the
6792  /// TransformCache). Returns true if there is still any untried combinations
6793  /// of corrections.
6794  bool CheckAndAdvanceTypoExprCorrectionStreams() {
6795    for (auto TE : TypoExprs) {
6796      auto &State = SemaRef.getTypoExprState(TE);
6797      TransformCache.erase(TE);
6798      if (!State.Consumer->finished())
6799        return true;
6800      State.Consumer->resetCorrectionStream();
6801    }
6802    return false;
6803  }
6804
6805  NamedDecl *getDeclFromExpr(Expr *E) {
6806    if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
6807      E = OverloadResolution[OE];
6808
6809    if (!E)
6810      return nullptr;
6811    if (auto *DRE = dyn_cast<DeclRefExpr>(E))
6812      return DRE->getFoundDecl();
6813    if (auto *ME = dyn_cast<MemberExpr>(E))
6814      return ME->getFoundDecl();
6815    // FIXME: Add any other expr types that could be be seen by the delayed typo
6816    // correction TreeTransform for which the corresponding TypoCorrection could
6817    // contain multiple decls.
6818    return nullptr;
6819  }
6820
6821  ExprResult TryTransform(Expr *E) {
6822    Sema::SFINAETrap Trap(SemaRef);
6823    ExprResult Res = TransformExpr(E);
6824    if (Trap.hasErrorOccurred() || Res.isInvalid())
6825      return ExprError();
6826
6827    return ExprFilter(Res.get());
6828  }
6829
6830public:
6831  TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
6832      : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
6833
6834  ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
6835                                   MultiExprArg Args,
6836                                   SourceLocation RParenLoc,
6837                                   Expr *ExecConfig = nullptr) {
6838    auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
6839                                                 RParenLoc, ExecConfig);
6840    if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
6841      if (Result.isUsable()) {
6842        Expr *ResultCall = Result.get();
6843        if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
6844          ResultCall = BE->getSubExpr();
6845        if (auto *CE = dyn_cast<CallExpr>(ResultCall))
6846          OverloadResolution[OE] = CE->getCallee();
6847      }
6848    }
6849    return Result;
6850  }
6851
6852  ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
6853
6854  ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
6855
6856  ExprResult TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
6857    return Owned(E);
6858  }
6859
6860  ExprResult TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) {
6861    return Owned(E);
6862  }
6863
6864  ExprResult Transform(Expr *E) {
6865    ExprResult Res;
6866    while (true) {
6867      Res = TryTransform(E);
6868
6869      // Exit if either the transform was valid or if there were no TypoExprs
6870      // to transform that still have any untried correction candidates..
6871      if (!Res.isInvalid() ||
6872          !CheckAndAdvanceTypoExprCorrectionStreams())
6873        break;
6874    }
6875
6876    // Ensure none of the TypoExprs have multiple typo correction candidates
6877    // with the same edit length that pass all the checks and filters.
6878    // TODO: Properly handle various permutations of possible corrections when
6879    // there is more than one potentially ambiguous typo correction.
6880    // Also, disable typo correction while attempting the transform when
6881    // handling potentially ambiguous typo corrections as any new TypoExprs will
6882    // have been introduced by the application of one of the correction
6883    // candidates and add little to no value if corrected.
6884    SemaRef.DisableTypoCorrection = true;
6885    while (!AmbiguousTypoExprs.empty()) {
6886      auto TE  = AmbiguousTypoExprs.back();
6887      auto Cached = TransformCache[TE];
6888      auto &State = SemaRef.getTypoExprState(TE);
6889      State.Consumer->saveCurrentPosition();
6890      TransformCache.erase(TE);
6891      if (!TryTransform(E).isInvalid()) {
6892        State.Consumer->resetCorrectionStream();
6893        TransformCache.erase(TE);
6894        Res = ExprError();
6895        break;
6896      }
6897      AmbiguousTypoExprs.remove(TE);
6898      State.Consumer->restoreSavedPosition();
6899      TransformCache[TE] = Cached;
6900    }
6901    SemaRef.DisableTypoCorrection = false;
6902
6903    // Ensure that all of the TypoExprs within the current Expr have been found.
6904    if (!Res.isUsable())
6905      FindTypoExprs(TypoExprs).TraverseStmt(E);
6906
6907    EmitAllDiagnostics();
6908
6909    return Res;
6910  }
6911
6912  ExprResult TransformTypoExpr(TypoExpr *E) {
6913    // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
6914    // cached transformation result if there is one and the TypoExpr isn't the
6915    // first one that was encountered.
6916    auto &CacheEntry = TransformCache[E];
6917    if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
6918      return CacheEntry;
6919    }
6920
6921    auto &State = SemaRef.getTypoExprState(E);
6922    assert(State.Consumer && "Cannot transform a cleared TypoExpr");
6923
6924    // For the first TypoExpr and an uncached TypoExpr, find the next likely
6925    // typo correction and return it.
6926    while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
6927      if (InitDecl && TC.getFoundDecl() == InitDecl)
6928        continue;
6929      ExprResult NE = State.RecoveryHandler ?
6930          State.RecoveryHandler(SemaRef, E, TC) :
6931          attemptRecovery(SemaRef, *State.Consumer, TC);
6932      if (!NE.isInvalid()) {
6933        // Check whether there may be a second viable correction with the same
6934        // edit distance; if so, remember this TypoExpr may have an ambiguous
6935        // correction so it can be more thoroughly vetted later.
6936        TypoCorrection Next;
6937        if ((Next = State.Consumer->peekNextCorrection()) &&
6938            Next.getEditDistance(false) == TC.getEditDistance(false)) {
6939          AmbiguousTypoExprs.insert(E);
6940        } else {
6941          AmbiguousTypoExprs.remove(E);
6942        }
6943        assert(!NE.isUnset() &&
6944               "Typo was transformed into a valid-but-null ExprResult");
6945        return CacheEntry = NE;
6946      }
6947    }
6948    return CacheEntry = ExprError();
6949  }
6950};
6951}
6952
6953ExprResult
6954Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
6955                                llvm::function_ref<ExprResult(Expr *)> Filter) {
6956  // If the current evaluation context indicates there are uncorrected typos
6957  // and the current expression isn't guaranteed to not have typos, try to
6958  // resolve any TypoExpr nodes that might be in the expression.
6959  if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
6960      (E->isTypeDependent() || E->isValueDependent() ||
6961       E->isInstantiationDependent())) {
6962    auto TyposInContext = ExprEvalContexts.back().NumTypos;
6963    assert(TyposInContext < ~0U && "Recursive call of CorrectDelayedTyposInExpr");
6964    ExprEvalContexts.back().NumTypos = ~0U;
6965    auto TyposResolved = DelayedTypos.size();
6966    auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
6967    ExprEvalContexts.back().NumTypos = TyposInContext;
6968    TyposResolved -= DelayedTypos.size();
6969    if (Result.isInvalid() || Result.get() != E) {
6970      ExprEvalContexts.back().NumTypos -= TyposResolved;
6971      return Result;
6972    }
6973    assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
6974  }
6975  return E;
6976}
6977
6978ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
6979                                     bool DiscardedValue,
6980                                     bool IsConstexpr,
6981                                     bool IsLambdaInitCaptureInitializer) {
6982  ExprResult FullExpr = FE;
6983
6984  if (!FullExpr.get())
6985    return ExprError();
6986
6987  // If we are an init-expression in a lambdas init-capture, we should not
6988  // diagnose an unexpanded pack now (will be diagnosed once lambda-expr
6989  // containing full-expression is done).
6990  // template<class ... Ts> void test(Ts ... t) {
6991  //   test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now.
6992  //     return a;
6993  //   }() ...);
6994  // }
6995  // FIXME: This is a hack. It would be better if we pushed the lambda scope
6996  // when we parse the lambda introducer, and teach capturing (but not
6997  // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a
6998  // corresponding class yet (that is, have LambdaScopeInfo either represent a
6999  // lambda where we've entered the introducer but not the body, or represent a
7000  // lambda where we've entered the body, depending on where the
7001  // parser/instantiation has got to).
7002  if (!IsLambdaInitCaptureInitializer &&
7003      DiagnoseUnexpandedParameterPack(FullExpr.get()))
7004    return ExprError();
7005
7006  // Top-level expressions default to 'id' when we're in a debugger.
7007  if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
7008      FullExpr.get()->getType() == Context.UnknownAnyTy) {
7009    FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
7010    if (FullExpr.isInvalid())
7011      return ExprError();
7012  }
7013
7014  if (DiscardedValue) {
7015    FullExpr = CheckPlaceholderExpr(FullExpr.get());
7016    if (FullExpr.isInvalid())
7017      return ExprError();
7018
7019    FullExpr = IgnoredValueConversions(FullExpr.get());
7020    if (FullExpr.isInvalid())
7021      return ExprError();
7022  }
7023
7024  FullExpr = CorrectDelayedTyposInExpr(FullExpr.get());
7025  if (FullExpr.isInvalid())
7026    return ExprError();
7027
7028  CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
7029
7030  // At the end of this full expression (which could be a deeply nested
7031  // lambda), if there is a potential capture within the nested lambda,
7032  // have the outer capture-able lambda try and capture it.
7033  // Consider the following code:
7034  // void f(int, int);
7035  // void f(const int&, double);
7036  // void foo() {
7037  //  const int x = 10, y = 20;
7038  //  auto L = [=](auto a) {
7039  //      auto M = [=](auto b) {
7040  //         f(x, b); <-- requires x to be captured by L and M
7041  //         f(y, a); <-- requires y to be captured by L, but not all Ms
7042  //      };
7043  //   };
7044  // }
7045
7046  // FIXME: Also consider what happens for something like this that involves
7047  // the gnu-extension statement-expressions or even lambda-init-captures:
7048  //   void f() {
7049  //     const int n = 0;
7050  //     auto L =  [&](auto a) {
7051  //       +n + ({ 0; a; });
7052  //     };
7053  //   }
7054  //
7055  // Here, we see +n, and then the full-expression 0; ends, so we don't
7056  // capture n (and instead remove it from our list of potential captures),
7057  // and then the full-expression +n + ({ 0; }); ends, but it's too late
7058  // for us to see that we need to capture n after all.
7059
7060  LambdaScopeInfo *const CurrentLSI = getCurLambda();
7061  // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
7062  // even if CurContext is not a lambda call operator. Refer to that Bug Report
7063  // for an example of the code that might cause this asynchrony.
7064  // By ensuring we are in the context of a lambda's call operator
7065  // we can fix the bug (we only need to check whether we need to capture
7066  // if we are within a lambda's body); but per the comments in that
7067  // PR, a proper fix would entail :
7068  //   "Alternative suggestion:
7069  //   - Add to Sema an integer holding the smallest (outermost) scope
7070  //     index that we are *lexically* within, and save/restore/set to
7071  //     FunctionScopes.size() in InstantiatingTemplate's
7072  //     constructor/destructor.
7073  //  - Teach the handful of places that iterate over FunctionScopes to
7074  //    stop at the outermost enclosing lexical scope."
7075  const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext);
7076  if (IsInLambdaDeclContext && CurrentLSI &&
7077      CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
7078    CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
7079                                                              *this);
7080  return MaybeCreateExprWithCleanups(FullExpr);
7081}
7082
7083StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
7084  if (!FullStmt) return StmtError();
7085
7086  return MaybeCreateStmtWithCleanups(FullStmt);
7087}
7088
7089Sema::IfExistsResult
7090Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
7091                                   CXXScopeSpec &SS,
7092                                   const DeclarationNameInfo &TargetNameInfo) {
7093  DeclarationName TargetName = TargetNameInfo.getName();
7094  if (!TargetName)
7095    return IER_DoesNotExist;
7096
7097  // If the name itself is dependent, then the result is dependent.
7098  if (TargetName.isDependentName())
7099    return IER_Dependent;
7100
7101  // Do the redeclaration lookup in the current scope.
7102  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
7103                 Sema::NotForRedeclaration);
7104  LookupParsedName(R, S, &SS);
7105  R.suppressDiagnostics();
7106
7107  switch (R.getResultKind()) {
7108  case LookupResult::Found:
7109  case LookupResult::FoundOverloaded:
7110  case LookupResult::FoundUnresolvedValue:
7111  case LookupResult::Ambiguous:
7112    return IER_Exists;
7113
7114  case LookupResult::NotFound:
7115    return IER_DoesNotExist;
7116
7117  case LookupResult::NotFoundInCurrentInstantiation:
7118    return IER_Dependent;
7119  }
7120
7121  llvm_unreachable("Invalid LookupResult Kind!");
7122}
7123
7124Sema::IfExistsResult
7125Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
7126                                   bool IsIfExists, CXXScopeSpec &SS,
7127                                   UnqualifiedId &Name) {
7128  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
7129
7130  // Check for unexpanded parameter packs.
7131  SmallVector<UnexpandedParameterPack, 4> Unexpanded;
7132  collectUnexpandedParameterPacks(SS, Unexpanded);
7133  collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
7134  if (!Unexpanded.empty()) {
7135    DiagnoseUnexpandedParameterPacks(KeywordLoc,
7136                                     IsIfExists? UPPC_IfExists
7137                                               : UPPC_IfNotExists,
7138                                     Unexpanded);
7139    return IER_Error;
7140  }
7141
7142  return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
7143}
7144