1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9/// 10/// \file 11/// \brief Implements semantic analysis for C++ expressions. 12/// 13//===----------------------------------------------------------------------===// 14 15#include "clang/Sema/SemaInternal.h" 16#include "TreeTransform.h" 17#include "TypeLocBuilder.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/ASTLambda.h" 20#include "clang/AST/CXXInheritance.h" 21#include "clang/AST/CharUnits.h" 22#include "clang/AST/DeclObjC.h" 23#include "clang/AST/ExprCXX.h" 24#include "clang/AST/ExprObjC.h" 25#include "clang/AST/RecursiveASTVisitor.h" 26#include "clang/AST/TypeLoc.h" 27#include "clang/Basic/PartialDiagnostic.h" 28#include "clang/Basic/TargetInfo.h" 29#include "clang/Lex/Preprocessor.h" 30#include "clang/Sema/DeclSpec.h" 31#include "clang/Sema/Initialization.h" 32#include "clang/Sema/Lookup.h" 33#include "clang/Sema/ParsedTemplate.h" 34#include "clang/Sema/Scope.h" 35#include "clang/Sema/ScopeInfo.h" 36#include "clang/Sema/SemaLambda.h" 37#include "clang/Sema/TemplateDeduction.h" 38#include "llvm/ADT/APInt.h" 39#include "llvm/ADT/STLExtras.h" 40#include "llvm/Support/ErrorHandling.h" 41using namespace clang; 42using namespace sema; 43 44/// \brief Handle the result of the special case name lookup for inheriting 45/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as 46/// constructor names in member using declarations, even if 'X' is not the 47/// name of the corresponding type. 48ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, 49 SourceLocation NameLoc, 50 IdentifierInfo &Name) { 51 NestedNameSpecifier *NNS = SS.getScopeRep(); 52 53 // Convert the nested-name-specifier into a type. 54 QualType Type; 55 switch (NNS->getKind()) { 56 case NestedNameSpecifier::TypeSpec: 57 case NestedNameSpecifier::TypeSpecWithTemplate: 58 Type = QualType(NNS->getAsType(), 0); 59 break; 60 61 case NestedNameSpecifier::Identifier: 62 // Strip off the last layer of the nested-name-specifier and build a 63 // typename type for it. 64 assert(NNS->getAsIdentifier() == &Name && "not a constructor name"); 65 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(), 66 NNS->getAsIdentifier()); 67 break; 68 69 case NestedNameSpecifier::Global: 70 case NestedNameSpecifier::Super: 71 case NestedNameSpecifier::Namespace: 72 case NestedNameSpecifier::NamespaceAlias: 73 llvm_unreachable("Nested name specifier is not a type for inheriting ctor"); 74 } 75 76 // This reference to the type is located entirely at the location of the 77 // final identifier in the qualified-id. 78 return CreateParsedType(Type, 79 Context.getTrivialTypeSourceInfo(Type, NameLoc)); 80} 81 82ParsedType Sema::getDestructorName(SourceLocation TildeLoc, 83 IdentifierInfo &II, 84 SourceLocation NameLoc, 85 Scope *S, CXXScopeSpec &SS, 86 ParsedType ObjectTypePtr, 87 bool EnteringContext) { 88 // Determine where to perform name lookup. 89 90 // FIXME: This area of the standard is very messy, and the current 91 // wording is rather unclear about which scopes we search for the 92 // destructor name; see core issues 399 and 555. Issue 399 in 93 // particular shows where the current description of destructor name 94 // lookup is completely out of line with existing practice, e.g., 95 // this appears to be ill-formed: 96 // 97 // namespace N { 98 // template <typename T> struct S { 99 // ~S(); 100 // }; 101 // } 102 // 103 // void f(N::S<int>* s) { 104 // s->N::S<int>::~S(); 105 // } 106 // 107 // See also PR6358 and PR6359. 108 // For this reason, we're currently only doing the C++03 version of this 109 // code; the C++0x version has to wait until we get a proper spec. 110 QualType SearchType; 111 DeclContext *LookupCtx = nullptr; 112 bool isDependent = false; 113 bool LookInScope = false; 114 115 if (SS.isInvalid()) 116 return nullptr; 117 118 // If we have an object type, it's because we are in a 119 // pseudo-destructor-expression or a member access expression, and 120 // we know what type we're looking for. 121 if (ObjectTypePtr) 122 SearchType = GetTypeFromParser(ObjectTypePtr); 123 124 if (SS.isSet()) { 125 NestedNameSpecifier *NNS = SS.getScopeRep(); 126 127 bool AlreadySearched = false; 128 bool LookAtPrefix = true; 129 // C++11 [basic.lookup.qual]p6: 130 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, 131 // the type-names are looked up as types in the scope designated by the 132 // nested-name-specifier. Similarly, in a qualified-id of the form: 133 // 134 // nested-name-specifier[opt] class-name :: ~ class-name 135 // 136 // the second class-name is looked up in the same scope as the first. 137 // 138 // Here, we determine whether the code below is permitted to look at the 139 // prefix of the nested-name-specifier. 140 DeclContext *DC = computeDeclContext(SS, EnteringContext); 141 if (DC && DC->isFileContext()) { 142 AlreadySearched = true; 143 LookupCtx = DC; 144 isDependent = false; 145 } else if (DC && isa<CXXRecordDecl>(DC)) { 146 LookAtPrefix = false; 147 LookInScope = true; 148 } 149 150 // The second case from the C++03 rules quoted further above. 151 NestedNameSpecifier *Prefix = nullptr; 152 if (AlreadySearched) { 153 // Nothing left to do. 154 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) { 155 CXXScopeSpec PrefixSS; 156 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); 157 LookupCtx = computeDeclContext(PrefixSS, EnteringContext); 158 isDependent = isDependentScopeSpecifier(PrefixSS); 159 } else if (ObjectTypePtr) { 160 LookupCtx = computeDeclContext(SearchType); 161 isDependent = SearchType->isDependentType(); 162 } else { 163 LookupCtx = computeDeclContext(SS, EnteringContext); 164 isDependent = LookupCtx && LookupCtx->isDependentContext(); 165 } 166 } else if (ObjectTypePtr) { 167 // C++ [basic.lookup.classref]p3: 168 // If the unqualified-id is ~type-name, the type-name is looked up 169 // in the context of the entire postfix-expression. If the type T 170 // of the object expression is of a class type C, the type-name is 171 // also looked up in the scope of class C. At least one of the 172 // lookups shall find a name that refers to (possibly 173 // cv-qualified) T. 174 LookupCtx = computeDeclContext(SearchType); 175 isDependent = SearchType->isDependentType(); 176 assert((isDependent || !SearchType->isIncompleteType()) && 177 "Caller should have completed object type"); 178 179 LookInScope = true; 180 } else { 181 // Perform lookup into the current scope (only). 182 LookInScope = true; 183 } 184 185 TypeDecl *NonMatchingTypeDecl = nullptr; 186 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName); 187 for (unsigned Step = 0; Step != 2; ++Step) { 188 // Look for the name first in the computed lookup context (if we 189 // have one) and, if that fails to find a match, in the scope (if 190 // we're allowed to look there). 191 Found.clear(); 192 if (Step == 0 && LookupCtx) 193 LookupQualifiedName(Found, LookupCtx); 194 else if (Step == 1 && LookInScope && S) 195 LookupName(Found, S); 196 else 197 continue; 198 199 // FIXME: Should we be suppressing ambiguities here? 200 if (Found.isAmbiguous()) 201 return nullptr; 202 203 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { 204 QualType T = Context.getTypeDeclType(Type); 205 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 206 207 if (SearchType.isNull() || SearchType->isDependentType() || 208 Context.hasSameUnqualifiedType(T, SearchType)) { 209 // We found our type! 210 211 return CreateParsedType(T, 212 Context.getTrivialTypeSourceInfo(T, NameLoc)); 213 } 214 215 if (!SearchType.isNull()) 216 NonMatchingTypeDecl = Type; 217 } 218 219 // If the name that we found is a class template name, and it is 220 // the same name as the template name in the last part of the 221 // nested-name-specifier (if present) or the object type, then 222 // this is the destructor for that class. 223 // FIXME: This is a workaround until we get real drafting for core 224 // issue 399, for which there isn't even an obvious direction. 225 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) { 226 QualType MemberOfType; 227 if (SS.isSet()) { 228 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) { 229 // Figure out the type of the context, if it has one. 230 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) 231 MemberOfType = Context.getTypeDeclType(Record); 232 } 233 } 234 if (MemberOfType.isNull()) 235 MemberOfType = SearchType; 236 237 if (MemberOfType.isNull()) 238 continue; 239 240 // We're referring into a class template specialization. If the 241 // class template we found is the same as the template being 242 // specialized, we found what we are looking for. 243 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) { 244 if (ClassTemplateSpecializationDecl *Spec 245 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) { 246 if (Spec->getSpecializedTemplate()->getCanonicalDecl() == 247 Template->getCanonicalDecl()) 248 return CreateParsedType( 249 MemberOfType, 250 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); 251 } 252 253 continue; 254 } 255 256 // We're referring to an unresolved class template 257 // specialization. Determine whether we class template we found 258 // is the same as the template being specialized or, if we don't 259 // know which template is being specialized, that it at least 260 // has the same name. 261 if (const TemplateSpecializationType *SpecType 262 = MemberOfType->getAs<TemplateSpecializationType>()) { 263 TemplateName SpecName = SpecType->getTemplateName(); 264 265 // The class template we found is the same template being 266 // specialized. 267 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) { 268 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl()) 269 return CreateParsedType( 270 MemberOfType, 271 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); 272 273 continue; 274 } 275 276 // The class template we found has the same name as the 277 // (dependent) template name being specialized. 278 if (DependentTemplateName *DepTemplate 279 = SpecName.getAsDependentTemplateName()) { 280 if (DepTemplate->isIdentifier() && 281 DepTemplate->getIdentifier() == Template->getIdentifier()) 282 return CreateParsedType( 283 MemberOfType, 284 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); 285 286 continue; 287 } 288 } 289 } 290 } 291 292 if (isDependent) { 293 // We didn't find our type, but that's okay: it's dependent 294 // anyway. 295 296 // FIXME: What if we have no nested-name-specifier? 297 QualType T = CheckTypenameType(ETK_None, SourceLocation(), 298 SS.getWithLocInContext(Context), 299 II, NameLoc); 300 return ParsedType::make(T); 301 } 302 303 if (NonMatchingTypeDecl) { 304 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl); 305 Diag(NameLoc, diag::err_destructor_expr_type_mismatch) 306 << T << SearchType; 307 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here) 308 << T; 309 } else if (ObjectTypePtr) 310 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type) 311 << &II; 312 else { 313 SemaDiagnosticBuilder DtorDiag = Diag(NameLoc, 314 diag::err_destructor_class_name); 315 if (S) { 316 const DeclContext *Ctx = S->getEntity(); 317 if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx)) 318 DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc), 319 Class->getNameAsString()); 320 } 321 } 322 323 return nullptr; 324} 325 326ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) { 327 if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType) 328 return nullptr; 329 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype 330 && "only get destructor types from declspecs"); 331 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 332 QualType SearchType = GetTypeFromParser(ObjectType); 333 if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) { 334 return ParsedType::make(T); 335 } 336 337 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) 338 << T << SearchType; 339 return nullptr; 340} 341 342bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, 343 const UnqualifiedId &Name) { 344 assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId); 345 346 if (!SS.isValid()) 347 return false; 348 349 switch (SS.getScopeRep()->getKind()) { 350 case NestedNameSpecifier::Identifier: 351 case NestedNameSpecifier::TypeSpec: 352 case NestedNameSpecifier::TypeSpecWithTemplate: 353 // Per C++11 [over.literal]p2, literal operators can only be declared at 354 // namespace scope. Therefore, this unqualified-id cannot name anything. 355 // Reject it early, because we have no AST representation for this in the 356 // case where the scope is dependent. 357 Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace) 358 << SS.getScopeRep(); 359 return true; 360 361 case NestedNameSpecifier::Global: 362 case NestedNameSpecifier::Super: 363 case NestedNameSpecifier::Namespace: 364 case NestedNameSpecifier::NamespaceAlias: 365 return false; 366 } 367 368 llvm_unreachable("unknown nested name specifier kind"); 369} 370 371/// \brief Build a C++ typeid expression with a type operand. 372ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 373 SourceLocation TypeidLoc, 374 TypeSourceInfo *Operand, 375 SourceLocation RParenLoc) { 376 // C++ [expr.typeid]p4: 377 // The top-level cv-qualifiers of the lvalue expression or the type-id 378 // that is the operand of typeid are always ignored. 379 // If the type of the type-id is a class type or a reference to a class 380 // type, the class shall be completely-defined. 381 Qualifiers Quals; 382 QualType T 383 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), 384 Quals); 385 if (T->getAs<RecordType>() && 386 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 387 return ExprError(); 388 389 if (T->isVariablyModifiedType()) 390 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); 391 392 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, 393 SourceRange(TypeidLoc, RParenLoc)); 394} 395 396/// \brief Build a C++ typeid expression with an expression operand. 397ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 398 SourceLocation TypeidLoc, 399 Expr *E, 400 SourceLocation RParenLoc) { 401 bool WasEvaluated = false; 402 if (E && !E->isTypeDependent()) { 403 if (E->getType()->isPlaceholderType()) { 404 ExprResult result = CheckPlaceholderExpr(E); 405 if (result.isInvalid()) return ExprError(); 406 E = result.get(); 407 } 408 409 QualType T = E->getType(); 410 if (const RecordType *RecordT = T->getAs<RecordType>()) { 411 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); 412 // C++ [expr.typeid]p3: 413 // [...] If the type of the expression is a class type, the class 414 // shall be completely-defined. 415 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 416 return ExprError(); 417 418 // C++ [expr.typeid]p3: 419 // When typeid is applied to an expression other than an glvalue of a 420 // polymorphic class type [...] [the] expression is an unevaluated 421 // operand. [...] 422 if (RecordD->isPolymorphic() && E->isGLValue()) { 423 // The subexpression is potentially evaluated; switch the context 424 // and recheck the subexpression. 425 ExprResult Result = TransformToPotentiallyEvaluated(E); 426 if (Result.isInvalid()) return ExprError(); 427 E = Result.get(); 428 429 // We require a vtable to query the type at run time. 430 MarkVTableUsed(TypeidLoc, RecordD); 431 WasEvaluated = true; 432 } 433 } 434 435 // C++ [expr.typeid]p4: 436 // [...] If the type of the type-id is a reference to a possibly 437 // cv-qualified type, the result of the typeid expression refers to a 438 // std::type_info object representing the cv-unqualified referenced 439 // type. 440 Qualifiers Quals; 441 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); 442 if (!Context.hasSameType(T, UnqualT)) { 443 T = UnqualT; 444 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); 445 } 446 } 447 448 if (E->getType()->isVariablyModifiedType()) 449 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) 450 << E->getType()); 451 else if (ActiveTemplateInstantiations.empty() && 452 E->HasSideEffects(Context, WasEvaluated)) { 453 // The expression operand for typeid is in an unevaluated expression 454 // context, so side effects could result in unintended consequences. 455 Diag(E->getExprLoc(), WasEvaluated 456 ? diag::warn_side_effects_typeid 457 : diag::warn_side_effects_unevaluated_context); 458 } 459 460 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, 461 SourceRange(TypeidLoc, RParenLoc)); 462} 463 464/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); 465ExprResult 466Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, 467 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 468 // Find the std::type_info type. 469 if (!getStdNamespace()) 470 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 471 472 if (!CXXTypeInfoDecl) { 473 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); 474 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); 475 LookupQualifiedName(R, getStdNamespace()); 476 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 477 // Microsoft's typeinfo doesn't have type_info in std but in the global 478 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. 479 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { 480 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 481 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 482 } 483 if (!CXXTypeInfoDecl) 484 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 485 } 486 487 if (!getLangOpts().RTTI) { 488 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); 489 } 490 491 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); 492 493 if (isType) { 494 // The operand is a type; handle it as such. 495 TypeSourceInfo *TInfo = nullptr; 496 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 497 &TInfo); 498 if (T.isNull()) 499 return ExprError(); 500 501 if (!TInfo) 502 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 503 504 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); 505 } 506 507 // The operand is an expression. 508 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 509} 510 511/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to 512/// a single GUID. 513static void 514getUuidAttrOfType(Sema &SemaRef, QualType QT, 515 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) { 516 // Optionally remove one level of pointer, reference or array indirection. 517 const Type *Ty = QT.getTypePtr(); 518 if (QT->isPointerType() || QT->isReferenceType()) 519 Ty = QT->getPointeeType().getTypePtr(); 520 else if (QT->isArrayType()) 521 Ty = Ty->getBaseElementTypeUnsafe(); 522 523 const auto *RD = Ty->getAsCXXRecordDecl(); 524 if (!RD) 525 return; 526 527 if (const auto *Uuid = RD->getMostRecentDecl()->getAttr<UuidAttr>()) { 528 UuidAttrs.insert(Uuid); 529 return; 530 } 531 532 // __uuidof can grab UUIDs from template arguments. 533 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 534 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 535 for (const TemplateArgument &TA : TAL.asArray()) { 536 const UuidAttr *UuidForTA = nullptr; 537 if (TA.getKind() == TemplateArgument::Type) 538 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs); 539 else if (TA.getKind() == TemplateArgument::Declaration) 540 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs); 541 542 if (UuidForTA) 543 UuidAttrs.insert(UuidForTA); 544 } 545 } 546} 547 548/// \brief Build a Microsoft __uuidof expression with a type operand. 549ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, 550 SourceLocation TypeidLoc, 551 TypeSourceInfo *Operand, 552 SourceLocation RParenLoc) { 553 StringRef UuidStr; 554 if (!Operand->getType()->isDependentType()) { 555 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 556 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs); 557 if (UuidAttrs.empty()) 558 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 559 if (UuidAttrs.size() > 1) 560 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 561 UuidStr = UuidAttrs.back()->getGuid(); 562 } 563 564 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, UuidStr, 565 SourceRange(TypeidLoc, RParenLoc)); 566} 567 568/// \brief Build a Microsoft __uuidof expression with an expression operand. 569ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, 570 SourceLocation TypeidLoc, 571 Expr *E, 572 SourceLocation RParenLoc) { 573 StringRef UuidStr; 574 if (!E->getType()->isDependentType()) { 575 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 576 UuidStr = "00000000-0000-0000-0000-000000000000"; 577 } else { 578 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 579 getUuidAttrOfType(*this, E->getType(), UuidAttrs); 580 if (UuidAttrs.empty()) 581 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 582 if (UuidAttrs.size() > 1) 583 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 584 UuidStr = UuidAttrs.back()->getGuid(); 585 } 586 } 587 588 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, UuidStr, 589 SourceRange(TypeidLoc, RParenLoc)); 590} 591 592/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); 593ExprResult 594Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, 595 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 596 // If MSVCGuidDecl has not been cached, do the lookup. 597 if (!MSVCGuidDecl) { 598 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID"); 599 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName); 600 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 601 MSVCGuidDecl = R.getAsSingle<RecordDecl>(); 602 if (!MSVCGuidDecl) 603 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof)); 604 } 605 606 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl); 607 608 if (isType) { 609 // The operand is a type; handle it as such. 610 TypeSourceInfo *TInfo = nullptr; 611 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 612 &TInfo); 613 if (T.isNull()) 614 return ExprError(); 615 616 if (!TInfo) 617 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 618 619 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); 620 } 621 622 // The operand is an expression. 623 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 624} 625 626/// ActOnCXXBoolLiteral - Parse {true,false} literals. 627ExprResult 628Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { 629 assert((Kind == tok::kw_true || Kind == tok::kw_false) && 630 "Unknown C++ Boolean value!"); 631 return new (Context) 632 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); 633} 634 635/// ActOnCXXNullPtrLiteral - Parse 'nullptr'. 636ExprResult 637Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { 638 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 639} 640 641/// ActOnCXXThrow - Parse throw expressions. 642ExprResult 643Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { 644 bool IsThrownVarInScope = false; 645 if (Ex) { 646 // C++0x [class.copymove]p31: 647 // When certain criteria are met, an implementation is allowed to omit the 648 // copy/move construction of a class object [...] 649 // 650 // - in a throw-expression, when the operand is the name of a 651 // non-volatile automatic object (other than a function or catch- 652 // clause parameter) whose scope does not extend beyond the end of the 653 // innermost enclosing try-block (if there is one), the copy/move 654 // operation from the operand to the exception object (15.1) can be 655 // omitted by constructing the automatic object directly into the 656 // exception object 657 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) 658 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 659 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { 660 for( ; S; S = S->getParent()) { 661 if (S->isDeclScope(Var)) { 662 IsThrownVarInScope = true; 663 break; 664 } 665 666 if (S->getFlags() & 667 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | 668 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope | 669 Scope::TryScope)) 670 break; 671 } 672 } 673 } 674 } 675 676 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); 677} 678 679ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 680 bool IsThrownVarInScope) { 681 // Don't report an error if 'throw' is used in system headers. 682 if (!getLangOpts().CXXExceptions && 683 !getSourceManager().isInSystemHeader(OpLoc)) 684 Diag(OpLoc, diag::err_exceptions_disabled) << "throw"; 685 686 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 687 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; 688 689 if (Ex && !Ex->isTypeDependent()) { 690 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType()); 691 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex)) 692 return ExprError(); 693 694 // Initialize the exception result. This implicitly weeds out 695 // abstract types or types with inaccessible copy constructors. 696 697 // C++0x [class.copymove]p31: 698 // When certain criteria are met, an implementation is allowed to omit the 699 // copy/move construction of a class object [...] 700 // 701 // - in a throw-expression, when the operand is the name of a 702 // non-volatile automatic object (other than a function or 703 // catch-clause 704 // parameter) whose scope does not extend beyond the end of the 705 // innermost enclosing try-block (if there is one), the copy/move 706 // operation from the operand to the exception object (15.1) can be 707 // omitted by constructing the automatic object directly into the 708 // exception object 709 const VarDecl *NRVOVariable = nullptr; 710 if (IsThrownVarInScope) 711 NRVOVariable = getCopyElisionCandidate(QualType(), Ex, false); 712 713 InitializedEntity Entity = InitializedEntity::InitializeException( 714 OpLoc, ExceptionObjectTy, 715 /*NRVO=*/NRVOVariable != nullptr); 716 ExprResult Res = PerformMoveOrCopyInitialization( 717 Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope); 718 if (Res.isInvalid()) 719 return ExprError(); 720 Ex = Res.get(); 721 } 722 723 return new (Context) 724 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); 725} 726 727static void 728collectPublicBases(CXXRecordDecl *RD, 729 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen, 730 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases, 731 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen, 732 bool ParentIsPublic) { 733 for (const CXXBaseSpecifier &BS : RD->bases()) { 734 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 735 bool NewSubobject; 736 // Virtual bases constitute the same subobject. Non-virtual bases are 737 // always distinct subobjects. 738 if (BS.isVirtual()) 739 NewSubobject = VBases.insert(BaseDecl).second; 740 else 741 NewSubobject = true; 742 743 if (NewSubobject) 744 ++SubobjectsSeen[BaseDecl]; 745 746 // Only add subobjects which have public access throughout the entire chain. 747 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public; 748 if (PublicPath) 749 PublicSubobjectsSeen.insert(BaseDecl); 750 751 // Recurse on to each base subobject. 752 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen, 753 PublicPath); 754 } 755} 756 757static void getUnambiguousPublicSubobjects( 758 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) { 759 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen; 760 llvm::SmallSet<CXXRecordDecl *, 2> VBases; 761 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen; 762 SubobjectsSeen[RD] = 1; 763 PublicSubobjectsSeen.insert(RD); 764 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen, 765 /*ParentIsPublic=*/true); 766 767 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) { 768 // Skip ambiguous objects. 769 if (SubobjectsSeen[PublicSubobject] > 1) 770 continue; 771 772 Objects.push_back(PublicSubobject); 773 } 774} 775 776/// CheckCXXThrowOperand - Validate the operand of a throw. 777bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, 778 QualType ExceptionObjectTy, Expr *E) { 779 // If the type of the exception would be an incomplete type or a pointer 780 // to an incomplete type other than (cv) void the program is ill-formed. 781 QualType Ty = ExceptionObjectTy; 782 bool isPointer = false; 783 if (const PointerType* Ptr = Ty->getAs<PointerType>()) { 784 Ty = Ptr->getPointeeType(); 785 isPointer = true; 786 } 787 if (!isPointer || !Ty->isVoidType()) { 788 if (RequireCompleteType(ThrowLoc, Ty, 789 isPointer ? diag::err_throw_incomplete_ptr 790 : diag::err_throw_incomplete, 791 E->getSourceRange())) 792 return true; 793 794 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy, 795 diag::err_throw_abstract_type, E)) 796 return true; 797 } 798 799 // If the exception has class type, we need additional handling. 800 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 801 if (!RD) 802 return false; 803 804 // If we are throwing a polymorphic class type or pointer thereof, 805 // exception handling will make use of the vtable. 806 MarkVTableUsed(ThrowLoc, RD); 807 808 // If a pointer is thrown, the referenced object will not be destroyed. 809 if (isPointer) 810 return false; 811 812 // If the class has a destructor, we must be able to call it. 813 if (!RD->hasIrrelevantDestructor()) { 814 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 815 MarkFunctionReferenced(E->getExprLoc(), Destructor); 816 CheckDestructorAccess(E->getExprLoc(), Destructor, 817 PDiag(diag::err_access_dtor_exception) << Ty); 818 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 819 return true; 820 } 821 } 822 823 // The MSVC ABI creates a list of all types which can catch the exception 824 // object. This list also references the appropriate copy constructor to call 825 // if the object is caught by value and has a non-trivial copy constructor. 826 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 827 // We are only interested in the public, unambiguous bases contained within 828 // the exception object. Bases which are ambiguous or otherwise 829 // inaccessible are not catchable types. 830 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects; 831 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects); 832 833 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) { 834 // Attempt to lookup the copy constructor. Various pieces of machinery 835 // will spring into action, like template instantiation, which means this 836 // cannot be a simple walk of the class's decls. Instead, we must perform 837 // lookup and overload resolution. 838 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0); 839 if (!CD) 840 continue; 841 842 // Mark the constructor referenced as it is used by this throw expression. 843 MarkFunctionReferenced(E->getExprLoc(), CD); 844 845 // Skip this copy constructor if it is trivial, we don't need to record it 846 // in the catchable type data. 847 if (CD->isTrivial()) 848 continue; 849 850 // The copy constructor is non-trivial, create a mapping from this class 851 // type to this constructor. 852 // N.B. The selection of copy constructor is not sensitive to this 853 // particular throw-site. Lookup will be performed at the catch-site to 854 // ensure that the copy constructor is, in fact, accessible (via 855 // friendship or any other means). 856 Context.addCopyConstructorForExceptionObject(Subobject, CD); 857 858 // We don't keep the instantiated default argument expressions around so 859 // we must rebuild them here. 860 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) { 861 // Skip any default arguments that we've already instantiated. 862 if (Context.getDefaultArgExprForConstructor(CD, I)) 863 continue; 864 865 Expr *DefaultArg = 866 BuildCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)).get(); 867 Context.addDefaultArgExprForConstructor(CD, I, DefaultArg); 868 } 869 } 870 } 871 872 return false; 873} 874 875static QualType adjustCVQualifiersForCXXThisWithinLambda( 876 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy, 877 DeclContext *CurSemaContext, ASTContext &ASTCtx) { 878 879 QualType ClassType = ThisTy->getPointeeType(); 880 LambdaScopeInfo *CurLSI = nullptr; 881 DeclContext *CurDC = CurSemaContext; 882 883 // Iterate through the stack of lambdas starting from the innermost lambda to 884 // the outermost lambda, checking if '*this' is ever captured by copy - since 885 // that could change the cv-qualifiers of the '*this' object. 886 // The object referred to by '*this' starts out with the cv-qualifiers of its 887 // member function. We then start with the innermost lambda and iterate 888 // outward checking to see if any lambda performs a by-copy capture of '*this' 889 // - and if so, any nested lambda must respect the 'constness' of that 890 // capturing lamdbda's call operator. 891 // 892 893 // The issue is that we cannot rely entirely on the FunctionScopeInfo stack 894 // since ScopeInfos are pushed on during parsing and treetransforming. But 895 // since a generic lambda's call operator can be instantiated anywhere (even 896 // end of the TU) we need to be able to examine its enclosing lambdas and so 897 // we use the DeclContext to get a hold of the closure-class and query it for 898 // capture information. The reason we don't just resort to always using the 899 // DeclContext chain is that it is only mature for lambda expressions 900 // enclosing generic lambda's call operators that are being instantiated. 901 902 for (int I = FunctionScopes.size(); 903 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]); 904 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) { 905 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]); 906 907 if (!CurLSI->isCXXThisCaptured()) 908 continue; 909 910 auto C = CurLSI->getCXXThisCapture(); 911 912 if (C.isCopyCapture()) { 913 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 914 if (CurLSI->CallOperator->isConst()) 915 ClassType.addConst(); 916 return ASTCtx.getPointerType(ClassType); 917 } 918 } 919 // We've run out of ScopeInfos but check if CurDC is a lambda (which can 920 // happen during instantiation of generic lambdas) 921 if (isLambdaCallOperator(CurDC)) { 922 assert(CurLSI); 923 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator)); 924 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)); 925 926 auto IsThisCaptured = 927 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) { 928 IsConst = false; 929 IsByCopy = false; 930 for (auto &&C : Closure->captures()) { 931 if (C.capturesThis()) { 932 if (C.getCaptureKind() == LCK_StarThis) 933 IsByCopy = true; 934 if (Closure->getLambdaCallOperator()->isConst()) 935 IsConst = true; 936 return true; 937 } 938 } 939 return false; 940 }; 941 942 bool IsByCopyCapture = false; 943 bool IsConstCapture = false; 944 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent()); 945 while (Closure && 946 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) { 947 if (IsByCopyCapture) { 948 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 949 if (IsConstCapture) 950 ClassType.addConst(); 951 return ASTCtx.getPointerType(ClassType); 952 } 953 Closure = isLambdaCallOperator(Closure->getParent()) 954 ? cast<CXXRecordDecl>(Closure->getParent()->getParent()) 955 : nullptr; 956 } 957 } 958 return ASTCtx.getPointerType(ClassType); 959} 960 961QualType Sema::getCurrentThisType() { 962 DeclContext *DC = getFunctionLevelDeclContext(); 963 QualType ThisTy = CXXThisTypeOverride; 964 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { 965 if (method && method->isInstance()) 966 ThisTy = method->getThisType(Context); 967 } 968 if (ThisTy.isNull()) { 969 if (isGenericLambdaCallOperatorSpecialization(CurContext) && 970 CurContext->getParent()->getParent()->isRecord()) { 971 // This is a generic lambda call operator that is being instantiated 972 // within a default initializer - so use the enclosing class as 'this'. 973 // There is no enclosing member function to retrieve the 'this' pointer 974 // from. 975 976 // FIXME: This looks wrong. If we're in a lambda within a lambda within a 977 // default member initializer, we need to recurse up more parents to find 978 // the right context. Looks like we should be walking up to the parent of 979 // the closure type, checking whether that is itself a lambda, and if so, 980 // recursing, until we reach a class or a function that isn't a lambda 981 // call operator. And we should accumulate the constness of *this on the 982 // way. 983 984 QualType ClassTy = Context.getTypeDeclType( 985 cast<CXXRecordDecl>(CurContext->getParent()->getParent())); 986 // There are no cv-qualifiers for 'this' within default initializers, 987 // per [expr.prim.general]p4. 988 ThisTy = Context.getPointerType(ClassTy); 989 } 990 } 991 992 // If we are within a lambda's call operator, the cv-qualifiers of 'this' 993 // might need to be adjusted if the lambda or any of its enclosing lambda's 994 // captures '*this' by copy. 995 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext)) 996 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy, 997 CurContext, Context); 998 return ThisTy; 999} 1000 1001Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, 1002 Decl *ContextDecl, 1003 unsigned CXXThisTypeQuals, 1004 bool Enabled) 1005 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) 1006{ 1007 if (!Enabled || !ContextDecl) 1008 return; 1009 1010 CXXRecordDecl *Record = nullptr; 1011 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) 1012 Record = Template->getTemplatedDecl(); 1013 else 1014 Record = cast<CXXRecordDecl>(ContextDecl); 1015 1016 // We care only for CVR qualifiers here, so cut everything else. 1017 CXXThisTypeQuals &= Qualifiers::FastMask; 1018 S.CXXThisTypeOverride 1019 = S.Context.getPointerType( 1020 S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals)); 1021 1022 this->Enabled = true; 1023} 1024 1025 1026Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { 1027 if (Enabled) { 1028 S.CXXThisTypeOverride = OldCXXThisTypeOverride; 1029 } 1030} 1031 1032static Expr *captureThis(Sema &S, ASTContext &Context, RecordDecl *RD, 1033 QualType ThisTy, SourceLocation Loc, 1034 const bool ByCopy) { 1035 1036 QualType AdjustedThisTy = ThisTy; 1037 // The type of the corresponding data member (not a 'this' pointer if 'by 1038 // copy'). 1039 QualType CaptureThisFieldTy = ThisTy; 1040 if (ByCopy) { 1041 // If we are capturing the object referred to by '*this' by copy, ignore any 1042 // cv qualifiers inherited from the type of the member function for the type 1043 // of the closure-type's corresponding data member and any use of 'this'. 1044 CaptureThisFieldTy = ThisTy->getPointeeType(); 1045 CaptureThisFieldTy.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1046 AdjustedThisTy = Context.getPointerType(CaptureThisFieldTy); 1047 } 1048 1049 FieldDecl *Field = FieldDecl::Create( 1050 Context, RD, Loc, Loc, nullptr, CaptureThisFieldTy, 1051 Context.getTrivialTypeSourceInfo(CaptureThisFieldTy, Loc), nullptr, false, 1052 ICIS_NoInit); 1053 1054 Field->setImplicit(true); 1055 Field->setAccess(AS_private); 1056 RD->addDecl(Field); 1057 Expr *This = 1058 new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/ true); 1059 if (ByCopy) { 1060 Expr *StarThis = S.CreateBuiltinUnaryOp(Loc, 1061 UO_Deref, 1062 This).get(); 1063 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture( 1064 nullptr, CaptureThisFieldTy, Loc); 1065 InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc); 1066 InitializationSequence Init(S, Entity, InitKind, StarThis); 1067 ExprResult ER = Init.Perform(S, Entity, InitKind, StarThis); 1068 if (ER.isInvalid()) return nullptr; 1069 return ER.get(); 1070 } 1071 return This; 1072} 1073 1074bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit, 1075 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt, 1076 const bool ByCopy) { 1077 // We don't need to capture this in an unevaluated context. 1078 if (isUnevaluatedContext() && !Explicit) 1079 return true; 1080 1081 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value"); 1082 1083 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ? 1084 *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1; 1085 1086 // Check that we can capture the *enclosing object* (referred to by '*this') 1087 // by the capturing-entity/closure (lambda/block/etc) at 1088 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1089 1090 // Note: The *enclosing object* can only be captured by-value by a 1091 // closure that is a lambda, using the explicit notation: 1092 // [*this] { ... }. 1093 // Every other capture of the *enclosing object* results in its by-reference 1094 // capture. 1095 1096 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1097 // stack), we can capture the *enclosing object* only if: 1098 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1099 // - or, 'L' has an implicit capture. 1100 // AND 1101 // -- there is no enclosing closure 1102 // -- or, there is some enclosing closure 'E' that has already captured the 1103 // *enclosing object*, and every intervening closure (if any) between 'E' 1104 // and 'L' can implicitly capture the *enclosing object*. 1105 // -- or, every enclosing closure can implicitly capture the 1106 // *enclosing object* 1107 1108 1109 unsigned NumCapturingClosures = 0; 1110 for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) { 1111 if (CapturingScopeInfo *CSI = 1112 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { 1113 if (CSI->CXXThisCaptureIndex != 0) { 1114 // 'this' is already being captured; there isn't anything more to do. 1115 break; 1116 } 1117 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); 1118 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1119 // This context can't implicitly capture 'this'; fail out. 1120 if (BuildAndDiagnose) 1121 Diag(Loc, diag::err_this_capture) 1122 << (Explicit && idx == MaxFunctionScopesIndex); 1123 return true; 1124 } 1125 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || 1126 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || 1127 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || 1128 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || 1129 (Explicit && idx == MaxFunctionScopesIndex)) { 1130 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1131 // iteration through can be an explicit capture, all enclosing closures, 1132 // if any, must perform implicit captures. 1133 1134 // This closure can capture 'this'; continue looking upwards. 1135 NumCapturingClosures++; 1136 continue; 1137 } 1138 // This context can't implicitly capture 'this'; fail out. 1139 if (BuildAndDiagnose) 1140 Diag(Loc, diag::err_this_capture) 1141 << (Explicit && idx == MaxFunctionScopesIndex); 1142 return true; 1143 } 1144 break; 1145 } 1146 if (!BuildAndDiagnose) return false; 1147 1148 // If we got here, then the closure at MaxFunctionScopesIndex on the 1149 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1150 // (including implicit by-reference captures in any enclosing closures). 1151 1152 // In the loop below, respect the ByCopy flag only for the closure requesting 1153 // the capture (i.e. first iteration through the loop below). Ignore it for 1154 // all enclosing closure's upto NumCapturingClosures (since they must be 1155 // implicitly capturing the *enclosing object* by reference (see loop 1156 // above)). 1157 assert((!ByCopy || 1158 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && 1159 "Only a lambda can capture the enclosing object (referred to by " 1160 "*this) by copy"); 1161 // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated 1162 // contexts. 1163 QualType ThisTy = getCurrentThisType(); 1164 for (unsigned idx = MaxFunctionScopesIndex; NumCapturingClosures; 1165 --idx, --NumCapturingClosures) { 1166 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1167 Expr *ThisExpr = nullptr; 1168 1169 if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) { 1170 // For lambda expressions, build a field and an initializing expression, 1171 // and capture the *enclosing object* by copy only if this is the first 1172 // iteration. 1173 ThisExpr = captureThis(*this, Context, LSI->Lambda, ThisTy, Loc, 1174 ByCopy && idx == MaxFunctionScopesIndex); 1175 1176 } else if (CapturedRegionScopeInfo *RSI 1177 = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx])) 1178 ThisExpr = 1179 captureThis(*this, Context, RSI->TheRecordDecl, ThisTy, Loc, 1180 false/*ByCopy*/); 1181 1182 bool isNested = NumCapturingClosures > 1; 1183 CSI->addThisCapture(isNested, Loc, ThisExpr, ByCopy); 1184 } 1185 return false; 1186} 1187 1188ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1189 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 1190 /// is a non-lvalue expression whose value is the address of the object for 1191 /// which the function is called. 1192 1193 QualType ThisTy = getCurrentThisType(); 1194 if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use); 1195 1196 CheckCXXThisCapture(Loc); 1197 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false); 1198} 1199 1200bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1201 // If we're outside the body of a member function, then we'll have a specified 1202 // type for 'this'. 1203 if (CXXThisTypeOverride.isNull()) 1204 return false; 1205 1206 // Determine whether we're looking into a class that's currently being 1207 // defined. 1208 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1209 return Class && Class->isBeingDefined(); 1210} 1211 1212ExprResult 1213Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1214 SourceLocation LParenLoc, 1215 MultiExprArg exprs, 1216 SourceLocation RParenLoc) { 1217 if (!TypeRep) 1218 return ExprError(); 1219 1220 TypeSourceInfo *TInfo; 1221 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1222 if (!TInfo) 1223 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1224 1225 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc); 1226 // Avoid creating a non-type-dependent expression that contains typos. 1227 // Non-type-dependent expressions are liable to be discarded without 1228 // checking for embedded typos. 1229 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1230 !Result.get()->isTypeDependent()) 1231 Result = CorrectDelayedTyposInExpr(Result.get()); 1232 return Result; 1233} 1234 1235/// ActOnCXXTypeConstructExpr - Parse construction of a specified type. 1236/// Can be interpreted either as function-style casting ("int(x)") 1237/// or class type construction ("ClassType(x,y,z)") 1238/// or creation of a value-initialized type ("int()"). 1239ExprResult 1240Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1241 SourceLocation LParenLoc, 1242 MultiExprArg Exprs, 1243 SourceLocation RParenLoc) { 1244 QualType Ty = TInfo->getType(); 1245 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1246 1247 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1248 return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs, 1249 RParenLoc); 1250 } 1251 1252 bool ListInitialization = LParenLoc.isInvalid(); 1253 assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) 1254 && "List initialization must have initializer list as expression."); 1255 SourceRange FullRange = SourceRange(TyBeginLoc, 1256 ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc); 1257 1258 // C++ [expr.type.conv]p1: 1259 // If the expression list is a single expression, the type conversion 1260 // expression is equivalent (in definedness, and if defined in meaning) to the 1261 // corresponding cast expression. 1262 if (Exprs.size() == 1 && !ListInitialization) { 1263 Expr *Arg = Exprs[0]; 1264 return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc); 1265 } 1266 1267 // C++14 [expr.type.conv]p2: The expression T(), where T is a 1268 // simple-type-specifier or typename-specifier for a non-array complete 1269 // object type or the (possibly cv-qualified) void type, creates a prvalue 1270 // of the specified type, whose value is that produced by value-initializing 1271 // an object of type T. 1272 QualType ElemTy = Ty; 1273 if (Ty->isArrayType()) { 1274 if (!ListInitialization) 1275 return ExprError(Diag(TyBeginLoc, 1276 diag::err_value_init_for_array_type) << FullRange); 1277 ElemTy = Context.getBaseElementType(Ty); 1278 } 1279 1280 if (!ListInitialization && Ty->isFunctionType()) 1281 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_function_type) 1282 << FullRange); 1283 1284 if (!Ty->isVoidType() && 1285 RequireCompleteType(TyBeginLoc, ElemTy, 1286 diag::err_invalid_incomplete_type_use, FullRange)) 1287 return ExprError(); 1288 1289 if (RequireNonAbstractType(TyBeginLoc, Ty, 1290 diag::err_allocation_of_abstract_type)) 1291 return ExprError(); 1292 1293 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo); 1294 InitializationKind Kind = 1295 Exprs.size() ? ListInitialization 1296 ? InitializationKind::CreateDirectList(TyBeginLoc) 1297 : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc) 1298 : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc); 1299 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1300 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1301 1302 if (Result.isInvalid() || !ListInitialization) 1303 return Result; 1304 1305 Expr *Inner = Result.get(); 1306 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1307 Inner = BTE->getSubExpr(); 1308 if (!isa<CXXTemporaryObjectExpr>(Inner)) { 1309 // If we created a CXXTemporaryObjectExpr, that node also represents the 1310 // functional cast. Otherwise, create an explicit cast to represent 1311 // the syntactic form of a functional-style cast that was used here. 1312 // 1313 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1314 // would give a more consistent AST representation than using a 1315 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1316 // is sometimes handled by initialization and sometimes not. 1317 QualType ResultType = Result.get()->getType(); 1318 Result = CXXFunctionalCastExpr::Create( 1319 Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo, 1320 CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc); 1321 } 1322 1323 return Result; 1324} 1325 1326/// doesUsualArrayDeleteWantSize - Answers whether the usual 1327/// operator delete[] for the given type has a size_t parameter. 1328static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1329 QualType allocType) { 1330 const RecordType *record = 1331 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1332 if (!record) return false; 1333 1334 // Try to find an operator delete[] in class scope. 1335 1336 DeclarationName deleteName = 1337 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1338 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1339 S.LookupQualifiedName(ops, record->getDecl()); 1340 1341 // We're just doing this for information. 1342 ops.suppressDiagnostics(); 1343 1344 // Very likely: there's no operator delete[]. 1345 if (ops.empty()) return false; 1346 1347 // If it's ambiguous, it should be illegal to call operator delete[] 1348 // on this thing, so it doesn't matter if we allocate extra space or not. 1349 if (ops.isAmbiguous()) return false; 1350 1351 LookupResult::Filter filter = ops.makeFilter(); 1352 while (filter.hasNext()) { 1353 NamedDecl *del = filter.next()->getUnderlyingDecl(); 1354 1355 // C++0x [basic.stc.dynamic.deallocation]p2: 1356 // A template instance is never a usual deallocation function, 1357 // regardless of its signature. 1358 if (isa<FunctionTemplateDecl>(del)) { 1359 filter.erase(); 1360 continue; 1361 } 1362 1363 // C++0x [basic.stc.dynamic.deallocation]p2: 1364 // If class T does not declare [an operator delete[] with one 1365 // parameter] but does declare a member deallocation function 1366 // named operator delete[] with exactly two parameters, the 1367 // second of which has type std::size_t, then this function 1368 // is a usual deallocation function. 1369 if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) { 1370 filter.erase(); 1371 continue; 1372 } 1373 } 1374 filter.done(); 1375 1376 if (!ops.isSingleResult()) return false; 1377 1378 const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl()); 1379 return (del->getNumParams() == 2); 1380} 1381 1382/// \brief Parsed a C++ 'new' expression (C++ 5.3.4). 1383/// 1384/// E.g.: 1385/// @code new (memory) int[size][4] @endcode 1386/// or 1387/// @code ::new Foo(23, "hello") @endcode 1388/// 1389/// \param StartLoc The first location of the expression. 1390/// \param UseGlobal True if 'new' was prefixed with '::'. 1391/// \param PlacementLParen Opening paren of the placement arguments. 1392/// \param PlacementArgs Placement new arguments. 1393/// \param PlacementRParen Closing paren of the placement arguments. 1394/// \param TypeIdParens If the type is in parens, the source range. 1395/// \param D The type to be allocated, as well as array dimensions. 1396/// \param Initializer The initializing expression or initializer-list, or null 1397/// if there is none. 1398ExprResult 1399Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1400 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1401 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1402 Declarator &D, Expr *Initializer) { 1403 bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType(); 1404 1405 Expr *ArraySize = nullptr; 1406 // If the specified type is an array, unwrap it and save the expression. 1407 if (D.getNumTypeObjects() > 0 && 1408 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1409 DeclaratorChunk &Chunk = D.getTypeObject(0); 1410 if (TypeContainsAuto) 1411 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1412 << D.getSourceRange()); 1413 if (Chunk.Arr.hasStatic) 1414 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1415 << D.getSourceRange()); 1416 if (!Chunk.Arr.NumElts) 1417 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1418 << D.getSourceRange()); 1419 1420 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1421 D.DropFirstTypeObject(); 1422 } 1423 1424 // Every dimension shall be of constant size. 1425 if (ArraySize) { 1426 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1427 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1428 break; 1429 1430 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1431 if (Expr *NumElts = (Expr *)Array.NumElts) { 1432 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1433 if (getLangOpts().CPlusPlus14) { 1434 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1435 // shall be a converted constant expression (5.19) of type std::size_t 1436 // and shall evaluate to a strictly positive value. 1437 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 1438 assert(IntWidth && "Builtin type of size 0?"); 1439 llvm::APSInt Value(IntWidth); 1440 Array.NumElts 1441 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1442 CCEK_NewExpr) 1443 .get(); 1444 } else { 1445 Array.NumElts 1446 = VerifyIntegerConstantExpression(NumElts, nullptr, 1447 diag::err_new_array_nonconst) 1448 .get(); 1449 } 1450 if (!Array.NumElts) 1451 return ExprError(); 1452 } 1453 } 1454 } 1455 } 1456 1457 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1458 QualType AllocType = TInfo->getType(); 1459 if (D.isInvalidType()) 1460 return ExprError(); 1461 1462 SourceRange DirectInitRange; 1463 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1464 DirectInitRange = List->getSourceRange(); 1465 1466 return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal, 1467 PlacementLParen, 1468 PlacementArgs, 1469 PlacementRParen, 1470 TypeIdParens, 1471 AllocType, 1472 TInfo, 1473 ArraySize, 1474 DirectInitRange, 1475 Initializer, 1476 TypeContainsAuto); 1477} 1478 1479static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1480 Expr *Init) { 1481 if (!Init) 1482 return true; 1483 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1484 return PLE->getNumExprs() == 0; 1485 if (isa<ImplicitValueInitExpr>(Init)) 1486 return true; 1487 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1488 return !CCE->isListInitialization() && 1489 CCE->getConstructor()->isDefaultConstructor(); 1490 else if (Style == CXXNewExpr::ListInit) { 1491 assert(isa<InitListExpr>(Init) && 1492 "Shouldn't create list CXXConstructExprs for arrays."); 1493 return true; 1494 } 1495 return false; 1496} 1497 1498ExprResult 1499Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1500 SourceLocation PlacementLParen, 1501 MultiExprArg PlacementArgs, 1502 SourceLocation PlacementRParen, 1503 SourceRange TypeIdParens, 1504 QualType AllocType, 1505 TypeSourceInfo *AllocTypeInfo, 1506 Expr *ArraySize, 1507 SourceRange DirectInitRange, 1508 Expr *Initializer, 1509 bool TypeMayContainAuto) { 1510 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1511 SourceLocation StartLoc = Range.getBegin(); 1512 1513 CXXNewExpr::InitializationStyle initStyle; 1514 if (DirectInitRange.isValid()) { 1515 assert(Initializer && "Have parens but no initializer."); 1516 initStyle = CXXNewExpr::CallInit; 1517 } else if (Initializer && isa<InitListExpr>(Initializer)) 1518 initStyle = CXXNewExpr::ListInit; 1519 else { 1520 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || 1521 isa<CXXConstructExpr>(Initializer)) && 1522 "Initializer expression that cannot have been implicitly created."); 1523 initStyle = CXXNewExpr::NoInit; 1524 } 1525 1526 Expr **Inits = &Initializer; 1527 unsigned NumInits = Initializer ? 1 : 0; 1528 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1529 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init"); 1530 Inits = List->getExprs(); 1531 NumInits = List->getNumExprs(); 1532 } 1533 1534 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 1535 if (TypeMayContainAuto && AllocType->isUndeducedType()) { 1536 if (initStyle == CXXNewExpr::NoInit || NumInits == 0) 1537 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 1538 << AllocType << TypeRange); 1539 if (initStyle == CXXNewExpr::ListInit || 1540 (NumInits == 1 && isa<InitListExpr>(Inits[0]))) 1541 return ExprError(Diag(Inits[0]->getLocStart(), 1542 diag::err_auto_new_list_init) 1543 << AllocType << TypeRange); 1544 if (NumInits > 1) { 1545 Expr *FirstBad = Inits[1]; 1546 return ExprError(Diag(FirstBad->getLocStart(), 1547 diag::err_auto_new_ctor_multiple_expressions) 1548 << AllocType << TypeRange); 1549 } 1550 Expr *Deduce = Inits[0]; 1551 QualType DeducedType; 1552 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) 1553 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 1554 << AllocType << Deduce->getType() 1555 << TypeRange << Deduce->getSourceRange()); 1556 if (DeducedType.isNull()) 1557 return ExprError(); 1558 AllocType = DeducedType; 1559 } 1560 1561 // Per C++0x [expr.new]p5, the type being constructed may be a 1562 // typedef of an array type. 1563 if (!ArraySize) { 1564 if (const ConstantArrayType *Array 1565 = Context.getAsConstantArrayType(AllocType)) { 1566 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 1567 Context.getSizeType(), 1568 TypeRange.getEnd()); 1569 AllocType = Array->getElementType(); 1570 } 1571 } 1572 1573 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 1574 return ExprError(); 1575 1576 if (initStyle == CXXNewExpr::ListInit && 1577 isStdInitializerList(AllocType, nullptr)) { 1578 Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(), 1579 diag::warn_dangling_std_initializer_list) 1580 << /*at end of FE*/0 << Inits[0]->getSourceRange(); 1581 } 1582 1583 // In ARC, infer 'retaining' for the allocated 1584 if (getLangOpts().ObjCAutoRefCount && 1585 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 1586 AllocType->isObjCLifetimeType()) { 1587 AllocType = Context.getLifetimeQualifiedType(AllocType, 1588 AllocType->getObjCARCImplicitLifetime()); 1589 } 1590 1591 QualType ResultType = Context.getPointerType(AllocType); 1592 1593 if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) { 1594 ExprResult result = CheckPlaceholderExpr(ArraySize); 1595 if (result.isInvalid()) return ExprError(); 1596 ArraySize = result.get(); 1597 } 1598 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 1599 // integral or enumeration type with a non-negative value." 1600 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 1601 // enumeration type, or a class type for which a single non-explicit 1602 // conversion function to integral or unscoped enumeration type exists. 1603 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 1604 // std::size_t. 1605 if (ArraySize && !ArraySize->isTypeDependent()) { 1606 ExprResult ConvertedSize; 1607 if (getLangOpts().CPlusPlus14) { 1608 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"); 1609 1610 ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(), 1611 AA_Converting); 1612 1613 if (!ConvertedSize.isInvalid() && 1614 ArraySize->getType()->getAs<RecordType>()) 1615 // Diagnose the compatibility of this conversion. 1616 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 1617 << ArraySize->getType() << 0 << "'size_t'"; 1618 } else { 1619 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 1620 protected: 1621 Expr *ArraySize; 1622 1623 public: 1624 SizeConvertDiagnoser(Expr *ArraySize) 1625 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 1626 ArraySize(ArraySize) {} 1627 1628 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 1629 QualType T) override { 1630 return S.Diag(Loc, diag::err_array_size_not_integral) 1631 << S.getLangOpts().CPlusPlus11 << T; 1632 } 1633 1634 SemaDiagnosticBuilder diagnoseIncomplete( 1635 Sema &S, SourceLocation Loc, QualType T) override { 1636 return S.Diag(Loc, diag::err_array_size_incomplete_type) 1637 << T << ArraySize->getSourceRange(); 1638 } 1639 1640 SemaDiagnosticBuilder diagnoseExplicitConv( 1641 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 1642 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 1643 } 1644 1645 SemaDiagnosticBuilder noteExplicitConv( 1646 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 1647 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 1648 << ConvTy->isEnumeralType() << ConvTy; 1649 } 1650 1651 SemaDiagnosticBuilder diagnoseAmbiguous( 1652 Sema &S, SourceLocation Loc, QualType T) override { 1653 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 1654 } 1655 1656 SemaDiagnosticBuilder noteAmbiguous( 1657 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 1658 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 1659 << ConvTy->isEnumeralType() << ConvTy; 1660 } 1661 1662 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 1663 QualType T, 1664 QualType ConvTy) override { 1665 return S.Diag(Loc, 1666 S.getLangOpts().CPlusPlus11 1667 ? diag::warn_cxx98_compat_array_size_conversion 1668 : diag::ext_array_size_conversion) 1669 << T << ConvTy->isEnumeralType() << ConvTy; 1670 } 1671 } SizeDiagnoser(ArraySize); 1672 1673 ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize, 1674 SizeDiagnoser); 1675 } 1676 if (ConvertedSize.isInvalid()) 1677 return ExprError(); 1678 1679 ArraySize = ConvertedSize.get(); 1680 QualType SizeType = ArraySize->getType(); 1681 1682 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 1683 return ExprError(); 1684 1685 // C++98 [expr.new]p7: 1686 // The expression in a direct-new-declarator shall have integral type 1687 // with a non-negative value. 1688 // 1689 // Let's see if this is a constant < 0. If so, we reject it out of 1690 // hand. Otherwise, if it's not a constant, we must have an unparenthesized 1691 // array type. 1692 // 1693 // Note: such a construct has well-defined semantics in C++11: it throws 1694 // std::bad_array_new_length. 1695 if (!ArraySize->isValueDependent()) { 1696 llvm::APSInt Value; 1697 // We've already performed any required implicit conversion to integer or 1698 // unscoped enumeration type. 1699 if (ArraySize->isIntegerConstantExpr(Value, Context)) { 1700 if (Value < llvm::APSInt( 1701 llvm::APInt::getNullValue(Value.getBitWidth()), 1702 Value.isUnsigned())) { 1703 if (getLangOpts().CPlusPlus11) 1704 Diag(ArraySize->getLocStart(), 1705 diag::warn_typecheck_negative_array_new_size) 1706 << ArraySize->getSourceRange(); 1707 else 1708 return ExprError(Diag(ArraySize->getLocStart(), 1709 diag::err_typecheck_negative_array_size) 1710 << ArraySize->getSourceRange()); 1711 } else if (!AllocType->isDependentType()) { 1712 unsigned ActiveSizeBits = 1713 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value); 1714 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { 1715 if (getLangOpts().CPlusPlus11) 1716 Diag(ArraySize->getLocStart(), 1717 diag::warn_array_new_too_large) 1718 << Value.toString(10) 1719 << ArraySize->getSourceRange(); 1720 else 1721 return ExprError(Diag(ArraySize->getLocStart(), 1722 diag::err_array_too_large) 1723 << Value.toString(10) 1724 << ArraySize->getSourceRange()); 1725 } 1726 } 1727 } else if (TypeIdParens.isValid()) { 1728 // Can't have dynamic array size when the type-id is in parentheses. 1729 Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst) 1730 << ArraySize->getSourceRange() 1731 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 1732 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 1733 1734 TypeIdParens = SourceRange(); 1735 } 1736 } 1737 1738 // Note that we do *not* convert the argument in any way. It can 1739 // be signed, larger than size_t, whatever. 1740 } 1741 1742 FunctionDecl *OperatorNew = nullptr; 1743 FunctionDecl *OperatorDelete = nullptr; 1744 1745 if (!AllocType->isDependentType() && 1746 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 1747 FindAllocationFunctions(StartLoc, 1748 SourceRange(PlacementLParen, PlacementRParen), 1749 UseGlobal, AllocType, ArraySize, PlacementArgs, 1750 OperatorNew, OperatorDelete)) 1751 return ExprError(); 1752 1753 // If this is an array allocation, compute whether the usual array 1754 // deallocation function for the type has a size_t parameter. 1755 bool UsualArrayDeleteWantsSize = false; 1756 if (ArraySize && !AllocType->isDependentType()) 1757 UsualArrayDeleteWantsSize 1758 = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 1759 1760 SmallVector<Expr *, 8> AllPlaceArgs; 1761 if (OperatorNew) { 1762 const FunctionProtoType *Proto = 1763 OperatorNew->getType()->getAs<FunctionProtoType>(); 1764 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 1765 : VariadicDoesNotApply; 1766 1767 // We've already converted the placement args, just fill in any default 1768 // arguments. Skip the first parameter because we don't have a corresponding 1769 // argument. 1770 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1, 1771 PlacementArgs, AllPlaceArgs, CallType)) 1772 return ExprError(); 1773 1774 if (!AllPlaceArgs.empty()) 1775 PlacementArgs = AllPlaceArgs; 1776 1777 // FIXME: This is wrong: PlacementArgs misses out the first (size) argument. 1778 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs); 1779 1780 // FIXME: Missing call to CheckFunctionCall or equivalent 1781 } 1782 1783 // Warn if the type is over-aligned and is being allocated by global operator 1784 // new. 1785 if (PlacementArgs.empty() && OperatorNew && 1786 (OperatorNew->isImplicit() || 1787 (OperatorNew->getLocStart().isValid() && 1788 getSourceManager().isInSystemHeader(OperatorNew->getLocStart())))) { 1789 if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){ 1790 unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign(); 1791 if (Align > SuitableAlign) 1792 Diag(StartLoc, diag::warn_overaligned_type) 1793 << AllocType 1794 << unsigned(Align / Context.getCharWidth()) 1795 << unsigned(SuitableAlign / Context.getCharWidth()); 1796 } 1797 } 1798 1799 QualType InitType = AllocType; 1800 // Array 'new' can't have any initializers except empty parentheses. 1801 // Initializer lists are also allowed, in C++11. Rely on the parser for the 1802 // dialect distinction. 1803 if (ResultType->isArrayType() || ArraySize) { 1804 if (!isLegalArrayNewInitializer(initStyle, Initializer)) { 1805 SourceRange InitRange(Inits[0]->getLocStart(), 1806 Inits[NumInits - 1]->getLocEnd()); 1807 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 1808 return ExprError(); 1809 } 1810 if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) { 1811 // We do the initialization typechecking against the array type 1812 // corresponding to the number of initializers + 1 (to also check 1813 // default-initialization). 1814 unsigned NumElements = ILE->getNumInits() + 1; 1815 InitType = Context.getConstantArrayType(AllocType, 1816 llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements), 1817 ArrayType::Normal, 0); 1818 } 1819 } 1820 1821 // If we can perform the initialization, and we've not already done so, 1822 // do it now. 1823 if (!AllocType->isDependentType() && 1824 !Expr::hasAnyTypeDependentArguments( 1825 llvm::makeArrayRef(Inits, NumInits))) { 1826 // C++11 [expr.new]p15: 1827 // A new-expression that creates an object of type T initializes that 1828 // object as follows: 1829 InitializationKind Kind 1830 // - If the new-initializer is omitted, the object is default- 1831 // initialized (8.5); if no initialization is performed, 1832 // the object has indeterminate value 1833 = initStyle == CXXNewExpr::NoInit 1834 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 1835 // - Otherwise, the new-initializer is interpreted according to the 1836 // initialization rules of 8.5 for direct-initialization. 1837 : initStyle == CXXNewExpr::ListInit 1838 ? InitializationKind::CreateDirectList(TypeRange.getBegin()) 1839 : InitializationKind::CreateDirect(TypeRange.getBegin(), 1840 DirectInitRange.getBegin(), 1841 DirectInitRange.getEnd()); 1842 1843 InitializedEntity Entity 1844 = InitializedEntity::InitializeNew(StartLoc, InitType); 1845 InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits)); 1846 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, 1847 MultiExprArg(Inits, NumInits)); 1848 if (FullInit.isInvalid()) 1849 return ExprError(); 1850 1851 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 1852 // we don't want the initialized object to be destructed. 1853 if (CXXBindTemporaryExpr *Binder = 1854 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 1855 FullInit = Binder->getSubExpr(); 1856 1857 Initializer = FullInit.get(); 1858 } 1859 1860 // Mark the new and delete operators as referenced. 1861 if (OperatorNew) { 1862 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 1863 return ExprError(); 1864 MarkFunctionReferenced(StartLoc, OperatorNew); 1865 } 1866 if (OperatorDelete) { 1867 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 1868 return ExprError(); 1869 MarkFunctionReferenced(StartLoc, OperatorDelete); 1870 } 1871 1872 // C++0x [expr.new]p17: 1873 // If the new expression creates an array of objects of class type, 1874 // access and ambiguity control are done for the destructor. 1875 QualType BaseAllocType = Context.getBaseElementType(AllocType); 1876 if (ArraySize && !BaseAllocType->isDependentType()) { 1877 if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) { 1878 if (CXXDestructorDecl *dtor = LookupDestructor( 1879 cast<CXXRecordDecl>(BaseRecordType->getDecl()))) { 1880 MarkFunctionReferenced(StartLoc, dtor); 1881 CheckDestructorAccess(StartLoc, dtor, 1882 PDiag(diag::err_access_dtor) 1883 << BaseAllocType); 1884 if (DiagnoseUseOfDecl(dtor, StartLoc)) 1885 return ExprError(); 1886 } 1887 } 1888 } 1889 1890 return new (Context) 1891 CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete, 1892 UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens, 1893 ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo, 1894 Range, DirectInitRange); 1895} 1896 1897/// \brief Checks that a type is suitable as the allocated type 1898/// in a new-expression. 1899bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 1900 SourceRange R) { 1901 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 1902 // abstract class type or array thereof. 1903 if (AllocType->isFunctionType()) 1904 return Diag(Loc, diag::err_bad_new_type) 1905 << AllocType << 0 << R; 1906 else if (AllocType->isReferenceType()) 1907 return Diag(Loc, diag::err_bad_new_type) 1908 << AllocType << 1 << R; 1909 else if (!AllocType->isDependentType() && 1910 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R)) 1911 return true; 1912 else if (RequireNonAbstractType(Loc, AllocType, 1913 diag::err_allocation_of_abstract_type)) 1914 return true; 1915 else if (AllocType->isVariablyModifiedType()) 1916 return Diag(Loc, diag::err_variably_modified_new_type) 1917 << AllocType; 1918 else if (unsigned AddressSpace = AllocType.getAddressSpace()) 1919 return Diag(Loc, diag::err_address_space_qualified_new) 1920 << AllocType.getUnqualifiedType() << AddressSpace; 1921 else if (getLangOpts().ObjCAutoRefCount) { 1922 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 1923 QualType BaseAllocType = Context.getBaseElementType(AT); 1924 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 1925 BaseAllocType->isObjCLifetimeType()) 1926 return Diag(Loc, diag::err_arc_new_array_without_ownership) 1927 << BaseAllocType; 1928 } 1929 } 1930 1931 return false; 1932} 1933 1934/// \brief Determine whether the given function is a non-placement 1935/// deallocation function. 1936static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1937 if (FD->isInvalidDecl()) 1938 return false; 1939 1940 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1941 return Method->isUsualDeallocationFunction(); 1942 1943 if (FD->getOverloadedOperator() != OO_Delete && 1944 FD->getOverloadedOperator() != OO_Array_Delete) 1945 return false; 1946 1947 if (FD->getNumParams() == 1) 1948 return true; 1949 1950 return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 && 1951 S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(), 1952 S.Context.getSizeType()); 1953} 1954 1955/// FindAllocationFunctions - Finds the overloads of operator new and delete 1956/// that are appropriate for the allocation. 1957bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 1958 bool UseGlobal, QualType AllocType, 1959 bool IsArray, MultiExprArg PlaceArgs, 1960 FunctionDecl *&OperatorNew, 1961 FunctionDecl *&OperatorDelete) { 1962 // --- Choosing an allocation function --- 1963 // C++ 5.3.4p8 - 14 & 18 1964 // 1) If UseGlobal is true, only look in the global scope. Else, also look 1965 // in the scope of the allocated class. 1966 // 2) If an array size is given, look for operator new[], else look for 1967 // operator new. 1968 // 3) The first argument is always size_t. Append the arguments from the 1969 // placement form. 1970 1971 SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size()); 1972 // We don't care about the actual value of this argument. 1973 // FIXME: Should the Sema create the expression and embed it in the syntax 1974 // tree? Or should the consumer just recalculate the value? 1975 IntegerLiteral Size(Context, llvm::APInt::getNullValue( 1976 Context.getTargetInfo().getPointerWidth(0)), 1977 Context.getSizeType(), 1978 SourceLocation()); 1979 AllocArgs[0] = &Size; 1980 std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1); 1981 1982 // C++ [expr.new]p8: 1983 // If the allocated type is a non-array type, the allocation 1984 // function's name is operator new and the deallocation function's 1985 // name is operator delete. If the allocated type is an array 1986 // type, the allocation function's name is operator new[] and the 1987 // deallocation function's name is operator delete[]. 1988 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 1989 IsArray ? OO_Array_New : OO_New); 1990 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 1991 IsArray ? OO_Array_Delete : OO_Delete); 1992 1993 QualType AllocElemType = Context.getBaseElementType(AllocType); 1994 1995 if (AllocElemType->isRecordType() && !UseGlobal) { 1996 CXXRecordDecl *Record 1997 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); 1998 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record, 1999 /*AllowMissing=*/true, OperatorNew)) 2000 return true; 2001 } 2002 2003 if (!OperatorNew) { 2004 // Didn't find a member overload. Look for a global one. 2005 DeclareGlobalNewDelete(); 2006 DeclContext *TUDecl = Context.getTranslationUnitDecl(); 2007 bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat; 2008 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl, 2009 /*AllowMissing=*/FallbackEnabled, OperatorNew, 2010 /*Diagnose=*/!FallbackEnabled)) { 2011 if (!FallbackEnabled) 2012 return true; 2013 2014 // MSVC will fall back on trying to find a matching global operator new 2015 // if operator new[] cannot be found. Also, MSVC will leak by not 2016 // generating a call to operator delete or operator delete[], but we 2017 // will not replicate that bug. 2018 NewName = Context.DeclarationNames.getCXXOperatorName(OO_New); 2019 DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 2020 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl, 2021 /*AllowMissing=*/false, OperatorNew)) 2022 return true; 2023 } 2024 } 2025 2026 // We don't need an operator delete if we're running under 2027 // -fno-exceptions. 2028 if (!getLangOpts().Exceptions) { 2029 OperatorDelete = nullptr; 2030 return false; 2031 } 2032 2033 // C++ [expr.new]p19: 2034 // 2035 // If the new-expression begins with a unary :: operator, the 2036 // deallocation function's name is looked up in the global 2037 // scope. Otherwise, if the allocated type is a class type T or an 2038 // array thereof, the deallocation function's name is looked up in 2039 // the scope of T. If this lookup fails to find the name, or if 2040 // the allocated type is not a class type or array thereof, the 2041 // deallocation function's name is looked up in the global scope. 2042 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2043 if (AllocElemType->isRecordType() && !UseGlobal) { 2044 CXXRecordDecl *RD 2045 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); 2046 LookupQualifiedName(FoundDelete, RD); 2047 } 2048 if (FoundDelete.isAmbiguous()) 2049 return true; // FIXME: clean up expressions? 2050 2051 if (FoundDelete.empty()) { 2052 DeclareGlobalNewDelete(); 2053 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2054 } 2055 2056 FoundDelete.suppressDiagnostics(); 2057 2058 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2059 2060 // Whether we're looking for a placement operator delete is dictated 2061 // by whether we selected a placement operator new, not by whether 2062 // we had explicit placement arguments. This matters for things like 2063 // struct A { void *operator new(size_t, int = 0); ... }; 2064 // A *a = new A() 2065 bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1); 2066 2067 if (isPlacementNew) { 2068 // C++ [expr.new]p20: 2069 // A declaration of a placement deallocation function matches the 2070 // declaration of a placement allocation function if it has the 2071 // same number of parameters and, after parameter transformations 2072 // (8.3.5), all parameter types except the first are 2073 // identical. [...] 2074 // 2075 // To perform this comparison, we compute the function type that 2076 // the deallocation function should have, and use that type both 2077 // for template argument deduction and for comparison purposes. 2078 // 2079 // FIXME: this comparison should ignore CC and the like. 2080 QualType ExpectedFunctionType; 2081 { 2082 const FunctionProtoType *Proto 2083 = OperatorNew->getType()->getAs<FunctionProtoType>(); 2084 2085 SmallVector<QualType, 4> ArgTypes; 2086 ArgTypes.push_back(Context.VoidPtrTy); 2087 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2088 ArgTypes.push_back(Proto->getParamType(I)); 2089 2090 FunctionProtoType::ExtProtoInfo EPI; 2091 EPI.Variadic = Proto->isVariadic(); 2092 2093 ExpectedFunctionType 2094 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2095 } 2096 2097 for (LookupResult::iterator D = FoundDelete.begin(), 2098 DEnd = FoundDelete.end(); 2099 D != DEnd; ++D) { 2100 FunctionDecl *Fn = nullptr; 2101 if (FunctionTemplateDecl *FnTmpl 2102 = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2103 // Perform template argument deduction to try to match the 2104 // expected function type. 2105 TemplateDeductionInfo Info(StartLoc); 2106 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2107 Info)) 2108 continue; 2109 } else 2110 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2111 2112 if (Context.hasSameType(Fn->getType(), ExpectedFunctionType)) 2113 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2114 } 2115 } else { 2116 // C++ [expr.new]p20: 2117 // [...] Any non-placement deallocation function matches a 2118 // non-placement allocation function. [...] 2119 for (LookupResult::iterator D = FoundDelete.begin(), 2120 DEnd = FoundDelete.end(); 2121 D != DEnd; ++D) { 2122 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl())) 2123 if (isNonPlacementDeallocationFunction(*this, Fn)) 2124 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2125 } 2126 2127 // C++1y [expr.new]p22: 2128 // For a non-placement allocation function, the normal deallocation 2129 // function lookup is used 2130 // C++1y [expr.delete]p?: 2131 // If [...] deallocation function lookup finds both a usual deallocation 2132 // function with only a pointer parameter and a usual deallocation 2133 // function with both a pointer parameter and a size parameter, then the 2134 // selected deallocation function shall be the one with two parameters. 2135 // Otherwise, the selected deallocation function shall be the function 2136 // with one parameter. 2137 if (getLangOpts().SizedDeallocation && Matches.size() == 2) { 2138 if (Matches[0].second->getNumParams() == 1) 2139 Matches.erase(Matches.begin()); 2140 else 2141 Matches.erase(Matches.begin() + 1); 2142 assert(Matches[0].second->getNumParams() == 2 && 2143 "found an unexpected usual deallocation function"); 2144 } 2145 } 2146 2147 // C++ [expr.new]p20: 2148 // [...] If the lookup finds a single matching deallocation 2149 // function, that function will be called; otherwise, no 2150 // deallocation function will be called. 2151 if (Matches.size() == 1) { 2152 OperatorDelete = Matches[0].second; 2153 2154 // C++0x [expr.new]p20: 2155 // If the lookup finds the two-parameter form of a usual 2156 // deallocation function (3.7.4.2) and that function, considered 2157 // as a placement deallocation function, would have been 2158 // selected as a match for the allocation function, the program 2159 // is ill-formed. 2160 if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 && 2161 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2162 Diag(StartLoc, diag::err_placement_new_non_placement_delete) 2163 << SourceRange(PlaceArgs.front()->getLocStart(), 2164 PlaceArgs.back()->getLocEnd()); 2165 if (!OperatorDelete->isImplicit()) 2166 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2167 << DeleteName; 2168 } else { 2169 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2170 Matches[0].first); 2171 } 2172 } 2173 2174 return false; 2175} 2176 2177/// \brief Find an fitting overload for the allocation function 2178/// in the specified scope. 2179/// 2180/// \param StartLoc The location of the 'new' token. 2181/// \param Range The range of the placement arguments. 2182/// \param Name The name of the function ('operator new' or 'operator new[]'). 2183/// \param Args The placement arguments specified. 2184/// \param Ctx The scope in which we should search; either a class scope or the 2185/// translation unit. 2186/// \param AllowMissing If \c true, report an error if we can't find any 2187/// allocation functions. Otherwise, succeed but don't fill in \p 2188/// Operator. 2189/// \param Operator Filled in with the found allocation function. Unchanged if 2190/// no allocation function was found. 2191/// \param Diagnose If \c true, issue errors if the allocation function is not 2192/// usable. 2193bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, 2194 DeclarationName Name, MultiExprArg Args, 2195 DeclContext *Ctx, 2196 bool AllowMissing, FunctionDecl *&Operator, 2197 bool Diagnose) { 2198 LookupResult R(*this, Name, StartLoc, LookupOrdinaryName); 2199 LookupQualifiedName(R, Ctx); 2200 if (R.empty()) { 2201 if (AllowMissing || !Diagnose) 2202 return false; 2203 return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) 2204 << Name << Range; 2205 } 2206 2207 if (R.isAmbiguous()) 2208 return true; 2209 2210 R.suppressDiagnostics(); 2211 2212 OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal); 2213 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2214 Alloc != AllocEnd; ++Alloc) { 2215 // Even member operator new/delete are implicitly treated as 2216 // static, so don't use AddMemberCandidate. 2217 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2218 2219 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2220 AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2221 /*ExplicitTemplateArgs=*/nullptr, 2222 Args, Candidates, 2223 /*SuppressUserConversions=*/false); 2224 continue; 2225 } 2226 2227 FunctionDecl *Fn = cast<FunctionDecl>(D); 2228 AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2229 /*SuppressUserConversions=*/false); 2230 } 2231 2232 // Do the resolution. 2233 OverloadCandidateSet::iterator Best; 2234 switch (Candidates.BestViableFunction(*this, StartLoc, Best)) { 2235 case OR_Success: { 2236 // Got one! 2237 FunctionDecl *FnDecl = Best->Function; 2238 if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), 2239 Best->FoundDecl, Diagnose) == AR_inaccessible) 2240 return true; 2241 2242 Operator = FnDecl; 2243 return false; 2244 } 2245 2246 case OR_No_Viable_Function: 2247 if (Diagnose) { 2248 Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) 2249 << Name << Range; 2250 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args); 2251 } 2252 return true; 2253 2254 case OR_Ambiguous: 2255 if (Diagnose) { 2256 Diag(StartLoc, diag::err_ovl_ambiguous_call) 2257 << Name << Range; 2258 Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args); 2259 } 2260 return true; 2261 2262 case OR_Deleted: { 2263 if (Diagnose) { 2264 Diag(StartLoc, diag::err_ovl_deleted_call) 2265 << Best->Function->isDeleted() 2266 << Name 2267 << getDeletedOrUnavailableSuffix(Best->Function) 2268 << Range; 2269 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args); 2270 } 2271 return true; 2272 } 2273 } 2274 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 2275} 2276 2277 2278/// DeclareGlobalNewDelete - Declare the global forms of operator new and 2279/// delete. These are: 2280/// @code 2281/// // C++03: 2282/// void* operator new(std::size_t) throw(std::bad_alloc); 2283/// void* operator new[](std::size_t) throw(std::bad_alloc); 2284/// void operator delete(void *) throw(); 2285/// void operator delete[](void *) throw(); 2286/// // C++11: 2287/// void* operator new(std::size_t); 2288/// void* operator new[](std::size_t); 2289/// void operator delete(void *) noexcept; 2290/// void operator delete[](void *) noexcept; 2291/// // C++1y: 2292/// void* operator new(std::size_t); 2293/// void* operator new[](std::size_t); 2294/// void operator delete(void *) noexcept; 2295/// void operator delete[](void *) noexcept; 2296/// void operator delete(void *, std::size_t) noexcept; 2297/// void operator delete[](void *, std::size_t) noexcept; 2298/// @endcode 2299/// Note that the placement and nothrow forms of new are *not* implicitly 2300/// declared. Their use requires including \<new\>. 2301void Sema::DeclareGlobalNewDelete() { 2302 if (GlobalNewDeleteDeclared) 2303 return; 2304 2305 // C++ [basic.std.dynamic]p2: 2306 // [...] The following allocation and deallocation functions (18.4) are 2307 // implicitly declared in global scope in each translation unit of a 2308 // program 2309 // 2310 // C++03: 2311 // void* operator new(std::size_t) throw(std::bad_alloc); 2312 // void* operator new[](std::size_t) throw(std::bad_alloc); 2313 // void operator delete(void*) throw(); 2314 // void operator delete[](void*) throw(); 2315 // C++11: 2316 // void* operator new(std::size_t); 2317 // void* operator new[](std::size_t); 2318 // void operator delete(void*) noexcept; 2319 // void operator delete[](void*) noexcept; 2320 // C++1y: 2321 // void* operator new(std::size_t); 2322 // void* operator new[](std::size_t); 2323 // void operator delete(void*) noexcept; 2324 // void operator delete[](void*) noexcept; 2325 // void operator delete(void*, std::size_t) noexcept; 2326 // void operator delete[](void*, std::size_t) noexcept; 2327 // 2328 // These implicit declarations introduce only the function names operator 2329 // new, operator new[], operator delete, operator delete[]. 2330 // 2331 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 2332 // "std" or "bad_alloc" as necessary to form the exception specification. 2333 // However, we do not make these implicit declarations visible to name 2334 // lookup. 2335 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 2336 // The "std::bad_alloc" class has not yet been declared, so build it 2337 // implicitly. 2338 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 2339 getOrCreateStdNamespace(), 2340 SourceLocation(), SourceLocation(), 2341 &PP.getIdentifierTable().get("bad_alloc"), 2342 nullptr); 2343 getStdBadAlloc()->setImplicit(true); 2344 } 2345 2346 GlobalNewDeleteDeclared = true; 2347 2348 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 2349 QualType SizeT = Context.getSizeType(); 2350 2351 DeclareGlobalAllocationFunction( 2352 Context.DeclarationNames.getCXXOperatorName(OO_New), 2353 VoidPtr, SizeT, QualType()); 2354 DeclareGlobalAllocationFunction( 2355 Context.DeclarationNames.getCXXOperatorName(OO_Array_New), 2356 VoidPtr, SizeT, QualType()); 2357 DeclareGlobalAllocationFunction( 2358 Context.DeclarationNames.getCXXOperatorName(OO_Delete), 2359 Context.VoidTy, VoidPtr); 2360 DeclareGlobalAllocationFunction( 2361 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), 2362 Context.VoidTy, VoidPtr); 2363 if (getLangOpts().SizedDeallocation) { 2364 DeclareGlobalAllocationFunction( 2365 Context.DeclarationNames.getCXXOperatorName(OO_Delete), 2366 Context.VoidTy, VoidPtr, Context.getSizeType()); 2367 DeclareGlobalAllocationFunction( 2368 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), 2369 Context.VoidTy, VoidPtr, Context.getSizeType()); 2370 } 2371} 2372 2373/// DeclareGlobalAllocationFunction - Declares a single implicit global 2374/// allocation function if it doesn't already exist. 2375void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 2376 QualType Return, 2377 QualType Param1, QualType Param2) { 2378 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 2379 unsigned NumParams = Param2.isNull() ? 1 : 2; 2380 2381 // Check if this function is already declared. 2382 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 2383 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 2384 Alloc != AllocEnd; ++Alloc) { 2385 // Only look at non-template functions, as it is the predefined, 2386 // non-templated allocation function we are trying to declare here. 2387 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 2388 if (Func->getNumParams() == NumParams) { 2389 QualType InitialParam1Type = 2390 Context.getCanonicalType(Func->getParamDecl(0) 2391 ->getType().getUnqualifiedType()); 2392 QualType InitialParam2Type = 2393 NumParams == 2 2394 ? Context.getCanonicalType(Func->getParamDecl(1) 2395 ->getType().getUnqualifiedType()) 2396 : QualType(); 2397 // FIXME: Do we need to check for default arguments here? 2398 if (InitialParam1Type == Param1 && 2399 (NumParams == 1 || InitialParam2Type == Param2)) { 2400 // Make the function visible to name lookup, even if we found it in 2401 // an unimported module. It either is an implicitly-declared global 2402 // allocation function, or is suppressing that function. 2403 Func->setHidden(false); 2404 return; 2405 } 2406 } 2407 } 2408 } 2409 2410 FunctionProtoType::ExtProtoInfo EPI; 2411 2412 QualType BadAllocType; 2413 bool HasBadAllocExceptionSpec 2414 = (Name.getCXXOverloadedOperator() == OO_New || 2415 Name.getCXXOverloadedOperator() == OO_Array_New); 2416 if (HasBadAllocExceptionSpec) { 2417 if (!getLangOpts().CPlusPlus11) { 2418 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 2419 assert(StdBadAlloc && "Must have std::bad_alloc declared"); 2420 EPI.ExceptionSpec.Type = EST_Dynamic; 2421 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); 2422 } 2423 } else { 2424 EPI.ExceptionSpec = 2425 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 2426 } 2427 2428 QualType Params[] = { Param1, Param2 }; 2429 2430 QualType FnType = Context.getFunctionType( 2431 Return, llvm::makeArrayRef(Params, NumParams), EPI); 2432 FunctionDecl *Alloc = 2433 FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), 2434 SourceLocation(), Name, 2435 FnType, /*TInfo=*/nullptr, SC_None, false, true); 2436 Alloc->setImplicit(); 2437 2438 // Implicit sized deallocation functions always have default visibility. 2439 Alloc->addAttr(VisibilityAttr::CreateImplicit(Context, 2440 VisibilityAttr::Default)); 2441 2442 ParmVarDecl *ParamDecls[2]; 2443 for (unsigned I = 0; I != NumParams; ++I) { 2444 ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(), 2445 SourceLocation(), nullptr, 2446 Params[I], /*TInfo=*/nullptr, 2447 SC_None, nullptr); 2448 ParamDecls[I]->setImplicit(); 2449 } 2450 Alloc->setParams(llvm::makeArrayRef(ParamDecls, NumParams)); 2451 2452 Context.getTranslationUnitDecl()->addDecl(Alloc); 2453 IdResolver.tryAddTopLevelDecl(Alloc, Name); 2454} 2455 2456FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 2457 bool CanProvideSize, 2458 DeclarationName Name) { 2459 DeclareGlobalNewDelete(); 2460 2461 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 2462 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2463 2464 // C++ [expr.new]p20: 2465 // [...] Any non-placement deallocation function matches a 2466 // non-placement allocation function. [...] 2467 llvm::SmallVector<FunctionDecl*, 2> Matches; 2468 for (LookupResult::iterator D = FoundDelete.begin(), 2469 DEnd = FoundDelete.end(); 2470 D != DEnd; ++D) { 2471 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D)) 2472 if (isNonPlacementDeallocationFunction(*this, Fn)) 2473 Matches.push_back(Fn); 2474 } 2475 2476 // C++1y [expr.delete]p?: 2477 // If the type is complete and deallocation function lookup finds both a 2478 // usual deallocation function with only a pointer parameter and a usual 2479 // deallocation function with both a pointer parameter and a size 2480 // parameter, then the selected deallocation function shall be the one 2481 // with two parameters. Otherwise, the selected deallocation function 2482 // shall be the function with one parameter. 2483 if (getLangOpts().SizedDeallocation && Matches.size() == 2) { 2484 unsigned NumArgs = CanProvideSize ? 2 : 1; 2485 if (Matches[0]->getNumParams() != NumArgs) 2486 Matches.erase(Matches.begin()); 2487 else 2488 Matches.erase(Matches.begin() + 1); 2489 assert(Matches[0]->getNumParams() == NumArgs && 2490 "found an unexpected usual deallocation function"); 2491 } 2492 2493 if (getLangOpts().CUDA) 2494 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches); 2495 2496 assert(Matches.size() == 1 && 2497 "unexpectedly have multiple usual deallocation functions"); 2498 return Matches.front(); 2499} 2500 2501bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 2502 DeclarationName Name, 2503 FunctionDecl* &Operator, bool Diagnose) { 2504 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 2505 // Try to find operator delete/operator delete[] in class scope. 2506 LookupQualifiedName(Found, RD); 2507 2508 if (Found.isAmbiguous()) 2509 return true; 2510 2511 Found.suppressDiagnostics(); 2512 2513 SmallVector<DeclAccessPair,4> Matches; 2514 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); 2515 F != FEnd; ++F) { 2516 NamedDecl *ND = (*F)->getUnderlyingDecl(); 2517 2518 // Ignore template operator delete members from the check for a usual 2519 // deallocation function. 2520 if (isa<FunctionTemplateDecl>(ND)) 2521 continue; 2522 2523 if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction()) 2524 Matches.push_back(F.getPair()); 2525 } 2526 2527 if (getLangOpts().CUDA) 2528 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches); 2529 2530 // There's exactly one suitable operator; pick it. 2531 if (Matches.size() == 1) { 2532 Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl()); 2533 2534 if (Operator->isDeleted()) { 2535 if (Diagnose) { 2536 Diag(StartLoc, diag::err_deleted_function_use); 2537 NoteDeletedFunction(Operator); 2538 } 2539 return true; 2540 } 2541 2542 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 2543 Matches[0], Diagnose) == AR_inaccessible) 2544 return true; 2545 2546 return false; 2547 2548 // We found multiple suitable operators; complain about the ambiguity. 2549 } else if (!Matches.empty()) { 2550 if (Diagnose) { 2551 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 2552 << Name << RD; 2553 2554 for (SmallVectorImpl<DeclAccessPair>::iterator 2555 F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F) 2556 Diag((*F)->getUnderlyingDecl()->getLocation(), 2557 diag::note_member_declared_here) << Name; 2558 } 2559 return true; 2560 } 2561 2562 // We did find operator delete/operator delete[] declarations, but 2563 // none of them were suitable. 2564 if (!Found.empty()) { 2565 if (Diagnose) { 2566 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 2567 << Name << RD; 2568 2569 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); 2570 F != FEnd; ++F) 2571 Diag((*F)->getUnderlyingDecl()->getLocation(), 2572 diag::note_member_declared_here) << Name; 2573 } 2574 return true; 2575 } 2576 2577 Operator = nullptr; 2578 return false; 2579} 2580 2581namespace { 2582/// \brief Checks whether delete-expression, and new-expression used for 2583/// initializing deletee have the same array form. 2584class MismatchingNewDeleteDetector { 2585public: 2586 enum MismatchResult { 2587 /// Indicates that there is no mismatch or a mismatch cannot be proven. 2588 NoMismatch, 2589 /// Indicates that variable is initialized with mismatching form of \a new. 2590 VarInitMismatches, 2591 /// Indicates that member is initialized with mismatching form of \a new. 2592 MemberInitMismatches, 2593 /// Indicates that 1 or more constructors' definitions could not been 2594 /// analyzed, and they will be checked again at the end of translation unit. 2595 AnalyzeLater 2596 }; 2597 2598 /// \param EndOfTU True, if this is the final analysis at the end of 2599 /// translation unit. False, if this is the initial analysis at the point 2600 /// delete-expression was encountered. 2601 explicit MismatchingNewDeleteDetector(bool EndOfTU) 2602 : IsArrayForm(false), Field(nullptr), EndOfTU(EndOfTU), 2603 HasUndefinedConstructors(false) {} 2604 2605 /// \brief Checks whether pointee of a delete-expression is initialized with 2606 /// matching form of new-expression. 2607 /// 2608 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 2609 /// point where delete-expression is encountered, then a warning will be 2610 /// issued immediately. If return value is \c AnalyzeLater at the point where 2611 /// delete-expression is seen, then member will be analyzed at the end of 2612 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 2613 /// couldn't be analyzed. If at least one constructor initializes the member 2614 /// with matching type of new, the return value is \c NoMismatch. 2615 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 2616 /// \brief Analyzes a class member. 2617 /// \param Field Class member to analyze. 2618 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 2619 /// for deleting the \p Field. 2620 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 2621 /// List of mismatching new-expressions used for initialization of the pointee 2622 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 2623 /// Indicates whether delete-expression was in array form. 2624 bool IsArrayForm; 2625 FieldDecl *Field; 2626 2627private: 2628 const bool EndOfTU; 2629 /// \brief Indicates that there is at least one constructor without body. 2630 bool HasUndefinedConstructors; 2631 /// \brief Returns \c CXXNewExpr from given initialization expression. 2632 /// \param E Expression used for initializing pointee in delete-expression. 2633 /// E can be a single-element \c InitListExpr consisting of new-expression. 2634 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 2635 /// \brief Returns whether member is initialized with mismatching form of 2636 /// \c new either by the member initializer or in-class initialization. 2637 /// 2638 /// If bodies of all constructors are not visible at the end of translation 2639 /// unit or at least one constructor initializes member with the matching 2640 /// form of \c new, mismatch cannot be proven, and this function will return 2641 /// \c NoMismatch. 2642 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 2643 /// \brief Returns whether variable is initialized with mismatching form of 2644 /// \c new. 2645 /// 2646 /// If variable is initialized with matching form of \c new or variable is not 2647 /// initialized with a \c new expression, this function will return true. 2648 /// If variable is initialized with mismatching form of \c new, returns false. 2649 /// \param D Variable to analyze. 2650 bool hasMatchingVarInit(const DeclRefExpr *D); 2651 /// \brief Checks whether the constructor initializes pointee with mismatching 2652 /// form of \c new. 2653 /// 2654 /// Returns true, if member is initialized with matching form of \c new in 2655 /// member initializer list. Returns false, if member is initialized with the 2656 /// matching form of \c new in this constructor's initializer or given 2657 /// constructor isn't defined at the point where delete-expression is seen, or 2658 /// member isn't initialized by the constructor. 2659 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 2660 /// \brief Checks whether member is initialized with matching form of 2661 /// \c new in member initializer list. 2662 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 2663 /// Checks whether member is initialized with mismatching form of \c new by 2664 /// in-class initializer. 2665 MismatchResult analyzeInClassInitializer(); 2666}; 2667} 2668 2669MismatchingNewDeleteDetector::MismatchResult 2670MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 2671 NewExprs.clear(); 2672 assert(DE && "Expected delete-expression"); 2673 IsArrayForm = DE->isArrayForm(); 2674 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 2675 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 2676 return analyzeMemberExpr(ME); 2677 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 2678 if (!hasMatchingVarInit(D)) 2679 return VarInitMismatches; 2680 } 2681 return NoMismatch; 2682} 2683 2684const CXXNewExpr * 2685MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 2686 assert(E != nullptr && "Expected a valid initializer expression"); 2687 E = E->IgnoreParenImpCasts(); 2688 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 2689 if (ILE->getNumInits() == 1) 2690 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 2691 } 2692 2693 return dyn_cast_or_null<const CXXNewExpr>(E); 2694} 2695 2696bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 2697 const CXXCtorInitializer *CI) { 2698 const CXXNewExpr *NE = nullptr; 2699 if (Field == CI->getMember() && 2700 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 2701 if (NE->isArray() == IsArrayForm) 2702 return true; 2703 else 2704 NewExprs.push_back(NE); 2705 } 2706 return false; 2707} 2708 2709bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 2710 const CXXConstructorDecl *CD) { 2711 if (CD->isImplicit()) 2712 return false; 2713 const FunctionDecl *Definition = CD; 2714 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 2715 HasUndefinedConstructors = true; 2716 return EndOfTU; 2717 } 2718 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 2719 if (hasMatchingNewInCtorInit(CI)) 2720 return true; 2721 } 2722 return false; 2723} 2724 2725MismatchingNewDeleteDetector::MismatchResult 2726MismatchingNewDeleteDetector::analyzeInClassInitializer() { 2727 assert(Field != nullptr && "This should be called only for members"); 2728 const Expr *InitExpr = Field->getInClassInitializer(); 2729 if (!InitExpr) 2730 return EndOfTU ? NoMismatch : AnalyzeLater; 2731 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 2732 if (NE->isArray() != IsArrayForm) { 2733 NewExprs.push_back(NE); 2734 return MemberInitMismatches; 2735 } 2736 } 2737 return NoMismatch; 2738} 2739 2740MismatchingNewDeleteDetector::MismatchResult 2741MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 2742 bool DeleteWasArrayForm) { 2743 assert(Field != nullptr && "Analysis requires a valid class member."); 2744 this->Field = Field; 2745 IsArrayForm = DeleteWasArrayForm; 2746 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 2747 for (const auto *CD : RD->ctors()) { 2748 if (hasMatchingNewInCtor(CD)) 2749 return NoMismatch; 2750 } 2751 if (HasUndefinedConstructors) 2752 return EndOfTU ? NoMismatch : AnalyzeLater; 2753 if (!NewExprs.empty()) 2754 return MemberInitMismatches; 2755 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 2756 : NoMismatch; 2757} 2758 2759MismatchingNewDeleteDetector::MismatchResult 2760MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 2761 assert(ME != nullptr && "Expected a member expression"); 2762 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 2763 return analyzeField(F, IsArrayForm); 2764 return NoMismatch; 2765} 2766 2767bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 2768 const CXXNewExpr *NE = nullptr; 2769 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 2770 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 2771 NE->isArray() != IsArrayForm) { 2772 NewExprs.push_back(NE); 2773 } 2774 } 2775 return NewExprs.empty(); 2776} 2777 2778static void 2779DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 2780 const MismatchingNewDeleteDetector &Detector) { 2781 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 2782 FixItHint H; 2783 if (!Detector.IsArrayForm) 2784 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 2785 else { 2786 SourceLocation RSquare = Lexer::findLocationAfterToken( 2787 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 2788 SemaRef.getLangOpts(), true); 2789 if (RSquare.isValid()) 2790 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 2791 } 2792 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 2793 << Detector.IsArrayForm << H; 2794 2795 for (const auto *NE : Detector.NewExprs) 2796 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 2797 << Detector.IsArrayForm; 2798} 2799 2800void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 2801 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 2802 return; 2803 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 2804 switch (Detector.analyzeDeleteExpr(DE)) { 2805 case MismatchingNewDeleteDetector::VarInitMismatches: 2806 case MismatchingNewDeleteDetector::MemberInitMismatches: { 2807 DiagnoseMismatchedNewDelete(*this, DE->getLocStart(), Detector); 2808 break; 2809 } 2810 case MismatchingNewDeleteDetector::AnalyzeLater: { 2811 DeleteExprs[Detector.Field].push_back( 2812 std::make_pair(DE->getLocStart(), DE->isArrayForm())); 2813 break; 2814 } 2815 case MismatchingNewDeleteDetector::NoMismatch: 2816 break; 2817 } 2818} 2819 2820void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 2821 bool DeleteWasArrayForm) { 2822 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 2823 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 2824 case MismatchingNewDeleteDetector::VarInitMismatches: 2825 llvm_unreachable("This analysis should have been done for class members."); 2826 case MismatchingNewDeleteDetector::AnalyzeLater: 2827 llvm_unreachable("Analysis cannot be postponed any point beyond end of " 2828 "translation unit."); 2829 case MismatchingNewDeleteDetector::MemberInitMismatches: 2830 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 2831 break; 2832 case MismatchingNewDeleteDetector::NoMismatch: 2833 break; 2834 } 2835} 2836 2837/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 2838/// @code ::delete ptr; @endcode 2839/// or 2840/// @code delete [] ptr; @endcode 2841ExprResult 2842Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 2843 bool ArrayForm, Expr *ExE) { 2844 // C++ [expr.delete]p1: 2845 // The operand shall have a pointer type, or a class type having a single 2846 // non-explicit conversion function to a pointer type. The result has type 2847 // void. 2848 // 2849 // DR599 amends "pointer type" to "pointer to object type" in both cases. 2850 2851 ExprResult Ex = ExE; 2852 FunctionDecl *OperatorDelete = nullptr; 2853 bool ArrayFormAsWritten = ArrayForm; 2854 bool UsualArrayDeleteWantsSize = false; 2855 2856 if (!Ex.get()->isTypeDependent()) { 2857 // Perform lvalue-to-rvalue cast, if needed. 2858 Ex = DefaultLvalueConversion(Ex.get()); 2859 if (Ex.isInvalid()) 2860 return ExprError(); 2861 2862 QualType Type = Ex.get()->getType(); 2863 2864 class DeleteConverter : public ContextualImplicitConverter { 2865 public: 2866 DeleteConverter() : ContextualImplicitConverter(false, true) {} 2867 2868 bool match(QualType ConvType) override { 2869 // FIXME: If we have an operator T* and an operator void*, we must pick 2870 // the operator T*. 2871 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 2872 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 2873 return true; 2874 return false; 2875 } 2876 2877 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 2878 QualType T) override { 2879 return S.Diag(Loc, diag::err_delete_operand) << T; 2880 } 2881 2882 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 2883 QualType T) override { 2884 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 2885 } 2886 2887 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 2888 QualType T, 2889 QualType ConvTy) override { 2890 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 2891 } 2892 2893 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 2894 QualType ConvTy) override { 2895 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 2896 << ConvTy; 2897 } 2898 2899 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 2900 QualType T) override { 2901 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 2902 } 2903 2904 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 2905 QualType ConvTy) override { 2906 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 2907 << ConvTy; 2908 } 2909 2910 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2911 QualType T, 2912 QualType ConvTy) override { 2913 llvm_unreachable("conversion functions are permitted"); 2914 } 2915 } Converter; 2916 2917 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 2918 if (Ex.isInvalid()) 2919 return ExprError(); 2920 Type = Ex.get()->getType(); 2921 if (!Converter.match(Type)) 2922 // FIXME: PerformContextualImplicitConversion should return ExprError 2923 // itself in this case. 2924 return ExprError(); 2925 2926 QualType Pointee = Type->getAs<PointerType>()->getPointeeType(); 2927 QualType PointeeElem = Context.getBaseElementType(Pointee); 2928 2929 if (unsigned AddressSpace = Pointee.getAddressSpace()) 2930 return Diag(Ex.get()->getLocStart(), 2931 diag::err_address_space_qualified_delete) 2932 << Pointee.getUnqualifiedType() << AddressSpace; 2933 2934 CXXRecordDecl *PointeeRD = nullptr; 2935 if (Pointee->isVoidType() && !isSFINAEContext()) { 2936 // The C++ standard bans deleting a pointer to a non-object type, which 2937 // effectively bans deletion of "void*". However, most compilers support 2938 // this, so we treat it as a warning unless we're in a SFINAE context. 2939 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 2940 << Type << Ex.get()->getSourceRange(); 2941 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) { 2942 return ExprError(Diag(StartLoc, diag::err_delete_operand) 2943 << Type << Ex.get()->getSourceRange()); 2944 } else if (!Pointee->isDependentType()) { 2945 // FIXME: This can result in errors if the definition was imported from a 2946 // module but is hidden. 2947 if (!RequireCompleteType(StartLoc, Pointee, 2948 diag::warn_delete_incomplete, Ex.get())) { 2949 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 2950 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 2951 } 2952 } 2953 2954 if (Pointee->isArrayType() && !ArrayForm) { 2955 Diag(StartLoc, diag::warn_delete_array_type) 2956 << Type << Ex.get()->getSourceRange() 2957 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 2958 ArrayForm = true; 2959 } 2960 2961 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2962 ArrayForm ? OO_Array_Delete : OO_Delete); 2963 2964 if (PointeeRD) { 2965 if (!UseGlobal && 2966 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 2967 OperatorDelete)) 2968 return ExprError(); 2969 2970 // If we're allocating an array of records, check whether the 2971 // usual operator delete[] has a size_t parameter. 2972 if (ArrayForm) { 2973 // If the user specifically asked to use the global allocator, 2974 // we'll need to do the lookup into the class. 2975 if (UseGlobal) 2976 UsualArrayDeleteWantsSize = 2977 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 2978 2979 // Otherwise, the usual operator delete[] should be the 2980 // function we just found. 2981 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 2982 UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2); 2983 } 2984 2985 if (!PointeeRD->hasIrrelevantDestructor()) 2986 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 2987 MarkFunctionReferenced(StartLoc, 2988 const_cast<CXXDestructorDecl*>(Dtor)); 2989 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 2990 return ExprError(); 2991 } 2992 2993 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 2994 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 2995 /*WarnOnNonAbstractTypes=*/!ArrayForm, 2996 SourceLocation()); 2997 } 2998 2999 if (!OperatorDelete) 3000 // Look for a global declaration. 3001 OperatorDelete = FindUsualDeallocationFunction( 3002 StartLoc, isCompleteType(StartLoc, Pointee) && 3003 (!ArrayForm || UsualArrayDeleteWantsSize || 3004 Pointee.isDestructedType()), 3005 DeleteName); 3006 3007 MarkFunctionReferenced(StartLoc, OperatorDelete); 3008 3009 // Check access and ambiguity of operator delete and destructor. 3010 if (PointeeRD) { 3011 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3012 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3013 PDiag(diag::err_access_dtor) << PointeeElem); 3014 } 3015 } 3016 } 3017 3018 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3019 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3020 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3021 AnalyzeDeleteExprMismatch(Result); 3022 return Result; 3023} 3024 3025void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3026 bool IsDelete, bool CallCanBeVirtual, 3027 bool WarnOnNonAbstractTypes, 3028 SourceLocation DtorLoc) { 3029 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual) 3030 return; 3031 3032 // C++ [expr.delete]p3: 3033 // In the first alternative (delete object), if the static type of the 3034 // object to be deleted is different from its dynamic type, the static 3035 // type shall be a base class of the dynamic type of the object to be 3036 // deleted and the static type shall have a virtual destructor or the 3037 // behavior is undefined. 3038 // 3039 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3040 // Note: a final class cannot be derived from, no issue there 3041 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3042 return; 3043 3044 QualType ClassType = dtor->getThisType(Context)->getPointeeType(); 3045 if (PointeeRD->isAbstract()) { 3046 // If the class is abstract, we warn by default, because we're 3047 // sure the code has undefined behavior. 3048 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 3049 << ClassType; 3050 } else if (WarnOnNonAbstractTypes) { 3051 // Otherwise, if this is not an array delete, it's a bit suspect, 3052 // but not necessarily wrong. 3053 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 3054 << ClassType; 3055 } 3056 if (!IsDelete) { 3057 std::string TypeStr; 3058 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 3059 Diag(DtorLoc, diag::note_delete_non_virtual) 3060 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 3061 } 3062} 3063 3064Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 3065 SourceLocation StmtLoc, 3066 ConditionKind CK) { 3067 ExprResult E = 3068 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 3069 if (E.isInvalid()) 3070 return ConditionError(); 3071 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 3072 CK == ConditionKind::ConstexprIf); 3073} 3074 3075/// \brief Check the use of the given variable as a C++ condition in an if, 3076/// while, do-while, or switch statement. 3077ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 3078 SourceLocation StmtLoc, 3079 ConditionKind CK) { 3080 if (ConditionVar->isInvalidDecl()) 3081 return ExprError(); 3082 3083 QualType T = ConditionVar->getType(); 3084 3085 // C++ [stmt.select]p2: 3086 // The declarator shall not specify a function or an array. 3087 if (T->isFunctionType()) 3088 return ExprError(Diag(ConditionVar->getLocation(), 3089 diag::err_invalid_use_of_function_type) 3090 << ConditionVar->getSourceRange()); 3091 else if (T->isArrayType()) 3092 return ExprError(Diag(ConditionVar->getLocation(), 3093 diag::err_invalid_use_of_array_type) 3094 << ConditionVar->getSourceRange()); 3095 3096 ExprResult Condition = DeclRefExpr::Create( 3097 Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar, 3098 /*enclosing*/ false, ConditionVar->getLocation(), 3099 ConditionVar->getType().getNonReferenceType(), VK_LValue); 3100 3101 MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get())); 3102 3103 switch (CK) { 3104 case ConditionKind::Boolean: 3105 return CheckBooleanCondition(StmtLoc, Condition.get()); 3106 3107 case ConditionKind::ConstexprIf: 3108 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 3109 3110 case ConditionKind::Switch: 3111 return CheckSwitchCondition(StmtLoc, Condition.get()); 3112 } 3113 3114 llvm_unreachable("unexpected condition kind"); 3115} 3116 3117/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 3118ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 3119 // C++ 6.4p4: 3120 // The value of a condition that is an initialized declaration in a statement 3121 // other than a switch statement is the value of the declared variable 3122 // implicitly converted to type bool. If that conversion is ill-formed, the 3123 // program is ill-formed. 3124 // The value of a condition that is an expression is the value of the 3125 // expression, implicitly converted to bool. 3126 // 3127 // FIXME: Return this value to the caller so they don't need to recompute it. 3128 llvm::APSInt Value(/*BitWidth*/1); 3129 return (IsConstexpr && !CondExpr->isValueDependent()) 3130 ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value, 3131 CCEK_ConstexprIf) 3132 : PerformContextuallyConvertToBool(CondExpr); 3133} 3134 3135/// Helper function to determine whether this is the (deprecated) C++ 3136/// conversion from a string literal to a pointer to non-const char or 3137/// non-const wchar_t (for narrow and wide string literals, 3138/// respectively). 3139bool 3140Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 3141 // Look inside the implicit cast, if it exists. 3142 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 3143 From = Cast->getSubExpr(); 3144 3145 // A string literal (2.13.4) that is not a wide string literal can 3146 // be converted to an rvalue of type "pointer to char"; a wide 3147 // string literal can be converted to an rvalue of type "pointer 3148 // to wchar_t" (C++ 4.2p2). 3149 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 3150 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 3151 if (const BuiltinType *ToPointeeType 3152 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 3153 // This conversion is considered only when there is an 3154 // explicit appropriate pointer target type (C++ 4.2p2). 3155 if (!ToPtrType->getPointeeType().hasQualifiers()) { 3156 switch (StrLit->getKind()) { 3157 case StringLiteral::UTF8: 3158 case StringLiteral::UTF16: 3159 case StringLiteral::UTF32: 3160 // We don't allow UTF literals to be implicitly converted 3161 break; 3162 case StringLiteral::Ascii: 3163 return (ToPointeeType->getKind() == BuiltinType::Char_U || 3164 ToPointeeType->getKind() == BuiltinType::Char_S); 3165 case StringLiteral::Wide: 3166 return Context.typesAreCompatible(Context.getWideCharType(), 3167 QualType(ToPointeeType, 0)); 3168 } 3169 } 3170 } 3171 3172 return false; 3173} 3174 3175static ExprResult BuildCXXCastArgument(Sema &S, 3176 SourceLocation CastLoc, 3177 QualType Ty, 3178 CastKind Kind, 3179 CXXMethodDecl *Method, 3180 DeclAccessPair FoundDecl, 3181 bool HadMultipleCandidates, 3182 Expr *From) { 3183 switch (Kind) { 3184 default: llvm_unreachable("Unhandled cast kind!"); 3185 case CK_ConstructorConversion: { 3186 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 3187 SmallVector<Expr*, 8> ConstructorArgs; 3188 3189 if (S.RequireNonAbstractType(CastLoc, Ty, 3190 diag::err_allocation_of_abstract_type)) 3191 return ExprError(); 3192 3193 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs)) 3194 return ExprError(); 3195 3196 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 3197 InitializedEntity::InitializeTemporary(Ty)); 3198 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 3199 return ExprError(); 3200 3201 ExprResult Result = S.BuildCXXConstructExpr( 3202 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 3203 ConstructorArgs, HadMultipleCandidates, 3204 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 3205 CXXConstructExpr::CK_Complete, SourceRange()); 3206 if (Result.isInvalid()) 3207 return ExprError(); 3208 3209 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 3210 } 3211 3212 case CK_UserDefinedConversion: { 3213 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); 3214 3215 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 3216 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 3217 return ExprError(); 3218 3219 // Create an implicit call expr that calls it. 3220 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 3221 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 3222 HadMultipleCandidates); 3223 if (Result.isInvalid()) 3224 return ExprError(); 3225 // Record usage of conversion in an implicit cast. 3226 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 3227 CK_UserDefinedConversion, Result.get(), 3228 nullptr, Result.get()->getValueKind()); 3229 3230 return S.MaybeBindToTemporary(Result.get()); 3231 } 3232 } 3233} 3234 3235/// PerformImplicitConversion - Perform an implicit conversion of the 3236/// expression From to the type ToType using the pre-computed implicit 3237/// conversion sequence ICS. Returns the converted 3238/// expression. Action is the kind of conversion we're performing, 3239/// used in the error message. 3240ExprResult 3241Sema::PerformImplicitConversion(Expr *From, QualType ToType, 3242 const ImplicitConversionSequence &ICS, 3243 AssignmentAction Action, 3244 CheckedConversionKind CCK) { 3245 switch (ICS.getKind()) { 3246 case ImplicitConversionSequence::StandardConversion: { 3247 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 3248 Action, CCK); 3249 if (Res.isInvalid()) 3250 return ExprError(); 3251 From = Res.get(); 3252 break; 3253 } 3254 3255 case ImplicitConversionSequence::UserDefinedConversion: { 3256 3257 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 3258 CastKind CastKind; 3259 QualType BeforeToType; 3260 assert(FD && "no conversion function for user-defined conversion seq"); 3261 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 3262 CastKind = CK_UserDefinedConversion; 3263 3264 // If the user-defined conversion is specified by a conversion function, 3265 // the initial standard conversion sequence converts the source type to 3266 // the implicit object parameter of the conversion function. 3267 BeforeToType = Context.getTagDeclType(Conv->getParent()); 3268 } else { 3269 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 3270 CastKind = CK_ConstructorConversion; 3271 // Do no conversion if dealing with ... for the first conversion. 3272 if (!ICS.UserDefined.EllipsisConversion) { 3273 // If the user-defined conversion is specified by a constructor, the 3274 // initial standard conversion sequence converts the source type to 3275 // the type required by the argument of the constructor 3276 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 3277 } 3278 } 3279 // Watch out for ellipsis conversion. 3280 if (!ICS.UserDefined.EllipsisConversion) { 3281 ExprResult Res = 3282 PerformImplicitConversion(From, BeforeToType, 3283 ICS.UserDefined.Before, AA_Converting, 3284 CCK); 3285 if (Res.isInvalid()) 3286 return ExprError(); 3287 From = Res.get(); 3288 } 3289 3290 ExprResult CastArg 3291 = BuildCXXCastArgument(*this, 3292 From->getLocStart(), 3293 ToType.getNonReferenceType(), 3294 CastKind, cast<CXXMethodDecl>(FD), 3295 ICS.UserDefined.FoundConversionFunction, 3296 ICS.UserDefined.HadMultipleCandidates, 3297 From); 3298 3299 if (CastArg.isInvalid()) 3300 return ExprError(); 3301 3302 From = CastArg.get(); 3303 3304 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 3305 AA_Converting, CCK); 3306 } 3307 3308 case ImplicitConversionSequence::AmbiguousConversion: 3309 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 3310 PDiag(diag::err_typecheck_ambiguous_condition) 3311 << From->getSourceRange()); 3312 return ExprError(); 3313 3314 case ImplicitConversionSequence::EllipsisConversion: 3315 llvm_unreachable("Cannot perform an ellipsis conversion"); 3316 3317 case ImplicitConversionSequence::BadConversion: 3318 return ExprError(); 3319 } 3320 3321 // Everything went well. 3322 return From; 3323} 3324 3325/// PerformImplicitConversion - Perform an implicit conversion of the 3326/// expression From to the type ToType by following the standard 3327/// conversion sequence SCS. Returns the converted 3328/// expression. Flavor is the context in which we're performing this 3329/// conversion, for use in error messages. 3330ExprResult 3331Sema::PerformImplicitConversion(Expr *From, QualType ToType, 3332 const StandardConversionSequence& SCS, 3333 AssignmentAction Action, 3334 CheckedConversionKind CCK) { 3335 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 3336 3337 // Overall FIXME: we are recomputing too many types here and doing far too 3338 // much extra work. What this means is that we need to keep track of more 3339 // information that is computed when we try the implicit conversion initially, 3340 // so that we don't need to recompute anything here. 3341 QualType FromType = From->getType(); 3342 3343 if (SCS.CopyConstructor) { 3344 // FIXME: When can ToType be a reference type? 3345 assert(!ToType->isReferenceType()); 3346 if (SCS.Second == ICK_Derived_To_Base) { 3347 SmallVector<Expr*, 8> ConstructorArgs; 3348 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor), 3349 From, /*FIXME:ConstructLoc*/SourceLocation(), 3350 ConstructorArgs)) 3351 return ExprError(); 3352 return BuildCXXConstructExpr( 3353 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 3354 SCS.FoundCopyConstructor, SCS.CopyConstructor, 3355 ConstructorArgs, /*HadMultipleCandidates*/ false, 3356 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 3357 CXXConstructExpr::CK_Complete, SourceRange()); 3358 } 3359 return BuildCXXConstructExpr( 3360 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 3361 SCS.FoundCopyConstructor, SCS.CopyConstructor, 3362 From, /*HadMultipleCandidates*/ false, 3363 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 3364 CXXConstructExpr::CK_Complete, SourceRange()); 3365 } 3366 3367 // Resolve overloaded function references. 3368 if (Context.hasSameType(FromType, Context.OverloadTy)) { 3369 DeclAccessPair Found; 3370 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 3371 true, Found); 3372 if (!Fn) 3373 return ExprError(); 3374 3375 if (DiagnoseUseOfDecl(Fn, From->getLocStart())) 3376 return ExprError(); 3377 3378 From = FixOverloadedFunctionReference(From, Found, Fn); 3379 FromType = From->getType(); 3380 } 3381 3382 // If we're converting to an atomic type, first convert to the corresponding 3383 // non-atomic type. 3384 QualType ToAtomicType; 3385 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 3386 ToAtomicType = ToType; 3387 ToType = ToAtomic->getValueType(); 3388 } 3389 3390 QualType InitialFromType = FromType; 3391 // Perform the first implicit conversion. 3392 switch (SCS.First) { 3393 case ICK_Identity: 3394 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 3395 FromType = FromAtomic->getValueType().getUnqualifiedType(); 3396 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 3397 From, /*BasePath=*/nullptr, VK_RValue); 3398 } 3399 break; 3400 3401 case ICK_Lvalue_To_Rvalue: { 3402 assert(From->getObjectKind() != OK_ObjCProperty); 3403 ExprResult FromRes = DefaultLvalueConversion(From); 3404 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!"); 3405 From = FromRes.get(); 3406 FromType = From->getType(); 3407 break; 3408 } 3409 3410 case ICK_Array_To_Pointer: 3411 FromType = Context.getArrayDecayedType(FromType); 3412 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, 3413 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3414 break; 3415 3416 case ICK_Function_To_Pointer: 3417 FromType = Context.getPointerType(FromType); 3418 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 3419 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3420 break; 3421 3422 default: 3423 llvm_unreachable("Improper first standard conversion"); 3424 } 3425 3426 // Perform the second implicit conversion 3427 switch (SCS.Second) { 3428 case ICK_Identity: 3429 // C++ [except.spec]p5: 3430 // [For] assignment to and initialization of pointers to functions, 3431 // pointers to member functions, and references to functions: the 3432 // target entity shall allow at least the exceptions allowed by the 3433 // source value in the assignment or initialization. 3434 switch (Action) { 3435 case AA_Assigning: 3436 case AA_Initializing: 3437 // Note, function argument passing and returning are initialization. 3438 case AA_Passing: 3439 case AA_Returning: 3440 case AA_Sending: 3441 case AA_Passing_CFAudited: 3442 if (CheckExceptionSpecCompatibility(From, ToType)) 3443 return ExprError(); 3444 break; 3445 3446 case AA_Casting: 3447 case AA_Converting: 3448 // Casts and implicit conversions are not initialization, so are not 3449 // checked for exception specification mismatches. 3450 break; 3451 } 3452 // Nothing else to do. 3453 break; 3454 3455 case ICK_NoReturn_Adjustment: 3456 // If both sides are functions (or pointers/references to them), there could 3457 // be incompatible exception declarations. 3458 if (CheckExceptionSpecCompatibility(From, ToType)) 3459 return ExprError(); 3460 3461 From = ImpCastExprToType(From, ToType, CK_NoOp, 3462 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3463 break; 3464 3465 case ICK_Integral_Promotion: 3466 case ICK_Integral_Conversion: 3467 if (ToType->isBooleanType()) { 3468 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && 3469 SCS.Second == ICK_Integral_Promotion && 3470 "only enums with fixed underlying type can promote to bool"); 3471 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, 3472 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3473 } else { 3474 From = ImpCastExprToType(From, ToType, CK_IntegralCast, 3475 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3476 } 3477 break; 3478 3479 case ICK_Floating_Promotion: 3480 case ICK_Floating_Conversion: 3481 From = ImpCastExprToType(From, ToType, CK_FloatingCast, 3482 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3483 break; 3484 3485 case ICK_Complex_Promotion: 3486 case ICK_Complex_Conversion: { 3487 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType(); 3488 QualType ToEl = ToType->getAs<ComplexType>()->getElementType(); 3489 CastKind CK; 3490 if (FromEl->isRealFloatingType()) { 3491 if (ToEl->isRealFloatingType()) 3492 CK = CK_FloatingComplexCast; 3493 else 3494 CK = CK_FloatingComplexToIntegralComplex; 3495 } else if (ToEl->isRealFloatingType()) { 3496 CK = CK_IntegralComplexToFloatingComplex; 3497 } else { 3498 CK = CK_IntegralComplexCast; 3499 } 3500 From = ImpCastExprToType(From, ToType, CK, 3501 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3502 break; 3503 } 3504 3505 case ICK_Floating_Integral: 3506 if (ToType->isRealFloatingType()) 3507 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, 3508 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3509 else 3510 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, 3511 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3512 break; 3513 3514 case ICK_Compatible_Conversion: 3515 From = ImpCastExprToType(From, ToType, CK_NoOp, 3516 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3517 break; 3518 3519 case ICK_Writeback_Conversion: 3520 case ICK_Pointer_Conversion: { 3521 if (SCS.IncompatibleObjC && Action != AA_Casting) { 3522 // Diagnose incompatible Objective-C conversions 3523 if (Action == AA_Initializing || Action == AA_Assigning) 3524 Diag(From->getLocStart(), 3525 diag::ext_typecheck_convert_incompatible_pointer) 3526 << ToType << From->getType() << Action 3527 << From->getSourceRange() << 0; 3528 else 3529 Diag(From->getLocStart(), 3530 diag::ext_typecheck_convert_incompatible_pointer) 3531 << From->getType() << ToType << Action 3532 << From->getSourceRange() << 0; 3533 3534 if (From->getType()->isObjCObjectPointerType() && 3535 ToType->isObjCObjectPointerType()) 3536 EmitRelatedResultTypeNote(From); 3537 } 3538 else if (getLangOpts().ObjCAutoRefCount && 3539 !CheckObjCARCUnavailableWeakConversion(ToType, 3540 From->getType())) { 3541 if (Action == AA_Initializing) 3542 Diag(From->getLocStart(), 3543 diag::err_arc_weak_unavailable_assign); 3544 else 3545 Diag(From->getLocStart(), 3546 diag::err_arc_convesion_of_weak_unavailable) 3547 << (Action == AA_Casting) << From->getType() << ToType 3548 << From->getSourceRange(); 3549 } 3550 3551 CastKind Kind = CK_Invalid; 3552 CXXCastPath BasePath; 3553 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle)) 3554 return ExprError(); 3555 3556 // Make sure we extend blocks if necessary. 3557 // FIXME: doing this here is really ugly. 3558 if (Kind == CK_BlockPointerToObjCPointerCast) { 3559 ExprResult E = From; 3560 (void) PrepareCastToObjCObjectPointer(E); 3561 From = E.get(); 3562 } 3563 if (getLangOpts().ObjCAutoRefCount) 3564 CheckObjCARCConversion(SourceRange(), ToType, From, CCK); 3565 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) 3566 .get(); 3567 break; 3568 } 3569 3570 case ICK_Pointer_Member: { 3571 CastKind Kind = CK_Invalid; 3572 CXXCastPath BasePath; 3573 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 3574 return ExprError(); 3575 if (CheckExceptionSpecCompatibility(From, ToType)) 3576 return ExprError(); 3577 3578 // We may not have been able to figure out what this member pointer resolved 3579 // to up until this exact point. Attempt to lock-in it's inheritance model. 3580 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3581 (void)isCompleteType(From->getExprLoc(), From->getType()); 3582 (void)isCompleteType(From->getExprLoc(), ToType); 3583 } 3584 3585 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) 3586 .get(); 3587 break; 3588 } 3589 3590 case ICK_Boolean_Conversion: 3591 // Perform half-to-boolean conversion via float. 3592 if (From->getType()->isHalfType()) { 3593 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 3594 FromType = Context.FloatTy; 3595 } 3596 3597 From = ImpCastExprToType(From, Context.BoolTy, 3598 ScalarTypeToBooleanCastKind(FromType), 3599 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3600 break; 3601 3602 case ICK_Derived_To_Base: { 3603 CXXCastPath BasePath; 3604 if (CheckDerivedToBaseConversion(From->getType(), 3605 ToType.getNonReferenceType(), 3606 From->getLocStart(), 3607 From->getSourceRange(), 3608 &BasePath, 3609 CStyle)) 3610 return ExprError(); 3611 3612 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 3613 CK_DerivedToBase, From->getValueKind(), 3614 &BasePath, CCK).get(); 3615 break; 3616 } 3617 3618 case ICK_Vector_Conversion: 3619 From = ImpCastExprToType(From, ToType, CK_BitCast, 3620 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3621 break; 3622 3623 case ICK_Vector_Splat: { 3624 // Vector splat from any arithmetic type to a vector. 3625 Expr *Elem = prepareVectorSplat(ToType, From).get(); 3626 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue, 3627 /*BasePath=*/nullptr, CCK).get(); 3628 break; 3629 } 3630 3631 case ICK_Complex_Real: 3632 // Case 1. x -> _Complex y 3633 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 3634 QualType ElType = ToComplex->getElementType(); 3635 bool isFloatingComplex = ElType->isRealFloatingType(); 3636 3637 // x -> y 3638 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 3639 // do nothing 3640 } else if (From->getType()->isRealFloatingType()) { 3641 From = ImpCastExprToType(From, ElType, 3642 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 3643 } else { 3644 assert(From->getType()->isIntegerType()); 3645 From = ImpCastExprToType(From, ElType, 3646 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 3647 } 3648 // y -> _Complex y 3649 From = ImpCastExprToType(From, ToType, 3650 isFloatingComplex ? CK_FloatingRealToComplex 3651 : CK_IntegralRealToComplex).get(); 3652 3653 // Case 2. _Complex x -> y 3654 } else { 3655 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>(); 3656 assert(FromComplex); 3657 3658 QualType ElType = FromComplex->getElementType(); 3659 bool isFloatingComplex = ElType->isRealFloatingType(); 3660 3661 // _Complex x -> x 3662 From = ImpCastExprToType(From, ElType, 3663 isFloatingComplex ? CK_FloatingComplexToReal 3664 : CK_IntegralComplexToReal, 3665 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3666 3667 // x -> y 3668 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 3669 // do nothing 3670 } else if (ToType->isRealFloatingType()) { 3671 From = ImpCastExprToType(From, ToType, 3672 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating, 3673 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3674 } else { 3675 assert(ToType->isIntegerType()); 3676 From = ImpCastExprToType(From, ToType, 3677 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast, 3678 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3679 } 3680 } 3681 break; 3682 3683 case ICK_Block_Pointer_Conversion: { 3684 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast, 3685 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3686 break; 3687 } 3688 3689 case ICK_TransparentUnionConversion: { 3690 ExprResult FromRes = From; 3691 Sema::AssignConvertType ConvTy = 3692 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 3693 if (FromRes.isInvalid()) 3694 return ExprError(); 3695 From = FromRes.get(); 3696 assert ((ConvTy == Sema::Compatible) && 3697 "Improper transparent union conversion"); 3698 (void)ConvTy; 3699 break; 3700 } 3701 3702 case ICK_Zero_Event_Conversion: 3703 From = ImpCastExprToType(From, ToType, 3704 CK_ZeroToOCLEvent, 3705 From->getValueKind()).get(); 3706 break; 3707 3708 case ICK_Lvalue_To_Rvalue: 3709 case ICK_Array_To_Pointer: 3710 case ICK_Function_To_Pointer: 3711 case ICK_Qualification: 3712 case ICK_Num_Conversion_Kinds: 3713 case ICK_C_Only_Conversion: 3714 llvm_unreachable("Improper second standard conversion"); 3715 } 3716 3717 switch (SCS.Third) { 3718 case ICK_Identity: 3719 // Nothing to do. 3720 break; 3721 3722 case ICK_Qualification: { 3723 // The qualification keeps the category of the inner expression, unless the 3724 // target type isn't a reference. 3725 ExprValueKind VK = ToType->isReferenceType() ? 3726 From->getValueKind() : VK_RValue; 3727 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), 3728 CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get(); 3729 3730 if (SCS.DeprecatedStringLiteralToCharPtr && 3731 !getLangOpts().WritableStrings) { 3732 Diag(From->getLocStart(), getLangOpts().CPlusPlus11 3733 ? diag::ext_deprecated_string_literal_conversion 3734 : diag::warn_deprecated_string_literal_conversion) 3735 << ToType.getNonReferenceType(); 3736 } 3737 3738 break; 3739 } 3740 3741 default: 3742 llvm_unreachable("Improper third standard conversion"); 3743 } 3744 3745 // If this conversion sequence involved a scalar -> atomic conversion, perform 3746 // that conversion now. 3747 if (!ToAtomicType.isNull()) { 3748 assert(Context.hasSameType( 3749 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); 3750 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 3751 VK_RValue, nullptr, CCK).get(); 3752 } 3753 3754 // If this conversion sequence succeeded and involved implicitly converting a 3755 // _Nullable type to a _Nonnull one, complain. 3756 if (CCK == CCK_ImplicitConversion) 3757 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 3758 From->getLocStart()); 3759 3760 return From; 3761} 3762 3763/// \brief Check the completeness of a type in a unary type trait. 3764/// 3765/// If the particular type trait requires a complete type, tries to complete 3766/// it. If completing the type fails, a diagnostic is emitted and false 3767/// returned. If completing the type succeeds or no completion was required, 3768/// returns true. 3769static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 3770 SourceLocation Loc, 3771 QualType ArgTy) { 3772 // C++0x [meta.unary.prop]p3: 3773 // For all of the class templates X declared in this Clause, instantiating 3774 // that template with a template argument that is a class template 3775 // specialization may result in the implicit instantiation of the template 3776 // argument if and only if the semantics of X require that the argument 3777 // must be a complete type. 3778 // We apply this rule to all the type trait expressions used to implement 3779 // these class templates. We also try to follow any GCC documented behavior 3780 // in these expressions to ensure portability of standard libraries. 3781 switch (UTT) { 3782 default: llvm_unreachable("not a UTT"); 3783 // is_complete_type somewhat obviously cannot require a complete type. 3784 case UTT_IsCompleteType: 3785 // Fall-through 3786 3787 // These traits are modeled on the type predicates in C++0x 3788 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 3789 // requiring a complete type, as whether or not they return true cannot be 3790 // impacted by the completeness of the type. 3791 case UTT_IsVoid: 3792 case UTT_IsIntegral: 3793 case UTT_IsFloatingPoint: 3794 case UTT_IsArray: 3795 case UTT_IsPointer: 3796 case UTT_IsLvalueReference: 3797 case UTT_IsRvalueReference: 3798 case UTT_IsMemberFunctionPointer: 3799 case UTT_IsMemberObjectPointer: 3800 case UTT_IsEnum: 3801 case UTT_IsUnion: 3802 case UTT_IsClass: 3803 case UTT_IsFunction: 3804 case UTT_IsReference: 3805 case UTT_IsArithmetic: 3806 case UTT_IsFundamental: 3807 case UTT_IsObject: 3808 case UTT_IsScalar: 3809 case UTT_IsCompound: 3810 case UTT_IsMemberPointer: 3811 // Fall-through 3812 3813 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 3814 // which requires some of its traits to have the complete type. However, 3815 // the completeness of the type cannot impact these traits' semantics, and 3816 // so they don't require it. This matches the comments on these traits in 3817 // Table 49. 3818 case UTT_IsConst: 3819 case UTT_IsVolatile: 3820 case UTT_IsSigned: 3821 case UTT_IsUnsigned: 3822 3823 // This type trait always returns false, checking the type is moot. 3824 case UTT_IsInterfaceClass: 3825 return true; 3826 3827 // C++14 [meta.unary.prop]: 3828 // If T is a non-union class type, T shall be a complete type. 3829 case UTT_IsEmpty: 3830 case UTT_IsPolymorphic: 3831 case UTT_IsAbstract: 3832 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 3833 if (!RD->isUnion()) 3834 return !S.RequireCompleteType( 3835 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 3836 return true; 3837 3838 // C++14 [meta.unary.prop]: 3839 // If T is a class type, T shall be a complete type. 3840 case UTT_IsFinal: 3841 case UTT_IsSealed: 3842 if (ArgTy->getAsCXXRecordDecl()) 3843 return !S.RequireCompleteType( 3844 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 3845 return true; 3846 3847 // C++0x [meta.unary.prop] Table 49 requires the following traits to be 3848 // applied to a complete type. 3849 case UTT_IsTrivial: 3850 case UTT_IsTriviallyCopyable: 3851 case UTT_IsStandardLayout: 3852 case UTT_IsPOD: 3853 case UTT_IsLiteral: 3854 3855 case UTT_IsDestructible: 3856 case UTT_IsNothrowDestructible: 3857 // Fall-through 3858 3859 // These trait expressions are designed to help implement predicates in 3860 // [meta.unary.prop] despite not being named the same. They are specified 3861 // by both GCC and the Embarcadero C++ compiler, and require the complete 3862 // type due to the overarching C++0x type predicates being implemented 3863 // requiring the complete type. 3864 case UTT_HasNothrowAssign: 3865 case UTT_HasNothrowMoveAssign: 3866 case UTT_HasNothrowConstructor: 3867 case UTT_HasNothrowCopy: 3868 case UTT_HasTrivialAssign: 3869 case UTT_HasTrivialMoveAssign: 3870 case UTT_HasTrivialDefaultConstructor: 3871 case UTT_HasTrivialMoveConstructor: 3872 case UTT_HasTrivialCopy: 3873 case UTT_HasTrivialDestructor: 3874 case UTT_HasVirtualDestructor: 3875 // Arrays of unknown bound are expressly allowed. 3876 QualType ElTy = ArgTy; 3877 if (ArgTy->isIncompleteArrayType()) 3878 ElTy = S.Context.getAsArrayType(ArgTy)->getElementType(); 3879 3880 // The void type is expressly allowed. 3881 if (ElTy->isVoidType()) 3882 return true; 3883 3884 return !S.RequireCompleteType( 3885 Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr); 3886 } 3887} 3888 3889static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 3890 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 3891 bool (CXXRecordDecl::*HasTrivial)() const, 3892 bool (CXXRecordDecl::*HasNonTrivial)() const, 3893 bool (CXXMethodDecl::*IsDesiredOp)() const) 3894{ 3895 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 3896 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 3897 return true; 3898 3899 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 3900 DeclarationNameInfo NameInfo(Name, KeyLoc); 3901 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 3902 if (Self.LookupQualifiedName(Res, RD)) { 3903 bool FoundOperator = false; 3904 Res.suppressDiagnostics(); 3905 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 3906 Op != OpEnd; ++Op) { 3907 if (isa<FunctionTemplateDecl>(*Op)) 3908 continue; 3909 3910 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 3911 if((Operator->*IsDesiredOp)()) { 3912 FoundOperator = true; 3913 const FunctionProtoType *CPT = 3914 Operator->getType()->getAs<FunctionProtoType>(); 3915 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 3916 if (!CPT || !CPT->isNothrow(C)) 3917 return false; 3918 } 3919 } 3920 return FoundOperator; 3921 } 3922 return false; 3923} 3924 3925static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 3926 SourceLocation KeyLoc, QualType T) { 3927 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 3928 3929 ASTContext &C = Self.Context; 3930 switch(UTT) { 3931 default: llvm_unreachable("not a UTT"); 3932 // Type trait expressions corresponding to the primary type category 3933 // predicates in C++0x [meta.unary.cat]. 3934 case UTT_IsVoid: 3935 return T->isVoidType(); 3936 case UTT_IsIntegral: 3937 return T->isIntegralType(C); 3938 case UTT_IsFloatingPoint: 3939 return T->isFloatingType(); 3940 case UTT_IsArray: 3941 return T->isArrayType(); 3942 case UTT_IsPointer: 3943 return T->isPointerType(); 3944 case UTT_IsLvalueReference: 3945 return T->isLValueReferenceType(); 3946 case UTT_IsRvalueReference: 3947 return T->isRValueReferenceType(); 3948 case UTT_IsMemberFunctionPointer: 3949 return T->isMemberFunctionPointerType(); 3950 case UTT_IsMemberObjectPointer: 3951 return T->isMemberDataPointerType(); 3952 case UTT_IsEnum: 3953 return T->isEnumeralType(); 3954 case UTT_IsUnion: 3955 return T->isUnionType(); 3956 case UTT_IsClass: 3957 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 3958 case UTT_IsFunction: 3959 return T->isFunctionType(); 3960 3961 // Type trait expressions which correspond to the convenient composition 3962 // predicates in C++0x [meta.unary.comp]. 3963 case UTT_IsReference: 3964 return T->isReferenceType(); 3965 case UTT_IsArithmetic: 3966 return T->isArithmeticType() && !T->isEnumeralType(); 3967 case UTT_IsFundamental: 3968 return T->isFundamentalType(); 3969 case UTT_IsObject: 3970 return T->isObjectType(); 3971 case UTT_IsScalar: 3972 // Note: semantic analysis depends on Objective-C lifetime types to be 3973 // considered scalar types. However, such types do not actually behave 3974 // like scalar types at run time (since they may require retain/release 3975 // operations), so we report them as non-scalar. 3976 if (T->isObjCLifetimeType()) { 3977 switch (T.getObjCLifetime()) { 3978 case Qualifiers::OCL_None: 3979 case Qualifiers::OCL_ExplicitNone: 3980 return true; 3981 3982 case Qualifiers::OCL_Strong: 3983 case Qualifiers::OCL_Weak: 3984 case Qualifiers::OCL_Autoreleasing: 3985 return false; 3986 } 3987 } 3988 3989 return T->isScalarType(); 3990 case UTT_IsCompound: 3991 return T->isCompoundType(); 3992 case UTT_IsMemberPointer: 3993 return T->isMemberPointerType(); 3994 3995 // Type trait expressions which correspond to the type property predicates 3996 // in C++0x [meta.unary.prop]. 3997 case UTT_IsConst: 3998 return T.isConstQualified(); 3999 case UTT_IsVolatile: 4000 return T.isVolatileQualified(); 4001 case UTT_IsTrivial: 4002 return T.isTrivialType(C); 4003 case UTT_IsTriviallyCopyable: 4004 return T.isTriviallyCopyableType(C); 4005 case UTT_IsStandardLayout: 4006 return T->isStandardLayoutType(); 4007 case UTT_IsPOD: 4008 return T.isPODType(C); 4009 case UTT_IsLiteral: 4010 return T->isLiteralType(C); 4011 case UTT_IsEmpty: 4012 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4013 return !RD->isUnion() && RD->isEmpty(); 4014 return false; 4015 case UTT_IsPolymorphic: 4016 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4017 return !RD->isUnion() && RD->isPolymorphic(); 4018 return false; 4019 case UTT_IsAbstract: 4020 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4021 return !RD->isUnion() && RD->isAbstract(); 4022 return false; 4023 // __is_interface_class only returns true when CL is invoked in /CLR mode and 4024 // even then only when it is used with the 'interface struct ...' syntax 4025 // Clang doesn't support /CLR which makes this type trait moot. 4026 case UTT_IsInterfaceClass: 4027 return false; 4028 case UTT_IsFinal: 4029 case UTT_IsSealed: 4030 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4031 return RD->hasAttr<FinalAttr>(); 4032 return false; 4033 case UTT_IsSigned: 4034 return T->isSignedIntegerType(); 4035 case UTT_IsUnsigned: 4036 return T->isUnsignedIntegerType(); 4037 4038 // Type trait expressions which query classes regarding their construction, 4039 // destruction, and copying. Rather than being based directly on the 4040 // related type predicates in the standard, they are specified by both 4041 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 4042 // specifications. 4043 // 4044 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 4045 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 4046 // 4047 // Note that these builtins do not behave as documented in g++: if a class 4048 // has both a trivial and a non-trivial special member of a particular kind, 4049 // they return false! For now, we emulate this behavior. 4050 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 4051 // does not correctly compute triviality in the presence of multiple special 4052 // members of the same kind. Revisit this once the g++ bug is fixed. 4053 case UTT_HasTrivialDefaultConstructor: 4054 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4055 // If __is_pod (type) is true then the trait is true, else if type is 4056 // a cv class or union type (or array thereof) with a trivial default 4057 // constructor ([class.ctor]) then the trait is true, else it is false. 4058 if (T.isPODType(C)) 4059 return true; 4060 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4061 return RD->hasTrivialDefaultConstructor() && 4062 !RD->hasNonTrivialDefaultConstructor(); 4063 return false; 4064 case UTT_HasTrivialMoveConstructor: 4065 // This trait is implemented by MSVC 2012 and needed to parse the 4066 // standard library headers. Specifically this is used as the logic 4067 // behind std::is_trivially_move_constructible (20.9.4.3). 4068 if (T.isPODType(C)) 4069 return true; 4070 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4071 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 4072 return false; 4073 case UTT_HasTrivialCopy: 4074 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4075 // If __is_pod (type) is true or type is a reference type then 4076 // the trait is true, else if type is a cv class or union type 4077 // with a trivial copy constructor ([class.copy]) then the trait 4078 // is true, else it is false. 4079 if (T.isPODType(C) || T->isReferenceType()) 4080 return true; 4081 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4082 return RD->hasTrivialCopyConstructor() && 4083 !RD->hasNonTrivialCopyConstructor(); 4084 return false; 4085 case UTT_HasTrivialMoveAssign: 4086 // This trait is implemented by MSVC 2012 and needed to parse the 4087 // standard library headers. Specifically it is used as the logic 4088 // behind std::is_trivially_move_assignable (20.9.4.3) 4089 if (T.isPODType(C)) 4090 return true; 4091 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4092 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 4093 return false; 4094 case UTT_HasTrivialAssign: 4095 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4096 // If type is const qualified or is a reference type then the 4097 // trait is false. Otherwise if __is_pod (type) is true then the 4098 // trait is true, else if type is a cv class or union type with 4099 // a trivial copy assignment ([class.copy]) then the trait is 4100 // true, else it is false. 4101 // Note: the const and reference restrictions are interesting, 4102 // given that const and reference members don't prevent a class 4103 // from having a trivial copy assignment operator (but do cause 4104 // errors if the copy assignment operator is actually used, q.v. 4105 // [class.copy]p12). 4106 4107 if (T.isConstQualified()) 4108 return false; 4109 if (T.isPODType(C)) 4110 return true; 4111 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4112 return RD->hasTrivialCopyAssignment() && 4113 !RD->hasNonTrivialCopyAssignment(); 4114 return false; 4115 case UTT_IsDestructible: 4116 case UTT_IsNothrowDestructible: 4117 // C++14 [meta.unary.prop]: 4118 // For reference types, is_destructible<T>::value is true. 4119 if (T->isReferenceType()) 4120 return true; 4121 4122 // Objective-C++ ARC: autorelease types don't require destruction. 4123 if (T->isObjCLifetimeType() && 4124 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 4125 return true; 4126 4127 // C++14 [meta.unary.prop]: 4128 // For incomplete types and function types, is_destructible<T>::value is 4129 // false. 4130 if (T->isIncompleteType() || T->isFunctionType()) 4131 return false; 4132 4133 // C++14 [meta.unary.prop]: 4134 // For object types and given U equal to remove_all_extents_t<T>, if the 4135 // expression std::declval<U&>().~U() is well-formed when treated as an 4136 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 4137 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 4138 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 4139 if (!Destructor) 4140 return false; 4141 // C++14 [dcl.fct.def.delete]p2: 4142 // A program that refers to a deleted function implicitly or 4143 // explicitly, other than to declare it, is ill-formed. 4144 if (Destructor->isDeleted()) 4145 return false; 4146 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 4147 return false; 4148 if (UTT == UTT_IsNothrowDestructible) { 4149 const FunctionProtoType *CPT = 4150 Destructor->getType()->getAs<FunctionProtoType>(); 4151 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4152 if (!CPT || !CPT->isNothrow(C)) 4153 return false; 4154 } 4155 } 4156 return true; 4157 4158 case UTT_HasTrivialDestructor: 4159 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 4160 // If __is_pod (type) is true or type is a reference type 4161 // then the trait is true, else if type is a cv class or union 4162 // type (or array thereof) with a trivial destructor 4163 // ([class.dtor]) then the trait is true, else it is 4164 // false. 4165 if (T.isPODType(C) || T->isReferenceType()) 4166 return true; 4167 4168 // Objective-C++ ARC: autorelease types don't require destruction. 4169 if (T->isObjCLifetimeType() && 4170 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 4171 return true; 4172 4173 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4174 return RD->hasTrivialDestructor(); 4175 return false; 4176 // TODO: Propagate nothrowness for implicitly declared special members. 4177 case UTT_HasNothrowAssign: 4178 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4179 // If type is const qualified or is a reference type then the 4180 // trait is false. Otherwise if __has_trivial_assign (type) 4181 // is true then the trait is true, else if type is a cv class 4182 // or union type with copy assignment operators that are known 4183 // not to throw an exception then the trait is true, else it is 4184 // false. 4185 if (C.getBaseElementType(T).isConstQualified()) 4186 return false; 4187 if (T->isReferenceType()) 4188 return false; 4189 if (T.isPODType(C) || T->isObjCLifetimeType()) 4190 return true; 4191 4192 if (const RecordType *RT = T->getAs<RecordType>()) 4193 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 4194 &CXXRecordDecl::hasTrivialCopyAssignment, 4195 &CXXRecordDecl::hasNonTrivialCopyAssignment, 4196 &CXXMethodDecl::isCopyAssignmentOperator); 4197 return false; 4198 case UTT_HasNothrowMoveAssign: 4199 // This trait is implemented by MSVC 2012 and needed to parse the 4200 // standard library headers. Specifically this is used as the logic 4201 // behind std::is_nothrow_move_assignable (20.9.4.3). 4202 if (T.isPODType(C)) 4203 return true; 4204 4205 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 4206 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 4207 &CXXRecordDecl::hasTrivialMoveAssignment, 4208 &CXXRecordDecl::hasNonTrivialMoveAssignment, 4209 &CXXMethodDecl::isMoveAssignmentOperator); 4210 return false; 4211 case UTT_HasNothrowCopy: 4212 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4213 // If __has_trivial_copy (type) is true then the trait is true, else 4214 // if type is a cv class or union type with copy constructors that are 4215 // known not to throw an exception then the trait is true, else it is 4216 // false. 4217 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 4218 return true; 4219 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 4220 if (RD->hasTrivialCopyConstructor() && 4221 !RD->hasNonTrivialCopyConstructor()) 4222 return true; 4223 4224 bool FoundConstructor = false; 4225 unsigned FoundTQs; 4226 for (const auto *ND : Self.LookupConstructors(RD)) { 4227 // A template constructor is never a copy constructor. 4228 // FIXME: However, it may actually be selected at the actual overload 4229 // resolution point. 4230 if (isa<FunctionTemplateDecl>(ND)) 4231 continue; 4232 const CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(ND); 4233 if (Constructor->isCopyConstructor(FoundTQs)) { 4234 FoundConstructor = true; 4235 const FunctionProtoType *CPT 4236 = Constructor->getType()->getAs<FunctionProtoType>(); 4237 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4238 if (!CPT) 4239 return false; 4240 // TODO: check whether evaluating default arguments can throw. 4241 // For now, we'll be conservative and assume that they can throw. 4242 if (!CPT->isNothrow(C) || CPT->getNumParams() > 1) 4243 return false; 4244 } 4245 } 4246 4247 return FoundConstructor; 4248 } 4249 return false; 4250 case UTT_HasNothrowConstructor: 4251 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 4252 // If __has_trivial_constructor (type) is true then the trait is 4253 // true, else if type is a cv class or union type (or array 4254 // thereof) with a default constructor that is known not to 4255 // throw an exception then the trait is true, else it is false. 4256 if (T.isPODType(C) || T->isObjCLifetimeType()) 4257 return true; 4258 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 4259 if (RD->hasTrivialDefaultConstructor() && 4260 !RD->hasNonTrivialDefaultConstructor()) 4261 return true; 4262 4263 bool FoundConstructor = false; 4264 for (const auto *ND : Self.LookupConstructors(RD)) { 4265 // FIXME: In C++0x, a constructor template can be a default constructor. 4266 if (isa<FunctionTemplateDecl>(ND)) 4267 continue; 4268 const CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(ND); 4269 if (Constructor->isDefaultConstructor()) { 4270 FoundConstructor = true; 4271 const FunctionProtoType *CPT 4272 = Constructor->getType()->getAs<FunctionProtoType>(); 4273 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4274 if (!CPT) 4275 return false; 4276 // FIXME: check whether evaluating default arguments can throw. 4277 // For now, we'll be conservative and assume that they can throw. 4278 if (!CPT->isNothrow(C) || CPT->getNumParams() > 0) 4279 return false; 4280 } 4281 } 4282 return FoundConstructor; 4283 } 4284 return false; 4285 case UTT_HasVirtualDestructor: 4286 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4287 // If type is a class type with a virtual destructor ([class.dtor]) 4288 // then the trait is true, else it is false. 4289 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4290 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 4291 return Destructor->isVirtual(); 4292 return false; 4293 4294 // These type trait expressions are modeled on the specifications for the 4295 // Embarcadero C++0x type trait functions: 4296 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 4297 case UTT_IsCompleteType: 4298 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 4299 // Returns True if and only if T is a complete type at the point of the 4300 // function call. 4301 return !T->isIncompleteType(); 4302 } 4303} 4304 4305/// \brief Determine whether T has a non-trivial Objective-C lifetime in 4306/// ARC mode. 4307static bool hasNontrivialObjCLifetime(QualType T) { 4308 switch (T.getObjCLifetime()) { 4309 case Qualifiers::OCL_ExplicitNone: 4310 return false; 4311 4312 case Qualifiers::OCL_Strong: 4313 case Qualifiers::OCL_Weak: 4314 case Qualifiers::OCL_Autoreleasing: 4315 return true; 4316 4317 case Qualifiers::OCL_None: 4318 return T->isObjCLifetimeType(); 4319 } 4320 4321 llvm_unreachable("Unknown ObjC lifetime qualifier"); 4322} 4323 4324static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 4325 QualType RhsT, SourceLocation KeyLoc); 4326 4327static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 4328 ArrayRef<TypeSourceInfo *> Args, 4329 SourceLocation RParenLoc) { 4330 if (Kind <= UTT_Last) 4331 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 4332 4333 if (Kind <= BTT_Last) 4334 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 4335 Args[1]->getType(), RParenLoc); 4336 4337 switch (Kind) { 4338 case clang::TT_IsConstructible: 4339 case clang::TT_IsNothrowConstructible: 4340 case clang::TT_IsTriviallyConstructible: { 4341 // C++11 [meta.unary.prop]: 4342 // is_trivially_constructible is defined as: 4343 // 4344 // is_constructible<T, Args...>::value is true and the variable 4345 // definition for is_constructible, as defined below, is known to call 4346 // no operation that is not trivial. 4347 // 4348 // The predicate condition for a template specialization 4349 // is_constructible<T, Args...> shall be satisfied if and only if the 4350 // following variable definition would be well-formed for some invented 4351 // variable t: 4352 // 4353 // T t(create<Args>()...); 4354 assert(!Args.empty()); 4355 4356 // Precondition: T and all types in the parameter pack Args shall be 4357 // complete types, (possibly cv-qualified) void, or arrays of 4358 // unknown bound. 4359 for (const auto *TSI : Args) { 4360 QualType ArgTy = TSI->getType(); 4361 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 4362 continue; 4363 4364 if (S.RequireCompleteType(KWLoc, ArgTy, 4365 diag::err_incomplete_type_used_in_type_trait_expr)) 4366 return false; 4367 } 4368 4369 // Make sure the first argument is not incomplete nor a function type. 4370 QualType T = Args[0]->getType(); 4371 if (T->isIncompleteType() || T->isFunctionType()) 4372 return false; 4373 4374 // Make sure the first argument is not an abstract type. 4375 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 4376 if (RD && RD->isAbstract()) 4377 return false; 4378 4379 SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs; 4380 SmallVector<Expr *, 2> ArgExprs; 4381 ArgExprs.reserve(Args.size() - 1); 4382 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 4383 QualType ArgTy = Args[I]->getType(); 4384 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 4385 ArgTy = S.Context.getRValueReferenceType(ArgTy); 4386 OpaqueArgExprs.push_back( 4387 OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(), 4388 ArgTy.getNonLValueExprType(S.Context), 4389 Expr::getValueKindForType(ArgTy))); 4390 } 4391 for (Expr &E : OpaqueArgExprs) 4392 ArgExprs.push_back(&E); 4393 4394 // Perform the initialization in an unevaluated context within a SFINAE 4395 // trap at translation unit scope. 4396 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated); 4397 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 4398 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 4399 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0])); 4400 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 4401 RParenLoc)); 4402 InitializationSequence Init(S, To, InitKind, ArgExprs); 4403 if (Init.Failed()) 4404 return false; 4405 4406 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 4407 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 4408 return false; 4409 4410 if (Kind == clang::TT_IsConstructible) 4411 return true; 4412 4413 if (Kind == clang::TT_IsNothrowConstructible) 4414 return S.canThrow(Result.get()) == CT_Cannot; 4415 4416 if (Kind == clang::TT_IsTriviallyConstructible) { 4417 // Under Objective-C ARC, if the destination has non-trivial Objective-C 4418 // lifetime, this is a non-trivial construction. 4419 if (S.getLangOpts().ObjCAutoRefCount && 4420 hasNontrivialObjCLifetime(T.getNonReferenceType())) 4421 return false; 4422 4423 // The initialization succeeded; now make sure there are no non-trivial 4424 // calls. 4425 return !Result.get()->hasNonTrivialCall(S.Context); 4426 } 4427 4428 llvm_unreachable("unhandled type trait"); 4429 return false; 4430 } 4431 default: llvm_unreachable("not a TT"); 4432 } 4433 4434 return false; 4435} 4436 4437ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 4438 ArrayRef<TypeSourceInfo *> Args, 4439 SourceLocation RParenLoc) { 4440 QualType ResultType = Context.getLogicalOperationType(); 4441 4442 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 4443 *this, Kind, KWLoc, Args[0]->getType())) 4444 return ExprError(); 4445 4446 bool Dependent = false; 4447 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 4448 if (Args[I]->getType()->isDependentType()) { 4449 Dependent = true; 4450 break; 4451 } 4452 } 4453 4454 bool Result = false; 4455 if (!Dependent) 4456 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 4457 4458 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 4459 RParenLoc, Result); 4460} 4461 4462ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 4463 ArrayRef<ParsedType> Args, 4464 SourceLocation RParenLoc) { 4465 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 4466 ConvertedArgs.reserve(Args.size()); 4467 4468 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 4469 TypeSourceInfo *TInfo; 4470 QualType T = GetTypeFromParser(Args[I], &TInfo); 4471 if (!TInfo) 4472 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 4473 4474 ConvertedArgs.push_back(TInfo); 4475 } 4476 4477 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 4478} 4479 4480static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 4481 QualType RhsT, SourceLocation KeyLoc) { 4482 assert(!LhsT->isDependentType() && !RhsT->isDependentType() && 4483 "Cannot evaluate traits of dependent types"); 4484 4485 switch(BTT) { 4486 case BTT_IsBaseOf: { 4487 // C++0x [meta.rel]p2 4488 // Base is a base class of Derived without regard to cv-qualifiers or 4489 // Base and Derived are not unions and name the same class type without 4490 // regard to cv-qualifiers. 4491 4492 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 4493 if (!lhsRecord) return false; 4494 4495 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 4496 if (!rhsRecord) return false; 4497 4498 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) 4499 == (lhsRecord == rhsRecord)); 4500 4501 if (lhsRecord == rhsRecord) 4502 return !lhsRecord->getDecl()->isUnion(); 4503 4504 // C++0x [meta.rel]p2: 4505 // If Base and Derived are class types and are different types 4506 // (ignoring possible cv-qualifiers) then Derived shall be a 4507 // complete type. 4508 if (Self.RequireCompleteType(KeyLoc, RhsT, 4509 diag::err_incomplete_type_used_in_type_trait_expr)) 4510 return false; 4511 4512 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 4513 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 4514 } 4515 case BTT_IsSame: 4516 return Self.Context.hasSameType(LhsT, RhsT); 4517 case BTT_TypeCompatible: 4518 return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(), 4519 RhsT.getUnqualifiedType()); 4520 case BTT_IsConvertible: 4521 case BTT_IsConvertibleTo: { 4522 // C++0x [meta.rel]p4: 4523 // Given the following function prototype: 4524 // 4525 // template <class T> 4526 // typename add_rvalue_reference<T>::type create(); 4527 // 4528 // the predicate condition for a template specialization 4529 // is_convertible<From, To> shall be satisfied if and only if 4530 // the return expression in the following code would be 4531 // well-formed, including any implicit conversions to the return 4532 // type of the function: 4533 // 4534 // To test() { 4535 // return create<From>(); 4536 // } 4537 // 4538 // Access checking is performed as if in a context unrelated to To and 4539 // From. Only the validity of the immediate context of the expression 4540 // of the return-statement (including conversions to the return type) 4541 // is considered. 4542 // 4543 // We model the initialization as a copy-initialization of a temporary 4544 // of the appropriate type, which for this expression is identical to the 4545 // return statement (since NRVO doesn't apply). 4546 4547 // Functions aren't allowed to return function or array types. 4548 if (RhsT->isFunctionType() || RhsT->isArrayType()) 4549 return false; 4550 4551 // A return statement in a void function must have void type. 4552 if (RhsT->isVoidType()) 4553 return LhsT->isVoidType(); 4554 4555 // A function definition requires a complete, non-abstract return type. 4556 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 4557 return false; 4558 4559 // Compute the result of add_rvalue_reference. 4560 if (LhsT->isObjectType() || LhsT->isFunctionType()) 4561 LhsT = Self.Context.getRValueReferenceType(LhsT); 4562 4563 // Build a fake source and destination for initialization. 4564 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 4565 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 4566 Expr::getValueKindForType(LhsT)); 4567 Expr *FromPtr = &From; 4568 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 4569 SourceLocation())); 4570 4571 // Perform the initialization in an unevaluated context within a SFINAE 4572 // trap at translation unit scope. 4573 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated); 4574 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 4575 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 4576 InitializationSequence Init(Self, To, Kind, FromPtr); 4577 if (Init.Failed()) 4578 return false; 4579 4580 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 4581 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 4582 } 4583 4584 case BTT_IsAssignable: 4585 case BTT_IsNothrowAssignable: 4586 case BTT_IsTriviallyAssignable: { 4587 // C++11 [meta.unary.prop]p3: 4588 // is_trivially_assignable is defined as: 4589 // is_assignable<T, U>::value is true and the assignment, as defined by 4590 // is_assignable, is known to call no operation that is not trivial 4591 // 4592 // is_assignable is defined as: 4593 // The expression declval<T>() = declval<U>() is well-formed when 4594 // treated as an unevaluated operand (Clause 5). 4595 // 4596 // For both, T and U shall be complete types, (possibly cv-qualified) 4597 // void, or arrays of unknown bound. 4598 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 4599 Self.RequireCompleteType(KeyLoc, LhsT, 4600 diag::err_incomplete_type_used_in_type_trait_expr)) 4601 return false; 4602 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 4603 Self.RequireCompleteType(KeyLoc, RhsT, 4604 diag::err_incomplete_type_used_in_type_trait_expr)) 4605 return false; 4606 4607 // cv void is never assignable. 4608 if (LhsT->isVoidType() || RhsT->isVoidType()) 4609 return false; 4610 4611 // Build expressions that emulate the effect of declval<T>() and 4612 // declval<U>(). 4613 if (LhsT->isObjectType() || LhsT->isFunctionType()) 4614 LhsT = Self.Context.getRValueReferenceType(LhsT); 4615 if (RhsT->isObjectType() || RhsT->isFunctionType()) 4616 RhsT = Self.Context.getRValueReferenceType(RhsT); 4617 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 4618 Expr::getValueKindForType(LhsT)); 4619 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 4620 Expr::getValueKindForType(RhsT)); 4621 4622 // Attempt the assignment in an unevaluated context within a SFINAE 4623 // trap at translation unit scope. 4624 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated); 4625 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 4626 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 4627 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 4628 &Rhs); 4629 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 4630 return false; 4631 4632 if (BTT == BTT_IsAssignable) 4633 return true; 4634 4635 if (BTT == BTT_IsNothrowAssignable) 4636 return Self.canThrow(Result.get()) == CT_Cannot; 4637 4638 if (BTT == BTT_IsTriviallyAssignable) { 4639 // Under Objective-C ARC, if the destination has non-trivial Objective-C 4640 // lifetime, this is a non-trivial assignment. 4641 if (Self.getLangOpts().ObjCAutoRefCount && 4642 hasNontrivialObjCLifetime(LhsT.getNonReferenceType())) 4643 return false; 4644 4645 return !Result.get()->hasNonTrivialCall(Self.Context); 4646 } 4647 4648 llvm_unreachable("unhandled type trait"); 4649 return false; 4650 } 4651 default: llvm_unreachable("not a BTT"); 4652 } 4653 llvm_unreachable("Unknown type trait or not implemented"); 4654} 4655 4656ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 4657 SourceLocation KWLoc, 4658 ParsedType Ty, 4659 Expr* DimExpr, 4660 SourceLocation RParen) { 4661 TypeSourceInfo *TSInfo; 4662 QualType T = GetTypeFromParser(Ty, &TSInfo); 4663 if (!TSInfo) 4664 TSInfo = Context.getTrivialTypeSourceInfo(T); 4665 4666 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 4667} 4668 4669static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 4670 QualType T, Expr *DimExpr, 4671 SourceLocation KeyLoc) { 4672 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 4673 4674 switch(ATT) { 4675 case ATT_ArrayRank: 4676 if (T->isArrayType()) { 4677 unsigned Dim = 0; 4678 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 4679 ++Dim; 4680 T = AT->getElementType(); 4681 } 4682 return Dim; 4683 } 4684 return 0; 4685 4686 case ATT_ArrayExtent: { 4687 llvm::APSInt Value; 4688 uint64_t Dim; 4689 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value, 4690 diag::err_dimension_expr_not_constant_integer, 4691 false).isInvalid()) 4692 return 0; 4693 if (Value.isSigned() && Value.isNegative()) { 4694 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 4695 << DimExpr->getSourceRange(); 4696 return 0; 4697 } 4698 Dim = Value.getLimitedValue(); 4699 4700 if (T->isArrayType()) { 4701 unsigned D = 0; 4702 bool Matched = false; 4703 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 4704 if (Dim == D) { 4705 Matched = true; 4706 break; 4707 } 4708 ++D; 4709 T = AT->getElementType(); 4710 } 4711 4712 if (Matched && T->isArrayType()) { 4713 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 4714 return CAT->getSize().getLimitedValue(); 4715 } 4716 } 4717 return 0; 4718 } 4719 } 4720 llvm_unreachable("Unknown type trait or not implemented"); 4721} 4722 4723ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 4724 SourceLocation KWLoc, 4725 TypeSourceInfo *TSInfo, 4726 Expr* DimExpr, 4727 SourceLocation RParen) { 4728 QualType T = TSInfo->getType(); 4729 4730 // FIXME: This should likely be tracked as an APInt to remove any host 4731 // assumptions about the width of size_t on the target. 4732 uint64_t Value = 0; 4733 if (!T->isDependentType()) 4734 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 4735 4736 // While the specification for these traits from the Embarcadero C++ 4737 // compiler's documentation says the return type is 'unsigned int', Clang 4738 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 4739 // compiler, there is no difference. On several other platforms this is an 4740 // important distinction. 4741 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 4742 RParen, Context.getSizeType()); 4743} 4744 4745ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 4746 SourceLocation KWLoc, 4747 Expr *Queried, 4748 SourceLocation RParen) { 4749 // If error parsing the expression, ignore. 4750 if (!Queried) 4751 return ExprError(); 4752 4753 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 4754 4755 return Result; 4756} 4757 4758static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 4759 switch (ET) { 4760 case ET_IsLValueExpr: return E->isLValue(); 4761 case ET_IsRValueExpr: return E->isRValue(); 4762 } 4763 llvm_unreachable("Expression trait not covered by switch"); 4764} 4765 4766ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 4767 SourceLocation KWLoc, 4768 Expr *Queried, 4769 SourceLocation RParen) { 4770 if (Queried->isTypeDependent()) { 4771 // Delay type-checking for type-dependent expressions. 4772 } else if (Queried->getType()->isPlaceholderType()) { 4773 ExprResult PE = CheckPlaceholderExpr(Queried); 4774 if (PE.isInvalid()) return ExprError(); 4775 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 4776 } 4777 4778 bool Value = EvaluateExpressionTrait(ET, Queried); 4779 4780 return new (Context) 4781 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 4782} 4783 4784QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 4785 ExprValueKind &VK, 4786 SourceLocation Loc, 4787 bool isIndirect) { 4788 assert(!LHS.get()->getType()->isPlaceholderType() && 4789 !RHS.get()->getType()->isPlaceholderType() && 4790 "placeholders should have been weeded out by now"); 4791 4792 // The LHS undergoes lvalue conversions if this is ->*. 4793 if (isIndirect) { 4794 LHS = DefaultLvalueConversion(LHS.get()); 4795 if (LHS.isInvalid()) return QualType(); 4796 } 4797 4798 // The RHS always undergoes lvalue conversions. 4799 RHS = DefaultLvalueConversion(RHS.get()); 4800 if (RHS.isInvalid()) return QualType(); 4801 4802 const char *OpSpelling = isIndirect ? "->*" : ".*"; 4803 // C++ 5.5p2 4804 // The binary operator .* [p3: ->*] binds its second operand, which shall 4805 // be of type "pointer to member of T" (where T is a completely-defined 4806 // class type) [...] 4807 QualType RHSType = RHS.get()->getType(); 4808 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 4809 if (!MemPtr) { 4810 Diag(Loc, diag::err_bad_memptr_rhs) 4811 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 4812 return QualType(); 4813 } 4814 4815 QualType Class(MemPtr->getClass(), 0); 4816 4817 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 4818 // member pointer points must be completely-defined. However, there is no 4819 // reason for this semantic distinction, and the rule is not enforced by 4820 // other compilers. Therefore, we do not check this property, as it is 4821 // likely to be considered a defect. 4822 4823 // C++ 5.5p2 4824 // [...] to its first operand, which shall be of class T or of a class of 4825 // which T is an unambiguous and accessible base class. [p3: a pointer to 4826 // such a class] 4827 QualType LHSType = LHS.get()->getType(); 4828 if (isIndirect) { 4829 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 4830 LHSType = Ptr->getPointeeType(); 4831 else { 4832 Diag(Loc, diag::err_bad_memptr_lhs) 4833 << OpSpelling << 1 << LHSType 4834 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 4835 return QualType(); 4836 } 4837 } 4838 4839 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 4840 // If we want to check the hierarchy, we need a complete type. 4841 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 4842 OpSpelling, (int)isIndirect)) { 4843 return QualType(); 4844 } 4845 4846 if (!IsDerivedFrom(Loc, LHSType, Class)) { 4847 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 4848 << (int)isIndirect << LHS.get()->getType(); 4849 return QualType(); 4850 } 4851 4852 CXXCastPath BasePath; 4853 if (CheckDerivedToBaseConversion(LHSType, Class, Loc, 4854 SourceRange(LHS.get()->getLocStart(), 4855 RHS.get()->getLocEnd()), 4856 &BasePath)) 4857 return QualType(); 4858 4859 // Cast LHS to type of use. 4860 QualType UseType = isIndirect ? Context.getPointerType(Class) : Class; 4861 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind(); 4862 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 4863 &BasePath); 4864 } 4865 4866 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 4867 // Diagnose use of pointer-to-member type which when used as 4868 // the functional cast in a pointer-to-member expression. 4869 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 4870 return QualType(); 4871 } 4872 4873 // C++ 5.5p2 4874 // The result is an object or a function of the type specified by the 4875 // second operand. 4876 // The cv qualifiers are the union of those in the pointer and the left side, 4877 // in accordance with 5.5p5 and 5.2.5. 4878 QualType Result = MemPtr->getPointeeType(); 4879 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 4880 4881 // C++0x [expr.mptr.oper]p6: 4882 // In a .* expression whose object expression is an rvalue, the program is 4883 // ill-formed if the second operand is a pointer to member function with 4884 // ref-qualifier &. In a ->* expression or in a .* expression whose object 4885 // expression is an lvalue, the program is ill-formed if the second operand 4886 // is a pointer to member function with ref-qualifier &&. 4887 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 4888 switch (Proto->getRefQualifier()) { 4889 case RQ_None: 4890 // Do nothing 4891 break; 4892 4893 case RQ_LValue: 4894 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) 4895 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 4896 << RHSType << 1 << LHS.get()->getSourceRange(); 4897 break; 4898 4899 case RQ_RValue: 4900 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 4901 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 4902 << RHSType << 0 << LHS.get()->getSourceRange(); 4903 break; 4904 } 4905 } 4906 4907 // C++ [expr.mptr.oper]p6: 4908 // The result of a .* expression whose second operand is a pointer 4909 // to a data member is of the same value category as its 4910 // first operand. The result of a .* expression whose second 4911 // operand is a pointer to a member function is a prvalue. The 4912 // result of an ->* expression is an lvalue if its second operand 4913 // is a pointer to data member and a prvalue otherwise. 4914 if (Result->isFunctionType()) { 4915 VK = VK_RValue; 4916 return Context.BoundMemberTy; 4917 } else if (isIndirect) { 4918 VK = VK_LValue; 4919 } else { 4920 VK = LHS.get()->getValueKind(); 4921 } 4922 4923 return Result; 4924} 4925 4926/// \brief Try to convert a type to another according to C++11 5.16p3. 4927/// 4928/// This is part of the parameter validation for the ? operator. If either 4929/// value operand is a class type, the two operands are attempted to be 4930/// converted to each other. This function does the conversion in one direction. 4931/// It returns true if the program is ill-formed and has already been diagnosed 4932/// as such. 4933static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 4934 SourceLocation QuestionLoc, 4935 bool &HaveConversion, 4936 QualType &ToType) { 4937 HaveConversion = false; 4938 ToType = To->getType(); 4939 4940 InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(), 4941 SourceLocation()); 4942 // C++11 5.16p3 4943 // The process for determining whether an operand expression E1 of type T1 4944 // can be converted to match an operand expression E2 of type T2 is defined 4945 // as follows: 4946 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be 4947 // implicitly converted to type "lvalue reference to T2", subject to the 4948 // constraint that in the conversion the reference must bind directly to 4949 // an lvalue. 4950 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be 4951 // implicitly conveted to the type "rvalue reference to R2", subject to 4952 // the constraint that the reference must bind directly. 4953 if (To->isLValue() || To->isXValue()) { 4954 QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType) 4955 : Self.Context.getRValueReferenceType(ToType); 4956 4957 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 4958 4959 InitializationSequence InitSeq(Self, Entity, Kind, From); 4960 if (InitSeq.isDirectReferenceBinding()) { 4961 ToType = T; 4962 HaveConversion = true; 4963 return false; 4964 } 4965 4966 if (InitSeq.isAmbiguous()) 4967 return InitSeq.Diagnose(Self, Entity, Kind, From); 4968 } 4969 4970 // -- If E2 is an rvalue, or if the conversion above cannot be done: 4971 // -- if E1 and E2 have class type, and the underlying class types are 4972 // the same or one is a base class of the other: 4973 QualType FTy = From->getType(); 4974 QualType TTy = To->getType(); 4975 const RecordType *FRec = FTy->getAs<RecordType>(); 4976 const RecordType *TRec = TTy->getAs<RecordType>(); 4977 bool FDerivedFromT = FRec && TRec && FRec != TRec && 4978 Self.IsDerivedFrom(QuestionLoc, FTy, TTy); 4979 if (FRec && TRec && (FRec == TRec || FDerivedFromT || 4980 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { 4981 // E1 can be converted to match E2 if the class of T2 is the 4982 // same type as, or a base class of, the class of T1, and 4983 // [cv2 > cv1]. 4984 if (FRec == TRec || FDerivedFromT) { 4985 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 4986 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 4987 InitializationSequence InitSeq(Self, Entity, Kind, From); 4988 if (InitSeq) { 4989 HaveConversion = true; 4990 return false; 4991 } 4992 4993 if (InitSeq.isAmbiguous()) 4994 return InitSeq.Diagnose(Self, Entity, Kind, From); 4995 } 4996 } 4997 4998 return false; 4999 } 5000 5001 // -- Otherwise: E1 can be converted to match E2 if E1 can be 5002 // implicitly converted to the type that expression E2 would have 5003 // if E2 were converted to an rvalue (or the type it has, if E2 is 5004 // an rvalue). 5005 // 5006 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 5007 // to the array-to-pointer or function-to-pointer conversions. 5008 if (!TTy->getAs<TagType>()) 5009 TTy = TTy.getUnqualifiedType(); 5010 5011 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5012 InitializationSequence InitSeq(Self, Entity, Kind, From); 5013 HaveConversion = !InitSeq.Failed(); 5014 ToType = TTy; 5015 if (InitSeq.isAmbiguous()) 5016 return InitSeq.Diagnose(Self, Entity, Kind, From); 5017 5018 return false; 5019} 5020 5021/// \brief Try to find a common type for two according to C++0x 5.16p5. 5022/// 5023/// This is part of the parameter validation for the ? operator. If either 5024/// value operand is a class type, overload resolution is used to find a 5025/// conversion to a common type. 5026static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 5027 SourceLocation QuestionLoc) { 5028 Expr *Args[2] = { LHS.get(), RHS.get() }; 5029 OverloadCandidateSet CandidateSet(QuestionLoc, 5030 OverloadCandidateSet::CSK_Operator); 5031 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 5032 CandidateSet); 5033 5034 OverloadCandidateSet::iterator Best; 5035 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 5036 case OR_Success: { 5037 // We found a match. Perform the conversions on the arguments and move on. 5038 ExprResult LHSRes = 5039 Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0], 5040 Best->Conversions[0], Sema::AA_Converting); 5041 if (LHSRes.isInvalid()) 5042 break; 5043 LHS = LHSRes; 5044 5045 ExprResult RHSRes = 5046 Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1], 5047 Best->Conversions[1], Sema::AA_Converting); 5048 if (RHSRes.isInvalid()) 5049 break; 5050 RHS = RHSRes; 5051 if (Best->Function) 5052 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 5053 return false; 5054 } 5055 5056 case OR_No_Viable_Function: 5057 5058 // Emit a better diagnostic if one of the expressions is a null pointer 5059 // constant and the other is a pointer type. In this case, the user most 5060 // likely forgot to take the address of the other expression. 5061 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 5062 return true; 5063 5064 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 5065 << LHS.get()->getType() << RHS.get()->getType() 5066 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5067 return true; 5068 5069 case OR_Ambiguous: 5070 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 5071 << LHS.get()->getType() << RHS.get()->getType() 5072 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5073 // FIXME: Print the possible common types by printing the return types of 5074 // the viable candidates. 5075 break; 5076 5077 case OR_Deleted: 5078 llvm_unreachable("Conditional operator has only built-in overloads"); 5079 } 5080 return true; 5081} 5082 5083/// \brief Perform an "extended" implicit conversion as returned by 5084/// TryClassUnification. 5085static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 5086 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 5087 InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(), 5088 SourceLocation()); 5089 Expr *Arg = E.get(); 5090 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 5091 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 5092 if (Result.isInvalid()) 5093 return true; 5094 5095 E = Result; 5096 return false; 5097} 5098 5099/// \brief Check the operands of ?: under C++ semantics. 5100/// 5101/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y 5102/// extension. In this case, LHS == Cond. (But they're not aliases.) 5103QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, 5104 ExprResult &RHS, ExprValueKind &VK, 5105 ExprObjectKind &OK, 5106 SourceLocation QuestionLoc) { 5107 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++ 5108 // interface pointers. 5109 5110 // C++11 [expr.cond]p1 5111 // The first expression is contextually converted to bool. 5112 if (!Cond.get()->isTypeDependent()) { 5113 ExprResult CondRes = CheckCXXBooleanCondition(Cond.get()); 5114 if (CondRes.isInvalid()) 5115 return QualType(); 5116 Cond = CondRes; 5117 } 5118 5119 // Assume r-value. 5120 VK = VK_RValue; 5121 OK = OK_Ordinary; 5122 5123 // Either of the arguments dependent? 5124 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) 5125 return Context.DependentTy; 5126 5127 // C++11 [expr.cond]p2 5128 // If either the second or the third operand has type (cv) void, ... 5129 QualType LTy = LHS.get()->getType(); 5130 QualType RTy = RHS.get()->getType(); 5131 bool LVoid = LTy->isVoidType(); 5132 bool RVoid = RTy->isVoidType(); 5133 if (LVoid || RVoid) { 5134 // ... one of the following shall hold: 5135 // -- The second or the third operand (but not both) is a (possibly 5136 // parenthesized) throw-expression; the result is of the type 5137 // and value category of the other. 5138 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); 5139 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); 5140 if (LThrow != RThrow) { 5141 Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); 5142 VK = NonThrow->getValueKind(); 5143 // DR (no number yet): the result is a bit-field if the 5144 // non-throw-expression operand is a bit-field. 5145 OK = NonThrow->getObjectKind(); 5146 return NonThrow->getType(); 5147 } 5148 5149 // -- Both the second and third operands have type void; the result is of 5150 // type void and is a prvalue. 5151 if (LVoid && RVoid) 5152 return Context.VoidTy; 5153 5154 // Neither holds, error. 5155 Diag(QuestionLoc, diag::err_conditional_void_nonvoid) 5156 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) 5157 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5158 return QualType(); 5159 } 5160 5161 // Neither is void. 5162 5163 // C++11 [expr.cond]p3 5164 // Otherwise, if the second and third operand have different types, and 5165 // either has (cv) class type [...] an attempt is made to convert each of 5166 // those operands to the type of the other. 5167 if (!Context.hasSameType(LTy, RTy) && 5168 (LTy->isRecordType() || RTy->isRecordType())) { 5169 // These return true if a single direction is already ambiguous. 5170 QualType L2RType, R2LType; 5171 bool HaveL2R, HaveR2L; 5172 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) 5173 return QualType(); 5174 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) 5175 return QualType(); 5176 5177 // If both can be converted, [...] the program is ill-formed. 5178 if (HaveL2R && HaveR2L) { 5179 Diag(QuestionLoc, diag::err_conditional_ambiguous) 5180 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5181 return QualType(); 5182 } 5183 5184 // If exactly one conversion is possible, that conversion is applied to 5185 // the chosen operand and the converted operands are used in place of the 5186 // original operands for the remainder of this section. 5187 if (HaveL2R) { 5188 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) 5189 return QualType(); 5190 LTy = LHS.get()->getType(); 5191 } else if (HaveR2L) { 5192 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) 5193 return QualType(); 5194 RTy = RHS.get()->getType(); 5195 } 5196 } 5197 5198 // C++11 [expr.cond]p3 5199 // if both are glvalues of the same value category and the same type except 5200 // for cv-qualification, an attempt is made to convert each of those 5201 // operands to the type of the other. 5202 ExprValueKind LVK = LHS.get()->getValueKind(); 5203 ExprValueKind RVK = RHS.get()->getValueKind(); 5204 if (!Context.hasSameType(LTy, RTy) && 5205 Context.hasSameUnqualifiedType(LTy, RTy) && 5206 LVK == RVK && LVK != VK_RValue) { 5207 // Since the unqualified types are reference-related and we require the 5208 // result to be as if a reference bound directly, the only conversion 5209 // we can perform is to add cv-qualifiers. 5210 Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers()); 5211 Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers()); 5212 if (RCVR.isStrictSupersetOf(LCVR)) { 5213 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); 5214 LTy = LHS.get()->getType(); 5215 } 5216 else if (LCVR.isStrictSupersetOf(RCVR)) { 5217 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); 5218 RTy = RHS.get()->getType(); 5219 } 5220 } 5221 5222 // C++11 [expr.cond]p4 5223 // If the second and third operands are glvalues of the same value 5224 // category and have the same type, the result is of that type and 5225 // value category and it is a bit-field if the second or the third 5226 // operand is a bit-field, or if both are bit-fields. 5227 // We only extend this to bitfields, not to the crazy other kinds of 5228 // l-values. 5229 bool Same = Context.hasSameType(LTy, RTy); 5230 if (Same && LVK == RVK && LVK != VK_RValue && 5231 LHS.get()->isOrdinaryOrBitFieldObject() && 5232 RHS.get()->isOrdinaryOrBitFieldObject()) { 5233 VK = LHS.get()->getValueKind(); 5234 if (LHS.get()->getObjectKind() == OK_BitField || 5235 RHS.get()->getObjectKind() == OK_BitField) 5236 OK = OK_BitField; 5237 return LTy; 5238 } 5239 5240 // C++11 [expr.cond]p5 5241 // Otherwise, the result is a prvalue. If the second and third operands 5242 // do not have the same type, and either has (cv) class type, ... 5243 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { 5244 // ... overload resolution is used to determine the conversions (if any) 5245 // to be applied to the operands. If the overload resolution fails, the 5246 // program is ill-formed. 5247 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) 5248 return QualType(); 5249 } 5250 5251 // C++11 [expr.cond]p6 5252 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard 5253 // conversions are performed on the second and third operands. 5254 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 5255 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 5256 if (LHS.isInvalid() || RHS.isInvalid()) 5257 return QualType(); 5258 LTy = LHS.get()->getType(); 5259 RTy = RHS.get()->getType(); 5260 5261 // After those conversions, one of the following shall hold: 5262 // -- The second and third operands have the same type; the result 5263 // is of that type. If the operands have class type, the result 5264 // is a prvalue temporary of the result type, which is 5265 // copy-initialized from either the second operand or the third 5266 // operand depending on the value of the first operand. 5267 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { 5268 if (LTy->isRecordType()) { 5269 // The operands have class type. Make a temporary copy. 5270 if (RequireNonAbstractType(QuestionLoc, LTy, 5271 diag::err_allocation_of_abstract_type)) 5272 return QualType(); 5273 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); 5274 5275 ExprResult LHSCopy = PerformCopyInitialization(Entity, 5276 SourceLocation(), 5277 LHS); 5278 if (LHSCopy.isInvalid()) 5279 return QualType(); 5280 5281 ExprResult RHSCopy = PerformCopyInitialization(Entity, 5282 SourceLocation(), 5283 RHS); 5284 if (RHSCopy.isInvalid()) 5285 return QualType(); 5286 5287 LHS = LHSCopy; 5288 RHS = RHSCopy; 5289 } 5290 5291 return LTy; 5292 } 5293 5294 // Extension: conditional operator involving vector types. 5295 if (LTy->isVectorType() || RTy->isVectorType()) 5296 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false, 5297 /*AllowBothBool*/true, 5298 /*AllowBoolConversions*/false); 5299 5300 // -- The second and third operands have arithmetic or enumeration type; 5301 // the usual arithmetic conversions are performed to bring them to a 5302 // common type, and the result is of that type. 5303 if (LTy->isArithmeticType() && RTy->isArithmeticType()) { 5304 QualType ResTy = UsualArithmeticConversions(LHS, RHS); 5305 if (LHS.isInvalid() || RHS.isInvalid()) 5306 return QualType(); 5307 if (ResTy.isNull()) { 5308 Diag(QuestionLoc, 5309 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy 5310 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5311 return QualType(); 5312 } 5313 5314 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); 5315 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); 5316 5317 return ResTy; 5318 } 5319 5320 // -- The second and third operands have pointer type, or one has pointer 5321 // type and the other is a null pointer constant, or both are null 5322 // pointer constants, at least one of which is non-integral; pointer 5323 // conversions and qualification conversions are performed to bring them 5324 // to their composite pointer type. The result is of the composite 5325 // pointer type. 5326 // -- The second and third operands have pointer to member type, or one has 5327 // pointer to member type and the other is a null pointer constant; 5328 // pointer to member conversions and qualification conversions are 5329 // performed to bring them to a common type, whose cv-qualification 5330 // shall match the cv-qualification of either the second or the third 5331 // operand. The result is of the common type. 5332 bool NonStandardCompositeType = false; 5333 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS, 5334 isSFINAEContext() ? nullptr 5335 : &NonStandardCompositeType); 5336 if (!Composite.isNull()) { 5337 if (NonStandardCompositeType) 5338 Diag(QuestionLoc, 5339 diag::ext_typecheck_cond_incompatible_operands_nonstandard) 5340 << LTy << RTy << Composite 5341 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5342 5343 return Composite; 5344 } 5345 5346 // Similarly, attempt to find composite type of two objective-c pointers. 5347 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); 5348 if (!Composite.isNull()) 5349 return Composite; 5350 5351 // Check if we are using a null with a non-pointer type. 5352 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 5353 return QualType(); 5354 5355 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 5356 << LHS.get()->getType() << RHS.get()->getType() 5357 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5358 return QualType(); 5359} 5360 5361/// \brief Find a merged pointer type and convert the two expressions to it. 5362/// 5363/// This finds the composite pointer type (or member pointer type) for @p E1 5364/// and @p E2 according to C++11 5.9p2. It converts both expressions to this 5365/// type and returns it. 5366/// It does not emit diagnostics. 5367/// 5368/// \param Loc The location of the operator requiring these two expressions to 5369/// be converted to the composite pointer type. 5370/// 5371/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find 5372/// a non-standard (but still sane) composite type to which both expressions 5373/// can be converted. When such a type is chosen, \c *NonStandardCompositeType 5374/// will be set true. 5375QualType Sema::FindCompositePointerType(SourceLocation Loc, 5376 Expr *&E1, Expr *&E2, 5377 bool *NonStandardCompositeType) { 5378 if (NonStandardCompositeType) 5379 *NonStandardCompositeType = false; 5380 5381 assert(getLangOpts().CPlusPlus && "This function assumes C++"); 5382 QualType T1 = E1->getType(), T2 = E2->getType(); 5383 5384 // C++11 5.9p2 5385 // Pointer conversions and qualification conversions are performed on 5386 // pointer operands to bring them to their composite pointer type. If 5387 // one operand is a null pointer constant, the composite pointer type is 5388 // std::nullptr_t if the other operand is also a null pointer constant or, 5389 // if the other operand is a pointer, the type of the other operand. 5390 if (!T1->isAnyPointerType() && !T1->isMemberPointerType() && 5391 !T2->isAnyPointerType() && !T2->isMemberPointerType()) { 5392 if (T1->isNullPtrType() && 5393 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 5394 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get(); 5395 return T1; 5396 } 5397 if (T2->isNullPtrType() && 5398 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 5399 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get(); 5400 return T2; 5401 } 5402 return QualType(); 5403 } 5404 5405 if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 5406 if (T2->isMemberPointerType()) 5407 E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get(); 5408 else 5409 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get(); 5410 return T2; 5411 } 5412 if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 5413 if (T1->isMemberPointerType()) 5414 E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get(); 5415 else 5416 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get(); 5417 return T1; 5418 } 5419 5420 // Now both have to be pointers or member pointers. 5421 if ((!T1->isPointerType() && !T1->isMemberPointerType()) || 5422 (!T2->isPointerType() && !T2->isMemberPointerType())) 5423 return QualType(); 5424 5425 // Otherwise, of one of the operands has type "pointer to cv1 void," then 5426 // the other has type "pointer to cv2 T" and the composite pointer type is 5427 // "pointer to cv12 void," where cv12 is the union of cv1 and cv2. 5428 // Otherwise, the composite pointer type is a pointer type similar to the 5429 // type of one of the operands, with a cv-qualification signature that is 5430 // the union of the cv-qualification signatures of the operand types. 5431 // In practice, the first part here is redundant; it's subsumed by the second. 5432 // What we do here is, we build the two possible composite types, and try the 5433 // conversions in both directions. If only one works, or if the two composite 5434 // types are the same, we have succeeded. 5435 // FIXME: extended qualifiers? 5436 typedef SmallVector<unsigned, 4> QualifierVector; 5437 QualifierVector QualifierUnion; 5438 typedef SmallVector<std::pair<const Type *, const Type *>, 4> 5439 ContainingClassVector; 5440 ContainingClassVector MemberOfClass; 5441 QualType Composite1 = Context.getCanonicalType(T1), 5442 Composite2 = Context.getCanonicalType(T2); 5443 unsigned NeedConstBefore = 0; 5444 do { 5445 const PointerType *Ptr1, *Ptr2; 5446 if ((Ptr1 = Composite1->getAs<PointerType>()) && 5447 (Ptr2 = Composite2->getAs<PointerType>())) { 5448 Composite1 = Ptr1->getPointeeType(); 5449 Composite2 = Ptr2->getPointeeType(); 5450 5451 // If we're allowed to create a non-standard composite type, keep track 5452 // of where we need to fill in additional 'const' qualifiers. 5453 if (NonStandardCompositeType && 5454 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) 5455 NeedConstBefore = QualifierUnion.size(); 5456 5457 QualifierUnion.push_back( 5458 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); 5459 MemberOfClass.push_back(std::make_pair(nullptr, nullptr)); 5460 continue; 5461 } 5462 5463 const MemberPointerType *MemPtr1, *MemPtr2; 5464 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && 5465 (MemPtr2 = Composite2->getAs<MemberPointerType>())) { 5466 Composite1 = MemPtr1->getPointeeType(); 5467 Composite2 = MemPtr2->getPointeeType(); 5468 5469 // If we're allowed to create a non-standard composite type, keep track 5470 // of where we need to fill in additional 'const' qualifiers. 5471 if (NonStandardCompositeType && 5472 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) 5473 NeedConstBefore = QualifierUnion.size(); 5474 5475 QualifierUnion.push_back( 5476 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); 5477 MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(), 5478 MemPtr2->getClass())); 5479 continue; 5480 } 5481 5482 // FIXME: block pointer types? 5483 5484 // Cannot unwrap any more types. 5485 break; 5486 } while (true); 5487 5488 if (NeedConstBefore && NonStandardCompositeType) { 5489 // Extension: Add 'const' to qualifiers that come before the first qualifier 5490 // mismatch, so that our (non-standard!) composite type meets the 5491 // requirements of C++ [conv.qual]p4 bullet 3. 5492 for (unsigned I = 0; I != NeedConstBefore; ++I) { 5493 if ((QualifierUnion[I] & Qualifiers::Const) == 0) { 5494 QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const; 5495 *NonStandardCompositeType = true; 5496 } 5497 } 5498 } 5499 5500 // Rewrap the composites as pointers or member pointers with the union CVRs. 5501 ContainingClassVector::reverse_iterator MOC 5502 = MemberOfClass.rbegin(); 5503 for (QualifierVector::reverse_iterator 5504 I = QualifierUnion.rbegin(), 5505 E = QualifierUnion.rend(); 5506 I != E; (void)++I, ++MOC) { 5507 Qualifiers Quals = Qualifiers::fromCVRMask(*I); 5508 if (MOC->first && MOC->second) { 5509 // Rebuild member pointer type 5510 Composite1 = Context.getMemberPointerType( 5511 Context.getQualifiedType(Composite1, Quals), 5512 MOC->first); 5513 Composite2 = Context.getMemberPointerType( 5514 Context.getQualifiedType(Composite2, Quals), 5515 MOC->second); 5516 } else { 5517 // Rebuild pointer type 5518 Composite1 5519 = Context.getPointerType(Context.getQualifiedType(Composite1, Quals)); 5520 Composite2 5521 = Context.getPointerType(Context.getQualifiedType(Composite2, Quals)); 5522 } 5523 } 5524 5525 // Try to convert to the first composite pointer type. 5526 InitializedEntity Entity1 5527 = InitializedEntity::InitializeTemporary(Composite1); 5528 InitializationKind Kind 5529 = InitializationKind::CreateCopy(Loc, SourceLocation()); 5530 InitializationSequence E1ToC1(*this, Entity1, Kind, E1); 5531 InitializationSequence E2ToC1(*this, Entity1, Kind, E2); 5532 5533 if (E1ToC1 && E2ToC1) { 5534 // Conversion to Composite1 is viable. 5535 if (!Context.hasSameType(Composite1, Composite2)) { 5536 // Composite2 is a different type from Composite1. Check whether 5537 // Composite2 is also viable. 5538 InitializedEntity Entity2 5539 = InitializedEntity::InitializeTemporary(Composite2); 5540 InitializationSequence E1ToC2(*this, Entity2, Kind, E1); 5541 InitializationSequence E2ToC2(*this, Entity2, Kind, E2); 5542 if (E1ToC2 && E2ToC2) { 5543 // Both Composite1 and Composite2 are viable and are different; 5544 // this is an ambiguity. 5545 return QualType(); 5546 } 5547 } 5548 5549 // Convert E1 to Composite1 5550 ExprResult E1Result 5551 = E1ToC1.Perform(*this, Entity1, Kind, E1); 5552 if (E1Result.isInvalid()) 5553 return QualType(); 5554 E1 = E1Result.getAs<Expr>(); 5555 5556 // Convert E2 to Composite1 5557 ExprResult E2Result 5558 = E2ToC1.Perform(*this, Entity1, Kind, E2); 5559 if (E2Result.isInvalid()) 5560 return QualType(); 5561 E2 = E2Result.getAs<Expr>(); 5562 5563 return Composite1; 5564 } 5565 5566 // Check whether Composite2 is viable. 5567 InitializedEntity Entity2 5568 = InitializedEntity::InitializeTemporary(Composite2); 5569 InitializationSequence E1ToC2(*this, Entity2, Kind, E1); 5570 InitializationSequence E2ToC2(*this, Entity2, Kind, E2); 5571 if (!E1ToC2 || !E2ToC2) 5572 return QualType(); 5573 5574 // Convert E1 to Composite2 5575 ExprResult E1Result 5576 = E1ToC2.Perform(*this, Entity2, Kind, E1); 5577 if (E1Result.isInvalid()) 5578 return QualType(); 5579 E1 = E1Result.getAs<Expr>(); 5580 5581 // Convert E2 to Composite2 5582 ExprResult E2Result 5583 = E2ToC2.Perform(*this, Entity2, Kind, E2); 5584 if (E2Result.isInvalid()) 5585 return QualType(); 5586 E2 = E2Result.getAs<Expr>(); 5587 5588 return Composite2; 5589} 5590 5591ExprResult Sema::MaybeBindToTemporary(Expr *E) { 5592 if (!E) 5593 return ExprError(); 5594 5595 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); 5596 5597 // If the result is a glvalue, we shouldn't bind it. 5598 if (!E->isRValue()) 5599 return E; 5600 5601 // In ARC, calls that return a retainable type can return retained, 5602 // in which case we have to insert a consuming cast. 5603 if (getLangOpts().ObjCAutoRefCount && 5604 E->getType()->isObjCRetainableType()) { 5605 5606 bool ReturnsRetained; 5607 5608 // For actual calls, we compute this by examining the type of the 5609 // called value. 5610 if (CallExpr *Call = dyn_cast<CallExpr>(E)) { 5611 Expr *Callee = Call->getCallee()->IgnoreParens(); 5612 QualType T = Callee->getType(); 5613 5614 if (T == Context.BoundMemberTy) { 5615 // Handle pointer-to-members. 5616 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) 5617 T = BinOp->getRHS()->getType(); 5618 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) 5619 T = Mem->getMemberDecl()->getType(); 5620 } 5621 5622 if (const PointerType *Ptr = T->getAs<PointerType>()) 5623 T = Ptr->getPointeeType(); 5624 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) 5625 T = Ptr->getPointeeType(); 5626 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) 5627 T = MemPtr->getPointeeType(); 5628 5629 const FunctionType *FTy = T->getAs<FunctionType>(); 5630 assert(FTy && "call to value not of function type?"); 5631 ReturnsRetained = FTy->getExtInfo().getProducesResult(); 5632 5633 // ActOnStmtExpr arranges things so that StmtExprs of retainable 5634 // type always produce a +1 object. 5635 } else if (isa<StmtExpr>(E)) { 5636 ReturnsRetained = true; 5637 5638 // We hit this case with the lambda conversion-to-block optimization; 5639 // we don't want any extra casts here. 5640 } else if (isa<CastExpr>(E) && 5641 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { 5642 return E; 5643 5644 // For message sends and property references, we try to find an 5645 // actual method. FIXME: we should infer retention by selector in 5646 // cases where we don't have an actual method. 5647 } else { 5648 ObjCMethodDecl *D = nullptr; 5649 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { 5650 D = Send->getMethodDecl(); 5651 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { 5652 D = BoxedExpr->getBoxingMethod(); 5653 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { 5654 D = ArrayLit->getArrayWithObjectsMethod(); 5655 } else if (ObjCDictionaryLiteral *DictLit 5656 = dyn_cast<ObjCDictionaryLiteral>(E)) { 5657 D = DictLit->getDictWithObjectsMethod(); 5658 } 5659 5660 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); 5661 5662 // Don't do reclaims on performSelector calls; despite their 5663 // return type, the invoked method doesn't necessarily actually 5664 // return an object. 5665 if (!ReturnsRetained && 5666 D && D->getMethodFamily() == OMF_performSelector) 5667 return E; 5668 } 5669 5670 // Don't reclaim an object of Class type. 5671 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) 5672 return E; 5673 5674 Cleanup.setExprNeedsCleanups(true); 5675 5676 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject 5677 : CK_ARCReclaimReturnedObject); 5678 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, 5679 VK_RValue); 5680 } 5681 5682 if (!getLangOpts().CPlusPlus) 5683 return E; 5684 5685 // Search for the base element type (cf. ASTContext::getBaseElementType) with 5686 // a fast path for the common case that the type is directly a RecordType. 5687 const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); 5688 const RecordType *RT = nullptr; 5689 while (!RT) { 5690 switch (T->getTypeClass()) { 5691 case Type::Record: 5692 RT = cast<RecordType>(T); 5693 break; 5694 case Type::ConstantArray: 5695 case Type::IncompleteArray: 5696 case Type::VariableArray: 5697 case Type::DependentSizedArray: 5698 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 5699 break; 5700 default: 5701 return E; 5702 } 5703 } 5704 5705 // That should be enough to guarantee that this type is complete, if we're 5706 // not processing a decltype expression. 5707 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 5708 if (RD->isInvalidDecl() || RD->isDependentContext()) 5709 return E; 5710 5711 bool IsDecltype = ExprEvalContexts.back().IsDecltype; 5712 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); 5713 5714 if (Destructor) { 5715 MarkFunctionReferenced(E->getExprLoc(), Destructor); 5716 CheckDestructorAccess(E->getExprLoc(), Destructor, 5717 PDiag(diag::err_access_dtor_temp) 5718 << E->getType()); 5719 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 5720 return ExprError(); 5721 5722 // If destructor is trivial, we can avoid the extra copy. 5723 if (Destructor->isTrivial()) 5724 return E; 5725 5726 // We need a cleanup, but we don't need to remember the temporary. 5727 Cleanup.setExprNeedsCleanups(true); 5728 } 5729 5730 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); 5731 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); 5732 5733 if (IsDecltype) 5734 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); 5735 5736 return Bind; 5737} 5738 5739ExprResult 5740Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { 5741 if (SubExpr.isInvalid()) 5742 return ExprError(); 5743 5744 return MaybeCreateExprWithCleanups(SubExpr.get()); 5745} 5746 5747Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { 5748 assert(SubExpr && "subexpression can't be null!"); 5749 5750 CleanupVarDeclMarking(); 5751 5752 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; 5753 assert(ExprCleanupObjects.size() >= FirstCleanup); 5754 assert(Cleanup.exprNeedsCleanups() || 5755 ExprCleanupObjects.size() == FirstCleanup); 5756 if (!Cleanup.exprNeedsCleanups()) 5757 return SubExpr; 5758 5759 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, 5760 ExprCleanupObjects.size() - FirstCleanup); 5761 5762 auto *E = ExprWithCleanups::Create( 5763 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups); 5764 DiscardCleanupsInEvaluationContext(); 5765 5766 return E; 5767} 5768 5769Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { 5770 assert(SubStmt && "sub-statement can't be null!"); 5771 5772 CleanupVarDeclMarking(); 5773 5774 if (!Cleanup.exprNeedsCleanups()) 5775 return SubStmt; 5776 5777 // FIXME: In order to attach the temporaries, wrap the statement into 5778 // a StmtExpr; currently this is only used for asm statements. 5779 // This is hacky, either create a new CXXStmtWithTemporaries statement or 5780 // a new AsmStmtWithTemporaries. 5781 CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt, 5782 SourceLocation(), 5783 SourceLocation()); 5784 Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), 5785 SourceLocation()); 5786 return MaybeCreateExprWithCleanups(E); 5787} 5788 5789/// Process the expression contained within a decltype. For such expressions, 5790/// certain semantic checks on temporaries are delayed until this point, and 5791/// are omitted for the 'topmost' call in the decltype expression. If the 5792/// topmost call bound a temporary, strip that temporary off the expression. 5793ExprResult Sema::ActOnDecltypeExpression(Expr *E) { 5794 assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression"); 5795 5796 // C++11 [expr.call]p11: 5797 // If a function call is a prvalue of object type, 5798 // -- if the function call is either 5799 // -- the operand of a decltype-specifier, or 5800 // -- the right operand of a comma operator that is the operand of a 5801 // decltype-specifier, 5802 // a temporary object is not introduced for the prvalue. 5803 5804 // Recursively rebuild ParenExprs and comma expressions to strip out the 5805 // outermost CXXBindTemporaryExpr, if any. 5806 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 5807 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); 5808 if (SubExpr.isInvalid()) 5809 return ExprError(); 5810 if (SubExpr.get() == PE->getSubExpr()) 5811 return E; 5812 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); 5813 } 5814 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 5815 if (BO->getOpcode() == BO_Comma) { 5816 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); 5817 if (RHS.isInvalid()) 5818 return ExprError(); 5819 if (RHS.get() == BO->getRHS()) 5820 return E; 5821 return new (Context) BinaryOperator( 5822 BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(), 5823 BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable()); 5824 } 5825 } 5826 5827 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); 5828 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) 5829 : nullptr; 5830 if (TopCall) 5831 E = TopCall; 5832 else 5833 TopBind = nullptr; 5834 5835 // Disable the special decltype handling now. 5836 ExprEvalContexts.back().IsDecltype = false; 5837 5838 // In MS mode, don't perform any extra checking of call return types within a 5839 // decltype expression. 5840 if (getLangOpts().MSVCCompat) 5841 return E; 5842 5843 // Perform the semantic checks we delayed until this point. 5844 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); 5845 I != N; ++I) { 5846 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; 5847 if (Call == TopCall) 5848 continue; 5849 5850 if (CheckCallReturnType(Call->getCallReturnType(Context), 5851 Call->getLocStart(), 5852 Call, Call->getDirectCallee())) 5853 return ExprError(); 5854 } 5855 5856 // Now all relevant types are complete, check the destructors are accessible 5857 // and non-deleted, and annotate them on the temporaries. 5858 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); 5859 I != N; ++I) { 5860 CXXBindTemporaryExpr *Bind = 5861 ExprEvalContexts.back().DelayedDecltypeBinds[I]; 5862 if (Bind == TopBind) 5863 continue; 5864 5865 CXXTemporary *Temp = Bind->getTemporary(); 5866 5867 CXXRecordDecl *RD = 5868 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 5869 CXXDestructorDecl *Destructor = LookupDestructor(RD); 5870 Temp->setDestructor(Destructor); 5871 5872 MarkFunctionReferenced(Bind->getExprLoc(), Destructor); 5873 CheckDestructorAccess(Bind->getExprLoc(), Destructor, 5874 PDiag(diag::err_access_dtor_temp) 5875 << Bind->getType()); 5876 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) 5877 return ExprError(); 5878 5879 // We need a cleanup, but we don't need to remember the temporary. 5880 Cleanup.setExprNeedsCleanups(true); 5881 } 5882 5883 // Possibly strip off the top CXXBindTemporaryExpr. 5884 return E; 5885} 5886 5887/// Note a set of 'operator->' functions that were used for a member access. 5888static void noteOperatorArrows(Sema &S, 5889 ArrayRef<FunctionDecl *> OperatorArrows) { 5890 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; 5891 // FIXME: Make this configurable? 5892 unsigned Limit = 9; 5893 if (OperatorArrows.size() > Limit) { 5894 // Produce Limit-1 normal notes and one 'skipping' note. 5895 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; 5896 SkipCount = OperatorArrows.size() - (Limit - 1); 5897 } 5898 5899 for (unsigned I = 0; I < OperatorArrows.size(); /**/) { 5900 if (I == SkipStart) { 5901 S.Diag(OperatorArrows[I]->getLocation(), 5902 diag::note_operator_arrows_suppressed) 5903 << SkipCount; 5904 I += SkipCount; 5905 } else { 5906 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) 5907 << OperatorArrows[I]->getCallResultType(); 5908 ++I; 5909 } 5910 } 5911} 5912 5913ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, 5914 SourceLocation OpLoc, 5915 tok::TokenKind OpKind, 5916 ParsedType &ObjectType, 5917 bool &MayBePseudoDestructor) { 5918 // Since this might be a postfix expression, get rid of ParenListExprs. 5919 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 5920 if (Result.isInvalid()) return ExprError(); 5921 Base = Result.get(); 5922 5923 Result = CheckPlaceholderExpr(Base); 5924 if (Result.isInvalid()) return ExprError(); 5925 Base = Result.get(); 5926 5927 QualType BaseType = Base->getType(); 5928 MayBePseudoDestructor = false; 5929 if (BaseType->isDependentType()) { 5930 // If we have a pointer to a dependent type and are using the -> operator, 5931 // the object type is the type that the pointer points to. We might still 5932 // have enough information about that type to do something useful. 5933 if (OpKind == tok::arrow) 5934 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 5935 BaseType = Ptr->getPointeeType(); 5936 5937 ObjectType = ParsedType::make(BaseType); 5938 MayBePseudoDestructor = true; 5939 return Base; 5940 } 5941 5942 // C++ [over.match.oper]p8: 5943 // [...] When operator->returns, the operator-> is applied to the value 5944 // returned, with the original second operand. 5945 if (OpKind == tok::arrow) { 5946 QualType StartingType = BaseType; 5947 bool NoArrowOperatorFound = false; 5948 bool FirstIteration = true; 5949 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); 5950 // The set of types we've considered so far. 5951 llvm::SmallPtrSet<CanQualType,8> CTypes; 5952 SmallVector<FunctionDecl*, 8> OperatorArrows; 5953 CTypes.insert(Context.getCanonicalType(BaseType)); 5954 5955 while (BaseType->isRecordType()) { 5956 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { 5957 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) 5958 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); 5959 noteOperatorArrows(*this, OperatorArrows); 5960 Diag(OpLoc, diag::note_operator_arrow_depth) 5961 << getLangOpts().ArrowDepth; 5962 return ExprError(); 5963 } 5964 5965 Result = BuildOverloadedArrowExpr( 5966 S, Base, OpLoc, 5967 // When in a template specialization and on the first loop iteration, 5968 // potentially give the default diagnostic (with the fixit in a 5969 // separate note) instead of having the error reported back to here 5970 // and giving a diagnostic with a fixit attached to the error itself. 5971 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) 5972 ? nullptr 5973 : &NoArrowOperatorFound); 5974 if (Result.isInvalid()) { 5975 if (NoArrowOperatorFound) { 5976 if (FirstIteration) { 5977 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 5978 << BaseType << 1 << Base->getSourceRange() 5979 << FixItHint::CreateReplacement(OpLoc, "."); 5980 OpKind = tok::period; 5981 break; 5982 } 5983 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 5984 << BaseType << Base->getSourceRange(); 5985 CallExpr *CE = dyn_cast<CallExpr>(Base); 5986 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { 5987 Diag(CD->getLocStart(), 5988 diag::note_member_reference_arrow_from_operator_arrow); 5989 } 5990 } 5991 return ExprError(); 5992 } 5993 Base = Result.get(); 5994 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) 5995 OperatorArrows.push_back(OpCall->getDirectCallee()); 5996 BaseType = Base->getType(); 5997 CanQualType CBaseType = Context.getCanonicalType(BaseType); 5998 if (!CTypes.insert(CBaseType).second) { 5999 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; 6000 noteOperatorArrows(*this, OperatorArrows); 6001 return ExprError(); 6002 } 6003 FirstIteration = false; 6004 } 6005 6006 if (OpKind == tok::arrow && 6007 (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())) 6008 BaseType = BaseType->getPointeeType(); 6009 } 6010 6011 // Objective-C properties allow "." access on Objective-C pointer types, 6012 // so adjust the base type to the object type itself. 6013 if (BaseType->isObjCObjectPointerType()) 6014 BaseType = BaseType->getPointeeType(); 6015 6016 // C++ [basic.lookup.classref]p2: 6017 // [...] If the type of the object expression is of pointer to scalar 6018 // type, the unqualified-id is looked up in the context of the complete 6019 // postfix-expression. 6020 // 6021 // This also indicates that we could be parsing a pseudo-destructor-name. 6022 // Note that Objective-C class and object types can be pseudo-destructor 6023 // expressions or normal member (ivar or property) access expressions, and 6024 // it's legal for the type to be incomplete if this is a pseudo-destructor 6025 // call. We'll do more incomplete-type checks later in the lookup process, 6026 // so just skip this check for ObjC types. 6027 if (BaseType->isObjCObjectOrInterfaceType()) { 6028 ObjectType = ParsedType::make(BaseType); 6029 MayBePseudoDestructor = true; 6030 return Base; 6031 } else if (!BaseType->isRecordType()) { 6032 ObjectType = nullptr; 6033 MayBePseudoDestructor = true; 6034 return Base; 6035 } 6036 6037 // The object type must be complete (or dependent), or 6038 // C++11 [expr.prim.general]p3: 6039 // Unlike the object expression in other contexts, *this is not required to 6040 // be of complete type for purposes of class member access (5.2.5) outside 6041 // the member function body. 6042 if (!BaseType->isDependentType() && 6043 !isThisOutsideMemberFunctionBody(BaseType) && 6044 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access)) 6045 return ExprError(); 6046 6047 // C++ [basic.lookup.classref]p2: 6048 // If the id-expression in a class member access (5.2.5) is an 6049 // unqualified-id, and the type of the object expression is of a class 6050 // type C (or of pointer to a class type C), the unqualified-id is looked 6051 // up in the scope of class C. [...] 6052 ObjectType = ParsedType::make(BaseType); 6053 return Base; 6054} 6055 6056static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base, 6057 tok::TokenKind& OpKind, SourceLocation OpLoc) { 6058 if (Base->hasPlaceholderType()) { 6059 ExprResult result = S.CheckPlaceholderExpr(Base); 6060 if (result.isInvalid()) return true; 6061 Base = result.get(); 6062 } 6063 ObjectType = Base->getType(); 6064 6065 // C++ [expr.pseudo]p2: 6066 // The left-hand side of the dot operator shall be of scalar type. The 6067 // left-hand side of the arrow operator shall be of pointer to scalar type. 6068 // This scalar type is the object type. 6069 // Note that this is rather different from the normal handling for the 6070 // arrow operator. 6071 if (OpKind == tok::arrow) { 6072 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { 6073 ObjectType = Ptr->getPointeeType(); 6074 } else if (!Base->isTypeDependent()) { 6075 // The user wrote "p->" when they probably meant "p."; fix it. 6076 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 6077 << ObjectType << true 6078 << FixItHint::CreateReplacement(OpLoc, "."); 6079 if (S.isSFINAEContext()) 6080 return true; 6081 6082 OpKind = tok::period; 6083 } 6084 } 6085 6086 return false; 6087} 6088 6089ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, 6090 SourceLocation OpLoc, 6091 tok::TokenKind OpKind, 6092 const CXXScopeSpec &SS, 6093 TypeSourceInfo *ScopeTypeInfo, 6094 SourceLocation CCLoc, 6095 SourceLocation TildeLoc, 6096 PseudoDestructorTypeStorage Destructed) { 6097 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); 6098 6099 QualType ObjectType; 6100 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 6101 return ExprError(); 6102 6103 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && 6104 !ObjectType->isVectorType()) { 6105 if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) 6106 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); 6107 else { 6108 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) 6109 << ObjectType << Base->getSourceRange(); 6110 return ExprError(); 6111 } 6112 } 6113 6114 // C++ [expr.pseudo]p2: 6115 // [...] The cv-unqualified versions of the object type and of the type 6116 // designated by the pseudo-destructor-name shall be the same type. 6117 if (DestructedTypeInfo) { 6118 QualType DestructedType = DestructedTypeInfo->getType(); 6119 SourceLocation DestructedTypeStart 6120 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); 6121 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { 6122 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { 6123 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) 6124 << ObjectType << DestructedType << Base->getSourceRange() 6125 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 6126 6127 // Recover by setting the destructed type to the object type. 6128 DestructedType = ObjectType; 6129 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 6130 DestructedTypeStart); 6131 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 6132 } else if (DestructedType.getObjCLifetime() != 6133 ObjectType.getObjCLifetime()) { 6134 6135 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { 6136 // Okay: just pretend that the user provided the correctly-qualified 6137 // type. 6138 } else { 6139 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) 6140 << ObjectType << DestructedType << Base->getSourceRange() 6141 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 6142 } 6143 6144 // Recover by setting the destructed type to the object type. 6145 DestructedType = ObjectType; 6146 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 6147 DestructedTypeStart); 6148 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 6149 } 6150 } 6151 } 6152 6153 // C++ [expr.pseudo]p2: 6154 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the 6155 // form 6156 // 6157 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 6158 // 6159 // shall designate the same scalar type. 6160 if (ScopeTypeInfo) { 6161 QualType ScopeType = ScopeTypeInfo->getType(); 6162 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && 6163 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { 6164 6165 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), 6166 diag::err_pseudo_dtor_type_mismatch) 6167 << ObjectType << ScopeType << Base->getSourceRange() 6168 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); 6169 6170 ScopeType = QualType(); 6171 ScopeTypeInfo = nullptr; 6172 } 6173 } 6174 6175 Expr *Result 6176 = new (Context) CXXPseudoDestructorExpr(Context, Base, 6177 OpKind == tok::arrow, OpLoc, 6178 SS.getWithLocInContext(Context), 6179 ScopeTypeInfo, 6180 CCLoc, 6181 TildeLoc, 6182 Destructed); 6183 6184 return Result; 6185} 6186 6187ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 6188 SourceLocation OpLoc, 6189 tok::TokenKind OpKind, 6190 CXXScopeSpec &SS, 6191 UnqualifiedId &FirstTypeName, 6192 SourceLocation CCLoc, 6193 SourceLocation TildeLoc, 6194 UnqualifiedId &SecondTypeName) { 6195 assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || 6196 FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && 6197 "Invalid first type name in pseudo-destructor"); 6198 assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || 6199 SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && 6200 "Invalid second type name in pseudo-destructor"); 6201 6202 QualType ObjectType; 6203 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 6204 return ExprError(); 6205 6206 // Compute the object type that we should use for name lookup purposes. Only 6207 // record types and dependent types matter. 6208 ParsedType ObjectTypePtrForLookup; 6209 if (!SS.isSet()) { 6210 if (ObjectType->isRecordType()) 6211 ObjectTypePtrForLookup = ParsedType::make(ObjectType); 6212 else if (ObjectType->isDependentType()) 6213 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); 6214 } 6215 6216 // Convert the name of the type being destructed (following the ~) into a 6217 // type (with source-location information). 6218 QualType DestructedType; 6219 TypeSourceInfo *DestructedTypeInfo = nullptr; 6220 PseudoDestructorTypeStorage Destructed; 6221 if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) { 6222 ParsedType T = getTypeName(*SecondTypeName.Identifier, 6223 SecondTypeName.StartLocation, 6224 S, &SS, true, false, ObjectTypePtrForLookup); 6225 if (!T && 6226 ((SS.isSet() && !computeDeclContext(SS, false)) || 6227 (!SS.isSet() && ObjectType->isDependentType()))) { 6228 // The name of the type being destroyed is a dependent name, and we 6229 // couldn't find anything useful in scope. Just store the identifier and 6230 // it's location, and we'll perform (qualified) name lookup again at 6231 // template instantiation time. 6232 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, 6233 SecondTypeName.StartLocation); 6234 } else if (!T) { 6235 Diag(SecondTypeName.StartLocation, 6236 diag::err_pseudo_dtor_destructor_non_type) 6237 << SecondTypeName.Identifier << ObjectType; 6238 if (isSFINAEContext()) 6239 return ExprError(); 6240 6241 // Recover by assuming we had the right type all along. 6242 DestructedType = ObjectType; 6243 } else 6244 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); 6245 } else { 6246 // Resolve the template-id to a type. 6247 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; 6248 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 6249 TemplateId->NumArgs); 6250 TypeResult T = ActOnTemplateIdType(TemplateId->SS, 6251 TemplateId->TemplateKWLoc, 6252 TemplateId->Template, 6253 TemplateId->TemplateNameLoc, 6254 TemplateId->LAngleLoc, 6255 TemplateArgsPtr, 6256 TemplateId->RAngleLoc); 6257 if (T.isInvalid() || !T.get()) { 6258 // Recover by assuming we had the right type all along. 6259 DestructedType = ObjectType; 6260 } else 6261 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); 6262 } 6263 6264 // If we've performed some kind of recovery, (re-)build the type source 6265 // information. 6266 if (!DestructedType.isNull()) { 6267 if (!DestructedTypeInfo) 6268 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, 6269 SecondTypeName.StartLocation); 6270 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 6271 } 6272 6273 // Convert the name of the scope type (the type prior to '::') into a type. 6274 TypeSourceInfo *ScopeTypeInfo = nullptr; 6275 QualType ScopeType; 6276 if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || 6277 FirstTypeName.Identifier) { 6278 if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) { 6279 ParsedType T = getTypeName(*FirstTypeName.Identifier, 6280 FirstTypeName.StartLocation, 6281 S, &SS, true, false, ObjectTypePtrForLookup); 6282 if (!T) { 6283 Diag(FirstTypeName.StartLocation, 6284 diag::err_pseudo_dtor_destructor_non_type) 6285 << FirstTypeName.Identifier << ObjectType; 6286 6287 if (isSFINAEContext()) 6288 return ExprError(); 6289 6290 // Just drop this type. It's unnecessary anyway. 6291 ScopeType = QualType(); 6292 } else 6293 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); 6294 } else { 6295 // Resolve the template-id to a type. 6296 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; 6297 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 6298 TemplateId->NumArgs); 6299 TypeResult T = ActOnTemplateIdType(TemplateId->SS, 6300 TemplateId->TemplateKWLoc, 6301 TemplateId->Template, 6302 TemplateId->TemplateNameLoc, 6303 TemplateId->LAngleLoc, 6304 TemplateArgsPtr, 6305 TemplateId->RAngleLoc); 6306 if (T.isInvalid() || !T.get()) { 6307 // Recover by dropping this type. 6308 ScopeType = QualType(); 6309 } else 6310 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); 6311 } 6312 } 6313 6314 if (!ScopeType.isNull() && !ScopeTypeInfo) 6315 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, 6316 FirstTypeName.StartLocation); 6317 6318 6319 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, 6320 ScopeTypeInfo, CCLoc, TildeLoc, 6321 Destructed); 6322} 6323 6324ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 6325 SourceLocation OpLoc, 6326 tok::TokenKind OpKind, 6327 SourceLocation TildeLoc, 6328 const DeclSpec& DS) { 6329 QualType ObjectType; 6330 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 6331 return ExprError(); 6332 6333 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(), 6334 false); 6335 6336 TypeLocBuilder TLB; 6337 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 6338 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); 6339 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); 6340 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); 6341 6342 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 6343 nullptr, SourceLocation(), TildeLoc, 6344 Destructed); 6345} 6346 6347ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, 6348 CXXConversionDecl *Method, 6349 bool HadMultipleCandidates) { 6350 if (Method->getParent()->isLambda() && 6351 Method->getConversionType()->isBlockPointerType()) { 6352 // This is a lambda coversion to block pointer; check if the argument 6353 // is a LambdaExpr. 6354 Expr *SubE = E; 6355 CastExpr *CE = dyn_cast<CastExpr>(SubE); 6356 if (CE && CE->getCastKind() == CK_NoOp) 6357 SubE = CE->getSubExpr(); 6358 SubE = SubE->IgnoreParens(); 6359 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) 6360 SubE = BE->getSubExpr(); 6361 if (isa<LambdaExpr>(SubE)) { 6362 // For the conversion to block pointer on a lambda expression, we 6363 // construct a special BlockLiteral instead; this doesn't really make 6364 // a difference in ARC, but outside of ARC the resulting block literal 6365 // follows the normal lifetime rules for block literals instead of being 6366 // autoreleased. 6367 DiagnosticErrorTrap Trap(Diags); 6368 PushExpressionEvaluationContext(PotentiallyEvaluated); 6369 ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(), 6370 E->getExprLoc(), 6371 Method, E); 6372 PopExpressionEvaluationContext(); 6373 6374 if (Exp.isInvalid()) 6375 Diag(E->getExprLoc(), diag::note_lambda_to_block_conv); 6376 return Exp; 6377 } 6378 } 6379 6380 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr, 6381 FoundDecl, Method); 6382 if (Exp.isInvalid()) 6383 return true; 6384 6385 MemberExpr *ME = new (Context) MemberExpr( 6386 Exp.get(), /*IsArrow=*/false, SourceLocation(), Method, SourceLocation(), 6387 Context.BoundMemberTy, VK_RValue, OK_Ordinary); 6388 if (HadMultipleCandidates) 6389 ME->setHadMultipleCandidates(true); 6390 MarkMemberReferenced(ME); 6391 6392 QualType ResultType = Method->getReturnType(); 6393 ExprValueKind VK = Expr::getValueKindForType(ResultType); 6394 ResultType = ResultType.getNonLValueExprType(Context); 6395 6396 CXXMemberCallExpr *CE = 6397 new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK, 6398 Exp.get()->getLocEnd()); 6399 return CE; 6400} 6401 6402ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, 6403 SourceLocation RParen) { 6404 // If the operand is an unresolved lookup expression, the expression is ill- 6405 // formed per [over.over]p1, because overloaded function names cannot be used 6406 // without arguments except in explicit contexts. 6407 ExprResult R = CheckPlaceholderExpr(Operand); 6408 if (R.isInvalid()) 6409 return R; 6410 6411 // The operand may have been modified when checking the placeholder type. 6412 Operand = R.get(); 6413 6414 if (ActiveTemplateInstantiations.empty() && 6415 Operand->HasSideEffects(Context, false)) { 6416 // The expression operand for noexcept is in an unevaluated expression 6417 // context, so side effects could result in unintended consequences. 6418 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); 6419 } 6420 6421 CanThrowResult CanThrow = canThrow(Operand); 6422 return new (Context) 6423 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); 6424} 6425 6426ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, 6427 Expr *Operand, SourceLocation RParen) { 6428 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); 6429} 6430 6431static bool IsSpecialDiscardedValue(Expr *E) { 6432 // In C++11, discarded-value expressions of a certain form are special, 6433 // according to [expr]p10: 6434 // The lvalue-to-rvalue conversion (4.1) is applied only if the 6435 // expression is an lvalue of volatile-qualified type and it has 6436 // one of the following forms: 6437 E = E->IgnoreParens(); 6438 6439 // - id-expression (5.1.1), 6440 if (isa<DeclRefExpr>(E)) 6441 return true; 6442 6443 // - subscripting (5.2.1), 6444 if (isa<ArraySubscriptExpr>(E)) 6445 return true; 6446 6447 // - class member access (5.2.5), 6448 if (isa<MemberExpr>(E)) 6449 return true; 6450 6451 // - indirection (5.3.1), 6452 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) 6453 if (UO->getOpcode() == UO_Deref) 6454 return true; 6455 6456 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 6457 // - pointer-to-member operation (5.5), 6458 if (BO->isPtrMemOp()) 6459 return true; 6460 6461 // - comma expression (5.18) where the right operand is one of the above. 6462 if (BO->getOpcode() == BO_Comma) 6463 return IsSpecialDiscardedValue(BO->getRHS()); 6464 } 6465 6466 // - conditional expression (5.16) where both the second and the third 6467 // operands are one of the above, or 6468 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 6469 return IsSpecialDiscardedValue(CO->getTrueExpr()) && 6470 IsSpecialDiscardedValue(CO->getFalseExpr()); 6471 // The related edge case of "*x ?: *x". 6472 if (BinaryConditionalOperator *BCO = 6473 dyn_cast<BinaryConditionalOperator>(E)) { 6474 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) 6475 return IsSpecialDiscardedValue(OVE->getSourceExpr()) && 6476 IsSpecialDiscardedValue(BCO->getFalseExpr()); 6477 } 6478 6479 // Objective-C++ extensions to the rule. 6480 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E)) 6481 return true; 6482 6483 return false; 6484} 6485 6486/// Perform the conversions required for an expression used in a 6487/// context that ignores the result. 6488ExprResult Sema::IgnoredValueConversions(Expr *E) { 6489 if (E->hasPlaceholderType()) { 6490 ExprResult result = CheckPlaceholderExpr(E); 6491 if (result.isInvalid()) return E; 6492 E = result.get(); 6493 } 6494 6495 // C99 6.3.2.1: 6496 // [Except in specific positions,] an lvalue that does not have 6497 // array type is converted to the value stored in the 6498 // designated object (and is no longer an lvalue). 6499 if (E->isRValue()) { 6500 // In C, function designators (i.e. expressions of function type) 6501 // are r-values, but we still want to do function-to-pointer decay 6502 // on them. This is both technically correct and convenient for 6503 // some clients. 6504 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) 6505 return DefaultFunctionArrayConversion(E); 6506 6507 return E; 6508 } 6509 6510 if (getLangOpts().CPlusPlus) { 6511 // The C++11 standard defines the notion of a discarded-value expression; 6512 // normally, we don't need to do anything to handle it, but if it is a 6513 // volatile lvalue with a special form, we perform an lvalue-to-rvalue 6514 // conversion. 6515 if (getLangOpts().CPlusPlus11 && E->isGLValue() && 6516 E->getType().isVolatileQualified() && 6517 IsSpecialDiscardedValue(E)) { 6518 ExprResult Res = DefaultLvalueConversion(E); 6519 if (Res.isInvalid()) 6520 return E; 6521 E = Res.get(); 6522 } 6523 return E; 6524 } 6525 6526 // GCC seems to also exclude expressions of incomplete enum type. 6527 if (const EnumType *T = E->getType()->getAs<EnumType>()) { 6528 if (!T->getDecl()->isComplete()) { 6529 // FIXME: stupid workaround for a codegen bug! 6530 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); 6531 return E; 6532 } 6533 } 6534 6535 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 6536 if (Res.isInvalid()) 6537 return E; 6538 E = Res.get(); 6539 6540 if (!E->getType()->isVoidType()) 6541 RequireCompleteType(E->getExprLoc(), E->getType(), 6542 diag::err_incomplete_type); 6543 return E; 6544} 6545 6546// If we can unambiguously determine whether Var can never be used 6547// in a constant expression, return true. 6548// - if the variable and its initializer are non-dependent, then 6549// we can unambiguously check if the variable is a constant expression. 6550// - if the initializer is not value dependent - we can determine whether 6551// it can be used to initialize a constant expression. If Init can not 6552// be used to initialize a constant expression we conclude that Var can 6553// never be a constant expression. 6554// - FXIME: if the initializer is dependent, we can still do some analysis and 6555// identify certain cases unambiguously as non-const by using a Visitor: 6556// - such as those that involve odr-use of a ParmVarDecl, involve a new 6557// delete, lambda-expr, dynamic-cast, reinterpret-cast etc... 6558static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 6559 ASTContext &Context) { 6560 if (isa<ParmVarDecl>(Var)) return true; 6561 const VarDecl *DefVD = nullptr; 6562 6563 // If there is no initializer - this can not be a constant expression. 6564 if (!Var->getAnyInitializer(DefVD)) return true; 6565 assert(DefVD); 6566 if (DefVD->isWeak()) return false; 6567 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt(); 6568 6569 Expr *Init = cast<Expr>(Eval->Value); 6570 6571 if (Var->getType()->isDependentType() || Init->isValueDependent()) { 6572 // FIXME: Teach the constant evaluator to deal with the non-dependent parts 6573 // of value-dependent expressions, and use it here to determine whether the 6574 // initializer is a potential constant expression. 6575 return false; 6576 } 6577 6578 return !IsVariableAConstantExpression(Var, Context); 6579} 6580 6581/// \brief Check if the current lambda has any potential captures 6582/// that must be captured by any of its enclosing lambdas that are ready to 6583/// capture. If there is a lambda that can capture a nested 6584/// potential-capture, go ahead and do so. Also, check to see if any 6585/// variables are uncaptureable or do not involve an odr-use so do not 6586/// need to be captured. 6587 6588static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( 6589 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { 6590 6591 assert(!S.isUnevaluatedContext()); 6592 assert(S.CurContext->isDependentContext()); 6593 assert(CurrentLSI->CallOperator == S.CurContext && 6594 "The current call operator must be synchronized with Sema's CurContext"); 6595 6596 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); 6597 6598 ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef( 6599 S.FunctionScopes.data(), S.FunctionScopes.size()); 6600 6601 // All the potentially captureable variables in the current nested 6602 // lambda (within a generic outer lambda), must be captured by an 6603 // outer lambda that is enclosed within a non-dependent context. 6604 const unsigned NumPotentialCaptures = 6605 CurrentLSI->getNumPotentialVariableCaptures(); 6606 for (unsigned I = 0; I != NumPotentialCaptures; ++I) { 6607 Expr *VarExpr = nullptr; 6608 VarDecl *Var = nullptr; 6609 CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr); 6610 // If the variable is clearly identified as non-odr-used and the full 6611 // expression is not instantiation dependent, only then do we not 6612 // need to check enclosing lambda's for speculative captures. 6613 // For e.g.: 6614 // Even though 'x' is not odr-used, it should be captured. 6615 // int test() { 6616 // const int x = 10; 6617 // auto L = [=](auto a) { 6618 // (void) +x + a; 6619 // }; 6620 // } 6621 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && 6622 !IsFullExprInstantiationDependent) 6623 continue; 6624 6625 // If we have a capture-capable lambda for the variable, go ahead and 6626 // capture the variable in that lambda (and all its enclosing lambdas). 6627 if (const Optional<unsigned> Index = 6628 getStackIndexOfNearestEnclosingCaptureCapableLambda( 6629 FunctionScopesArrayRef, Var, S)) { 6630 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); 6631 MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S, 6632 &FunctionScopeIndexOfCapturableLambda); 6633 } 6634 const bool IsVarNeverAConstantExpression = 6635 VariableCanNeverBeAConstantExpression(Var, S.Context); 6636 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { 6637 // This full expression is not instantiation dependent or the variable 6638 // can not be used in a constant expression - which means 6639 // this variable must be odr-used here, so diagnose a 6640 // capture violation early, if the variable is un-captureable. 6641 // This is purely for diagnosing errors early. Otherwise, this 6642 // error would get diagnosed when the lambda becomes capture ready. 6643 QualType CaptureType, DeclRefType; 6644 SourceLocation ExprLoc = VarExpr->getExprLoc(); 6645 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 6646 /*EllipsisLoc*/ SourceLocation(), 6647 /*BuildAndDiagnose*/false, CaptureType, 6648 DeclRefType, nullptr)) { 6649 // We will never be able to capture this variable, and we need 6650 // to be able to in any and all instantiations, so diagnose it. 6651 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 6652 /*EllipsisLoc*/ SourceLocation(), 6653 /*BuildAndDiagnose*/true, CaptureType, 6654 DeclRefType, nullptr); 6655 } 6656 } 6657 } 6658 6659 // Check if 'this' needs to be captured. 6660 if (CurrentLSI->hasPotentialThisCapture()) { 6661 // If we have a capture-capable lambda for 'this', go ahead and capture 6662 // 'this' in that lambda (and all its enclosing lambdas). 6663 if (const Optional<unsigned> Index = 6664 getStackIndexOfNearestEnclosingCaptureCapableLambda( 6665 FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) { 6666 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); 6667 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, 6668 /*Explicit*/ false, /*BuildAndDiagnose*/ true, 6669 &FunctionScopeIndexOfCapturableLambda); 6670 } 6671 } 6672 6673 // Reset all the potential captures at the end of each full-expression. 6674 CurrentLSI->clearPotentialCaptures(); 6675} 6676 6677static ExprResult attemptRecovery(Sema &SemaRef, 6678 const TypoCorrectionConsumer &Consumer, 6679 const TypoCorrection &TC) { 6680 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), 6681 Consumer.getLookupResult().getLookupKind()); 6682 const CXXScopeSpec *SS = Consumer.getSS(); 6683 CXXScopeSpec NewSS; 6684 6685 // Use an approprate CXXScopeSpec for building the expr. 6686 if (auto *NNS = TC.getCorrectionSpecifier()) 6687 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); 6688 else if (SS && !TC.WillReplaceSpecifier()) 6689 NewSS = *SS; 6690 6691 if (auto *ND = TC.getFoundDecl()) { 6692 R.setLookupName(ND->getDeclName()); 6693 R.addDecl(ND); 6694 if (ND->isCXXClassMember()) { 6695 // Figure out the correct naming class to add to the LookupResult. 6696 CXXRecordDecl *Record = nullptr; 6697 if (auto *NNS = TC.getCorrectionSpecifier()) 6698 Record = NNS->getAsType()->getAsCXXRecordDecl(); 6699 if (!Record) 6700 Record = 6701 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); 6702 if (Record) 6703 R.setNamingClass(Record); 6704 6705 // Detect and handle the case where the decl might be an implicit 6706 // member. 6707 bool MightBeImplicitMember; 6708 if (!Consumer.isAddressOfOperand()) 6709 MightBeImplicitMember = true; 6710 else if (!NewSS.isEmpty()) 6711 MightBeImplicitMember = false; 6712 else if (R.isOverloadedResult()) 6713 MightBeImplicitMember = false; 6714 else if (R.isUnresolvableResult()) 6715 MightBeImplicitMember = true; 6716 else 6717 MightBeImplicitMember = isa<FieldDecl>(ND) || 6718 isa<IndirectFieldDecl>(ND) || 6719 isa<MSPropertyDecl>(ND); 6720 6721 if (MightBeImplicitMember) 6722 return SemaRef.BuildPossibleImplicitMemberExpr( 6723 NewSS, /*TemplateKWLoc*/ SourceLocation(), R, 6724 /*TemplateArgs*/ nullptr, /*S*/ nullptr); 6725 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { 6726 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), 6727 Ivar->getIdentifier()); 6728 } 6729 } 6730 6731 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, 6732 /*AcceptInvalidDecl*/ true); 6733} 6734 6735namespace { 6736class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { 6737 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; 6738 6739public: 6740 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) 6741 : TypoExprs(TypoExprs) {} 6742 bool VisitTypoExpr(TypoExpr *TE) { 6743 TypoExprs.insert(TE); 6744 return true; 6745 } 6746}; 6747 6748class TransformTypos : public TreeTransform<TransformTypos> { 6749 typedef TreeTransform<TransformTypos> BaseTransform; 6750 6751 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the 6752 // process of being initialized. 6753 llvm::function_ref<ExprResult(Expr *)> ExprFilter; 6754 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; 6755 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; 6756 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; 6757 6758 /// \brief Emit diagnostics for all of the TypoExprs encountered. 6759 /// If the TypoExprs were successfully corrected, then the diagnostics should 6760 /// suggest the corrections. Otherwise the diagnostics will not suggest 6761 /// anything (having been passed an empty TypoCorrection). 6762 void EmitAllDiagnostics() { 6763 for (auto E : TypoExprs) { 6764 TypoExpr *TE = cast<TypoExpr>(E); 6765 auto &State = SemaRef.getTypoExprState(TE); 6766 if (State.DiagHandler) { 6767 TypoCorrection TC = State.Consumer->getCurrentCorrection(); 6768 ExprResult Replacement = TransformCache[TE]; 6769 6770 // Extract the NamedDecl from the transformed TypoExpr and add it to the 6771 // TypoCorrection, replacing the existing decls. This ensures the right 6772 // NamedDecl is used in diagnostics e.g. in the case where overload 6773 // resolution was used to select one from several possible decls that 6774 // had been stored in the TypoCorrection. 6775 if (auto *ND = getDeclFromExpr( 6776 Replacement.isInvalid() ? nullptr : Replacement.get())) 6777 TC.setCorrectionDecl(ND); 6778 6779 State.DiagHandler(TC); 6780 } 6781 SemaRef.clearDelayedTypo(TE); 6782 } 6783 } 6784 6785 /// \brief If corrections for the first TypoExpr have been exhausted for a 6786 /// given combination of the other TypoExprs, retry those corrections against 6787 /// the next combination of substitutions for the other TypoExprs by advancing 6788 /// to the next potential correction of the second TypoExpr. For the second 6789 /// and subsequent TypoExprs, if its stream of corrections has been exhausted, 6790 /// the stream is reset and the next TypoExpr's stream is advanced by one (a 6791 /// TypoExpr's correction stream is advanced by removing the TypoExpr from the 6792 /// TransformCache). Returns true if there is still any untried combinations 6793 /// of corrections. 6794 bool CheckAndAdvanceTypoExprCorrectionStreams() { 6795 for (auto TE : TypoExprs) { 6796 auto &State = SemaRef.getTypoExprState(TE); 6797 TransformCache.erase(TE); 6798 if (!State.Consumer->finished()) 6799 return true; 6800 State.Consumer->resetCorrectionStream(); 6801 } 6802 return false; 6803 } 6804 6805 NamedDecl *getDeclFromExpr(Expr *E) { 6806 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) 6807 E = OverloadResolution[OE]; 6808 6809 if (!E) 6810 return nullptr; 6811 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 6812 return DRE->getFoundDecl(); 6813 if (auto *ME = dyn_cast<MemberExpr>(E)) 6814 return ME->getFoundDecl(); 6815 // FIXME: Add any other expr types that could be be seen by the delayed typo 6816 // correction TreeTransform for which the corresponding TypoCorrection could 6817 // contain multiple decls. 6818 return nullptr; 6819 } 6820 6821 ExprResult TryTransform(Expr *E) { 6822 Sema::SFINAETrap Trap(SemaRef); 6823 ExprResult Res = TransformExpr(E); 6824 if (Trap.hasErrorOccurred() || Res.isInvalid()) 6825 return ExprError(); 6826 6827 return ExprFilter(Res.get()); 6828 } 6829 6830public: 6831 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) 6832 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} 6833 6834 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, 6835 MultiExprArg Args, 6836 SourceLocation RParenLoc, 6837 Expr *ExecConfig = nullptr) { 6838 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, 6839 RParenLoc, ExecConfig); 6840 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { 6841 if (Result.isUsable()) { 6842 Expr *ResultCall = Result.get(); 6843 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) 6844 ResultCall = BE->getSubExpr(); 6845 if (auto *CE = dyn_cast<CallExpr>(ResultCall)) 6846 OverloadResolution[OE] = CE->getCallee(); 6847 } 6848 } 6849 return Result; 6850 } 6851 6852 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } 6853 6854 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } 6855 6856 ExprResult TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 6857 return Owned(E); 6858 } 6859 6860 ExprResult TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) { 6861 return Owned(E); 6862 } 6863 6864 ExprResult Transform(Expr *E) { 6865 ExprResult Res; 6866 while (true) { 6867 Res = TryTransform(E); 6868 6869 // Exit if either the transform was valid or if there were no TypoExprs 6870 // to transform that still have any untried correction candidates.. 6871 if (!Res.isInvalid() || 6872 !CheckAndAdvanceTypoExprCorrectionStreams()) 6873 break; 6874 } 6875 6876 // Ensure none of the TypoExprs have multiple typo correction candidates 6877 // with the same edit length that pass all the checks and filters. 6878 // TODO: Properly handle various permutations of possible corrections when 6879 // there is more than one potentially ambiguous typo correction. 6880 // Also, disable typo correction while attempting the transform when 6881 // handling potentially ambiguous typo corrections as any new TypoExprs will 6882 // have been introduced by the application of one of the correction 6883 // candidates and add little to no value if corrected. 6884 SemaRef.DisableTypoCorrection = true; 6885 while (!AmbiguousTypoExprs.empty()) { 6886 auto TE = AmbiguousTypoExprs.back(); 6887 auto Cached = TransformCache[TE]; 6888 auto &State = SemaRef.getTypoExprState(TE); 6889 State.Consumer->saveCurrentPosition(); 6890 TransformCache.erase(TE); 6891 if (!TryTransform(E).isInvalid()) { 6892 State.Consumer->resetCorrectionStream(); 6893 TransformCache.erase(TE); 6894 Res = ExprError(); 6895 break; 6896 } 6897 AmbiguousTypoExprs.remove(TE); 6898 State.Consumer->restoreSavedPosition(); 6899 TransformCache[TE] = Cached; 6900 } 6901 SemaRef.DisableTypoCorrection = false; 6902 6903 // Ensure that all of the TypoExprs within the current Expr have been found. 6904 if (!Res.isUsable()) 6905 FindTypoExprs(TypoExprs).TraverseStmt(E); 6906 6907 EmitAllDiagnostics(); 6908 6909 return Res; 6910 } 6911 6912 ExprResult TransformTypoExpr(TypoExpr *E) { 6913 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the 6914 // cached transformation result if there is one and the TypoExpr isn't the 6915 // first one that was encountered. 6916 auto &CacheEntry = TransformCache[E]; 6917 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { 6918 return CacheEntry; 6919 } 6920 6921 auto &State = SemaRef.getTypoExprState(E); 6922 assert(State.Consumer && "Cannot transform a cleared TypoExpr"); 6923 6924 // For the first TypoExpr and an uncached TypoExpr, find the next likely 6925 // typo correction and return it. 6926 while (TypoCorrection TC = State.Consumer->getNextCorrection()) { 6927 if (InitDecl && TC.getFoundDecl() == InitDecl) 6928 continue; 6929 ExprResult NE = State.RecoveryHandler ? 6930 State.RecoveryHandler(SemaRef, E, TC) : 6931 attemptRecovery(SemaRef, *State.Consumer, TC); 6932 if (!NE.isInvalid()) { 6933 // Check whether there may be a second viable correction with the same 6934 // edit distance; if so, remember this TypoExpr may have an ambiguous 6935 // correction so it can be more thoroughly vetted later. 6936 TypoCorrection Next; 6937 if ((Next = State.Consumer->peekNextCorrection()) && 6938 Next.getEditDistance(false) == TC.getEditDistance(false)) { 6939 AmbiguousTypoExprs.insert(E); 6940 } else { 6941 AmbiguousTypoExprs.remove(E); 6942 } 6943 assert(!NE.isUnset() && 6944 "Typo was transformed into a valid-but-null ExprResult"); 6945 return CacheEntry = NE; 6946 } 6947 } 6948 return CacheEntry = ExprError(); 6949 } 6950}; 6951} 6952 6953ExprResult 6954Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, 6955 llvm::function_ref<ExprResult(Expr *)> Filter) { 6956 // If the current evaluation context indicates there are uncorrected typos 6957 // and the current expression isn't guaranteed to not have typos, try to 6958 // resolve any TypoExpr nodes that might be in the expression. 6959 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && 6960 (E->isTypeDependent() || E->isValueDependent() || 6961 E->isInstantiationDependent())) { 6962 auto TyposInContext = ExprEvalContexts.back().NumTypos; 6963 assert(TyposInContext < ~0U && "Recursive call of CorrectDelayedTyposInExpr"); 6964 ExprEvalContexts.back().NumTypos = ~0U; 6965 auto TyposResolved = DelayedTypos.size(); 6966 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); 6967 ExprEvalContexts.back().NumTypos = TyposInContext; 6968 TyposResolved -= DelayedTypos.size(); 6969 if (Result.isInvalid() || Result.get() != E) { 6970 ExprEvalContexts.back().NumTypos -= TyposResolved; 6971 return Result; 6972 } 6973 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?"); 6974 } 6975 return E; 6976} 6977 6978ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, 6979 bool DiscardedValue, 6980 bool IsConstexpr, 6981 bool IsLambdaInitCaptureInitializer) { 6982 ExprResult FullExpr = FE; 6983 6984 if (!FullExpr.get()) 6985 return ExprError(); 6986 6987 // If we are an init-expression in a lambdas init-capture, we should not 6988 // diagnose an unexpanded pack now (will be diagnosed once lambda-expr 6989 // containing full-expression is done). 6990 // template<class ... Ts> void test(Ts ... t) { 6991 // test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now. 6992 // return a; 6993 // }() ...); 6994 // } 6995 // FIXME: This is a hack. It would be better if we pushed the lambda scope 6996 // when we parse the lambda introducer, and teach capturing (but not 6997 // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a 6998 // corresponding class yet (that is, have LambdaScopeInfo either represent a 6999 // lambda where we've entered the introducer but not the body, or represent a 7000 // lambda where we've entered the body, depending on where the 7001 // parser/instantiation has got to). 7002 if (!IsLambdaInitCaptureInitializer && 7003 DiagnoseUnexpandedParameterPack(FullExpr.get())) 7004 return ExprError(); 7005 7006 // Top-level expressions default to 'id' when we're in a debugger. 7007 if (DiscardedValue && getLangOpts().DebuggerCastResultToId && 7008 FullExpr.get()->getType() == Context.UnknownAnyTy) { 7009 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); 7010 if (FullExpr.isInvalid()) 7011 return ExprError(); 7012 } 7013 7014 if (DiscardedValue) { 7015 FullExpr = CheckPlaceholderExpr(FullExpr.get()); 7016 if (FullExpr.isInvalid()) 7017 return ExprError(); 7018 7019 FullExpr = IgnoredValueConversions(FullExpr.get()); 7020 if (FullExpr.isInvalid()) 7021 return ExprError(); 7022 } 7023 7024 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get()); 7025 if (FullExpr.isInvalid()) 7026 return ExprError(); 7027 7028 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); 7029 7030 // At the end of this full expression (which could be a deeply nested 7031 // lambda), if there is a potential capture within the nested lambda, 7032 // have the outer capture-able lambda try and capture it. 7033 // Consider the following code: 7034 // void f(int, int); 7035 // void f(const int&, double); 7036 // void foo() { 7037 // const int x = 10, y = 20; 7038 // auto L = [=](auto a) { 7039 // auto M = [=](auto b) { 7040 // f(x, b); <-- requires x to be captured by L and M 7041 // f(y, a); <-- requires y to be captured by L, but not all Ms 7042 // }; 7043 // }; 7044 // } 7045 7046 // FIXME: Also consider what happens for something like this that involves 7047 // the gnu-extension statement-expressions or even lambda-init-captures: 7048 // void f() { 7049 // const int n = 0; 7050 // auto L = [&](auto a) { 7051 // +n + ({ 0; a; }); 7052 // }; 7053 // } 7054 // 7055 // Here, we see +n, and then the full-expression 0; ends, so we don't 7056 // capture n (and instead remove it from our list of potential captures), 7057 // and then the full-expression +n + ({ 0; }); ends, but it's too late 7058 // for us to see that we need to capture n after all. 7059 7060 LambdaScopeInfo *const CurrentLSI = getCurLambda(); 7061 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 7062 // even if CurContext is not a lambda call operator. Refer to that Bug Report 7063 // for an example of the code that might cause this asynchrony. 7064 // By ensuring we are in the context of a lambda's call operator 7065 // we can fix the bug (we only need to check whether we need to capture 7066 // if we are within a lambda's body); but per the comments in that 7067 // PR, a proper fix would entail : 7068 // "Alternative suggestion: 7069 // - Add to Sema an integer holding the smallest (outermost) scope 7070 // index that we are *lexically* within, and save/restore/set to 7071 // FunctionScopes.size() in InstantiatingTemplate's 7072 // constructor/destructor. 7073 // - Teach the handful of places that iterate over FunctionScopes to 7074 // stop at the outermost enclosing lexical scope." 7075 const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext); 7076 if (IsInLambdaDeclContext && CurrentLSI && 7077 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) 7078 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, 7079 *this); 7080 return MaybeCreateExprWithCleanups(FullExpr); 7081} 7082 7083StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { 7084 if (!FullStmt) return StmtError(); 7085 7086 return MaybeCreateStmtWithCleanups(FullStmt); 7087} 7088 7089Sema::IfExistsResult 7090Sema::CheckMicrosoftIfExistsSymbol(Scope *S, 7091 CXXScopeSpec &SS, 7092 const DeclarationNameInfo &TargetNameInfo) { 7093 DeclarationName TargetName = TargetNameInfo.getName(); 7094 if (!TargetName) 7095 return IER_DoesNotExist; 7096 7097 // If the name itself is dependent, then the result is dependent. 7098 if (TargetName.isDependentName()) 7099 return IER_Dependent; 7100 7101 // Do the redeclaration lookup in the current scope. 7102 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, 7103 Sema::NotForRedeclaration); 7104 LookupParsedName(R, S, &SS); 7105 R.suppressDiagnostics(); 7106 7107 switch (R.getResultKind()) { 7108 case LookupResult::Found: 7109 case LookupResult::FoundOverloaded: 7110 case LookupResult::FoundUnresolvedValue: 7111 case LookupResult::Ambiguous: 7112 return IER_Exists; 7113 7114 case LookupResult::NotFound: 7115 return IER_DoesNotExist; 7116 7117 case LookupResult::NotFoundInCurrentInstantiation: 7118 return IER_Dependent; 7119 } 7120 7121 llvm_unreachable("Invalid LookupResult Kind!"); 7122} 7123 7124Sema::IfExistsResult 7125Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, 7126 bool IsIfExists, CXXScopeSpec &SS, 7127 UnqualifiedId &Name) { 7128 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 7129 7130 // Check for unexpanded parameter packs. 7131 SmallVector<UnexpandedParameterPack, 4> Unexpanded; 7132 collectUnexpandedParameterPacks(SS, Unexpanded); 7133 collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded); 7134 if (!Unexpanded.empty()) { 7135 DiagnoseUnexpandedParameterPacks(KeywordLoc, 7136 IsIfExists? UPPC_IfExists 7137 : UPPC_IfNotExists, 7138 Unexpanded); 7139 return IER_Error; 7140 } 7141 7142 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); 7143} 7144