1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Claire Maurice
5// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
7//
8// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
12#ifndef EIGEN_COMPLEX_SCHUR_H
13#define EIGEN_COMPLEX_SCHUR_H
14
15#include "./HessenbergDecomposition.h"
16
17namespace Eigen {
18
19namespace internal {
20template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
21}
22
23/** \eigenvalues_module \ingroup Eigenvalues_Module
24  *
25  *
26  * \class ComplexSchur
27  *
28  * \brief Performs a complex Schur decomposition of a real or complex square matrix
29  *
30  * \tparam _MatrixType the type of the matrix of which we are
31  * computing the Schur decomposition; this is expected to be an
32  * instantiation of the Matrix class template.
33  *
34  * Given a real or complex square matrix A, this class computes the
35  * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary
36  * complex matrix, and T is a complex upper triangular matrix.  The
37  * diagonal of the matrix T corresponds to the eigenvalues of the
38  * matrix A.
39  *
40  * Call the function compute() to compute the Schur decomposition of
41  * a given matrix. Alternatively, you can use the
42  * ComplexSchur(const MatrixType&, bool) constructor which computes
43  * the Schur decomposition at construction time. Once the
44  * decomposition is computed, you can use the matrixU() and matrixT()
45  * functions to retrieve the matrices U and V in the decomposition.
46  *
47  * \note This code is inspired from Jampack
48  *
49  * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver
50  */
51template<typename _MatrixType> class ComplexSchur
52{
53  public:
54    typedef _MatrixType MatrixType;
55    enum {
56      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
57      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
58      Options = MatrixType::Options,
59      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
60      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
61    };
62
63    /** \brief Scalar type for matrices of type \p _MatrixType. */
64    typedef typename MatrixType::Scalar Scalar;
65    typedef typename NumTraits<Scalar>::Real RealScalar;
66    typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
67
68    /** \brief Complex scalar type for \p _MatrixType.
69      *
70      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
71      * \c float or \c double) and just \c Scalar if #Scalar is
72      * complex.
73      */
74    typedef std::complex<RealScalar> ComplexScalar;
75
76    /** \brief Type for the matrices in the Schur decomposition.
77      *
78      * This is a square matrix with entries of type #ComplexScalar.
79      * The size is the same as the size of \p _MatrixType.
80      */
81    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
82
83    /** \brief Default constructor.
84      *
85      * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed.
86      *
87      * The default constructor is useful in cases in which the user
88      * intends to perform decompositions via compute().  The \p size
89      * parameter is only used as a hint. It is not an error to give a
90      * wrong \p size, but it may impair performance.
91      *
92      * \sa compute() for an example.
93      */
94    explicit ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
95      : m_matT(size,size),
96        m_matU(size,size),
97        m_hess(size),
98        m_isInitialized(false),
99        m_matUisUptodate(false),
100        m_maxIters(-1)
101    {}
102
103    /** \brief Constructor; computes Schur decomposition of given matrix.
104      *
105      * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
106      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
107      *
108      * This constructor calls compute() to compute the Schur decomposition.
109      *
110      * \sa matrixT() and matrixU() for examples.
111      */
112    template<typename InputType>
113    explicit ComplexSchur(const EigenBase<InputType>& matrix, bool computeU = true)
114      : m_matT(matrix.rows(),matrix.cols()),
115        m_matU(matrix.rows(),matrix.cols()),
116        m_hess(matrix.rows()),
117        m_isInitialized(false),
118        m_matUisUptodate(false),
119        m_maxIters(-1)
120    {
121      compute(matrix.derived(), computeU);
122    }
123
124    /** \brief Returns the unitary matrix in the Schur decomposition.
125      *
126      * \returns A const reference to the matrix U.
127      *
128      * It is assumed that either the constructor
129      * ComplexSchur(const MatrixType& matrix, bool computeU) or the
130      * member function compute(const MatrixType& matrix, bool computeU)
131      * has been called before to compute the Schur decomposition of a
132      * matrix, and that \p computeU was set to true (the default
133      * value).
134      *
135      * Example: \include ComplexSchur_matrixU.cpp
136      * Output: \verbinclude ComplexSchur_matrixU.out
137      */
138    const ComplexMatrixType& matrixU() const
139    {
140      eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
141      eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
142      return m_matU;
143    }
144
145    /** \brief Returns the triangular matrix in the Schur decomposition.
146      *
147      * \returns A const reference to the matrix T.
148      *
149      * It is assumed that either the constructor
150      * ComplexSchur(const MatrixType& matrix, bool computeU) or the
151      * member function compute(const MatrixType& matrix, bool computeU)
152      * has been called before to compute the Schur decomposition of a
153      * matrix.
154      *
155      * Note that this function returns a plain square matrix. If you want to reference
156      * only the upper triangular part, use:
157      * \code schur.matrixT().triangularView<Upper>() \endcode
158      *
159      * Example: \include ComplexSchur_matrixT.cpp
160      * Output: \verbinclude ComplexSchur_matrixT.out
161      */
162    const ComplexMatrixType& matrixT() const
163    {
164      eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
165      return m_matT;
166    }
167
168    /** \brief Computes Schur decomposition of given matrix.
169      *
170      * \param[in]  matrix  Square matrix whose Schur decomposition is to be computed.
171      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
172
173      * \returns    Reference to \c *this
174      *
175      * The Schur decomposition is computed by first reducing the
176      * matrix to Hessenberg form using the class
177      * HessenbergDecomposition. The Hessenberg matrix is then reduced
178      * to triangular form by performing QR iterations with a single
179      * shift. The cost of computing the Schur decomposition depends
180      * on the number of iterations; as a rough guide, it may be taken
181      * on the number of iterations; as a rough guide, it may be taken
182      * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops
183      * if \a computeU is false.
184      *
185      * Example: \include ComplexSchur_compute.cpp
186      * Output: \verbinclude ComplexSchur_compute.out
187      *
188      * \sa compute(const MatrixType&, bool, Index)
189      */
190    template<typename InputType>
191    ComplexSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
192
193    /** \brief Compute Schur decomposition from a given Hessenberg matrix
194     *  \param[in] matrixH Matrix in Hessenberg form H
195     *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
196     *  \param computeU Computes the matriX U of the Schur vectors
197     * \return Reference to \c *this
198     *
199     *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH
200     *  using either the class HessenbergDecomposition or another mean.
201     *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H
202     *  When computeU is true, this routine computes the matrix U such that
203     *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
204     *
205     * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
206     * is not available, the user should give an identity matrix (Q.setIdentity())
207     *
208     * \sa compute(const MatrixType&, bool)
209     */
210    template<typename HessMatrixType, typename OrthMatrixType>
211    ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU=true);
212
213    /** \brief Reports whether previous computation was successful.
214      *
215      * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
216      */
217    ComputationInfo info() const
218    {
219      eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
220      return m_info;
221    }
222
223    /** \brief Sets the maximum number of iterations allowed.
224      *
225      * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
226      * of the matrix.
227      */
228    ComplexSchur& setMaxIterations(Index maxIters)
229    {
230      m_maxIters = maxIters;
231      return *this;
232    }
233
234    /** \brief Returns the maximum number of iterations. */
235    Index getMaxIterations()
236    {
237      return m_maxIters;
238    }
239
240    /** \brief Maximum number of iterations per row.
241      *
242      * If not otherwise specified, the maximum number of iterations is this number times the size of the
243      * matrix. It is currently set to 30.
244      */
245    static const int m_maxIterationsPerRow = 30;
246
247  protected:
248    ComplexMatrixType m_matT, m_matU;
249    HessenbergDecomposition<MatrixType> m_hess;
250    ComputationInfo m_info;
251    bool m_isInitialized;
252    bool m_matUisUptodate;
253    Index m_maxIters;
254
255  private:
256    bool subdiagonalEntryIsNeglegible(Index i);
257    ComplexScalar computeShift(Index iu, Index iter);
258    void reduceToTriangularForm(bool computeU);
259    friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
260};
261
262/** If m_matT(i+1,i) is neglegible in floating point arithmetic
263  * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and
264  * return true, else return false. */
265template<typename MatrixType>
266inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
267{
268  RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1));
269  RealScalar sd = numext::norm1(m_matT.coeff(i+1,i));
270  if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
271  {
272    m_matT.coeffRef(i+1,i) = ComplexScalar(0);
273    return true;
274  }
275  return false;
276}
277
278
279/** Compute the shift in the current QR iteration. */
280template<typename MatrixType>
281typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
282{
283  using std::abs;
284  if (iter == 10 || iter == 20)
285  {
286    // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
287    return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2)));
288  }
289
290  // compute the shift as one of the eigenvalues of t, the 2x2
291  // diagonal block on the bottom of the active submatrix
292  Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
293  RealScalar normt = t.cwiseAbs().sum();
294  t /= normt;     // the normalization by sf is to avoid under/overflow
295
296  ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
297  ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
298  ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
299  ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
300  ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
301  ComplexScalar eival1 = (trace + disc) / RealScalar(2);
302  ComplexScalar eival2 = (trace - disc) / RealScalar(2);
303
304  if(numext::norm1(eival1) > numext::norm1(eival2))
305    eival2 = det / eival1;
306  else
307    eival1 = det / eival2;
308
309  // choose the eigenvalue closest to the bottom entry of the diagonal
310  if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1)))
311    return normt * eival1;
312  else
313    return normt * eival2;
314}
315
316
317template<typename MatrixType>
318template<typename InputType>
319ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
320{
321  m_matUisUptodate = false;
322  eigen_assert(matrix.cols() == matrix.rows());
323
324  if(matrix.cols() == 1)
325  {
326    m_matT = matrix.derived().template cast<ComplexScalar>();
327    if(computeU)  m_matU = ComplexMatrixType::Identity(1,1);
328    m_info = Success;
329    m_isInitialized = true;
330    m_matUisUptodate = computeU;
331    return *this;
332  }
333
334  internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix.derived(), computeU);
335  computeFromHessenberg(m_matT, m_matU, computeU);
336  return *this;
337}
338
339template<typename MatrixType>
340template<typename HessMatrixType, typename OrthMatrixType>
341ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
342{
343  m_matT = matrixH;
344  if(computeU)
345    m_matU = matrixQ;
346  reduceToTriangularForm(computeU);
347  return *this;
348}
349namespace internal {
350
351/* Reduce given matrix to Hessenberg form */
352template<typename MatrixType, bool IsComplex>
353struct complex_schur_reduce_to_hessenberg
354{
355  // this is the implementation for the case IsComplex = true
356  static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
357  {
358    _this.m_hess.compute(matrix);
359    _this.m_matT = _this.m_hess.matrixH();
360    if(computeU)  _this.m_matU = _this.m_hess.matrixQ();
361  }
362};
363
364template<typename MatrixType>
365struct complex_schur_reduce_to_hessenberg<MatrixType, false>
366{
367  static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
368  {
369    typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
370
371    // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
372    _this.m_hess.compute(matrix);
373    _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
374    if(computeU)
375    {
376      // This may cause an allocation which seems to be avoidable
377      MatrixType Q = _this.m_hess.matrixQ();
378      _this.m_matU = Q.template cast<ComplexScalar>();
379    }
380  }
381};
382
383} // end namespace internal
384
385// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
386template<typename MatrixType>
387void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
388{
389  Index maxIters = m_maxIters;
390  if (maxIters == -1)
391    maxIters = m_maxIterationsPerRow * m_matT.rows();
392
393  // The matrix m_matT is divided in three parts.
394  // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
395  // Rows il,...,iu is the part we are working on (the active submatrix).
396  // Rows iu+1,...,end are already brought in triangular form.
397  Index iu = m_matT.cols() - 1;
398  Index il;
399  Index iter = 0; // number of iterations we are working on the (iu,iu) element
400  Index totalIter = 0; // number of iterations for whole matrix
401
402  while(true)
403  {
404    // find iu, the bottom row of the active submatrix
405    while(iu > 0)
406    {
407      if(!subdiagonalEntryIsNeglegible(iu-1)) break;
408      iter = 0;
409      --iu;
410    }
411
412    // if iu is zero then we are done; the whole matrix is triangularized
413    if(iu==0) break;
414
415    // if we spent too many iterations, we give up
416    iter++;
417    totalIter++;
418    if(totalIter > maxIters) break;
419
420    // find il, the top row of the active submatrix
421    il = iu-1;
422    while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
423    {
424      --il;
425    }
426
427    /* perform the QR step using Givens rotations. The first rotation
428       creates a bulge; the (il+2,il) element becomes nonzero. This
429       bulge is chased down to the bottom of the active submatrix. */
430
431    ComplexScalar shift = computeShift(iu, iter);
432    JacobiRotation<ComplexScalar> rot;
433    rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
434    m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
435    m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
436    if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
437
438    for(Index i=il+1 ; i<iu ; i++)
439    {
440      rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
441      m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
442      m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
443      m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
444      if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
445    }
446  }
447
448  if(totalIter <= maxIters)
449    m_info = Success;
450  else
451    m_info = NoConvergence;
452
453  m_isInitialized = true;
454  m_matUisUptodate = computeU;
455}
456
457} // end namespace Eigen
458
459#endif // EIGEN_COMPLEX_SCHUR_H
460