1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_EIGENSOLVER_H
12#define EIGEN_EIGENSOLVER_H
13
14#include "./RealSchur.h"
15
16namespace Eigen {
17
18/** \eigenvalues_module \ingroup Eigenvalues_Module
19  *
20  *
21  * \class EigenSolver
22  *
23  * \brief Computes eigenvalues and eigenvectors of general matrices
24  *
25  * \tparam _MatrixType the type of the matrix of which we are computing the
26  * eigendecomposition; this is expected to be an instantiation of the Matrix
27  * class template. Currently, only real matrices are supported.
28  *
29  * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
30  * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$.  If
31  * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
32  * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
33  * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
34  * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition.
35  *
36  * The eigenvalues and eigenvectors of a matrix may be complex, even when the
37  * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D
38  * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the
39  * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to
40  * have blocks of the form
41  * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f]
42  * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal.  These
43  * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call
44  * this variant of the eigendecomposition the pseudo-eigendecomposition.
45  *
46  * Call the function compute() to compute the eigenvalues and eigenvectors of
47  * a given matrix. Alternatively, you can use the
48  * EigenSolver(const MatrixType&, bool) constructor which computes the
49  * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
50  * eigenvectors are computed, they can be retrieved with the eigenvalues() and
51  * eigenvectors() functions. The pseudoEigenvalueMatrix() and
52  * pseudoEigenvectors() methods allow the construction of the
53  * pseudo-eigendecomposition.
54  *
55  * The documentation for EigenSolver(const MatrixType&, bool) contains an
56  * example of the typical use of this class.
57  *
58  * \note The implementation is adapted from
59  * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
60  * Their code is based on EISPACK.
61  *
62  * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
63  */
64template<typename _MatrixType> class EigenSolver
65{
66  public:
67
68    /** \brief Synonym for the template parameter \p _MatrixType. */
69    typedef _MatrixType MatrixType;
70
71    enum {
72      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
73      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
74      Options = MatrixType::Options,
75      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
76      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
77    };
78
79    /** \brief Scalar type for matrices of type #MatrixType. */
80    typedef typename MatrixType::Scalar Scalar;
81    typedef typename NumTraits<Scalar>::Real RealScalar;
82    typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
83
84    /** \brief Complex scalar type for #MatrixType.
85      *
86      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
87      * \c float or \c double) and just \c Scalar if #Scalar is
88      * complex.
89      */
90    typedef std::complex<RealScalar> ComplexScalar;
91
92    /** \brief Type for vector of eigenvalues as returned by eigenvalues().
93      *
94      * This is a column vector with entries of type #ComplexScalar.
95      * The length of the vector is the size of #MatrixType.
96      */
97    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
98
99    /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
100      *
101      * This is a square matrix with entries of type #ComplexScalar.
102      * The size is the same as the size of #MatrixType.
103      */
104    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
105
106    /** \brief Default constructor.
107      *
108      * The default constructor is useful in cases in which the user intends to
109      * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
110      *
111      * \sa compute() for an example.
112      */
113    EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {}
114
115    /** \brief Default constructor with memory preallocation
116      *
117      * Like the default constructor but with preallocation of the internal data
118      * according to the specified problem \a size.
119      * \sa EigenSolver()
120      */
121    explicit EigenSolver(Index size)
122      : m_eivec(size, size),
123        m_eivalues(size),
124        m_isInitialized(false),
125        m_eigenvectorsOk(false),
126        m_realSchur(size),
127        m_matT(size, size),
128        m_tmp(size)
129    {}
130
131    /** \brief Constructor; computes eigendecomposition of given matrix.
132      *
133      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
134      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
135      *    eigenvalues are computed; if false, only the eigenvalues are
136      *    computed.
137      *
138      * This constructor calls compute() to compute the eigenvalues
139      * and eigenvectors.
140      *
141      * Example: \include EigenSolver_EigenSolver_MatrixType.cpp
142      * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out
143      *
144      * \sa compute()
145      */
146    template<typename InputType>
147    explicit EigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true)
148      : m_eivec(matrix.rows(), matrix.cols()),
149        m_eivalues(matrix.cols()),
150        m_isInitialized(false),
151        m_eigenvectorsOk(false),
152        m_realSchur(matrix.cols()),
153        m_matT(matrix.rows(), matrix.cols()),
154        m_tmp(matrix.cols())
155    {
156      compute(matrix.derived(), computeEigenvectors);
157    }
158
159    /** \brief Returns the eigenvectors of given matrix.
160      *
161      * \returns  %Matrix whose columns are the (possibly complex) eigenvectors.
162      *
163      * \pre Either the constructor
164      * EigenSolver(const MatrixType&,bool) or the member function
165      * compute(const MatrixType&, bool) has been called before, and
166      * \p computeEigenvectors was set to true (the default).
167      *
168      * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
169      * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
170      * eigenvectors are normalized to have (Euclidean) norm equal to one. The
171      * matrix returned by this function is the matrix \f$ V \f$ in the
172      * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists.
173      *
174      * Example: \include EigenSolver_eigenvectors.cpp
175      * Output: \verbinclude EigenSolver_eigenvectors.out
176      *
177      * \sa eigenvalues(), pseudoEigenvectors()
178      */
179    EigenvectorsType eigenvectors() const;
180
181    /** \brief Returns the pseudo-eigenvectors of given matrix.
182      *
183      * \returns  Const reference to matrix whose columns are the pseudo-eigenvectors.
184      *
185      * \pre Either the constructor
186      * EigenSolver(const MatrixType&,bool) or the member function
187      * compute(const MatrixType&, bool) has been called before, and
188      * \p computeEigenvectors was set to true (the default).
189      *
190      * The real matrix \f$ V \f$ returned by this function and the
191      * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix()
192      * satisfy \f$ AV = VD \f$.
193      *
194      * Example: \include EigenSolver_pseudoEigenvectors.cpp
195      * Output: \verbinclude EigenSolver_pseudoEigenvectors.out
196      *
197      * \sa pseudoEigenvalueMatrix(), eigenvectors()
198      */
199    const MatrixType& pseudoEigenvectors() const
200    {
201      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
202      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
203      return m_eivec;
204    }
205
206    /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition.
207      *
208      * \returns  A block-diagonal matrix.
209      *
210      * \pre Either the constructor
211      * EigenSolver(const MatrixType&,bool) or the member function
212      * compute(const MatrixType&, bool) has been called before.
213      *
214      * The matrix \f$ D \f$ returned by this function is real and
215      * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2
216      * blocks of the form
217      * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$.
218      * These blocks are not sorted in any particular order.
219      * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by
220      * pseudoEigenvectors() satisfy \f$ AV = VD \f$.
221      *
222      * \sa pseudoEigenvectors() for an example, eigenvalues()
223      */
224    MatrixType pseudoEigenvalueMatrix() const;
225
226    /** \brief Returns the eigenvalues of given matrix.
227      *
228      * \returns A const reference to the column vector containing the eigenvalues.
229      *
230      * \pre Either the constructor
231      * EigenSolver(const MatrixType&,bool) or the member function
232      * compute(const MatrixType&, bool) has been called before.
233      *
234      * The eigenvalues are repeated according to their algebraic multiplicity,
235      * so there are as many eigenvalues as rows in the matrix. The eigenvalues
236      * are not sorted in any particular order.
237      *
238      * Example: \include EigenSolver_eigenvalues.cpp
239      * Output: \verbinclude EigenSolver_eigenvalues.out
240      *
241      * \sa eigenvectors(), pseudoEigenvalueMatrix(),
242      *     MatrixBase::eigenvalues()
243      */
244    const EigenvalueType& eigenvalues() const
245    {
246      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
247      return m_eivalues;
248    }
249
250    /** \brief Computes eigendecomposition of given matrix.
251      *
252      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
253      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
254      *    eigenvalues are computed; if false, only the eigenvalues are
255      *    computed.
256      * \returns    Reference to \c *this
257      *
258      * This function computes the eigenvalues of the real matrix \p matrix.
259      * The eigenvalues() function can be used to retrieve them.  If
260      * \p computeEigenvectors is true, then the eigenvectors are also computed
261      * and can be retrieved by calling eigenvectors().
262      *
263      * The matrix is first reduced to real Schur form using the RealSchur
264      * class. The Schur decomposition is then used to compute the eigenvalues
265      * and eigenvectors.
266      *
267      * The cost of the computation is dominated by the cost of the
268      * Schur decomposition, which is very approximately \f$ 25n^3 \f$
269      * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors
270      * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false.
271      *
272      * This method reuses of the allocated data in the EigenSolver object.
273      *
274      * Example: \include EigenSolver_compute.cpp
275      * Output: \verbinclude EigenSolver_compute.out
276      */
277    template<typename InputType>
278    EigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true);
279
280    /** \returns NumericalIssue if the input contains INF or NaN values or overflow occured. Returns Success otherwise. */
281    ComputationInfo info() const
282    {
283      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
284      return m_info;
285    }
286
287    /** \brief Sets the maximum number of iterations allowed. */
288    EigenSolver& setMaxIterations(Index maxIters)
289    {
290      m_realSchur.setMaxIterations(maxIters);
291      return *this;
292    }
293
294    /** \brief Returns the maximum number of iterations. */
295    Index getMaxIterations()
296    {
297      return m_realSchur.getMaxIterations();
298    }
299
300  private:
301    void doComputeEigenvectors();
302
303  protected:
304
305    static void check_template_parameters()
306    {
307      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
308      EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
309    }
310
311    MatrixType m_eivec;
312    EigenvalueType m_eivalues;
313    bool m_isInitialized;
314    bool m_eigenvectorsOk;
315    ComputationInfo m_info;
316    RealSchur<MatrixType> m_realSchur;
317    MatrixType m_matT;
318
319    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
320    ColumnVectorType m_tmp;
321};
322
323template<typename MatrixType>
324MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
325{
326  eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
327  const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
328  Index n = m_eivalues.rows();
329  MatrixType matD = MatrixType::Zero(n,n);
330  for (Index i=0; i<n; ++i)
331  {
332    if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)), precision))
333      matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i));
334    else
335    {
336      matD.template block<2,2>(i,i) <<  numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)),
337                                       -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i));
338      ++i;
339    }
340  }
341  return matD;
342}
343
344template<typename MatrixType>
345typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const
346{
347  eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
348  eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
349  const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
350  Index n = m_eivec.cols();
351  EigenvectorsType matV(n,n);
352  for (Index j=0; j<n; ++j)
353  {
354    if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j)), precision) || j+1==n)
355    {
356      // we have a real eigen value
357      matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
358      matV.col(j).normalize();
359    }
360    else
361    {
362      // we have a pair of complex eigen values
363      for (Index i=0; i<n; ++i)
364      {
365        matV.coeffRef(i,j)   = ComplexScalar(m_eivec.coeff(i,j),  m_eivec.coeff(i,j+1));
366        matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
367      }
368      matV.col(j).normalize();
369      matV.col(j+1).normalize();
370      ++j;
371    }
372  }
373  return matV;
374}
375
376template<typename MatrixType>
377template<typename InputType>
378EigenSolver<MatrixType>&
379EigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors)
380{
381  check_template_parameters();
382
383  using std::sqrt;
384  using std::abs;
385  using numext::isfinite;
386  eigen_assert(matrix.cols() == matrix.rows());
387
388  // Reduce to real Schur form.
389  m_realSchur.compute(matrix.derived(), computeEigenvectors);
390
391  m_info = m_realSchur.info();
392
393  if (m_info == Success)
394  {
395    m_matT = m_realSchur.matrixT();
396    if (computeEigenvectors)
397      m_eivec = m_realSchur.matrixU();
398
399    // Compute eigenvalues from matT
400    m_eivalues.resize(matrix.cols());
401    Index i = 0;
402    while (i < matrix.cols())
403    {
404      if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0))
405      {
406        m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
407        if(!(isfinite)(m_eivalues.coeffRef(i)))
408        {
409          m_isInitialized = true;
410          m_eigenvectorsOk = false;
411          m_info = NumericalIssue;
412          return *this;
413        }
414        ++i;
415      }
416      else
417      {
418        Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1));
419        Scalar z;
420        // Compute z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
421        // without overflow
422        {
423          Scalar t0 = m_matT.coeff(i+1, i);
424          Scalar t1 = m_matT.coeff(i, i+1);
425          Scalar maxval = numext::maxi<Scalar>(abs(p),numext::maxi<Scalar>(abs(t0),abs(t1)));
426          t0 /= maxval;
427          t1 /= maxval;
428          Scalar p0 = p/maxval;
429          z = maxval * sqrt(abs(p0 * p0 + t0 * t1));
430        }
431
432        m_eivalues.coeffRef(i)   = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z);
433        m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z);
434        if(!((isfinite)(m_eivalues.coeffRef(i)) && (isfinite)(m_eivalues.coeffRef(i+1))))
435        {
436          m_isInitialized = true;
437          m_eigenvectorsOk = false;
438          m_info = NumericalIssue;
439          return *this;
440        }
441        i += 2;
442      }
443    }
444
445    // Compute eigenvectors.
446    if (computeEigenvectors)
447      doComputeEigenvectors();
448  }
449
450  m_isInitialized = true;
451  m_eigenvectorsOk = computeEigenvectors;
452
453  return *this;
454}
455
456
457template<typename MatrixType>
458void EigenSolver<MatrixType>::doComputeEigenvectors()
459{
460  using std::abs;
461  const Index size = m_eivec.cols();
462  const Scalar eps = NumTraits<Scalar>::epsilon();
463
464  // inefficient! this is already computed in RealSchur
465  Scalar norm(0);
466  for (Index j = 0; j < size; ++j)
467  {
468    norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum();
469  }
470
471  // Backsubstitute to find vectors of upper triangular form
472  if (norm == Scalar(0))
473  {
474    return;
475  }
476
477  for (Index n = size-1; n >= 0; n--)
478  {
479    Scalar p = m_eivalues.coeff(n).real();
480    Scalar q = m_eivalues.coeff(n).imag();
481
482    // Scalar vector
483    if (q == Scalar(0))
484    {
485      Scalar lastr(0), lastw(0);
486      Index l = n;
487
488      m_matT.coeffRef(n,n) = Scalar(1);
489      for (Index i = n-1; i >= 0; i--)
490      {
491        Scalar w = m_matT.coeff(i,i) - p;
492        Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
493
494        if (m_eivalues.coeff(i).imag() < Scalar(0))
495        {
496          lastw = w;
497          lastr = r;
498        }
499        else
500        {
501          l = i;
502          if (m_eivalues.coeff(i).imag() == Scalar(0))
503          {
504            if (w != Scalar(0))
505              m_matT.coeffRef(i,n) = -r / w;
506            else
507              m_matT.coeffRef(i,n) = -r / (eps * norm);
508          }
509          else // Solve real equations
510          {
511            Scalar x = m_matT.coeff(i,i+1);
512            Scalar y = m_matT.coeff(i+1,i);
513            Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
514            Scalar t = (x * lastr - lastw * r) / denom;
515            m_matT.coeffRef(i,n) = t;
516            if (abs(x) > abs(lastw))
517              m_matT.coeffRef(i+1,n) = (-r - w * t) / x;
518            else
519              m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw;
520          }
521
522          // Overflow control
523          Scalar t = abs(m_matT.coeff(i,n));
524          if ((eps * t) * t > Scalar(1))
525            m_matT.col(n).tail(size-i) /= t;
526        }
527      }
528    }
529    else if (q < Scalar(0) && n > 0) // Complex vector
530    {
531      Scalar lastra(0), lastsa(0), lastw(0);
532      Index l = n-1;
533
534      // Last vector component imaginary so matrix is triangular
535      if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n)))
536      {
537        m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1);
538        m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1);
539      }
540      else
541      {
542        ComplexScalar cc = ComplexScalar(Scalar(0),-m_matT.coeff(n-1,n)) / ComplexScalar(m_matT.coeff(n-1,n-1)-p,q);
543        m_matT.coeffRef(n-1,n-1) = numext::real(cc);
544        m_matT.coeffRef(n-1,n) = numext::imag(cc);
545      }
546      m_matT.coeffRef(n,n-1) = Scalar(0);
547      m_matT.coeffRef(n,n) = Scalar(1);
548      for (Index i = n-2; i >= 0; i--)
549      {
550        Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1));
551        Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
552        Scalar w = m_matT.coeff(i,i) - p;
553
554        if (m_eivalues.coeff(i).imag() < Scalar(0))
555        {
556          lastw = w;
557          lastra = ra;
558          lastsa = sa;
559        }
560        else
561        {
562          l = i;
563          if (m_eivalues.coeff(i).imag() == RealScalar(0))
564          {
565            ComplexScalar cc = ComplexScalar(-ra,-sa) / ComplexScalar(w,q);
566            m_matT.coeffRef(i,n-1) = numext::real(cc);
567            m_matT.coeffRef(i,n) = numext::imag(cc);
568          }
569          else
570          {
571            // Solve complex equations
572            Scalar x = m_matT.coeff(i,i+1);
573            Scalar y = m_matT.coeff(i+1,i);
574            Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
575            Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
576            if ((vr == Scalar(0)) && (vi == Scalar(0)))
577              vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw));
578
579            ComplexScalar cc = ComplexScalar(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra) / ComplexScalar(vr,vi);
580            m_matT.coeffRef(i,n-1) = numext::real(cc);
581            m_matT.coeffRef(i,n) = numext::imag(cc);
582            if (abs(x) > (abs(lastw) + abs(q)))
583            {
584              m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x;
585              m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x;
586            }
587            else
588            {
589              cc = ComplexScalar(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n)) / ComplexScalar(lastw,q);
590              m_matT.coeffRef(i+1,n-1) = numext::real(cc);
591              m_matT.coeffRef(i+1,n) = numext::imag(cc);
592            }
593          }
594
595          // Overflow control
596          Scalar t = numext::maxi<Scalar>(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n)));
597          if ((eps * t) * t > Scalar(1))
598            m_matT.block(i, n-1, size-i, 2) /= t;
599
600        }
601      }
602
603      // We handled a pair of complex conjugate eigenvalues, so need to skip them both
604      n--;
605    }
606    else
607    {
608      eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)"); // this should not happen
609    }
610  }
611
612  // Back transformation to get eigenvectors of original matrix
613  for (Index j = size-1; j >= 0; j--)
614  {
615    m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1);
616    m_eivec.col(j) = m_tmp;
617  }
618}
619
620} // end namespace Eigen
621
622#endif // EIGEN_EIGENSOLVER_H
623