1c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This file is part of Eigen, a lightweight C++ template library
2c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// for linear algebra.
3c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
4c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
57faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
6c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
7c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This Source Code Form is subject to the terms of the Mozilla
8c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Public License v. 2.0. If a copy of the MPL was not distributed
9c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
11c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#ifndef EIGEN_EIGENSOLVER_H
12c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#define EIGEN_EIGENSOLVER_H
13c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
14c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include "./RealSchur.h"
15c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
16c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathnamespace Eigen {
17c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
18c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \eigenvalues_module \ingroup Eigenvalues_Module
19c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
20c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
21c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \class EigenSolver
22c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
23c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \brief Computes eigenvalues and eigenvectors of general matrices
24c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
25c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \tparam _MatrixType the type of the matrix of which we are computing the
26c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * eigendecomposition; this is expected to be an instantiation of the Matrix
27c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * class template. Currently, only real matrices are supported.
28c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
29c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
30c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$.  If
31c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
32c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
33c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
34c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition.
35c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
36c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * The eigenvalues and eigenvectors of a matrix may be complex, even when the
37c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D
38c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the
39c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to
40c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * have blocks of the form
41c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f]
42c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal.  These
43c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call
44c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * this variant of the eigendecomposition the pseudo-eigendecomposition.
45c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
46c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * Call the function compute() to compute the eigenvalues and eigenvectors of
47c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * a given matrix. Alternatively, you can use the
48c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * EigenSolver(const MatrixType&, bool) constructor which computes the
49c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
50c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * eigenvectors are computed, they can be retrieved with the eigenvalues() and
51c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * eigenvectors() functions. The pseudoEigenvalueMatrix() and
52c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * pseudoEigenvectors() methods allow the construction of the
53c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * pseudo-eigendecomposition.
54c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
55c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * The documentation for EigenSolver(const MatrixType&, bool) contains an
56c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * example of the typical use of this class.
57c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
58c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \note The implementation is adapted from
59c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
60c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * Their code is based on EISPACK.
61c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
62c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
63c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
64c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename _MatrixType> class EigenSolver
65c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
66c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  public:
67c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
68c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Synonym for the template parameter \p _MatrixType. */
69c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef _MatrixType MatrixType;
70c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
71c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    enum {
72c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
73c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
74c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      Options = MatrixType::Options,
75c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
76c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
77c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    };
78c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
79c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Scalar type for matrices of type #MatrixType. */
80c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef typename MatrixType::Scalar Scalar;
81c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef typename NumTraits<Scalar>::Real RealScalar;
822b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang    typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
83c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
84c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Complex scalar type for #MatrixType.
85c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
86c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
87c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \c float or \c double) and just \c Scalar if #Scalar is
88c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * complex.
89c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
90c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef std::complex<RealScalar> ComplexScalar;
91c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
92c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Type for vector of eigenvalues as returned by eigenvalues().
93c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
94c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * This is a column vector with entries of type #ComplexScalar.
95c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The length of the vector is the size of #MatrixType.
96c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
97c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
98c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
99c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
100c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
101c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * This is a square matrix with entries of type #ComplexScalar.
102c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The size is the same as the size of #MatrixType.
103c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
104c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
105c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
106c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Default constructor.
107c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
108c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The default constructor is useful in cases in which the user intends to
109c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
110c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
111c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \sa compute() for an example.
112c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
1132b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang    EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {}
114c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
115c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Default constructor with memory preallocation
116c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
117c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Like the default constructor but with preallocation of the internal data
118c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * according to the specified problem \a size.
119c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \sa EigenSolver()
120c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
1212b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang    explicit EigenSolver(Index size)
122c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      : m_eivec(size, size),
123c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_eivalues(size),
124c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_isInitialized(false),
125c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_eigenvectorsOk(false),
126c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_realSchur(size),
127c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_matT(size, size),
128c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_tmp(size)
129c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {}
130c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
131c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Constructor; computes eigendecomposition of given matrix.
132c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
133c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
134c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
135c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *    eigenvalues are computed; if false, only the eigenvalues are
136c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *    computed.
137c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
138c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * This constructor calls compute() to compute the eigenvalues
139c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * and eigenvectors.
140c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
141c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Example: \include EigenSolver_EigenSolver_MatrixType.cpp
142c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out
143c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
144c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \sa compute()
145c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
1462b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang    template<typename InputType>
1472b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang    explicit EigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true)
148c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      : m_eivec(matrix.rows(), matrix.cols()),
149c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_eivalues(matrix.cols()),
150c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_isInitialized(false),
151c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_eigenvectorsOk(false),
152c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_realSchur(matrix.cols()),
153c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_matT(matrix.rows(), matrix.cols()),
154c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_tmp(matrix.cols())
155c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
1562b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang      compute(matrix.derived(), computeEigenvectors);
157c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
158c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
159c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Returns the eigenvectors of given matrix.
160c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
161c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \returns  %Matrix whose columns are the (possibly complex) eigenvectors.
162c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
163c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \pre Either the constructor
164c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * EigenSolver(const MatrixType&,bool) or the member function
165c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * compute(const MatrixType&, bool) has been called before, and
166c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \p computeEigenvectors was set to true (the default).
167c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
168c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
169c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
170c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * eigenvectors are normalized to have (Euclidean) norm equal to one. The
171c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * matrix returned by this function is the matrix \f$ V \f$ in the
172c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists.
173c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
174c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Example: \include EigenSolver_eigenvectors.cpp
175c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Output: \verbinclude EigenSolver_eigenvectors.out
176c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
177c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \sa eigenvalues(), pseudoEigenvectors()
178c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
179c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    EigenvectorsType eigenvectors() const;
180c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
181c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Returns the pseudo-eigenvectors of given matrix.
182c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
183c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \returns  Const reference to matrix whose columns are the pseudo-eigenvectors.
184c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
185c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \pre Either the constructor
186c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * EigenSolver(const MatrixType&,bool) or the member function
187c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * compute(const MatrixType&, bool) has been called before, and
188c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \p computeEigenvectors was set to true (the default).
189c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
190c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The real matrix \f$ V \f$ returned by this function and the
191c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix()
192c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * satisfy \f$ AV = VD \f$.
193c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
194c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Example: \include EigenSolver_pseudoEigenvectors.cpp
195c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Output: \verbinclude EigenSolver_pseudoEigenvectors.out
196c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
197c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \sa pseudoEigenvalueMatrix(), eigenvectors()
198c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
199c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    const MatrixType& pseudoEigenvectors() const
200c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
201c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
202c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
203c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      return m_eivec;
204c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
205c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
206c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition.
207c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
208c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \returns  A block-diagonal matrix.
209c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
210c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \pre Either the constructor
211c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * EigenSolver(const MatrixType&,bool) or the member function
212c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * compute(const MatrixType&, bool) has been called before.
213c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
214c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The matrix \f$ D \f$ returned by this function is real and
215c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2
216c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * blocks of the form
217c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$.
218c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * These blocks are not sorted in any particular order.
219c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by
220c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * pseudoEigenvectors() satisfy \f$ AV = VD \f$.
221c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
222c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \sa pseudoEigenvectors() for an example, eigenvalues()
223c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
224c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MatrixType pseudoEigenvalueMatrix() const;
225c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
226c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Returns the eigenvalues of given matrix.
227c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
228c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \returns A const reference to the column vector containing the eigenvalues.
229c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
230c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \pre Either the constructor
231c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * EigenSolver(const MatrixType&,bool) or the member function
232c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * compute(const MatrixType&, bool) has been called before.
233c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
234c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The eigenvalues are repeated according to their algebraic multiplicity,
235c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * so there are as many eigenvalues as rows in the matrix. The eigenvalues
236c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * are not sorted in any particular order.
237c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
238c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Example: \include EigenSolver_eigenvalues.cpp
239c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Output: \verbinclude EigenSolver_eigenvalues.out
240c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
241c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \sa eigenvectors(), pseudoEigenvalueMatrix(),
242c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *     MatrixBase::eigenvalues()
243c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
244c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    const EigenvalueType& eigenvalues() const
245c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
246c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
247c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      return m_eivalues;
248c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
249c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
250c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Computes eigendecomposition of given matrix.
251c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
252c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
253c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
254c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *    eigenvalues are computed; if false, only the eigenvalues are
255c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *    computed.
256c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \returns    Reference to \c *this
257c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
258c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * This function computes the eigenvalues of the real matrix \p matrix.
259c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The eigenvalues() function can be used to retrieve them.  If
260c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \p computeEigenvectors is true, then the eigenvectors are also computed
261c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * and can be retrieved by calling eigenvectors().
262c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
263c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The matrix is first reduced to real Schur form using the RealSchur
264c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * class. The Schur decomposition is then used to compute the eigenvalues
265c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * and eigenvectors.
266c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
267c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The cost of the computation is dominated by the cost of the
268c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Schur decomposition, which is very approximately \f$ 25n^3 \f$
269c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors
270c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false.
271c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
272c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * This method reuses of the allocated data in the EigenSolver object.
273c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
274c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Example: \include EigenSolver_compute.cpp
275c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Output: \verbinclude EigenSolver_compute.out
276c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
2772b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang    template<typename InputType>
2782b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang    EigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true);
279c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
2802b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang    /** \returns NumericalIssue if the input contains INF or NaN values or overflow occured. Returns Success otherwise. */
281c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    ComputationInfo info() const
282c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
283c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
2842b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang      return m_info;
285c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
286c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
2877faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez    /** \brief Sets the maximum number of iterations allowed. */
2887faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez    EigenSolver& setMaxIterations(Index maxIters)
2897faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez    {
2907faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez      m_realSchur.setMaxIterations(maxIters);
2917faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez      return *this;
2927faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez    }
2937faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez
2947faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez    /** \brief Returns the maximum number of iterations. */
2957faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez    Index getMaxIterations()
2967faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez    {
2977faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez      return m_realSchur.getMaxIterations();
2987faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez    }
2997faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez
300c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  private:
301c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    void doComputeEigenvectors();
302c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
303c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  protected:
304a829215e078ace896f52702caa0c27608f40e3b0Miao Wang
305a829215e078ace896f52702caa0c27608f40e3b0Miao Wang    static void check_template_parameters()
306a829215e078ace896f52702caa0c27608f40e3b0Miao Wang    {
307a829215e078ace896f52702caa0c27608f40e3b0Miao Wang      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
308a829215e078ace896f52702caa0c27608f40e3b0Miao Wang      EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
309a829215e078ace896f52702caa0c27608f40e3b0Miao Wang    }
310a829215e078ace896f52702caa0c27608f40e3b0Miao Wang
311c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MatrixType m_eivec;
312c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    EigenvalueType m_eivalues;
313c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    bool m_isInitialized;
314c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    bool m_eigenvectorsOk;
3152b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang    ComputationInfo m_info;
316c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    RealSchur<MatrixType> m_realSchur;
317c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MatrixType m_matT;
318c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
319c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
320c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    ColumnVectorType m_tmp;
321c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath};
322c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
323c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType>
324c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan KamathMatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
325c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
326c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
3272b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang  const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
328c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Index n = m_eivalues.rows();
329c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  MatrixType matD = MatrixType::Zero(n,n);
330c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  for (Index i=0; i<n; ++i)
331c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
3322b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang    if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)), precision))
3337faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez      matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i));
334c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    else
335c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
3367faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez      matD.template block<2,2>(i,i) <<  numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)),
3377faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez                                       -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i));
338c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      ++i;
339c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
340c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
341c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return matD;
342c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
343c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
344c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType>
345c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtypename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const
346c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
347c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
348c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
3492b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang  const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
350c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Index n = m_eivec.cols();
351c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  EigenvectorsType matV(n,n);
352c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  for (Index j=0; j<n; ++j)
353c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
3542b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang    if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j)), precision) || j+1==n)
355c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
356c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      // we have a real eigen value
357c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
358c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      matV.col(j).normalize();
359c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
360c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    else
361c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
362c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      // we have a pair of complex eigen values
363c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      for (Index i=0; i<n; ++i)
364c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      {
365c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        matV.coeffRef(i,j)   = ComplexScalar(m_eivec.coeff(i,j),  m_eivec.coeff(i,j+1));
366c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
367c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      }
368c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      matV.col(j).normalize();
369c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      matV.col(j+1).normalize();
370c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      ++j;
371c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
372c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
373c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return matV;
374c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
375c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
376c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType>
3772b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangtemplate<typename InputType>
3787faaa9f3f0df9d23790277834d426c3d992ac3baCarlos HernandezEigenSolver<MatrixType>&
3792b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao WangEigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors)
380c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
381a829215e078ace896f52702caa0c27608f40e3b0Miao Wang  check_template_parameters();
382a829215e078ace896f52702caa0c27608f40e3b0Miao Wang
3837faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez  using std::sqrt;
3847faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez  using std::abs;
3852b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang  using numext::isfinite;
3867faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez  eigen_assert(matrix.cols() == matrix.rows());
387c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
388c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Reduce to real Schur form.
3892b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang  m_realSchur.compute(matrix.derived(), computeEigenvectors);
3902b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang
3912b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang  m_info = m_realSchur.info();
3927faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez
3932b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang  if (m_info == Success)
394c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
395c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    m_matT = m_realSchur.matrixT();
396c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    if (computeEigenvectors)
397c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      m_eivec = m_realSchur.matrixU();
398c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
399c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // Compute eigenvalues from matT
400c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    m_eivalues.resize(matrix.cols());
401c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Index i = 0;
402c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    while (i < matrix.cols())
403c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
404c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0))
405c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      {
406c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
4072b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang        if(!(isfinite)(m_eivalues.coeffRef(i)))
4082b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang        {
4092b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang          m_isInitialized = true;
4102b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang          m_eigenvectorsOk = false;
4112b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang          m_info = NumericalIssue;
4122b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang          return *this;
4132b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang        }
414c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        ++i;
415c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      }
416c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      else
417c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      {
418c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1));
4192b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang        Scalar z;
4202b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang        // Compute z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
4212b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang        // without overflow
4222b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang        {
4232b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang          Scalar t0 = m_matT.coeff(i+1, i);
4242b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang          Scalar t1 = m_matT.coeff(i, i+1);
4252b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang          Scalar maxval = numext::maxi<Scalar>(abs(p),numext::maxi<Scalar>(abs(t0),abs(t1)));
4262b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang          t0 /= maxval;
4272b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang          t1 /= maxval;
4282b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang          Scalar p0 = p/maxval;
4292b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang          z = maxval * sqrt(abs(p0 * p0 + t0 * t1));
4302b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang        }
4312b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang
432c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_eivalues.coeffRef(i)   = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z);
433c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z);
4342b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang        if(!((isfinite)(m_eivalues.coeffRef(i)) && (isfinite)(m_eivalues.coeffRef(i+1))))
4352b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang        {
4362b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang          m_isInitialized = true;
4372b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang          m_eigenvectorsOk = false;
4382b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang          m_info = NumericalIssue;
4392b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang          return *this;
4402b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang        }
441c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        i += 2;
442c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      }
443c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
444c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
445c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // Compute eigenvectors.
446c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    if (computeEigenvectors)
447c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      doComputeEigenvectors();
448c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
449c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
450c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  m_isInitialized = true;
451c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  m_eigenvectorsOk = computeEigenvectors;
452c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
453c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return *this;
454c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
455c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
456c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
457c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType>
458c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid EigenSolver<MatrixType>::doComputeEigenvectors()
459c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
4607faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez  using std::abs;
461c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Index size = m_eivec.cols();
462c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Scalar eps = NumTraits<Scalar>::epsilon();
463c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
464c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // inefficient! this is already computed in RealSchur
465c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Scalar norm(0);
466c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  for (Index j = 0; j < size; ++j)
467c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
468c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum();
469c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
470c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
471c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Backsubstitute to find vectors of upper triangular form
4722b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang  if (norm == Scalar(0))
473c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
474c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return;
475c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
476c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
477c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  for (Index n = size-1; n >= 0; n--)
478c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
479c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Scalar p = m_eivalues.coeff(n).real();
480c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Scalar q = m_eivalues.coeff(n).imag();
481c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
482c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // Scalar vector
483c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    if (q == Scalar(0))
484c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
485c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      Scalar lastr(0), lastw(0);
486c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      Index l = n;
487c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
4882b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang      m_matT.coeffRef(n,n) = Scalar(1);
489c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      for (Index i = n-1; i >= 0; i--)
490c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      {
491c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        Scalar w = m_matT.coeff(i,i) - p;
492c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
493c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
4942b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang        if (m_eivalues.coeff(i).imag() < Scalar(0))
495c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        {
496c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          lastw = w;
497c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          lastr = r;
498c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        }
499c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        else
500c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        {
501c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          l = i;
5022b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang          if (m_eivalues.coeff(i).imag() == Scalar(0))
503c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          {
5042b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang            if (w != Scalar(0))
505c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_matT.coeffRef(i,n) = -r / w;
506c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            else
507c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_matT.coeffRef(i,n) = -r / (eps * norm);
508c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          }
509c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          else // Solve real equations
510c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          {
511c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            Scalar x = m_matT.coeff(i,i+1);
512c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            Scalar y = m_matT.coeff(i+1,i);
513c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
514c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            Scalar t = (x * lastr - lastw * r) / denom;
515c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            m_matT.coeffRef(i,n) = t;
5167faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez            if (abs(x) > abs(lastw))
517c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_matT.coeffRef(i+1,n) = (-r - w * t) / x;
518c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            else
519c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw;
520c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          }
521c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
522c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          // Overflow control
5237faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez          Scalar t = abs(m_matT.coeff(i,n));
524c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          if ((eps * t) * t > Scalar(1))
525c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            m_matT.col(n).tail(size-i) /= t;
526c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        }
527c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      }
528c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
529c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    else if (q < Scalar(0) && n > 0) // Complex vector
530c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
531c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      Scalar lastra(0), lastsa(0), lastw(0);
532c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      Index l = n-1;
533c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
534c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      // Last vector component imaginary so matrix is triangular
5357faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez      if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n)))
536c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      {
537c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1);
538c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1);
539c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      }
540c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      else
541c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      {
5422b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang        ComplexScalar cc = ComplexScalar(Scalar(0),-m_matT.coeff(n-1,n)) / ComplexScalar(m_matT.coeff(n-1,n-1)-p,q);
5437faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez        m_matT.coeffRef(n-1,n-1) = numext::real(cc);
5447faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez        m_matT.coeffRef(n-1,n) = numext::imag(cc);
545c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      }
5462b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang      m_matT.coeffRef(n,n-1) = Scalar(0);
5472b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang      m_matT.coeffRef(n,n) = Scalar(1);
548c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      for (Index i = n-2; i >= 0; i--)
549c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      {
550c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1));
551c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
552c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        Scalar w = m_matT.coeff(i,i) - p;
553c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
5542b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang        if (m_eivalues.coeff(i).imag() < Scalar(0))
555c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        {
556c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          lastw = w;
557c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          lastra = ra;
558c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          lastsa = sa;
559c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        }
560c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        else
561c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        {
562c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          l = i;
563c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          if (m_eivalues.coeff(i).imag() == RealScalar(0))
564c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          {
5652b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang            ComplexScalar cc = ComplexScalar(-ra,-sa) / ComplexScalar(w,q);
5667faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez            m_matT.coeffRef(i,n-1) = numext::real(cc);
5677faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez            m_matT.coeffRef(i,n) = numext::imag(cc);
568c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          }
569c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          else
570c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          {
571c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            // Solve complex equations
572c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            Scalar x = m_matT.coeff(i,i+1);
573c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            Scalar y = m_matT.coeff(i+1,i);
574c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
575c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
5762b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang            if ((vr == Scalar(0)) && (vi == Scalar(0)))
5777faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez              vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw));
578c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
5792b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang            ComplexScalar cc = ComplexScalar(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra) / ComplexScalar(vr,vi);
5807faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez            m_matT.coeffRef(i,n-1) = numext::real(cc);
5817faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez            m_matT.coeffRef(i,n) = numext::imag(cc);
5827faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez            if (abs(x) > (abs(lastw) + abs(q)))
583c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            {
584c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x;
585c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x;
586c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            }
587c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            else
588c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            {
5892b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang              cc = ComplexScalar(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n)) / ComplexScalar(lastw,q);
5907faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez              m_matT.coeffRef(i+1,n-1) = numext::real(cc);
5917faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez              m_matT.coeffRef(i+1,n) = numext::imag(cc);
592c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            }
593c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          }
594c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
595c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          // Overflow control
5962b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang          Scalar t = numext::maxi<Scalar>(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n)));
597c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath          if ((eps * t) * t > Scalar(1))
598c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            m_matT.block(i, n-1, size-i, 2) /= t;
599c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
600c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        }
601c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      }
602c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
603c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      // We handled a pair of complex conjugate eigenvalues, so need to skip them both
604c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      n--;
605c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
606c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    else
607c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
6082b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang      eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)"); // this should not happen
609c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
610c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
611c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
612c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Back transformation to get eigenvectors of original matrix
613c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  for (Index j = size-1; j >= 0; j--)
614c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
615c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1);
616c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    m_eivec.col(j) = m_tmp;
617c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
618c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
619c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
620c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath} // end namespace Eigen
621c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
622c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#endif // EIGEN_EIGENSOLVER_H
623