1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_REAL_SCHUR_H
12#define EIGEN_REAL_SCHUR_H
13
14#include "./HessenbergDecomposition.h"
15
16namespace Eigen {
17
18/** \eigenvalues_module \ingroup Eigenvalues_Module
19  *
20  *
21  * \class RealSchur
22  *
23  * \brief Performs a real Schur decomposition of a square matrix
24  *
25  * \tparam _MatrixType the type of the matrix of which we are computing the
26  * real Schur decomposition; this is expected to be an instantiation of the
27  * Matrix class template.
28  *
29  * Given a real square matrix A, this class computes the real Schur
30  * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and
31  * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose
32  * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
33  * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
34  * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the
35  * blocks on the diagonal of T are the same as the eigenvalues of the matrix
36  * A, and thus the real Schur decomposition is used in EigenSolver to compute
37  * the eigendecomposition of a matrix.
38  *
39  * Call the function compute() to compute the real Schur decomposition of a
40  * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool)
41  * constructor which computes the real Schur decomposition at construction
42  * time. Once the decomposition is computed, you can use the matrixU() and
43  * matrixT() functions to retrieve the matrices U and T in the decomposition.
44  *
45  * The documentation of RealSchur(const MatrixType&, bool) contains an example
46  * of the typical use of this class.
47  *
48  * \note The implementation is adapted from
49  * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
50  * Their code is based on EISPACK.
51  *
52  * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
53  */
54template<typename _MatrixType> class RealSchur
55{
56  public:
57    typedef _MatrixType MatrixType;
58    enum {
59      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
60      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
61      Options = MatrixType::Options,
62      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
63      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
64    };
65    typedef typename MatrixType::Scalar Scalar;
66    typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
67    typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
68
69    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
70    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
71
72    /** \brief Default constructor.
73      *
74      * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed.
75      *
76      * The default constructor is useful in cases in which the user intends to
77      * perform decompositions via compute().  The \p size parameter is only
78      * used as a hint. It is not an error to give a wrong \p size, but it may
79      * impair performance.
80      *
81      * \sa compute() for an example.
82      */
83    explicit RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
84            : m_matT(size, size),
85              m_matU(size, size),
86              m_workspaceVector(size),
87              m_hess(size),
88              m_isInitialized(false),
89              m_matUisUptodate(false),
90              m_maxIters(-1)
91    { }
92
93    /** \brief Constructor; computes real Schur decomposition of given matrix.
94      *
95      * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
96      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
97      *
98      * This constructor calls compute() to compute the Schur decomposition.
99      *
100      * Example: \include RealSchur_RealSchur_MatrixType.cpp
101      * Output: \verbinclude RealSchur_RealSchur_MatrixType.out
102      */
103    template<typename InputType>
104    explicit RealSchur(const EigenBase<InputType>& matrix, bool computeU = true)
105            : m_matT(matrix.rows(),matrix.cols()),
106              m_matU(matrix.rows(),matrix.cols()),
107              m_workspaceVector(matrix.rows()),
108              m_hess(matrix.rows()),
109              m_isInitialized(false),
110              m_matUisUptodate(false),
111              m_maxIters(-1)
112    {
113      compute(matrix.derived(), computeU);
114    }
115
116    /** \brief Returns the orthogonal matrix in the Schur decomposition.
117      *
118      * \returns A const reference to the matrix U.
119      *
120      * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
121      * member function compute(const MatrixType&, bool) has been called before
122      * to compute the Schur decomposition of a matrix, and \p computeU was set
123      * to true (the default value).
124      *
125      * \sa RealSchur(const MatrixType&, bool) for an example
126      */
127    const MatrixType& matrixU() const
128    {
129      eigen_assert(m_isInitialized && "RealSchur is not initialized.");
130      eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
131      return m_matU;
132    }
133
134    /** \brief Returns the quasi-triangular matrix in the Schur decomposition.
135      *
136      * \returns A const reference to the matrix T.
137      *
138      * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
139      * member function compute(const MatrixType&, bool) has been called before
140      * to compute the Schur decomposition of a matrix.
141      *
142      * \sa RealSchur(const MatrixType&, bool) for an example
143      */
144    const MatrixType& matrixT() const
145    {
146      eigen_assert(m_isInitialized && "RealSchur is not initialized.");
147      return m_matT;
148    }
149
150    /** \brief Computes Schur decomposition of given matrix.
151      *
152      * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
153      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
154      * \returns    Reference to \c *this
155      *
156      * The Schur decomposition is computed by first reducing the matrix to
157      * Hessenberg form using the class HessenbergDecomposition. The Hessenberg
158      * matrix is then reduced to triangular form by performing Francis QR
159      * iterations with implicit double shift. The cost of computing the Schur
160      * decomposition depends on the number of iterations; as a rough guide, it
161      * may be taken to be \f$25n^3\f$ flops if \a computeU is true and
162      * \f$10n^3\f$ flops if \a computeU is false.
163      *
164      * Example: \include RealSchur_compute.cpp
165      * Output: \verbinclude RealSchur_compute.out
166      *
167      * \sa compute(const MatrixType&, bool, Index)
168      */
169    template<typename InputType>
170    RealSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
171
172    /** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T
173     *  \param[in] matrixH Matrix in Hessenberg form H
174     *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
175     *  \param computeU Computes the matriX U of the Schur vectors
176     * \return Reference to \c *this
177     *
178     *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH
179     *  using either the class HessenbergDecomposition or another mean.
180     *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H
181     *  When computeU is true, this routine computes the matrix U such that
182     *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
183     *
184     * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
185     * is not available, the user should give an identity matrix (Q.setIdentity())
186     *
187     * \sa compute(const MatrixType&, bool)
188     */
189    template<typename HessMatrixType, typename OrthMatrixType>
190    RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU);
191    /** \brief Reports whether previous computation was successful.
192      *
193      * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
194      */
195    ComputationInfo info() const
196    {
197      eigen_assert(m_isInitialized && "RealSchur is not initialized.");
198      return m_info;
199    }
200
201    /** \brief Sets the maximum number of iterations allowed.
202      *
203      * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
204      * of the matrix.
205      */
206    RealSchur& setMaxIterations(Index maxIters)
207    {
208      m_maxIters = maxIters;
209      return *this;
210    }
211
212    /** \brief Returns the maximum number of iterations. */
213    Index getMaxIterations()
214    {
215      return m_maxIters;
216    }
217
218    /** \brief Maximum number of iterations per row.
219      *
220      * If not otherwise specified, the maximum number of iterations is this number times the size of the
221      * matrix. It is currently set to 40.
222      */
223    static const int m_maxIterationsPerRow = 40;
224
225  private:
226
227    MatrixType m_matT;
228    MatrixType m_matU;
229    ColumnVectorType m_workspaceVector;
230    HessenbergDecomposition<MatrixType> m_hess;
231    ComputationInfo m_info;
232    bool m_isInitialized;
233    bool m_matUisUptodate;
234    Index m_maxIters;
235
236    typedef Matrix<Scalar,3,1> Vector3s;
237
238    Scalar computeNormOfT();
239    Index findSmallSubdiagEntry(Index iu);
240    void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
241    void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
242    void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
243    void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
244};
245
246
247template<typename MatrixType>
248template<typename InputType>
249RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
250{
251  const Scalar considerAsZero = (std::numeric_limits<Scalar>::min)();
252
253  eigen_assert(matrix.cols() == matrix.rows());
254  Index maxIters = m_maxIters;
255  if (maxIters == -1)
256    maxIters = m_maxIterationsPerRow * matrix.rows();
257
258  Scalar scale = matrix.derived().cwiseAbs().maxCoeff();
259  if(scale<considerAsZero)
260  {
261    m_matT.setZero(matrix.rows(),matrix.cols());
262    if(computeU)
263      m_matU.setIdentity(matrix.rows(),matrix.cols());
264    m_info = Success;
265    m_isInitialized = true;
266    m_matUisUptodate = computeU;
267    return *this;
268  }
269
270  // Step 1. Reduce to Hessenberg form
271  m_hess.compute(matrix.derived()/scale);
272
273  // Step 2. Reduce to real Schur form
274  computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
275
276  m_matT *= scale;
277
278  return *this;
279}
280template<typename MatrixType>
281template<typename HessMatrixType, typename OrthMatrixType>
282RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU)
283{
284  using std::abs;
285
286  m_matT = matrixH;
287  if(computeU)
288    m_matU = matrixQ;
289
290  Index maxIters = m_maxIters;
291  if (maxIters == -1)
292    maxIters = m_maxIterationsPerRow * matrixH.rows();
293  m_workspaceVector.resize(m_matT.cols());
294  Scalar* workspace = &m_workspaceVector.coeffRef(0);
295
296  // The matrix m_matT is divided in three parts.
297  // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
298  // Rows il,...,iu is the part we are working on (the active window).
299  // Rows iu+1,...,end are already brought in triangular form.
300  Index iu = m_matT.cols() - 1;
301  Index iter = 0;      // iteration count for current eigenvalue
302  Index totalIter = 0; // iteration count for whole matrix
303  Scalar exshift(0);   // sum of exceptional shifts
304  Scalar norm = computeNormOfT();
305
306  if(norm!=0)
307  {
308    while (iu >= 0)
309    {
310      Index il = findSmallSubdiagEntry(iu);
311
312      // Check for convergence
313      if (il == iu) // One root found
314      {
315        m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
316        if (iu > 0)
317          m_matT.coeffRef(iu, iu-1) = Scalar(0);
318        iu--;
319        iter = 0;
320      }
321      else if (il == iu-1) // Two roots found
322      {
323        splitOffTwoRows(iu, computeU, exshift);
324        iu -= 2;
325        iter = 0;
326      }
327      else // No convergence yet
328      {
329        // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
330        Vector3s firstHouseholderVector(0,0,0), shiftInfo;
331        computeShift(iu, iter, exshift, shiftInfo);
332        iter = iter + 1;
333        totalIter = totalIter + 1;
334        if (totalIter > maxIters) break;
335        Index im;
336        initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
337        performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
338      }
339    }
340  }
341  if(totalIter <= maxIters)
342    m_info = Success;
343  else
344    m_info = NoConvergence;
345
346  m_isInitialized = true;
347  m_matUisUptodate = computeU;
348  return *this;
349}
350
351/** \internal Computes and returns vector L1 norm of T */
352template<typename MatrixType>
353inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
354{
355  const Index size = m_matT.cols();
356  // FIXME to be efficient the following would requires a triangular reduxion code
357  // Scalar norm = m_matT.upper().cwiseAbs().sum()
358  //               + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
359  Scalar norm(0);
360  for (Index j = 0; j < size; ++j)
361    norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
362  return norm;
363}
364
365/** \internal Look for single small sub-diagonal element and returns its index */
366template<typename MatrixType>
367inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu)
368{
369  using std::abs;
370  Index res = iu;
371  while (res > 0)
372  {
373    Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
374    if (abs(m_matT.coeff(res,res-1)) <= NumTraits<Scalar>::epsilon() * s)
375      break;
376    res--;
377  }
378  return res;
379}
380
381/** \internal Update T given that rows iu-1 and iu decouple from the rest. */
382template<typename MatrixType>
383inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
384{
385  using std::sqrt;
386  using std::abs;
387  const Index size = m_matT.cols();
388
389  // The eigenvalues of the 2x2 matrix [a b; c d] are
390  // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
391  Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
392  Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);   // q = tr^2 / 4 - det = discr/4
393  m_matT.coeffRef(iu,iu) += exshift;
394  m_matT.coeffRef(iu-1,iu-1) += exshift;
395
396  if (q >= Scalar(0)) // Two real eigenvalues
397  {
398    Scalar z = sqrt(abs(q));
399    JacobiRotation<Scalar> rot;
400    if (p >= Scalar(0))
401      rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
402    else
403      rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
404
405    m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
406    m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
407    m_matT.coeffRef(iu, iu-1) = Scalar(0);
408    if (computeU)
409      m_matU.applyOnTheRight(iu-1, iu, rot);
410  }
411
412  if (iu > 1)
413    m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
414}
415
416/** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */
417template<typename MatrixType>
418inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
419{
420  using std::sqrt;
421  using std::abs;
422  shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
423  shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
424  shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
425
426  // Wilkinson's original ad hoc shift
427  if (iter == 10)
428  {
429    exshift += shiftInfo.coeff(0);
430    for (Index i = 0; i <= iu; ++i)
431      m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
432    Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
433    shiftInfo.coeffRef(0) = Scalar(0.75) * s;
434    shiftInfo.coeffRef(1) = Scalar(0.75) * s;
435    shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
436  }
437
438  // MATLAB's new ad hoc shift
439  if (iter == 30)
440  {
441    Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
442    s = s * s + shiftInfo.coeff(2);
443    if (s > Scalar(0))
444    {
445      s = sqrt(s);
446      if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
447        s = -s;
448      s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
449      s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
450      exshift += s;
451      for (Index i = 0; i <= iu; ++i)
452        m_matT.coeffRef(i,i) -= s;
453      shiftInfo.setConstant(Scalar(0.964));
454    }
455  }
456}
457
458/** \internal Compute index im at which Francis QR step starts and the first Householder vector. */
459template<typename MatrixType>
460inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
461{
462  using std::abs;
463  Vector3s& v = firstHouseholderVector; // alias to save typing
464
465  for (im = iu-2; im >= il; --im)
466  {
467    const Scalar Tmm = m_matT.coeff(im,im);
468    const Scalar r = shiftInfo.coeff(0) - Tmm;
469    const Scalar s = shiftInfo.coeff(1) - Tmm;
470    v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
471    v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
472    v.coeffRef(2) = m_matT.coeff(im+2,im+1);
473    if (im == il) {
474      break;
475    }
476    const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
477    const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
478    if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
479      break;
480  }
481}
482
483/** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */
484template<typename MatrixType>
485inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
486{
487  eigen_assert(im >= il);
488  eigen_assert(im <= iu-2);
489
490  const Index size = m_matT.cols();
491
492  for (Index k = im; k <= iu-2; ++k)
493  {
494    bool firstIteration = (k == im);
495
496    Vector3s v;
497    if (firstIteration)
498      v = firstHouseholderVector;
499    else
500      v = m_matT.template block<3,1>(k,k-1);
501
502    Scalar tau, beta;
503    Matrix<Scalar, 2, 1> ess;
504    v.makeHouseholder(ess, tau, beta);
505
506    if (beta != Scalar(0)) // if v is not zero
507    {
508      if (firstIteration && k > il)
509        m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
510      else if (!firstIteration)
511        m_matT.coeffRef(k,k-1) = beta;
512
513      // These Householder transformations form the O(n^3) part of the algorithm
514      m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
515      m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
516      if (computeU)
517        m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
518    }
519  }
520
521  Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
522  Scalar tau, beta;
523  Matrix<Scalar, 1, 1> ess;
524  v.makeHouseholder(ess, tau, beta);
525
526  if (beta != Scalar(0)) // if v is not zero
527  {
528    m_matT.coeffRef(iu-1, iu-2) = beta;
529    m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
530    m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
531    if (computeU)
532      m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
533  }
534
535  // clean up pollution due to round-off errors
536  for (Index i = im+2; i <= iu; ++i)
537  {
538    m_matT.coeffRef(i,i-2) = Scalar(0);
539    if (i > im+2)
540      m_matT.coeffRef(i,i-3) = Scalar(0);
541  }
542}
543
544} // end namespace Eigen
545
546#endif // EIGEN_REAL_SCHUR_H
547