1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
12#define EIGEN_SELFADJOINTEIGENSOLVER_H
13
14#include "./Tridiagonalization.h"
15
16namespace Eigen {
17
18template<typename _MatrixType>
19class GeneralizedSelfAdjointEigenSolver;
20
21namespace internal {
22template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
23template<typename MatrixType, typename DiagType, typename SubDiagType>
24ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec);
25}
26
27/** \eigenvalues_module \ingroup Eigenvalues_Module
28  *
29  *
30  * \class SelfAdjointEigenSolver
31  *
32  * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
33  *
34  * \tparam _MatrixType the type of the matrix of which we are computing the
35  * eigendecomposition; this is expected to be an instantiation of the Matrix
36  * class template.
37  *
38  * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
39  * matrices, this means that the matrix is symmetric: it equals its
40  * transpose. This class computes the eigenvalues and eigenvectors of a
41  * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
42  * \f$ v \f$ such that \f$ Av = \lambda v \f$.  The eigenvalues of a
43  * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
44  * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
45  * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$ (for selfadjoint
46  * matrices, the matrix \f$ V \f$ is always invertible). This is called the
47  * eigendecomposition.
48  *
49  * The algorithm exploits the fact that the matrix is selfadjoint, making it
50  * faster and more accurate than the general purpose eigenvalue algorithms
51  * implemented in EigenSolver and ComplexEigenSolver.
52  *
53  * Only the \b lower \b triangular \b part of the input matrix is referenced.
54  *
55  * Call the function compute() to compute the eigenvalues and eigenvectors of
56  * a given matrix. Alternatively, you can use the
57  * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
58  * the eigenvalues and eigenvectors at construction time. Once the eigenvalue
59  * and eigenvectors are computed, they can be retrieved with the eigenvalues()
60  * and eigenvectors() functions.
61  *
62  * The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
63  * contains an example of the typical use of this class.
64  *
65  * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
66  * the likes, see the class GeneralizedSelfAdjointEigenSolver.
67  *
68  * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
69  */
70template<typename _MatrixType> class SelfAdjointEigenSolver
71{
72  public:
73
74    typedef _MatrixType MatrixType;
75    enum {
76      Size = MatrixType::RowsAtCompileTime,
77      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
78      Options = MatrixType::Options,
79      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
80    };
81
82    /** \brief Scalar type for matrices of type \p _MatrixType. */
83    typedef typename MatrixType::Scalar Scalar;
84    typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
85
86    typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType;
87
88    /** \brief Real scalar type for \p _MatrixType.
89      *
90      * This is just \c Scalar if #Scalar is real (e.g., \c float or
91      * \c double), and the type of the real part of \c Scalar if #Scalar is
92      * complex.
93      */
94    typedef typename NumTraits<Scalar>::Real RealScalar;
95
96    friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;
97
98    /** \brief Type for vector of eigenvalues as returned by eigenvalues().
99      *
100      * This is a column vector with entries of type #RealScalar.
101      * The length of the vector is the size of \p _MatrixType.
102      */
103    typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
104    typedef Tridiagonalization<MatrixType> TridiagonalizationType;
105    typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType;
106
107    /** \brief Default constructor for fixed-size matrices.
108      *
109      * The default constructor is useful in cases in which the user intends to
110      * perform decompositions via compute(). This constructor
111      * can only be used if \p _MatrixType is a fixed-size matrix; use
112      * SelfAdjointEigenSolver(Index) for dynamic-size matrices.
113      *
114      * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
115      * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
116      */
117    EIGEN_DEVICE_FUNC
118    SelfAdjointEigenSolver()
119        : m_eivec(),
120          m_eivalues(),
121          m_subdiag(),
122          m_isInitialized(false)
123    { }
124
125    /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
126      *
127      * \param [in]  size  Positive integer, size of the matrix whose
128      * eigenvalues and eigenvectors will be computed.
129      *
130      * This constructor is useful for dynamic-size matrices, when the user
131      * intends to perform decompositions via compute(). The \p size
132      * parameter is only used as a hint. It is not an error to give a wrong
133      * \p size, but it may impair performance.
134      *
135      * \sa compute() for an example
136      */
137    EIGEN_DEVICE_FUNC
138    explicit SelfAdjointEigenSolver(Index size)
139        : m_eivec(size, size),
140          m_eivalues(size),
141          m_subdiag(size > 1 ? size - 1 : 1),
142          m_isInitialized(false)
143    {}
144
145    /** \brief Constructor; computes eigendecomposition of given matrix.
146      *
147      * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to
148      *    be computed. Only the lower triangular part of the matrix is referenced.
149      * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
150      *
151      * This constructor calls compute(const MatrixType&, int) to compute the
152      * eigenvalues of the matrix \p matrix. The eigenvectors are computed if
153      * \p options equals #ComputeEigenvectors.
154      *
155      * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
156      * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
157      *
158      * \sa compute(const MatrixType&, int)
159      */
160    template<typename InputType>
161    EIGEN_DEVICE_FUNC
162    explicit SelfAdjointEigenSolver(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors)
163      : m_eivec(matrix.rows(), matrix.cols()),
164        m_eivalues(matrix.cols()),
165        m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
166        m_isInitialized(false)
167    {
168      compute(matrix.derived(), options);
169    }
170
171    /** \brief Computes eigendecomposition of given matrix.
172      *
173      * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to
174      *    be computed. Only the lower triangular part of the matrix is referenced.
175      * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
176      * \returns    Reference to \c *this
177      *
178      * This function computes the eigenvalues of \p matrix.  The eigenvalues()
179      * function can be used to retrieve them.  If \p options equals #ComputeEigenvectors,
180      * then the eigenvectors are also computed and can be retrieved by
181      * calling eigenvectors().
182      *
183      * This implementation uses a symmetric QR algorithm. The matrix is first
184      * reduced to tridiagonal form using the Tridiagonalization class. The
185      * tridiagonal matrix is then brought to diagonal form with implicit
186      * symmetric QR steps with Wilkinson shift. Details can be found in
187      * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
188      *
189      * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
190      * are required and \f$ 4n^3/3 \f$ if they are not required.
191      *
192      * This method reuses the memory in the SelfAdjointEigenSolver object that
193      * was allocated when the object was constructed, if the size of the
194      * matrix does not change.
195      *
196      * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
197      * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
198      *
199      * \sa SelfAdjointEigenSolver(const MatrixType&, int)
200      */
201    template<typename InputType>
202    EIGEN_DEVICE_FUNC
203    SelfAdjointEigenSolver& compute(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors);
204
205    /** \brief Computes eigendecomposition of given matrix using a closed-form algorithm
206      *
207      * This is a variant of compute(const MatrixType&, int options) which
208      * directly solves the underlying polynomial equation.
209      *
210      * Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
211      *
212      * This method is usually significantly faster than the QR iterative algorithm
213      * but it might also be less accurate. It is also worth noting that
214      * for 3x3 matrices it involves trigonometric operations which are
215      * not necessarily available for all scalar types.
216      *
217      * For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues:
218      *   - double: 1e-8
219      *   - float:  1e-3
220      *
221      * \sa compute(const MatrixType&, int options)
222      */
223    EIGEN_DEVICE_FUNC
224    SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
225
226    /**
227      *\brief Computes the eigen decomposition from a tridiagonal symmetric matrix
228      *
229      * \param[in] diag The vector containing the diagonal of the matrix.
230      * \param[in] subdiag The subdiagonal of the matrix.
231      * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
232      * \returns Reference to \c *this
233      *
234      * This function assumes that the matrix has been reduced to tridiagonal form.
235      *
236      * \sa compute(const MatrixType&, int) for more information
237      */
238    SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors);
239
240    /** \brief Returns the eigenvectors of given matrix.
241      *
242      * \returns  A const reference to the matrix whose columns are the eigenvectors.
243      *
244      * \pre The eigenvectors have been computed before.
245      *
246      * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
247      * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
248      * eigenvectors are normalized to have (Euclidean) norm equal to one. If
249      * this object was used to solve the eigenproblem for the selfadjoint
250      * matrix \f$ A \f$, then the matrix returned by this function is the
251      * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
252      *
253      * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
254      * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
255      *
256      * \sa eigenvalues()
257      */
258    EIGEN_DEVICE_FUNC
259    const EigenvectorsType& eigenvectors() const
260    {
261      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
262      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
263      return m_eivec;
264    }
265
266    /** \brief Returns the eigenvalues of given matrix.
267      *
268      * \returns A const reference to the column vector containing the eigenvalues.
269      *
270      * \pre The eigenvalues have been computed before.
271      *
272      * The eigenvalues are repeated according to their algebraic multiplicity,
273      * so there are as many eigenvalues as rows in the matrix. The eigenvalues
274      * are sorted in increasing order.
275      *
276      * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
277      * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
278      *
279      * \sa eigenvectors(), MatrixBase::eigenvalues()
280      */
281    EIGEN_DEVICE_FUNC
282    const RealVectorType& eigenvalues() const
283    {
284      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
285      return m_eivalues;
286    }
287
288    /** \brief Computes the positive-definite square root of the matrix.
289      *
290      * \returns the positive-definite square root of the matrix
291      *
292      * \pre The eigenvalues and eigenvectors of a positive-definite matrix
293      * have been computed before.
294      *
295      * The square root of a positive-definite matrix \f$ A \f$ is the
296      * positive-definite matrix whose square equals \f$ A \f$. This function
297      * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
298      * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
299      *
300      * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
301      * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
302      *
303      * \sa operatorInverseSqrt(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
304      */
305    EIGEN_DEVICE_FUNC
306    MatrixType operatorSqrt() const
307    {
308      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
309      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
310      return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
311    }
312
313    /** \brief Computes the inverse square root of the matrix.
314      *
315      * \returns the inverse positive-definite square root of the matrix
316      *
317      * \pre The eigenvalues and eigenvectors of a positive-definite matrix
318      * have been computed before.
319      *
320      * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
321      * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
322      * cheaper than first computing the square root with operatorSqrt() and
323      * then its inverse with MatrixBase::inverse().
324      *
325      * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
326      * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
327      *
328      * \sa operatorSqrt(), MatrixBase::inverse(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
329      */
330    EIGEN_DEVICE_FUNC
331    MatrixType operatorInverseSqrt() const
332    {
333      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
334      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
335      return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
336    }
337
338    /** \brief Reports whether previous computation was successful.
339      *
340      * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
341      */
342    EIGEN_DEVICE_FUNC
343    ComputationInfo info() const
344    {
345      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
346      return m_info;
347    }
348
349    /** \brief Maximum number of iterations.
350      *
351      * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
352      * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
353      */
354    static const int m_maxIterations = 30;
355
356  protected:
357    static void check_template_parameters()
358    {
359      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
360    }
361
362    EigenvectorsType m_eivec;
363    RealVectorType m_eivalues;
364    typename TridiagonalizationType::SubDiagonalType m_subdiag;
365    ComputationInfo m_info;
366    bool m_isInitialized;
367    bool m_eigenvectorsOk;
368};
369
370namespace internal {
371/** \internal
372  *
373  * \eigenvalues_module \ingroup Eigenvalues_Module
374  *
375  * Performs a QR step on a tridiagonal symmetric matrix represented as a
376  * pair of two vectors \a diag and \a subdiag.
377  *
378  * \param diag the diagonal part of the input selfadjoint tridiagonal matrix
379  * \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix
380  * \param start starting index of the submatrix to work on
381  * \param end last+1 index of the submatrix to work on
382  * \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0
383  * \param n size of the input matrix
384  *
385  * For compilation efficiency reasons, this procedure does not use eigen expression
386  * for its arguments.
387  *
388  * Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
389  * "implicit symmetric QR step with Wilkinson shift"
390  */
391template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
392EIGEN_DEVICE_FUNC
393static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
394}
395
396template<typename MatrixType>
397template<typename InputType>
398EIGEN_DEVICE_FUNC
399SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
400::compute(const EigenBase<InputType>& a_matrix, int options)
401{
402  check_template_parameters();
403
404  const InputType &matrix(a_matrix.derived());
405
406  using std::abs;
407  eigen_assert(matrix.cols() == matrix.rows());
408  eigen_assert((options&~(EigVecMask|GenEigMask))==0
409          && (options&EigVecMask)!=EigVecMask
410          && "invalid option parameter");
411  bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
412  Index n = matrix.cols();
413  m_eivalues.resize(n,1);
414
415  if(n==1)
416  {
417    m_eivec = matrix;
418    m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0));
419    if(computeEigenvectors)
420      m_eivec.setOnes(n,n);
421    m_info = Success;
422    m_isInitialized = true;
423    m_eigenvectorsOk = computeEigenvectors;
424    return *this;
425  }
426
427  // declare some aliases
428  RealVectorType& diag = m_eivalues;
429  EigenvectorsType& mat = m_eivec;
430
431  // map the matrix coefficients to [-1:1] to avoid over- and underflow.
432  mat = matrix.template triangularView<Lower>();
433  RealScalar scale = mat.cwiseAbs().maxCoeff();
434  if(scale==RealScalar(0)) scale = RealScalar(1);
435  mat.template triangularView<Lower>() /= scale;
436  m_subdiag.resize(n-1);
437  internal::tridiagonalization_inplace(mat, diag, m_subdiag, computeEigenvectors);
438
439  m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
440
441  // scale back the eigen values
442  m_eivalues *= scale;
443
444  m_isInitialized = true;
445  m_eigenvectorsOk = computeEigenvectors;
446  return *this;
447}
448
449template<typename MatrixType>
450SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
451::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options)
452{
453  //TODO : Add an option to scale the values beforehand
454  bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
455
456  m_eivalues = diag;
457  m_subdiag = subdiag;
458  if (computeEigenvectors)
459  {
460    m_eivec.setIdentity(diag.size(), diag.size());
461  }
462  m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
463
464  m_isInitialized = true;
465  m_eigenvectorsOk = computeEigenvectors;
466  return *this;
467}
468
469namespace internal {
470/**
471  * \internal
472  * \brief Compute the eigendecomposition from a tridiagonal matrix
473  *
474  * \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues
475  * \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition)
476  * \param[in] maxIterations : the maximum number of iterations
477  * \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not
478  * \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input.
479  * \returns \c Success or \c NoConvergence
480  */
481template<typename MatrixType, typename DiagType, typename SubDiagType>
482ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec)
483{
484  using std::abs;
485
486  ComputationInfo info;
487  typedef typename MatrixType::Scalar Scalar;
488
489  Index n = diag.size();
490  Index end = n-1;
491  Index start = 0;
492  Index iter = 0; // total number of iterations
493
494  typedef typename DiagType::RealScalar RealScalar;
495  const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
496  const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
497
498  while (end>0)
499  {
500    for (Index i = start; i<end; ++i)
501      if (internal::isMuchSmallerThan(abs(subdiag[i]),(abs(diag[i])+abs(diag[i+1])),precision) || abs(subdiag[i]) <= considerAsZero)
502        subdiag[i] = 0;
503
504    // find the largest unreduced block
505    while (end>0 && subdiag[end-1]==RealScalar(0))
506    {
507      end--;
508    }
509    if (end<=0)
510      break;
511
512    // if we spent too many iterations, we give up
513    iter++;
514    if(iter > maxIterations * n) break;
515
516    start = end - 1;
517    while (start>0 && subdiag[start-1]!=0)
518      start--;
519
520    internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n);
521  }
522  if (iter <= maxIterations * n)
523    info = Success;
524  else
525    info = NoConvergence;
526
527  // Sort eigenvalues and corresponding vectors.
528  // TODO make the sort optional ?
529  // TODO use a better sort algorithm !!
530  if (info == Success)
531  {
532    for (Index i = 0; i < n-1; ++i)
533    {
534      Index k;
535      diag.segment(i,n-i).minCoeff(&k);
536      if (k > 0)
537      {
538        std::swap(diag[i], diag[k+i]);
539        if(computeEigenvectors)
540          eivec.col(i).swap(eivec.col(k+i));
541      }
542    }
543  }
544  return info;
545}
546
547template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
548{
549  EIGEN_DEVICE_FUNC
550  static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
551  { eig.compute(A,options); }
552};
553
554template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
555{
556  typedef typename SolverType::MatrixType MatrixType;
557  typedef typename SolverType::RealVectorType VectorType;
558  typedef typename SolverType::Scalar Scalar;
559  typedef typename SolverType::EigenvectorsType EigenvectorsType;
560
561
562  /** \internal
563   * Computes the roots of the characteristic polynomial of \a m.
564   * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
565   */
566  EIGEN_DEVICE_FUNC
567  static inline void computeRoots(const MatrixType& m, VectorType& roots)
568  {
569    EIGEN_USING_STD_MATH(sqrt)
570    EIGEN_USING_STD_MATH(atan2)
571    EIGEN_USING_STD_MATH(cos)
572    EIGEN_USING_STD_MATH(sin)
573    const Scalar s_inv3 = Scalar(1)/Scalar(3);
574    const Scalar s_sqrt3 = sqrt(Scalar(3));
575
576    // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0.  The
577    // eigenvalues are the roots to this equation, all guaranteed to be
578    // real-valued, because the matrix is symmetric.
579    Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
580    Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
581    Scalar c2 = m(0,0) + m(1,1) + m(2,2);
582
583    // Construct the parameters used in classifying the roots of the equation
584    // and in solving the equation for the roots in closed form.
585    Scalar c2_over_3 = c2*s_inv3;
586    Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
587    a_over_3 = numext::maxi(a_over_3, Scalar(0));
588
589    Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
590
591    Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
592    q = numext::maxi(q, Scalar(0));
593
594    // Compute the eigenvalues by solving for the roots of the polynomial.
595    Scalar rho = sqrt(a_over_3);
596    Scalar theta = atan2(sqrt(q),half_b)*s_inv3;  // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
597    Scalar cos_theta = cos(theta);
598    Scalar sin_theta = sin(theta);
599    // roots are already sorted, since cos is monotonically decreasing on [0, pi]
600    roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
601    roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
602    roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
603  }
604
605  EIGEN_DEVICE_FUNC
606  static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
607  {
608    using std::abs;
609    Index i0;
610    // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
611    mat.diagonal().cwiseAbs().maxCoeff(&i0);
612    // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
613    // so let's save it:
614    representative = mat.col(i0);
615    Scalar n0, n1;
616    VectorType c0, c1;
617    n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
618    n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
619    if(n0>n1) res = c0/std::sqrt(n0);
620    else      res = c1/std::sqrt(n1);
621
622    return true;
623  }
624
625  EIGEN_DEVICE_FUNC
626  static inline void run(SolverType& solver, const MatrixType& mat, int options)
627  {
628    eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
629    eigen_assert((options&~(EigVecMask|GenEigMask))==0
630            && (options&EigVecMask)!=EigVecMask
631            && "invalid option parameter");
632    bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
633
634    EigenvectorsType& eivecs = solver.m_eivec;
635    VectorType& eivals = solver.m_eivalues;
636
637    // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
638    Scalar shift = mat.trace() / Scalar(3);
639    // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
640    MatrixType scaledMat = mat.template selfadjointView<Lower>();
641    scaledMat.diagonal().array() -= shift;
642    Scalar scale = scaledMat.cwiseAbs().maxCoeff();
643    if(scale > 0) scaledMat /= scale;   // TODO for scale==0 we could save the remaining operations
644
645    // compute the eigenvalues
646    computeRoots(scaledMat,eivals);
647
648    // compute the eigenvectors
649    if(computeEigenvectors)
650    {
651      if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
652      {
653        // All three eigenvalues are numerically the same
654        eivecs.setIdentity();
655      }
656      else
657      {
658        MatrixType tmp;
659        tmp = scaledMat;
660
661        // Compute the eigenvector of the most distinct eigenvalue
662        Scalar d0 = eivals(2) - eivals(1);
663        Scalar d1 = eivals(1) - eivals(0);
664        Index k(0), l(2);
665        if(d0 > d1)
666        {
667          numext::swap(k,l);
668          d0 = d1;
669        }
670
671        // Compute the eigenvector of index k
672        {
673          tmp.diagonal().array () -= eivals(k);
674          // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
675          extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
676        }
677
678        // Compute eigenvector of index l
679        if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
680        {
681          // If d0 is too small, then the two other eigenvalues are numerically the same,
682          // and thus we only have to ortho-normalize the near orthogonal vector we saved above.
683          eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
684          eivecs.col(l).normalize();
685        }
686        else
687        {
688          tmp = scaledMat;
689          tmp.diagonal().array () -= eivals(l);
690
691          VectorType dummy;
692          extract_kernel(tmp, eivecs.col(l), dummy);
693        }
694
695        // Compute last eigenvector from the other two
696        eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
697      }
698    }
699
700    // Rescale back to the original size.
701    eivals *= scale;
702    eivals.array() += shift;
703
704    solver.m_info = Success;
705    solver.m_isInitialized = true;
706    solver.m_eigenvectorsOk = computeEigenvectors;
707  }
708};
709
710// 2x2 direct eigenvalues decomposition, code from Hauke Heibel
711template<typename SolverType>
712struct direct_selfadjoint_eigenvalues<SolverType,2,false>
713{
714  typedef typename SolverType::MatrixType MatrixType;
715  typedef typename SolverType::RealVectorType VectorType;
716  typedef typename SolverType::Scalar Scalar;
717  typedef typename SolverType::EigenvectorsType EigenvectorsType;
718
719  EIGEN_DEVICE_FUNC
720  static inline void computeRoots(const MatrixType& m, VectorType& roots)
721  {
722    using std::sqrt;
723    const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
724    const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
725    roots(0) = t1 - t0;
726    roots(1) = t1 + t0;
727  }
728
729  EIGEN_DEVICE_FUNC
730  static inline void run(SolverType& solver, const MatrixType& mat, int options)
731  {
732    EIGEN_USING_STD_MATH(sqrt);
733    EIGEN_USING_STD_MATH(abs);
734
735    eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
736    eigen_assert((options&~(EigVecMask|GenEigMask))==0
737            && (options&EigVecMask)!=EigVecMask
738            && "invalid option parameter");
739    bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
740
741    EigenvectorsType& eivecs = solver.m_eivec;
742    VectorType& eivals = solver.m_eivalues;
743
744    // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
745    Scalar shift = mat.trace() / Scalar(2);
746    MatrixType scaledMat = mat;
747    scaledMat.coeffRef(0,1) = mat.coeff(1,0);
748    scaledMat.diagonal().array() -= shift;
749    Scalar scale = scaledMat.cwiseAbs().maxCoeff();
750    if(scale > Scalar(0))
751      scaledMat /= scale;
752
753    // Compute the eigenvalues
754    computeRoots(scaledMat,eivals);
755
756    // compute the eigen vectors
757    if(computeEigenvectors)
758    {
759      if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
760      {
761        eivecs.setIdentity();
762      }
763      else
764      {
765        scaledMat.diagonal().array () -= eivals(1);
766        Scalar a2 = numext::abs2(scaledMat(0,0));
767        Scalar c2 = numext::abs2(scaledMat(1,1));
768        Scalar b2 = numext::abs2(scaledMat(1,0));
769        if(a2>c2)
770        {
771          eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
772          eivecs.col(1) /= sqrt(a2+b2);
773        }
774        else
775        {
776          eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
777          eivecs.col(1) /= sqrt(c2+b2);
778        }
779
780        eivecs.col(0) << eivecs.col(1).unitOrthogonal();
781      }
782    }
783
784    // Rescale back to the original size.
785    eivals *= scale;
786    eivals.array() += shift;
787
788    solver.m_info = Success;
789    solver.m_isInitialized = true;
790    solver.m_eigenvectorsOk = computeEigenvectors;
791  }
792};
793
794}
795
796template<typename MatrixType>
797EIGEN_DEVICE_FUNC
798SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
799::computeDirect(const MatrixType& matrix, int options)
800{
801  internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
802  return *this;
803}
804
805namespace internal {
806template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
807EIGEN_DEVICE_FUNC
808static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
809{
810  using std::abs;
811  RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
812  RealScalar e = subdiag[end-1];
813  // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
814  // underflow thus leading to inf/NaN values when using the following commented code:
815//   RealScalar e2 = numext::abs2(subdiag[end-1]);
816//   RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
817  // This explain the following, somewhat more complicated, version:
818  RealScalar mu = diag[end];
819  if(td==RealScalar(0))
820    mu -= abs(e);
821  else
822  {
823    RealScalar e2 = numext::abs2(subdiag[end-1]);
824    RealScalar h = numext::hypot(td,e);
825    if(e2==RealScalar(0)) mu -= (e / (td + (td>RealScalar(0) ? RealScalar(1) : RealScalar(-1)))) * (e / h);
826    else                  mu -= e2 / (td + (td>RealScalar(0) ? h : -h));
827  }
828
829  RealScalar x = diag[start] - mu;
830  RealScalar z = subdiag[start];
831  for (Index k = start; k < end; ++k)
832  {
833    JacobiRotation<RealScalar> rot;
834    rot.makeGivens(x, z);
835
836    // do T = G' T G
837    RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
838    RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
839
840    diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
841    diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
842    subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
843
844
845    if (k > start)
846      subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
847
848    x = subdiag[k];
849
850    if (k < end - 1)
851    {
852      z = -rot.s() * subdiag[k+1];
853      subdiag[k + 1] = rot.c() * subdiag[k+1];
854    }
855
856    // apply the givens rotation to the unit matrix Q = Q * G
857    if (matrixQ)
858    {
859      // FIXME if StorageOrder == RowMajor this operation is not very efficient
860      Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
861      q.applyOnTheRight(k,k+1,rot);
862    }
863  }
864}
865
866} // end namespace internal
867
868} // end namespace Eigen
869
870#endif // EIGEN_SELFADJOINTEIGENSOLVER_H
871