1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
7//
8// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
12#ifndef EIGEN_TRANSFORM_H
13#define EIGEN_TRANSFORM_H
14
15namespace Eigen {
16
17namespace internal {
18
19template<typename Transform>
20struct transform_traits
21{
22  enum
23  {
24    Dim = Transform::Dim,
25    HDim = Transform::HDim,
26    Mode = Transform::Mode,
27    IsProjective = (int(Mode)==int(Projective))
28  };
29};
30
31template< typename TransformType,
32          typename MatrixType,
33          int Case = transform_traits<TransformType>::IsProjective ? 0
34                   : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1
35                   : 2,
36          int RhsCols = MatrixType::ColsAtCompileTime>
37struct transform_right_product_impl;
38
39template< typename Other,
40          int Mode,
41          int Options,
42          int Dim,
43          int HDim,
44          int OtherRows=Other::RowsAtCompileTime,
45          int OtherCols=Other::ColsAtCompileTime>
46struct transform_left_product_impl;
47
48template< typename Lhs,
49          typename Rhs,
50          bool AnyProjective =
51            transform_traits<Lhs>::IsProjective ||
52            transform_traits<Rhs>::IsProjective>
53struct transform_transform_product_impl;
54
55template< typename Other,
56          int Mode,
57          int Options,
58          int Dim,
59          int HDim,
60          int OtherRows=Other::RowsAtCompileTime,
61          int OtherCols=Other::ColsAtCompileTime>
62struct transform_construct_from_matrix;
63
64template<typename TransformType> struct transform_take_affine_part;
65
66template<typename _Scalar, int _Dim, int _Mode, int _Options>
67struct traits<Transform<_Scalar,_Dim,_Mode,_Options> >
68{
69  typedef _Scalar Scalar;
70  typedef Eigen::Index StorageIndex;
71  typedef Dense StorageKind;
72  enum {
73    Dim1 = _Dim==Dynamic ? _Dim : _Dim + 1,
74    RowsAtCompileTime = _Mode==Projective ? Dim1 : _Dim,
75    ColsAtCompileTime = Dim1,
76    MaxRowsAtCompileTime = RowsAtCompileTime,
77    MaxColsAtCompileTime = ColsAtCompileTime,
78    Flags = 0
79  };
80};
81
82template<int Mode> struct transform_make_affine;
83
84} // end namespace internal
85
86/** \geometry_module \ingroup Geometry_Module
87  *
88  * \class Transform
89  *
90  * \brief Represents an homogeneous transformation in a N dimensional space
91  *
92  * \tparam _Scalar the scalar type, i.e., the type of the coefficients
93  * \tparam _Dim the dimension of the space
94  * \tparam _Mode the type of the transformation. Can be:
95  *              - #Affine: the transformation is stored as a (Dim+1)^2 matrix,
96  *                         where the last row is assumed to be [0 ... 0 1].
97  *              - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix.
98  *              - #Projective: the transformation is stored as a (Dim+1)^2 matrix
99  *                             without any assumption.
100  * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor.
101  *                  These Options are passed directly to the underlying matrix type.
102  *
103  * The homography is internally represented and stored by a matrix which
104  * is available through the matrix() method. To understand the behavior of
105  * this class you have to think a Transform object as its internal
106  * matrix representation. The chosen convention is right multiply:
107  *
108  * \code v' = T * v \endcode
109  *
110  * Therefore, an affine transformation matrix M is shaped like this:
111  *
112  * \f$ \left( \begin{array}{cc}
113  * linear & translation\\
114  * 0 ... 0 & 1
115  * \end{array} \right) \f$
116  *
117  * Note that for a projective transformation the last row can be anything,
118  * and then the interpretation of different parts might be sightly different.
119  *
120  * However, unlike a plain matrix, the Transform class provides many features
121  * simplifying both its assembly and usage. In particular, it can be composed
122  * with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix)
123  * and can be directly used to transform implicit homogeneous vectors. All these
124  * operations are handled via the operator*. For the composition of transformations,
125  * its principle consists to first convert the right/left hand sides of the product
126  * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product.
127  * Of course, internally, operator* tries to perform the minimal number of operations
128  * according to the nature of each terms. Likewise, when applying the transform
129  * to points, the latters are automatically promoted to homogeneous vectors
130  * before doing the matrix product. The conventions to homogeneous representations
131  * are performed as follow:
132  *
133  * \b Translation t (Dim)x(1):
134  * \f$ \left( \begin{array}{cc}
135  * I & t \\
136  * 0\,...\,0 & 1
137  * \end{array} \right) \f$
138  *
139  * \b Rotation R (Dim)x(Dim):
140  * \f$ \left( \begin{array}{cc}
141  * R & 0\\
142  * 0\,...\,0 & 1
143  * \end{array} \right) \f$
144  *<!--
145  * \b Linear \b Matrix L (Dim)x(Dim):
146  * \f$ \left( \begin{array}{cc}
147  * L & 0\\
148  * 0\,...\,0 & 1
149  * \end{array} \right) \f$
150  *
151  * \b Affine \b Matrix A (Dim)x(Dim+1):
152  * \f$ \left( \begin{array}{c}
153  * A\\
154  * 0\,...\,0\,1
155  * \end{array} \right) \f$
156  *-->
157  * \b Scaling \b DiagonalMatrix S (Dim)x(Dim):
158  * \f$ \left( \begin{array}{cc}
159  * S & 0\\
160  * 0\,...\,0 & 1
161  * \end{array} \right) \f$
162  *
163  * \b Column \b point v (Dim)x(1):
164  * \f$ \left( \begin{array}{c}
165  * v\\
166  * 1
167  * \end{array} \right) \f$
168  *
169  * \b Set \b of \b column \b points V1...Vn (Dim)x(n):
170  * \f$ \left( \begin{array}{ccc}
171  * v_1 & ... & v_n\\
172  * 1 & ... & 1
173  * \end{array} \right) \f$
174  *
175  * The concatenation of a Transform object with any kind of other transformation
176  * always returns a Transform object.
177  *
178  * A little exception to the "as pure matrix product" rule is the case of the
179  * transformation of non homogeneous vectors by an affine transformation. In
180  * that case the last matrix row can be ignored, and the product returns non
181  * homogeneous vectors.
182  *
183  * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation,
184  * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix.
185  * The solution is either to use a Dim x Dynamic matrix or explicitly request a
186  * vector transformation by making the vector homogeneous:
187  * \code
188  * m' = T * m.colwise().homogeneous();
189  * \endcode
190  * Note that there is zero overhead.
191  *
192  * Conversion methods from/to Qt's QMatrix and QTransform are available if the
193  * preprocessor token EIGEN_QT_SUPPORT is defined.
194  *
195  * This class can be extended with the help of the plugin mechanism described on the page
196  * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN.
197  *
198  * \sa class Matrix, class Quaternion
199  */
200template<typename _Scalar, int _Dim, int _Mode, int _Options>
201class Transform
202{
203public:
204  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
205  enum {
206    Mode = _Mode,
207    Options = _Options,
208    Dim = _Dim,     ///< space dimension in which the transformation holds
209    HDim = _Dim+1,  ///< size of a respective homogeneous vector
210    Rows = int(Mode)==(AffineCompact) ? Dim : HDim
211  };
212  /** the scalar type of the coefficients */
213  typedef _Scalar Scalar;
214  typedef Eigen::Index StorageIndex;
215  typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
216  /** type of the matrix used to represent the transformation */
217  typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType;
218  /** constified MatrixType */
219  typedef const MatrixType ConstMatrixType;
220  /** type of the matrix used to represent the linear part of the transformation */
221  typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType;
222  /** type of read/write reference to the linear part of the transformation */
223  typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> LinearPart;
224  /** type of read reference to the linear part of the transformation */
225  typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> ConstLinearPart;
226  /** type of read/write reference to the affine part of the transformation */
227  typedef typename internal::conditional<int(Mode)==int(AffineCompact),
228                              MatrixType&,
229                              Block<MatrixType,Dim,HDim> >::type AffinePart;
230  /** type of read reference to the affine part of the transformation */
231  typedef typename internal::conditional<int(Mode)==int(AffineCompact),
232                              const MatrixType&,
233                              const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart;
234  /** type of a vector */
235  typedef Matrix<Scalar,Dim,1> VectorType;
236  /** type of a read/write reference to the translation part of the rotation */
237  typedef Block<MatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> TranslationPart;
238  /** type of a read reference to the translation part of the rotation */
239  typedef const Block<ConstMatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> ConstTranslationPart;
240  /** corresponding translation type */
241  typedef Translation<Scalar,Dim> TranslationType;
242
243  // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0
244  enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) };
245  /** The return type of the product between a diagonal matrix and a transform */
246  typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType;
247
248protected:
249
250  MatrixType m_matrix;
251
252public:
253
254  /** Default constructor without initialization of the meaningful coefficients.
255    * If Mode==Affine, then the last row is set to [0 ... 0 1] */
256  EIGEN_DEVICE_FUNC inline Transform()
257  {
258    check_template_params();
259    internal::transform_make_affine<(int(Mode)==Affine) ? Affine : AffineCompact>::run(m_matrix);
260  }
261
262  EIGEN_DEVICE_FUNC inline Transform(const Transform& other)
263  {
264    check_template_params();
265    m_matrix = other.m_matrix;
266  }
267
268  EIGEN_DEVICE_FUNC inline explicit Transform(const TranslationType& t)
269  {
270    check_template_params();
271    *this = t;
272  }
273  EIGEN_DEVICE_FUNC inline explicit Transform(const UniformScaling<Scalar>& s)
274  {
275    check_template_params();
276    *this = s;
277  }
278  template<typename Derived>
279  EIGEN_DEVICE_FUNC inline explicit Transform(const RotationBase<Derived, Dim>& r)
280  {
281    check_template_params();
282    *this = r;
283  }
284
285  EIGEN_DEVICE_FUNC inline Transform& operator=(const Transform& other)
286  { m_matrix = other.m_matrix; return *this; }
287
288  typedef internal::transform_take_affine_part<Transform> take_affine_part;
289
290  /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
291  template<typename OtherDerived>
292  EIGEN_DEVICE_FUNC inline explicit Transform(const EigenBase<OtherDerived>& other)
293  {
294    EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
295      YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
296
297    check_template_params();
298    internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
299  }
300
301  /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */
302  template<typename OtherDerived>
303  EIGEN_DEVICE_FUNC inline Transform& operator=(const EigenBase<OtherDerived>& other)
304  {
305    EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
306      YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
307
308    internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
309    return *this;
310  }
311
312  template<int OtherOptions>
313  EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other)
314  {
315    check_template_params();
316    // only the options change, we can directly copy the matrices
317    m_matrix = other.matrix();
318  }
319
320  template<int OtherMode,int OtherOptions>
321  EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other)
322  {
323    check_template_params();
324    // prevent conversions as:
325    // Affine | AffineCompact | Isometry = Projective
326    EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)),
327                        YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
328
329    // prevent conversions as:
330    // Isometry = Affine | AffineCompact
331    EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)),
332                        YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
333
334    enum { ModeIsAffineCompact = Mode == int(AffineCompact),
335           OtherModeIsAffineCompact = OtherMode == int(AffineCompact)
336    };
337
338    if(ModeIsAffineCompact == OtherModeIsAffineCompact)
339    {
340      // We need the block expression because the code is compiled for all
341      // combinations of transformations and will trigger a compile time error
342      // if one tries to assign the matrices directly
343      m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0);
344      makeAffine();
345    }
346    else if(OtherModeIsAffineCompact)
347    {
348      typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType;
349      internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix());
350    }
351    else
352    {
353      // here we know that Mode == AffineCompact and OtherMode != AffineCompact.
354      // if OtherMode were Projective, the static assert above would already have caught it.
355      // So the only possibility is that OtherMode == Affine
356      linear() = other.linear();
357      translation() = other.translation();
358    }
359  }
360
361  template<typename OtherDerived>
362  EIGEN_DEVICE_FUNC Transform(const ReturnByValue<OtherDerived>& other)
363  {
364    check_template_params();
365    other.evalTo(*this);
366  }
367
368  template<typename OtherDerived>
369  EIGEN_DEVICE_FUNC Transform& operator=(const ReturnByValue<OtherDerived>& other)
370  {
371    other.evalTo(*this);
372    return *this;
373  }
374
375  #ifdef EIGEN_QT_SUPPORT
376  inline Transform(const QMatrix& other);
377  inline Transform& operator=(const QMatrix& other);
378  inline QMatrix toQMatrix(void) const;
379  inline Transform(const QTransform& other);
380  inline Transform& operator=(const QTransform& other);
381  inline QTransform toQTransform(void) const;
382  #endif
383
384  EIGEN_DEVICE_FUNC Index rows() const { return int(Mode)==int(Projective) ? m_matrix.cols() : (m_matrix.cols()-1); }
385  EIGEN_DEVICE_FUNC Index cols() const { return m_matrix.cols(); }
386
387  /** shortcut for m_matrix(row,col);
388    * \sa MatrixBase::operator(Index,Index) const */
389  EIGEN_DEVICE_FUNC inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); }
390  /** shortcut for m_matrix(row,col);
391    * \sa MatrixBase::operator(Index,Index) */
392  EIGEN_DEVICE_FUNC inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); }
393
394  /** \returns a read-only expression of the transformation matrix */
395  EIGEN_DEVICE_FUNC inline const MatrixType& matrix() const { return m_matrix; }
396  /** \returns a writable expression of the transformation matrix */
397  EIGEN_DEVICE_FUNC inline MatrixType& matrix() { return m_matrix; }
398
399  /** \returns a read-only expression of the linear part of the transformation */
400  EIGEN_DEVICE_FUNC inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); }
401  /** \returns a writable expression of the linear part of the transformation */
402  EIGEN_DEVICE_FUNC inline LinearPart linear() { return LinearPart(m_matrix,0,0); }
403
404  /** \returns a read-only expression of the Dim x HDim affine part of the transformation */
405  EIGEN_DEVICE_FUNC inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); }
406  /** \returns a writable expression of the Dim x HDim affine part of the transformation */
407  EIGEN_DEVICE_FUNC inline AffinePart affine() { return take_affine_part::run(m_matrix); }
408
409  /** \returns a read-only expression of the translation vector of the transformation */
410  EIGEN_DEVICE_FUNC inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); }
411  /** \returns a writable expression of the translation vector of the transformation */
412  EIGEN_DEVICE_FUNC inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); }
413
414  /** \returns an expression of the product between the transform \c *this and a matrix expression \a other.
415    *
416    * The right-hand-side \a other can be either:
417    * \li an homogeneous vector of size Dim+1,
418    * \li a set of homogeneous vectors of size Dim+1 x N,
419    * \li a transformation matrix of size Dim+1 x Dim+1.
420    *
421    * Moreover, if \c *this represents an affine transformation (i.e., Mode!=Projective), then \a other can also be:
422    * \li a point of size Dim (computes: \code this->linear() * other + this->translation()\endcode),
423    * \li a set of N points as a Dim x N matrix (computes: \code (this->linear() * other).colwise() + this->translation()\endcode),
424    *
425    * In all cases, the return type is a matrix or vector of same sizes as the right-hand-side \a other.
426    *
427    * If you want to interpret \a other as a linear or affine transformation, then first convert it to a Transform<> type,
428    * or do your own cooking.
429    *
430    * Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only:
431    * \code
432    * Affine3f A;
433    * Vector3f v1, v2;
434    * v2 = A.linear() * v1;
435    * \endcode
436    *
437    */
438  // note: this function is defined here because some compilers cannot find the respective declaration
439  template<typename OtherDerived>
440  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, OtherDerived>::ResultType
441  operator * (const EigenBase<OtherDerived> &other) const
442  { return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); }
443
444  /** \returns the product expression of a transformation matrix \a a times a transform \a b
445    *
446    * The left hand side \a other can be either:
447    * \li a linear transformation matrix of size Dim x Dim,
448    * \li an affine transformation matrix of size Dim x Dim+1,
449    * \li a general transformation matrix of size Dim+1 x Dim+1.
450    */
451  template<typename OtherDerived> friend
452  EIGEN_DEVICE_FUNC inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType
453    operator * (const EigenBase<OtherDerived> &a, const Transform &b)
454  { return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); }
455
456  /** \returns The product expression of a transform \a a times a diagonal matrix \a b
457    *
458    * The rhs diagonal matrix is interpreted as an affine scaling transformation. The
459    * product results in a Transform of the same type (mode) as the lhs only if the lhs
460    * mode is no isometry. In that case, the returned transform is an affinity.
461    */
462  template<typename DiagonalDerived>
463  EIGEN_DEVICE_FUNC inline const TransformTimeDiagonalReturnType
464    operator * (const DiagonalBase<DiagonalDerived> &b) const
465  {
466    TransformTimeDiagonalReturnType res(*this);
467    res.linearExt() *= b;
468    return res;
469  }
470
471  /** \returns The product expression of a diagonal matrix \a a times a transform \a b
472    *
473    * The lhs diagonal matrix is interpreted as an affine scaling transformation. The
474    * product results in a Transform of the same type (mode) as the lhs only if the lhs
475    * mode is no isometry. In that case, the returned transform is an affinity.
476    */
477  template<typename DiagonalDerived>
478  EIGEN_DEVICE_FUNC friend inline TransformTimeDiagonalReturnType
479    operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b)
480  {
481    TransformTimeDiagonalReturnType res;
482    res.linear().noalias() = a*b.linear();
483    res.translation().noalias() = a*b.translation();
484    if (Mode!=int(AffineCompact))
485      res.matrix().row(Dim) = b.matrix().row(Dim);
486    return res;
487  }
488
489  template<typename OtherDerived>
490  EIGEN_DEVICE_FUNC inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; }
491
492  /** Concatenates two transformations */
493  EIGEN_DEVICE_FUNC inline const Transform operator * (const Transform& other) const
494  {
495    return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other);
496  }
497
498  #if EIGEN_COMP_ICC
499private:
500  // this intermediate structure permits to workaround a bug in ICC 11:
501  //   error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0>
502  //             (const Eigen::Transform<double, 3, 2, 0> &) const"
503  //  (the meaning of a name may have changed since the template declaration -- the type of the template is:
504  // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>,
505  //     Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const")
506  //
507  template<int OtherMode,int OtherOptions> struct icc_11_workaround
508  {
509    typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType;
510    typedef typename ProductType::ResultType ResultType;
511  };
512
513public:
514  /** Concatenates two different transformations */
515  template<int OtherMode,int OtherOptions>
516  inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType
517    operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
518  {
519    typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType;
520    return ProductType::run(*this,other);
521  }
522  #else
523  /** Concatenates two different transformations */
524  template<int OtherMode,int OtherOptions>
525  EIGEN_DEVICE_FUNC inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType
526    operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
527  {
528    return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other);
529  }
530  #endif
531
532  /** \sa MatrixBase::setIdentity() */
533  EIGEN_DEVICE_FUNC void setIdentity() { m_matrix.setIdentity(); }
534
535  /**
536   * \brief Returns an identity transformation.
537   * \todo In the future this function should be returning a Transform expression.
538   */
539  EIGEN_DEVICE_FUNC static const Transform Identity()
540  {
541    return Transform(MatrixType::Identity());
542  }
543
544  template<typename OtherDerived>
545  EIGEN_DEVICE_FUNC
546  inline Transform& scale(const MatrixBase<OtherDerived> &other);
547
548  template<typename OtherDerived>
549  EIGEN_DEVICE_FUNC
550  inline Transform& prescale(const MatrixBase<OtherDerived> &other);
551
552  EIGEN_DEVICE_FUNC inline Transform& scale(const Scalar& s);
553  EIGEN_DEVICE_FUNC inline Transform& prescale(const Scalar& s);
554
555  template<typename OtherDerived>
556  EIGEN_DEVICE_FUNC
557  inline Transform& translate(const MatrixBase<OtherDerived> &other);
558
559  template<typename OtherDerived>
560  EIGEN_DEVICE_FUNC
561  inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
562
563  template<typename RotationType>
564  EIGEN_DEVICE_FUNC
565  inline Transform& rotate(const RotationType& rotation);
566
567  template<typename RotationType>
568  EIGEN_DEVICE_FUNC
569  inline Transform& prerotate(const RotationType& rotation);
570
571  EIGEN_DEVICE_FUNC Transform& shear(const Scalar& sx, const Scalar& sy);
572  EIGEN_DEVICE_FUNC Transform& preshear(const Scalar& sx, const Scalar& sy);
573
574  EIGEN_DEVICE_FUNC inline Transform& operator=(const TranslationType& t);
575
576  EIGEN_DEVICE_FUNC
577  inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
578
579  EIGEN_DEVICE_FUNC inline Transform operator*(const TranslationType& t) const;
580
581  EIGEN_DEVICE_FUNC
582  inline Transform& operator=(const UniformScaling<Scalar>& t);
583
584  EIGEN_DEVICE_FUNC
585  inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
586
587  EIGEN_DEVICE_FUNC
588  inline TransformTimeDiagonalReturnType operator*(const UniformScaling<Scalar>& s) const
589  {
590    TransformTimeDiagonalReturnType res = *this;
591    res.scale(s.factor());
592    return res;
593  }
594
595  EIGEN_DEVICE_FUNC
596  inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linearExt() *= s; return *this; }
597
598  template<typename Derived>
599  EIGEN_DEVICE_FUNC inline Transform& operator=(const RotationBase<Derived,Dim>& r);
600  template<typename Derived>
601  EIGEN_DEVICE_FUNC inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
602  template<typename Derived>
603  EIGEN_DEVICE_FUNC inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
604
605  EIGEN_DEVICE_FUNC const LinearMatrixType rotation() const;
606  template<typename RotationMatrixType, typename ScalingMatrixType>
607  EIGEN_DEVICE_FUNC
608  void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
609  template<typename ScalingMatrixType, typename RotationMatrixType>
610  EIGEN_DEVICE_FUNC
611  void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
612
613  template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
614  EIGEN_DEVICE_FUNC
615  Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
616    const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
617
618  EIGEN_DEVICE_FUNC
619  inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const;
620
621  /** \returns a const pointer to the column major internal matrix */
622  EIGEN_DEVICE_FUNC const Scalar* data() const { return m_matrix.data(); }
623  /** \returns a non-const pointer to the column major internal matrix */
624  EIGEN_DEVICE_FUNC Scalar* data() { return m_matrix.data(); }
625
626  /** \returns \c *this with scalar type casted to \a NewScalarType
627    *
628    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
629    * then this function smartly returns a const reference to \c *this.
630    */
631  template<typename NewScalarType>
632  EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const
633  { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); }
634
635  /** Copy constructor with scalar type conversion */
636  template<typename OtherScalarType>
637  EIGEN_DEVICE_FUNC inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other)
638  {
639    check_template_params();
640    m_matrix = other.matrix().template cast<Scalar>();
641  }
642
643  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
644    * determined by \a prec.
645    *
646    * \sa MatrixBase::isApprox() */
647  EIGEN_DEVICE_FUNC bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
648  { return m_matrix.isApprox(other.m_matrix, prec); }
649
650  /** Sets the last row to [0 ... 0 1]
651    */
652  EIGEN_DEVICE_FUNC void makeAffine()
653  {
654    internal::transform_make_affine<int(Mode)>::run(m_matrix);
655  }
656
657  /** \internal
658    * \returns the Dim x Dim linear part if the transformation is affine,
659    *          and the HDim x Dim part for projective transformations.
660    */
661  EIGEN_DEVICE_FUNC inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt()
662  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
663  /** \internal
664    * \returns the Dim x Dim linear part if the transformation is affine,
665    *          and the HDim x Dim part for projective transformations.
666    */
667  EIGEN_DEVICE_FUNC inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const
668  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
669
670  /** \internal
671    * \returns the translation part if the transformation is affine,
672    *          and the last column for projective transformations.
673    */
674  EIGEN_DEVICE_FUNC inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt()
675  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
676  /** \internal
677    * \returns the translation part if the transformation is affine,
678    *          and the last column for projective transformations.
679    */
680  EIGEN_DEVICE_FUNC inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const
681  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
682
683
684  #ifdef EIGEN_TRANSFORM_PLUGIN
685  #include EIGEN_TRANSFORM_PLUGIN
686  #endif
687
688protected:
689  #ifndef EIGEN_PARSED_BY_DOXYGEN
690    EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void check_template_params()
691    {
692      EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS)
693    }
694  #endif
695
696};
697
698/** \ingroup Geometry_Module */
699typedef Transform<float,2,Isometry> Isometry2f;
700/** \ingroup Geometry_Module */
701typedef Transform<float,3,Isometry> Isometry3f;
702/** \ingroup Geometry_Module */
703typedef Transform<double,2,Isometry> Isometry2d;
704/** \ingroup Geometry_Module */
705typedef Transform<double,3,Isometry> Isometry3d;
706
707/** \ingroup Geometry_Module */
708typedef Transform<float,2,Affine> Affine2f;
709/** \ingroup Geometry_Module */
710typedef Transform<float,3,Affine> Affine3f;
711/** \ingroup Geometry_Module */
712typedef Transform<double,2,Affine> Affine2d;
713/** \ingroup Geometry_Module */
714typedef Transform<double,3,Affine> Affine3d;
715
716/** \ingroup Geometry_Module */
717typedef Transform<float,2,AffineCompact> AffineCompact2f;
718/** \ingroup Geometry_Module */
719typedef Transform<float,3,AffineCompact> AffineCompact3f;
720/** \ingroup Geometry_Module */
721typedef Transform<double,2,AffineCompact> AffineCompact2d;
722/** \ingroup Geometry_Module */
723typedef Transform<double,3,AffineCompact> AffineCompact3d;
724
725/** \ingroup Geometry_Module */
726typedef Transform<float,2,Projective> Projective2f;
727/** \ingroup Geometry_Module */
728typedef Transform<float,3,Projective> Projective3f;
729/** \ingroup Geometry_Module */
730typedef Transform<double,2,Projective> Projective2d;
731/** \ingroup Geometry_Module */
732typedef Transform<double,3,Projective> Projective3d;
733
734/**************************
735*** Optional QT support ***
736**************************/
737
738#ifdef EIGEN_QT_SUPPORT
739/** Initializes \c *this from a QMatrix assuming the dimension is 2.
740  *
741  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
742  */
743template<typename Scalar, int Dim, int Mode,int Options>
744Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other)
745{
746  check_template_params();
747  *this = other;
748}
749
750/** Set \c *this from a QMatrix assuming the dimension is 2.
751  *
752  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
753  */
754template<typename Scalar, int Dim, int Mode,int Options>
755Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other)
756{
757  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
758  if (Mode == int(AffineCompact))
759    m_matrix << other.m11(), other.m21(), other.dx(),
760                other.m12(), other.m22(), other.dy();
761  else
762    m_matrix << other.m11(), other.m21(), other.dx(),
763                other.m12(), other.m22(), other.dy(),
764                0, 0, 1;
765  return *this;
766}
767
768/** \returns a QMatrix from \c *this assuming the dimension is 2.
769  *
770  * \warning this conversion might loss data if \c *this is not affine
771  *
772  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
773  */
774template<typename Scalar, int Dim, int Mode, int Options>
775QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const
776{
777  check_template_params();
778  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
779  return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
780                 m_matrix.coeff(0,1), m_matrix.coeff(1,1),
781                 m_matrix.coeff(0,2), m_matrix.coeff(1,2));
782}
783
784/** Initializes \c *this from a QTransform assuming the dimension is 2.
785  *
786  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
787  */
788template<typename Scalar, int Dim, int Mode,int Options>
789Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other)
790{
791  check_template_params();
792  *this = other;
793}
794
795/** Set \c *this from a QTransform assuming the dimension is 2.
796  *
797  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
798  */
799template<typename Scalar, int Dim, int Mode, int Options>
800Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other)
801{
802  check_template_params();
803  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
804  if (Mode == int(AffineCompact))
805    m_matrix << other.m11(), other.m21(), other.dx(),
806                other.m12(), other.m22(), other.dy();
807  else
808    m_matrix << other.m11(), other.m21(), other.dx(),
809                other.m12(), other.m22(), other.dy(),
810                other.m13(), other.m23(), other.m33();
811  return *this;
812}
813
814/** \returns a QTransform from \c *this assuming the dimension is 2.
815  *
816  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
817  */
818template<typename Scalar, int Dim, int Mode, int Options>
819QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const
820{
821  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
822  if (Mode == int(AffineCompact))
823    return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
824                      m_matrix.coeff(0,1), m_matrix.coeff(1,1),
825                      m_matrix.coeff(0,2), m_matrix.coeff(1,2));
826  else
827    return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
828                      m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
829                      m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
830}
831#endif
832
833/*********************
834*** Procedural API ***
835*********************/
836
837/** Applies on the right the non uniform scale transformation represented
838  * by the vector \a other to \c *this and returns a reference to \c *this.
839  * \sa prescale()
840  */
841template<typename Scalar, int Dim, int Mode, int Options>
842template<typename OtherDerived>
843EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
844Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other)
845{
846  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
847  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
848  linearExt().noalias() = (linearExt() * other.asDiagonal());
849  return *this;
850}
851
852/** Applies on the right a uniform scale of a factor \a c to \c *this
853  * and returns a reference to \c *this.
854  * \sa prescale(Scalar)
855  */
856template<typename Scalar, int Dim, int Mode, int Options>
857EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s)
858{
859  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
860  linearExt() *= s;
861  return *this;
862}
863
864/** Applies on the left the non uniform scale transformation represented
865  * by the vector \a other to \c *this and returns a reference to \c *this.
866  * \sa scale()
867  */
868template<typename Scalar, int Dim, int Mode, int Options>
869template<typename OtherDerived>
870EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
871Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other)
872{
873  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
874  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
875  affine().noalias() = (other.asDiagonal() * affine());
876  return *this;
877}
878
879/** Applies on the left a uniform scale of a factor \a c to \c *this
880  * and returns a reference to \c *this.
881  * \sa scale(Scalar)
882  */
883template<typename Scalar, int Dim, int Mode, int Options>
884EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s)
885{
886  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
887  m_matrix.template topRows<Dim>() *= s;
888  return *this;
889}
890
891/** Applies on the right the translation matrix represented by the vector \a other
892  * to \c *this and returns a reference to \c *this.
893  * \sa pretranslate()
894  */
895template<typename Scalar, int Dim, int Mode, int Options>
896template<typename OtherDerived>
897EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
898Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other)
899{
900  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
901  translationExt() += linearExt() * other;
902  return *this;
903}
904
905/** Applies on the left the translation matrix represented by the vector \a other
906  * to \c *this and returns a reference to \c *this.
907  * \sa translate()
908  */
909template<typename Scalar, int Dim, int Mode, int Options>
910template<typename OtherDerived>
911EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
912Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other)
913{
914  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
915  if(int(Mode)==int(Projective))
916    affine() += other * m_matrix.row(Dim);
917  else
918    translation() += other;
919  return *this;
920}
921
922/** Applies on the right the rotation represented by the rotation \a rotation
923  * to \c *this and returns a reference to \c *this.
924  *
925  * The template parameter \a RotationType is the type of the rotation which
926  * must be known by internal::toRotationMatrix<>.
927  *
928  * Natively supported types includes:
929  *   - any scalar (2D),
930  *   - a Dim x Dim matrix expression,
931  *   - a Quaternion (3D),
932  *   - a AngleAxis (3D)
933  *
934  * This mechanism is easily extendable to support user types such as Euler angles,
935  * or a pair of Quaternion for 4D rotations.
936  *
937  * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
938  */
939template<typename Scalar, int Dim, int Mode, int Options>
940template<typename RotationType>
941EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
942Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation)
943{
944  linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation);
945  return *this;
946}
947
948/** Applies on the left the rotation represented by the rotation \a rotation
949  * to \c *this and returns a reference to \c *this.
950  *
951  * See rotate() for further details.
952  *
953  * \sa rotate()
954  */
955template<typename Scalar, int Dim, int Mode, int Options>
956template<typename RotationType>
957EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
958Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation)
959{
960  m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation)
961                                         * m_matrix.template block<Dim,HDim>(0,0);
962  return *this;
963}
964
965/** Applies on the right the shear transformation represented
966  * by the vector \a other to \c *this and returns a reference to \c *this.
967  * \warning 2D only.
968  * \sa preshear()
969  */
970template<typename Scalar, int Dim, int Mode, int Options>
971EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
972Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy)
973{
974  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
975  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
976  VectorType tmp = linear().col(0)*sy + linear().col(1);
977  linear() << linear().col(0) + linear().col(1)*sx, tmp;
978  return *this;
979}
980
981/** Applies on the left the shear transformation represented
982  * by the vector \a other to \c *this and returns a reference to \c *this.
983  * \warning 2D only.
984  * \sa shear()
985  */
986template<typename Scalar, int Dim, int Mode, int Options>
987EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
988Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy)
989{
990  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
991  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
992  m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
993  return *this;
994}
995
996/******************************************************
997*** Scaling, Translation and Rotation compatibility ***
998******************************************************/
999
1000template<typename Scalar, int Dim, int Mode, int Options>
1001EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t)
1002{
1003  linear().setIdentity();
1004  translation() = t.vector();
1005  makeAffine();
1006  return *this;
1007}
1008
1009template<typename Scalar, int Dim, int Mode, int Options>
1010EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const
1011{
1012  Transform res = *this;
1013  res.translate(t.vector());
1014  return res;
1015}
1016
1017template<typename Scalar, int Dim, int Mode, int Options>
1018EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s)
1019{
1020  m_matrix.setZero();
1021  linear().diagonal().fill(s.factor());
1022  makeAffine();
1023  return *this;
1024}
1025
1026template<typename Scalar, int Dim, int Mode, int Options>
1027template<typename Derived>
1028EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r)
1029{
1030  linear() = internal::toRotationMatrix<Scalar,Dim>(r);
1031  translation().setZero();
1032  makeAffine();
1033  return *this;
1034}
1035
1036template<typename Scalar, int Dim, int Mode, int Options>
1037template<typename Derived>
1038EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const
1039{
1040  Transform res = *this;
1041  res.rotate(r.derived());
1042  return res;
1043}
1044
1045/************************
1046*** Special functions ***
1047************************/
1048
1049/** \returns the rotation part of the transformation
1050  *
1051  *
1052  * \svd_module
1053  *
1054  * \sa computeRotationScaling(), computeScalingRotation(), class SVD
1055  */
1056template<typename Scalar, int Dim, int Mode, int Options>
1057EIGEN_DEVICE_FUNC const typename Transform<Scalar,Dim,Mode,Options>::LinearMatrixType
1058Transform<Scalar,Dim,Mode,Options>::rotation() const
1059{
1060  LinearMatrixType result;
1061  computeRotationScaling(&result, (LinearMatrixType*)0);
1062  return result;
1063}
1064
1065
1066/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
1067  * not necessarily positive.
1068  *
1069  * If either pointer is zero, the corresponding computation is skipped.
1070  *
1071  *
1072  *
1073  * \svd_module
1074  *
1075  * \sa computeScalingRotation(), rotation(), class SVD
1076  */
1077template<typename Scalar, int Dim, int Mode, int Options>
1078template<typename RotationMatrixType, typename ScalingMatrixType>
1079EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
1080{
1081  JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
1082
1083  Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
1084  VectorType sv(svd.singularValues());
1085  sv.coeffRef(0) *= x;
1086  if(scaling) scaling->lazyAssign(svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint());
1087  if(rotation)
1088  {
1089    LinearMatrixType m(svd.matrixU());
1090    m.col(0) /= x;
1091    rotation->lazyAssign(m * svd.matrixV().adjoint());
1092  }
1093}
1094
1095/** decomposes the linear part of the transformation as a product scaling x rotation, the scaling being
1096  * not necessarily positive.
1097  *
1098  * If either pointer is zero, the corresponding computation is skipped.
1099  *
1100  *
1101  *
1102  * \svd_module
1103  *
1104  * \sa computeRotationScaling(), rotation(), class SVD
1105  */
1106template<typename Scalar, int Dim, int Mode, int Options>
1107template<typename ScalingMatrixType, typename RotationMatrixType>
1108EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
1109{
1110  JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
1111
1112  Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
1113  VectorType sv(svd.singularValues());
1114  sv.coeffRef(0) *= x;
1115  if(scaling) scaling->lazyAssign(svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint());
1116  if(rotation)
1117  {
1118    LinearMatrixType m(svd.matrixU());
1119    m.col(0) /= x;
1120    rotation->lazyAssign(m * svd.matrixV().adjoint());
1121  }
1122}
1123
1124/** Convenient method to set \c *this from a position, orientation and scale
1125  * of a 3D object.
1126  */
1127template<typename Scalar, int Dim, int Mode, int Options>
1128template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
1129EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
1130Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
1131  const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
1132{
1133  linear() = internal::toRotationMatrix<Scalar,Dim>(orientation);
1134  linear() *= scale.asDiagonal();
1135  translation() = position;
1136  makeAffine();
1137  return *this;
1138}
1139
1140namespace internal {
1141
1142template<int Mode>
1143struct transform_make_affine
1144{
1145  template<typename MatrixType>
1146  EIGEN_DEVICE_FUNC static void run(MatrixType &mat)
1147  {
1148    static const int Dim = MatrixType::ColsAtCompileTime-1;
1149    mat.template block<1,Dim>(Dim,0).setZero();
1150    mat.coeffRef(Dim,Dim) = typename MatrixType::Scalar(1);
1151  }
1152};
1153
1154template<>
1155struct transform_make_affine<AffineCompact>
1156{
1157  template<typename MatrixType> EIGEN_DEVICE_FUNC static void run(MatrixType &) { }
1158};
1159
1160// selector needed to avoid taking the inverse of a 3x4 matrix
1161template<typename TransformType, int Mode=TransformType::Mode>
1162struct projective_transform_inverse
1163{
1164  EIGEN_DEVICE_FUNC static inline void run(const TransformType&, TransformType&)
1165  {}
1166};
1167
1168template<typename TransformType>
1169struct projective_transform_inverse<TransformType, Projective>
1170{
1171  EIGEN_DEVICE_FUNC static inline void run(const TransformType& m, TransformType& res)
1172  {
1173    res.matrix() = m.matrix().inverse();
1174  }
1175};
1176
1177} // end namespace internal
1178
1179
1180/**
1181  *
1182  * \returns the inverse transformation according to some given knowledge
1183  * on \c *this.
1184  *
1185  * \param hint allows to optimize the inversion process when the transformation
1186  * is known to be not a general transformation (optional). The possible values are:
1187  *  - #Projective if the transformation is not necessarily affine, i.e., if the
1188  *    last row is not guaranteed to be [0 ... 0 1]
1189  *  - #Affine if the last row can be assumed to be [0 ... 0 1]
1190  *  - #Isometry if the transformation is only a concatenations of translations
1191  *    and rotations.
1192  *  The default is the template class parameter \c Mode.
1193  *
1194  * \warning unless \a traits is always set to NoShear or NoScaling, this function
1195  * requires the generic inverse method of MatrixBase defined in the LU module. If
1196  * you forget to include this module, then you will get hard to debug linking errors.
1197  *
1198  * \sa MatrixBase::inverse()
1199  */
1200template<typename Scalar, int Dim, int Mode, int Options>
1201EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>
1202Transform<Scalar,Dim,Mode,Options>::inverse(TransformTraits hint) const
1203{
1204  Transform res;
1205  if (hint == Projective)
1206  {
1207    internal::projective_transform_inverse<Transform>::run(*this, res);
1208  }
1209  else
1210  {
1211    if (hint == Isometry)
1212    {
1213      res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose();
1214    }
1215    else if(hint&Affine)
1216    {
1217      res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse();
1218    }
1219    else
1220    {
1221      eigen_assert(false && "Invalid transform traits in Transform::Inverse");
1222    }
1223    // translation and remaining parts
1224    res.matrix().template topRightCorner<Dim,1>()
1225      = - res.matrix().template topLeftCorner<Dim,Dim>() * translation();
1226    res.makeAffine(); // we do need this, because in the beginning res is uninitialized
1227  }
1228  return res;
1229}
1230
1231namespace internal {
1232
1233/*****************************************************
1234*** Specializations of take affine part            ***
1235*****************************************************/
1236
1237template<typename TransformType> struct transform_take_affine_part {
1238  typedef typename TransformType::MatrixType MatrixType;
1239  typedef typename TransformType::AffinePart AffinePart;
1240  typedef typename TransformType::ConstAffinePart ConstAffinePart;
1241  static inline AffinePart run(MatrixType& m)
1242  { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
1243  static inline ConstAffinePart run(const MatrixType& m)
1244  { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
1245};
1246
1247template<typename Scalar, int Dim, int Options>
1248struct transform_take_affine_part<Transform<Scalar,Dim,AffineCompact, Options> > {
1249  typedef typename Transform<Scalar,Dim,AffineCompact,Options>::MatrixType MatrixType;
1250  static inline MatrixType& run(MatrixType& m) { return m; }
1251  static inline const MatrixType& run(const MatrixType& m) { return m; }
1252};
1253
1254/*****************************************************
1255*** Specializations of construct from matrix       ***
1256*****************************************************/
1257
1258template<typename Other, int Mode, int Options, int Dim, int HDim>
1259struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,Dim>
1260{
1261  static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1262  {
1263    transform->linear() = other;
1264    transform->translation().setZero();
1265    transform->makeAffine();
1266  }
1267};
1268
1269template<typename Other, int Mode, int Options, int Dim, int HDim>
1270struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,HDim>
1271{
1272  static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1273  {
1274    transform->affine() = other;
1275    transform->makeAffine();
1276  }
1277};
1278
1279template<typename Other, int Mode, int Options, int Dim, int HDim>
1280struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, HDim,HDim>
1281{
1282  static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1283  { transform->matrix() = other; }
1284};
1285
1286template<typename Other, int Options, int Dim, int HDim>
1287struct transform_construct_from_matrix<Other, AffineCompact,Options,Dim,HDim, HDim,HDim>
1288{
1289  static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact,Options> *transform, const Other& other)
1290  { transform->matrix() = other.template block<Dim,HDim>(0,0); }
1291};
1292
1293/**********************************************************
1294***   Specializations of operator* with rhs EigenBase   ***
1295**********************************************************/
1296
1297template<int LhsMode,int RhsMode>
1298struct transform_product_result
1299{
1300  enum
1301  {
1302    Mode =
1303      (LhsMode == (int)Projective    || RhsMode == (int)Projective    ) ? Projective :
1304      (LhsMode == (int)Affine        || RhsMode == (int)Affine        ) ? Affine :
1305      (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact :
1306      (LhsMode == (int)Isometry      || RhsMode == (int)Isometry      ) ? Isometry : Projective
1307  };
1308};
1309
1310template< typename TransformType, typename MatrixType, int RhsCols>
1311struct transform_right_product_impl< TransformType, MatrixType, 0, RhsCols>
1312{
1313  typedef typename MatrixType::PlainObject ResultType;
1314
1315  static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1316  {
1317    return T.matrix() * other;
1318  }
1319};
1320
1321template< typename TransformType, typename MatrixType, int RhsCols>
1322struct transform_right_product_impl< TransformType, MatrixType, 1, RhsCols>
1323{
1324  enum {
1325    Dim = TransformType::Dim,
1326    HDim = TransformType::HDim,
1327    OtherRows = MatrixType::RowsAtCompileTime,
1328    OtherCols = MatrixType::ColsAtCompileTime
1329  };
1330
1331  typedef typename MatrixType::PlainObject ResultType;
1332
1333  static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1334  {
1335    EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
1336
1337    typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime)==Dim> TopLeftLhs;
1338
1339    ResultType res(other.rows(),other.cols());
1340    TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other;
1341    res.row(OtherRows-1) = other.row(OtherRows-1);
1342
1343    return res;
1344  }
1345};
1346
1347template< typename TransformType, typename MatrixType, int RhsCols>
1348struct transform_right_product_impl< TransformType, MatrixType, 2, RhsCols>
1349{
1350  enum {
1351    Dim = TransformType::Dim,
1352    HDim = TransformType::HDim,
1353    OtherRows = MatrixType::RowsAtCompileTime,
1354    OtherCols = MatrixType::ColsAtCompileTime
1355  };
1356
1357  typedef typename MatrixType::PlainObject ResultType;
1358
1359  static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1360  {
1361    EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
1362
1363    typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs;
1364    ResultType res(Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(),1,other.cols()));
1365    TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other;
1366
1367    return res;
1368  }
1369};
1370
1371template< typename TransformType, typename MatrixType >
1372struct transform_right_product_impl< TransformType, MatrixType, 2, 1> // rhs is a vector of size Dim
1373{
1374  typedef typename TransformType::MatrixType TransformMatrix;
1375  enum {
1376    Dim = TransformType::Dim,
1377    HDim = TransformType::HDim,
1378    OtherRows = MatrixType::RowsAtCompileTime,
1379    WorkingRows = EIGEN_PLAIN_ENUM_MIN(TransformMatrix::RowsAtCompileTime,HDim)
1380  };
1381
1382  typedef typename MatrixType::PlainObject ResultType;
1383
1384  static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1385  {
1386    EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
1387
1388    Matrix<typename ResultType::Scalar, Dim+1, 1> rhs;
1389    rhs.template head<Dim>() = other; rhs[Dim] = typename ResultType::Scalar(1);
1390    Matrix<typename ResultType::Scalar, WorkingRows, 1> res(T.matrix() * rhs);
1391    return res.template head<Dim>();
1392  }
1393};
1394
1395/**********************************************************
1396***   Specializations of operator* with lhs EigenBase   ***
1397**********************************************************/
1398
1399// generic HDim x HDim matrix * T => Projective
1400template<typename Other,int Mode, int Options, int Dim, int HDim>
1401struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, HDim,HDim>
1402{
1403  typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
1404  typedef typename TransformType::MatrixType MatrixType;
1405  typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
1406  static ResultType run(const Other& other,const TransformType& tr)
1407  { return ResultType(other * tr.matrix()); }
1408};
1409
1410// generic HDim x HDim matrix * AffineCompact => Projective
1411template<typename Other, int Options, int Dim, int HDim>
1412struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, HDim,HDim>
1413{
1414  typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
1415  typedef typename TransformType::MatrixType MatrixType;
1416  typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
1417  static ResultType run(const Other& other,const TransformType& tr)
1418  {
1419    ResultType res;
1420    res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix();
1421    res.matrix().col(Dim) += other.col(Dim);
1422    return res;
1423  }
1424};
1425
1426// affine matrix * T
1427template<typename Other,int Mode, int Options, int Dim, int HDim>
1428struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,HDim>
1429{
1430  typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
1431  typedef typename TransformType::MatrixType MatrixType;
1432  typedef TransformType ResultType;
1433  static ResultType run(const Other& other,const TransformType& tr)
1434  {
1435    ResultType res;
1436    res.affine().noalias() = other * tr.matrix();
1437    res.matrix().row(Dim) = tr.matrix().row(Dim);
1438    return res;
1439  }
1440};
1441
1442// affine matrix * AffineCompact
1443template<typename Other, int Options, int Dim, int HDim>
1444struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, Dim,HDim>
1445{
1446  typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
1447  typedef typename TransformType::MatrixType MatrixType;
1448  typedef TransformType ResultType;
1449  static ResultType run(const Other& other,const TransformType& tr)
1450  {
1451    ResultType res;
1452    res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix();
1453    res.translation() += other.col(Dim);
1454    return res;
1455  }
1456};
1457
1458// linear matrix * T
1459template<typename Other,int Mode, int Options, int Dim, int HDim>
1460struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,Dim>
1461{
1462  typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
1463  typedef typename TransformType::MatrixType MatrixType;
1464  typedef TransformType ResultType;
1465  static ResultType run(const Other& other, const TransformType& tr)
1466  {
1467    TransformType res;
1468    if(Mode!=int(AffineCompact))
1469      res.matrix().row(Dim) = tr.matrix().row(Dim);
1470    res.matrix().template topRows<Dim>().noalias()
1471      = other * tr.matrix().template topRows<Dim>();
1472    return res;
1473  }
1474};
1475
1476/**********************************************************
1477*** Specializations of operator* with another Transform ***
1478**********************************************************/
1479
1480template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
1481struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,false >
1482{
1483  enum { ResultMode = transform_product_result<LhsMode,RhsMode>::Mode };
1484  typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
1485  typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
1486  typedef Transform<Scalar,Dim,ResultMode,LhsOptions> ResultType;
1487  static ResultType run(const Lhs& lhs, const Rhs& rhs)
1488  {
1489    ResultType res;
1490    res.linear() = lhs.linear() * rhs.linear();
1491    res.translation() = lhs.linear() * rhs.translation() + lhs.translation();
1492    res.makeAffine();
1493    return res;
1494  }
1495};
1496
1497template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
1498struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,true >
1499{
1500  typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
1501  typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
1502  typedef Transform<Scalar,Dim,Projective> ResultType;
1503  static ResultType run(const Lhs& lhs, const Rhs& rhs)
1504  {
1505    return ResultType( lhs.matrix() * rhs.matrix() );
1506  }
1507};
1508
1509template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
1510struct transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact,LhsOptions>,Transform<Scalar,Dim,Projective,RhsOptions>,true >
1511{
1512  typedef Transform<Scalar,Dim,AffineCompact,LhsOptions> Lhs;
1513  typedef Transform<Scalar,Dim,Projective,RhsOptions> Rhs;
1514  typedef Transform<Scalar,Dim,Projective> ResultType;
1515  static ResultType run(const Lhs& lhs, const Rhs& rhs)
1516  {
1517    ResultType res;
1518    res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix();
1519    res.matrix().row(Dim) = rhs.matrix().row(Dim);
1520    return res;
1521  }
1522};
1523
1524template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
1525struct transform_transform_product_impl<Transform<Scalar,Dim,Projective,LhsOptions>,Transform<Scalar,Dim,AffineCompact,RhsOptions>,true >
1526{
1527  typedef Transform<Scalar,Dim,Projective,LhsOptions> Lhs;
1528  typedef Transform<Scalar,Dim,AffineCompact,RhsOptions> Rhs;
1529  typedef Transform<Scalar,Dim,Projective> ResultType;
1530  static ResultType run(const Lhs& lhs, const Rhs& rhs)
1531  {
1532    ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix());
1533    res.matrix().col(Dim) += lhs.matrix().col(Dim);
1534    return res;
1535  }
1536};
1537
1538} // end namespace internal
1539
1540} // end namespace Eigen
1541
1542#endif // EIGEN_TRANSFORM_H
1543