1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#define EIGEN_NO_STATIC_ASSERT
11
12#include "main.h"
13
14template<typename MatrixType> void basicStuff(const MatrixType& m)
15{
16  typedef typename MatrixType::Index Index;
17  typedef typename MatrixType::Scalar Scalar;
18  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
19  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
20
21  Index rows = m.rows();
22  Index cols = m.cols();
23
24  // this test relies a lot on Random.h, and there's not much more that we can do
25  // to test it, hence I consider that we will have tested Random.h
26  MatrixType m1 = MatrixType::Random(rows, cols),
27             m2 = MatrixType::Random(rows, cols),
28             m3(rows, cols),
29             mzero = MatrixType::Zero(rows, cols),
30             square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
31  VectorType v1 = VectorType::Random(rows),
32             vzero = VectorType::Zero(rows);
33  SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows);
34
35  Scalar x = 0;
36  while(x == Scalar(0)) x = internal::random<Scalar>();
37
38  Index r = internal::random<Index>(0, rows-1),
39        c = internal::random<Index>(0, cols-1);
40
41  m1.coeffRef(r,c) = x;
42  VERIFY_IS_APPROX(x, m1.coeff(r,c));
43  m1(r,c) = x;
44  VERIFY_IS_APPROX(x, m1(r,c));
45  v1.coeffRef(r) = x;
46  VERIFY_IS_APPROX(x, v1.coeff(r));
47  v1(r) = x;
48  VERIFY_IS_APPROX(x, v1(r));
49  v1[r] = x;
50  VERIFY_IS_APPROX(x, v1[r]);
51
52  VERIFY_IS_APPROX(               v1,    v1);
53  VERIFY_IS_NOT_APPROX(           v1,    2*v1);
54  VERIFY_IS_MUCH_SMALLER_THAN(    vzero, v1);
55  VERIFY_IS_MUCH_SMALLER_THAN(  vzero, v1.squaredNorm());
56  VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1,    v1);
57  VERIFY_IS_APPROX(               vzero, v1-v1);
58  VERIFY_IS_APPROX(               m1,    m1);
59  VERIFY_IS_NOT_APPROX(           m1,    2*m1);
60  VERIFY_IS_MUCH_SMALLER_THAN(    mzero, m1);
61  VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1,    m1);
62  VERIFY_IS_APPROX(               mzero, m1-m1);
63
64  // always test operator() on each read-only expression class,
65  // in order to check const-qualifiers.
66  // indeed, if an expression class (here Zero) is meant to be read-only,
67  // hence has no _write() method, the corresponding MatrixBase method (here zero())
68  // should return a const-qualified object so that it is the const-qualified
69  // operator() that gets called, which in turn calls _read().
70  VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
71
72  // now test copying a row-vector into a (column-)vector and conversely.
73  square.col(r) = square.row(r).eval();
74  Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
75  Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
76  rv = square.row(r);
77  cv = square.col(r);
78
79  VERIFY_IS_APPROX(rv, cv.transpose());
80
81  if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
82  {
83    VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
84  }
85
86  if(cols!=1 && rows!=1)
87  {
88    VERIFY_RAISES_ASSERT(m1[0]);
89    VERIFY_RAISES_ASSERT((m1+m1)[0]);
90  }
91
92  VERIFY_IS_APPROX(m3 = m1,m1);
93  MatrixType m4;
94  VERIFY_IS_APPROX(m4 = m1,m1);
95
96  m3.real() = m1.real();
97  VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
98  VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());
99
100  // check == / != operators
101  VERIFY(m1==m1);
102  VERIFY(m1!=m2);
103  VERIFY(!(m1==m2));
104  VERIFY(!(m1!=m1));
105  m1 = m2;
106  VERIFY(m1==m2);
107  VERIFY(!(m1!=m2));
108
109  // check automatic transposition
110  sm2.setZero();
111  for(typename MatrixType::Index i=0;i<rows;++i)
112    sm2.col(i) = sm1.row(i);
113  VERIFY_IS_APPROX(sm2,sm1.transpose());
114
115  sm2.setZero();
116  for(typename MatrixType::Index i=0;i<rows;++i)
117    sm2.col(i).noalias() = sm1.row(i);
118  VERIFY_IS_APPROX(sm2,sm1.transpose());
119
120  sm2.setZero();
121  for(typename MatrixType::Index i=0;i<rows;++i)
122    sm2.col(i).noalias() += sm1.row(i);
123  VERIFY_IS_APPROX(sm2,sm1.transpose());
124
125  sm2.setZero();
126  for(typename MatrixType::Index i=0;i<rows;++i)
127    sm2.col(i).noalias() -= sm1.row(i);
128  VERIFY_IS_APPROX(sm2,-sm1.transpose());
129
130  // check ternary usage
131  {
132    bool b = internal::random<int>(0,10)>5;
133    m3 = b ? m1 : m2;
134    if(b) VERIFY_IS_APPROX(m3,m1);
135    else  VERIFY_IS_APPROX(m3,m2);
136    m3 = b ? -m1 : m2;
137    if(b) VERIFY_IS_APPROX(m3,-m1);
138    else  VERIFY_IS_APPROX(m3,m2);
139    m3 = b ? m1 : -m2;
140    if(b) VERIFY_IS_APPROX(m3,m1);
141    else  VERIFY_IS_APPROX(m3,-m2);
142  }
143}
144
145template<typename MatrixType> void basicStuffComplex(const MatrixType& m)
146{
147  typedef typename MatrixType::Index Index;
148  typedef typename MatrixType::Scalar Scalar;
149  typedef typename NumTraits<Scalar>::Real RealScalar;
150  typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
151
152  Index rows = m.rows();
153  Index cols = m.cols();
154
155  Scalar s1 = internal::random<Scalar>(),
156         s2 = internal::random<Scalar>();
157
158  VERIFY(numext::real(s1)==numext::real_ref(s1));
159  VERIFY(numext::imag(s1)==numext::imag_ref(s1));
160  numext::real_ref(s1) = numext::real(s2);
161  numext::imag_ref(s1) = numext::imag(s2);
162  VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon()));
163  // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed.
164
165  RealMatrixType rm1 = RealMatrixType::Random(rows,cols),
166                 rm2 = RealMatrixType::Random(rows,cols);
167  MatrixType cm(rows,cols);
168  cm.real() = rm1;
169  cm.imag() = rm2;
170  VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
171  VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
172  rm1.setZero();
173  rm2.setZero();
174  rm1 = cm.real();
175  rm2 = cm.imag();
176  VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
177  VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
178  cm.real().setZero();
179  VERIFY(static_cast<const MatrixType&>(cm).real().isZero());
180  VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero());
181}
182
183#ifdef EIGEN_TEST_PART_2
184void casting()
185{
186  Matrix4f m = Matrix4f::Random(), m2;
187  Matrix4d n = m.cast<double>();
188  VERIFY(m.isApprox(n.cast<float>()));
189  m2 = m.cast<float>(); // check the specialization when NewType == Type
190  VERIFY(m.isApprox(m2));
191}
192#endif
193
194template <typename Scalar>
195void fixedSizeMatrixConstruction()
196{
197  Scalar raw[4];
198  for(int k=0; k<4; ++k)
199    raw[k] = internal::random<Scalar>();
200
201  {
202    Matrix<Scalar,4,1> m(raw);
203    Array<Scalar,4,1> a(raw);
204    for(int k=0; k<4; ++k) VERIFY(m(k) == raw[k]);
205    for(int k=0; k<4; ++k) VERIFY(a(k) == raw[k]);
206    VERIFY_IS_EQUAL(m,(Matrix<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3])));
207    VERIFY((a==(Array<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3]))).all());
208  }
209  {
210    Matrix<Scalar,3,1> m(raw);
211    Array<Scalar,3,1> a(raw);
212    for(int k=0; k<3; ++k) VERIFY(m(k) == raw[k]);
213    for(int k=0; k<3; ++k) VERIFY(a(k) == raw[k]);
214    VERIFY_IS_EQUAL(m,(Matrix<Scalar,3,1>(raw[0],raw[1],raw[2])));
215    VERIFY((a==Array<Scalar,3,1>(raw[0],raw[1],raw[2])).all());
216  }
217  {
218    Matrix<Scalar,2,1> m(raw), m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
219    Array<Scalar,2,1> a(raw),  a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
220    for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]);
221    for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]);
222    VERIFY_IS_EQUAL(m,(Matrix<Scalar,2,1>(raw[0],raw[1])));
223    VERIFY((a==Array<Scalar,2,1>(raw[0],raw[1])).all());
224    for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
225    for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
226  }
227  {
228    Matrix<Scalar,1,2> m(raw),
229                       m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) ),
230                       m3( (int(raw[0])), (int(raw[1])) ),
231                       m4( (float(raw[0])), (float(raw[1])) );
232    Array<Scalar,1,2> a(raw),  a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
233    for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]);
234    for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]);
235    VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,2>(raw[0],raw[1])));
236    VERIFY((a==Array<Scalar,1,2>(raw[0],raw[1])).all());
237    for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
238    for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
239    for(int k=0; k<2; ++k) VERIFY(m3(k) == int(raw[k]));
240    for(int k=0; k<2; ++k) VERIFY((m4(k)) == Scalar(float(raw[k])));
241  }
242  {
243    Matrix<Scalar,1,1> m(raw), m1(raw[0]), m2( (DenseIndex(raw[0])) ), m3( (int(raw[0])) );
244    Array<Scalar,1,1> a(raw), a1(raw[0]), a2( (DenseIndex(raw[0])) );
245    VERIFY(m(0) == raw[0]);
246    VERIFY(a(0) == raw[0]);
247    VERIFY(m1(0) == raw[0]);
248    VERIFY(a1(0) == raw[0]);
249    VERIFY(m2(0) == DenseIndex(raw[0]));
250    VERIFY(a2(0) == DenseIndex(raw[0]));
251    VERIFY(m3(0) == int(raw[0]));
252    VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,1>(raw[0])));
253    VERIFY((a==Array<Scalar,1,1>(raw[0])).all());
254  }
255}
256
257void test_basicstuff()
258{
259  for(int i = 0; i < g_repeat; i++) {
260    CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
261    CALL_SUBTEST_2( basicStuff(Matrix4d()) );
262    CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
263    CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
264    CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
265    CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
266    CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
267
268    CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
269    CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
270  }
271
272  CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>());
273  CALL_SUBTEST_1(fixedSizeMatrixConstruction<float>());
274  CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
275  CALL_SUBTEST_1(fixedSizeMatrixConstruction<int>());
276  CALL_SUBTEST_1(fixedSizeMatrixConstruction<long int>());
277  CALL_SUBTEST_1(fixedSizeMatrixConstruction<std::ptrdiff_t>());
278
279  CALL_SUBTEST_2(casting());
280}
281