1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#include <cstdlib>
12#include <cerrno>
13#include <ctime>
14#include <iostream>
15#include <fstream>
16#include <string>
17#include <sstream>
18#include <vector>
19#include <typeinfo>
20
21// The following includes of STL headers have to be done _before_ the
22// definition of macros min() and max().  The reason is that many STL
23// implementations will not work properly as the min and max symbols collide
24// with the STL functions std:min() and std::max().  The STL headers may check
25// for the macro definition of min/max and issue a warning or undefine the
26// macros.
27//
28// Still, Windows defines min() and max() in windef.h as part of the regular
29// Windows system interfaces and many other Windows APIs depend on these
30// macros being available.  To prevent the macro expansion of min/max and to
31// make Eigen compatible with the Windows environment all function calls of
32// std::min() and std::max() have to be written with parenthesis around the
33// function name.
34//
35// All STL headers used by Eigen should be included here.  Because main.h is
36// included before any Eigen header and because the STL headers are guarded
37// against multiple inclusions, no STL header will see our own min/max macro
38// definitions.
39#include <limits>
40#include <algorithm>
41#include <complex>
42#include <deque>
43#include <queue>
44#include <cassert>
45#include <list>
46#if __cplusplus >= 201103L
47#include <random>
48#ifdef EIGEN_USE_THREADS
49#include <future>
50#endif
51#endif
52
53// To test that all calls from Eigen code to std::min() and std::max() are
54// protected by parenthesis against macro expansion, the min()/max() macros
55// are defined here and any not-parenthesized min/max call will cause a
56// compiler error.
57#define min(A,B) please_protect_your_min_with_parentheses
58#define max(A,B) please_protect_your_max_with_parentheses
59#define isnan(X) please_protect_your_isnan_with_parentheses
60#define isinf(X) please_protect_your_isinf_with_parentheses
61#define isfinite(X) please_protect_your_isfinite_with_parentheses
62#ifdef M_PI
63#undef M_PI
64#endif
65#define M_PI please_use_EIGEN_PI_instead_of_M_PI
66
67#define FORBIDDEN_IDENTIFIER (this_identifier_is_forbidden_to_avoid_clashes) this_identifier_is_forbidden_to_avoid_clashes
68// B0 is defined in POSIX header termios.h
69#define B0 FORBIDDEN_IDENTIFIER
70
71// Unit tests calling Eigen's blas library must preserve the default blocking size
72// to avoid troubles.
73#ifndef EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS
74#define EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS
75#endif
76
77// shuts down ICC's remark #593: variable "XXX" was set but never used
78#define TEST_SET_BUT_UNUSED_VARIABLE(X) EIGEN_UNUSED_VARIABLE(X)
79
80#ifdef TEST_ENABLE_TEMPORARY_TRACKING
81
82static long int nb_temporaries;
83static long int nb_temporaries_on_assert = -1;
84
85inline void on_temporary_creation(long int size) {
86  // here's a great place to set a breakpoint when debugging failures in this test!
87  if(size!=0) nb_temporaries++;
88  if(nb_temporaries_on_assert>0) assert(nb_temporaries<nb_temporaries_on_assert);
89}
90
91#define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { on_temporary_creation(size); }
92
93#define VERIFY_EVALUATION_COUNT(XPR,N) {\
94    nb_temporaries = 0; \
95    XPR; \
96    if(nb_temporaries!=N) { std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; }\
97    VERIFY( (#XPR) && nb_temporaries==N ); \
98  }
99
100#endif
101
102// the following file is automatically generated by cmake
103#include "split_test_helper.h"
104
105#ifdef NDEBUG
106#undef NDEBUG
107#endif
108
109// On windows CE, NDEBUG is automatically defined <assert.h> if NDEBUG is not defined.
110#ifndef DEBUG
111#define DEBUG
112#endif
113
114// bounds integer values for AltiVec
115#if defined(__ALTIVEC__) || defined(__VSX__)
116#define EIGEN_MAKING_DOCS
117#endif
118
119#ifndef EIGEN_TEST_FUNC
120#error EIGEN_TEST_FUNC must be defined
121#endif
122
123#define DEFAULT_REPEAT 10
124
125namespace Eigen
126{
127  static std::vector<std::string> g_test_stack;
128  // level == 0 <=> abort if test fail
129  // level >= 1 <=> warning message to std::cerr if test fail
130  static int g_test_level = 0;
131  static int g_repeat;
132  static unsigned int g_seed;
133  static bool g_has_set_repeat, g_has_set_seed;
134}
135
136#define TRACK std::cerr << __FILE__ << " " << __LINE__ << std::endl
137// #define TRACK while()
138
139#define EI_PP_MAKE_STRING2(S) #S
140#define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S)
141
142#define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, "  ", "\n", "", "", "", "")
143
144#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__)
145  #define EIGEN_EXCEPTIONS
146#endif
147
148#ifndef EIGEN_NO_ASSERTION_CHECKING
149
150  namespace Eigen
151  {
152    static const bool should_raise_an_assert = false;
153
154    // Used to avoid to raise two exceptions at a time in which
155    // case the exception is not properly caught.
156    // This may happen when a second exceptions is triggered in a destructor.
157    static bool no_more_assert = false;
158    static bool report_on_cerr_on_assert_failure = true;
159
160    struct eigen_assert_exception
161    {
162      eigen_assert_exception(void) {}
163      ~eigen_assert_exception() { Eigen::no_more_assert = false; }
164    };
165  }
166  // If EIGEN_DEBUG_ASSERTS is defined and if no assertion is triggered while
167  // one should have been, then the list of excecuted assertions is printed out.
168  //
169  // EIGEN_DEBUG_ASSERTS is not enabled by default as it
170  // significantly increases the compilation time
171  // and might even introduce side effects that would hide
172  // some memory errors.
173  #ifdef EIGEN_DEBUG_ASSERTS
174
175    namespace Eigen
176    {
177      namespace internal
178      {
179        static bool push_assert = false;
180      }
181      static std::vector<std::string> eigen_assert_list;
182    }
183    #define eigen_assert(a)                       \
184      if( (!(a)) && (!no_more_assert) )     \
185      { \
186        if(report_on_cerr_on_assert_failure) \
187          std::cerr <<  #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \
188        Eigen::no_more_assert = true;       \
189        EIGEN_THROW_X(Eigen::eigen_assert_exception()); \
190      }                                     \
191      else if (Eigen::internal::push_assert)       \
192      {                                     \
193        eigen_assert_list.push_back(std::string(EI_PP_MAKE_STRING(__FILE__) " (" EI_PP_MAKE_STRING(__LINE__) ") : " #a) ); \
194      }
195
196    #ifdef EIGEN_EXCEPTIONS
197    #define VERIFY_RAISES_ASSERT(a)                                                   \
198      {                                                                               \
199        Eigen::no_more_assert = false;                                                \
200        Eigen::eigen_assert_list.clear();                                             \
201        Eigen::internal::push_assert = true;                                          \
202        Eigen::report_on_cerr_on_assert_failure = false;                              \
203        try {                                                                         \
204          a;                                                                          \
205          std::cerr << "One of the following asserts should have been triggered:\n";  \
206          for (uint ai=0 ; ai<eigen_assert_list.size() ; ++ai)                        \
207            std::cerr << "  " << eigen_assert_list[ai] << "\n";                       \
208          VERIFY(Eigen::should_raise_an_assert && # a);                               \
209        } catch (Eigen::eigen_assert_exception) {                                     \
210          Eigen::internal::push_assert = false; VERIFY(true);                         \
211        }                                                                             \
212        Eigen::report_on_cerr_on_assert_failure = true;                               \
213        Eigen::internal::push_assert = false;                                         \
214      }
215    #endif //EIGEN_EXCEPTIONS
216
217  #elif !defined(__CUDACC__) // EIGEN_DEBUG_ASSERTS
218    // see bug 89. The copy_bool here is working around a bug in gcc <= 4.3
219    #define eigen_assert(a) \
220      if( (!Eigen::internal::copy_bool(a)) && (!no_more_assert) )\
221      {                                       \
222        Eigen::no_more_assert = true;         \
223        if(report_on_cerr_on_assert_failure)  \
224          eigen_plain_assert(a);              \
225        else                                  \
226          EIGEN_THROW_X(Eigen::eigen_assert_exception()); \
227      }
228    #ifdef EIGEN_EXCEPTIONS
229      #define VERIFY_RAISES_ASSERT(a) {                           \
230        Eigen::no_more_assert = false;                            \
231        Eigen::report_on_cerr_on_assert_failure = false;          \
232        try {                                                     \
233          a;                                                      \
234          VERIFY(Eigen::should_raise_an_assert && # a);           \
235        }                                                         \
236        catch (Eigen::eigen_assert_exception&) { VERIFY(true); }  \
237        Eigen::report_on_cerr_on_assert_failure = true;           \
238      }
239    #endif //EIGEN_EXCEPTIONS
240  #endif // EIGEN_DEBUG_ASSERTS
241
242#ifndef VERIFY_RAISES_ASSERT
243  #define VERIFY_RAISES_ASSERT(a) \
244    std::cout << "Can't VERIFY_RAISES_ASSERT( " #a " ) with exceptions disabled\n";
245#endif
246
247  #if !defined(__CUDACC__)
248  #define EIGEN_USE_CUSTOM_ASSERT
249  #endif
250
251#else // EIGEN_NO_ASSERTION_CHECKING
252
253  #define VERIFY_RAISES_ASSERT(a) {}
254
255#endif // EIGEN_NO_ASSERTION_CHECKING
256
257
258#define EIGEN_INTERNAL_DEBUGGING
259#include <Eigen/QR> // required for createRandomPIMatrixOfRank
260
261inline void verify_impl(bool condition, const char *testname, const char *file, int line, const char *condition_as_string)
262{
263  if (!condition)
264  {
265    if(Eigen::g_test_level>0)
266      std::cerr << "WARNING: ";
267    std::cerr << "Test " << testname << " failed in " << file << " (" << line << ")"
268      << std::endl << "    " << condition_as_string << std::endl;
269    std::cerr << "Stack:\n";
270    const int test_stack_size = static_cast<int>(Eigen::g_test_stack.size());
271    for(int i=test_stack_size-1; i>=0; --i)
272      std::cerr << "  - " << Eigen::g_test_stack[i] << "\n";
273    std::cerr << "\n";
274    if(Eigen::g_test_level==0)
275      abort();
276  }
277}
278
279#define VERIFY(a) ::verify_impl(a, g_test_stack.back().c_str(), __FILE__, __LINE__, EI_PP_MAKE_STRING(a))
280
281#define VERIFY_GE(a, b) ::verify_impl(a >= b, g_test_stack.back().c_str(), __FILE__, __LINE__, EI_PP_MAKE_STRING(a >= b))
282#define VERIFY_LE(a, b) ::verify_impl(a <= b, g_test_stack.back().c_str(), __FILE__, __LINE__, EI_PP_MAKE_STRING(a <= b))
283
284
285#define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b, true))
286#define VERIFY_IS_NOT_EQUAL(a, b) VERIFY(test_is_equal(a, b, false))
287#define VERIFY_IS_APPROX(a, b) VERIFY(verifyIsApprox(a, b))
288#define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_isApprox(a, b))
289#define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_isMuchSmallerThan(a, b))
290#define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_isMuchSmallerThan(a, b))
291#define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_isApproxOrLessThan(a, b))
292#define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_isApproxOrLessThan(a, b))
293
294#define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a))
295
296#define CALL_SUBTEST(FUNC) do { \
297    g_test_stack.push_back(EI_PP_MAKE_STRING(FUNC)); \
298    FUNC; \
299    g_test_stack.pop_back(); \
300  } while (0)
301
302
303namespace Eigen {
304
305template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); }
306template<> inline float test_precision<float>() { return 1e-3f; }
307template<> inline double test_precision<double>() { return 1e-6; }
308template<> inline long double test_precision<long double>() { return 1e-6l; }
309template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
310template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }
311template<> inline long double test_precision<std::complex<long double> >() { return test_precision<long double>(); }
312
313inline bool test_isApprox(const int& a, const int& b)
314{ return internal::isApprox(a, b, test_precision<int>()); }
315inline bool test_isMuchSmallerThan(const int& a, const int& b)
316{ return internal::isMuchSmallerThan(a, b, test_precision<int>()); }
317inline bool test_isApproxOrLessThan(const int& a, const int& b)
318{ return internal::isApproxOrLessThan(a, b, test_precision<int>()); }
319
320inline bool test_isApprox(const float& a, const float& b)
321{ return internal::isApprox(a, b, test_precision<float>()); }
322inline bool test_isMuchSmallerThan(const float& a, const float& b)
323{ return internal::isMuchSmallerThan(a, b, test_precision<float>()); }
324inline bool test_isApproxOrLessThan(const float& a, const float& b)
325{ return internal::isApproxOrLessThan(a, b, test_precision<float>()); }
326
327inline bool test_isApprox(const double& a, const double& b)
328{ return internal::isApprox(a, b, test_precision<double>()); }
329inline bool test_isMuchSmallerThan(const double& a, const double& b)
330{ return internal::isMuchSmallerThan(a, b, test_precision<double>()); }
331inline bool test_isApproxOrLessThan(const double& a, const double& b)
332{ return internal::isApproxOrLessThan(a, b, test_precision<double>()); }
333
334#ifndef EIGEN_TEST_NO_COMPLEX
335inline bool test_isApprox(const std::complex<float>& a, const std::complex<float>& b)
336{ return internal::isApprox(a, b, test_precision<std::complex<float> >()); }
337inline bool test_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b)
338{ return internal::isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); }
339
340inline bool test_isApprox(const std::complex<double>& a, const std::complex<double>& b)
341{ return internal::isApprox(a, b, test_precision<std::complex<double> >()); }
342inline bool test_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b)
343{ return internal::isMuchSmallerThan(a, b, test_precision<std::complex<double> >()); }
344
345#ifndef EIGEN_TEST_NO_LONGDOUBLE
346inline bool test_isApprox(const std::complex<long double>& a, const std::complex<long double>& b)
347{ return internal::isApprox(a, b, test_precision<std::complex<long double> >()); }
348inline bool test_isMuchSmallerThan(const std::complex<long double>& a, const std::complex<long double>& b)
349{ return internal::isMuchSmallerThan(a, b, test_precision<std::complex<long double> >()); }
350#endif
351#endif
352
353#ifndef EIGEN_TEST_NO_LONGDOUBLE
354inline bool test_isApprox(const long double& a, const long double& b)
355{
356    bool ret = internal::isApprox(a, b, test_precision<long double>());
357    if (!ret) std::cerr
358        << std::endl << "    actual   = " << a
359        << std::endl << "    expected = " << b << std::endl << std::endl;
360    return ret;
361}
362
363inline bool test_isMuchSmallerThan(const long double& a, const long double& b)
364{ return internal::isMuchSmallerThan(a, b, test_precision<long double>()); }
365inline bool test_isApproxOrLessThan(const long double& a, const long double& b)
366{ return internal::isApproxOrLessThan(a, b, test_precision<long double>()); }
367#endif // EIGEN_TEST_NO_LONGDOUBLE
368
369inline bool test_isApprox(const half& a, const half& b)
370{ return internal::isApprox(a, b, test_precision<half>()); }
371inline bool test_isMuchSmallerThan(const half& a, const half& b)
372{ return internal::isMuchSmallerThan(a, b, test_precision<half>()); }
373inline bool test_isApproxOrLessThan(const half& a, const half& b)
374{ return internal::isApproxOrLessThan(a, b, test_precision<half>()); }
375
376// test_relative_error returns the relative difference between a and b as a real scalar as used in isApprox.
377template<typename T1,typename T2>
378typename NumTraits<typename T1::RealScalar>::NonInteger test_relative_error(const EigenBase<T1> &a, const EigenBase<T2> &b)
379{
380  using std::sqrt;
381  typedef typename NumTraits<typename T1::RealScalar>::NonInteger RealScalar;
382  typename internal::nested_eval<T1,2>::type ea(a.derived());
383  typename internal::nested_eval<T2,2>::type eb(b.derived());
384  return sqrt(RealScalar((ea-eb).cwiseAbs2().sum()) / RealScalar((std::min)(eb.cwiseAbs2().sum(),ea.cwiseAbs2().sum())));
385}
386
387template<typename T1,typename T2>
388typename T1::RealScalar test_relative_error(const T1 &a, const T2 &b, const typename T1::Coefficients* = 0)
389{
390  return test_relative_error(a.coeffs(), b.coeffs());
391}
392
393template<typename T1,typename T2>
394typename T1::Scalar test_relative_error(const T1 &a, const T2 &b, const typename T1::MatrixType* = 0)
395{
396  return test_relative_error(a.matrix(), b.matrix());
397}
398
399template<typename S, int D>
400S test_relative_error(const Translation<S,D> &a, const Translation<S,D> &b)
401{
402  return test_relative_error(a.vector(), b.vector());
403}
404
405template <typename S, int D, int O>
406S test_relative_error(const ParametrizedLine<S,D,O> &a, const ParametrizedLine<S,D,O> &b)
407{
408  return (std::max)(test_relative_error(a.origin(), b.origin()), test_relative_error(a.origin(), b.origin()));
409}
410
411template <typename S, int D>
412S test_relative_error(const AlignedBox<S,D> &a, const AlignedBox<S,D> &b)
413{
414  return (std::max)(test_relative_error((a.min)(), (b.min)()), test_relative_error((a.max)(), (b.max)()));
415}
416
417template<typename Derived> class SparseMatrixBase;
418template<typename T1,typename T2>
419typename T1::RealScalar test_relative_error(const MatrixBase<T1> &a, const SparseMatrixBase<T2> &b)
420{
421  return test_relative_error(a,b.toDense());
422}
423
424template<typename Derived> class SparseMatrixBase;
425template<typename T1,typename T2>
426typename T1::RealScalar test_relative_error(const SparseMatrixBase<T1> &a, const MatrixBase<T2> &b)
427{
428  return test_relative_error(a.toDense(),b);
429}
430
431template<typename Derived> class SparseMatrixBase;
432template<typename T1,typename T2>
433typename T1::RealScalar test_relative_error(const SparseMatrixBase<T1> &a, const SparseMatrixBase<T2> &b)
434{
435  return test_relative_error(a.toDense(),b.toDense());
436}
437
438template<typename T1,typename T2>
439typename NumTraits<typename NumTraits<T1>::Real>::NonInteger test_relative_error(const T1 &a, const T2 &b, typename internal::enable_if<internal::is_arithmetic<typename NumTraits<T1>::Real>::value, T1>::type* = 0)
440{
441  typedef typename NumTraits<typename NumTraits<T1>::Real>::NonInteger RealScalar;
442  return numext::sqrt(RealScalar(numext::abs2(a-b))/RealScalar((numext::mini)(numext::abs2(a),numext::abs2(b))));
443}
444
445template<typename T>
446T test_relative_error(const Rotation2D<T> &a, const Rotation2D<T> &b)
447{
448  return test_relative_error(a.angle(), b.angle());
449}
450
451template<typename T>
452T test_relative_error(const AngleAxis<T> &a, const AngleAxis<T> &b)
453{
454  return (std::max)(test_relative_error(a.angle(), b.angle()), test_relative_error(a.axis(), b.axis()));
455}
456
457template<typename Type1, typename Type2>
458inline bool test_isApprox(const Type1& a, const Type2& b, typename Type1::Scalar* = 0) // Enabled for Eigen's type only
459{
460  return a.isApprox(b, test_precision<typename Type1::Scalar>());
461}
462
463// get_test_precision is a small wrapper to test_precision allowing to return the scalar precision for either scalars or expressions
464template<typename T>
465typename NumTraits<typename T::Scalar>::Real get_test_precision(const T&, const typename T::Scalar* = 0)
466{
467  return test_precision<typename NumTraits<typename T::Scalar>::Real>();
468}
469
470template<typename T>
471typename NumTraits<T>::Real get_test_precision(const T&,typename internal::enable_if<internal::is_arithmetic<typename NumTraits<T>::Real>::value, T>::type* = 0)
472{
473  return test_precision<typename NumTraits<T>::Real>();
474}
475
476// verifyIsApprox is a wrapper to test_isApprox that outputs the relative difference magnitude if the test fails.
477template<typename Type1, typename Type2>
478inline bool verifyIsApprox(const Type1& a, const Type2& b)
479{
480  bool ret = test_isApprox(a,b);
481  if(!ret)
482  {
483    std::cerr << "Difference too large wrt tolerance " << get_test_precision(a)  << ", relative error is: " << test_relative_error(a,b) << std::endl;
484  }
485  return ret;
486}
487
488// The idea behind this function is to compare the two scalars a and b where
489// the scalar ref is a hint about the expected order of magnitude of a and b.
490// WARNING: the scalar a and b must be positive
491// Therefore, if for some reason a and b are very small compared to ref,
492// we won't issue a false negative.
493// This test could be: abs(a-b) <= eps * ref
494// However, it seems that simply comparing a+ref and b+ref is more sensitive to true error.
495template<typename Scalar,typename ScalarRef>
496inline bool test_isApproxWithRef(const Scalar& a, const Scalar& b, const ScalarRef& ref)
497{
498  return test_isApprox(a+ref, b+ref);
499}
500
501template<typename Derived1, typename Derived2>
502inline bool test_isMuchSmallerThan(const MatrixBase<Derived1>& m1,
503                                   const MatrixBase<Derived2>& m2)
504{
505  return m1.isMuchSmallerThan(m2, test_precision<typename internal::traits<Derived1>::Scalar>());
506}
507
508template<typename Derived>
509inline bool test_isMuchSmallerThan(const MatrixBase<Derived>& m,
510                                   const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real& s)
511{
512  return m.isMuchSmallerThan(s, test_precision<typename internal::traits<Derived>::Scalar>());
513}
514
515template<typename Derived>
516inline bool test_isUnitary(const MatrixBase<Derived>& m)
517{
518  return m.isUnitary(test_precision<typename internal::traits<Derived>::Scalar>());
519}
520
521// Forward declaration to avoid ICC warning
522template<typename T, typename U>
523bool test_is_equal(const T& actual, const U& expected, bool expect_equal=true);
524
525template<typename T, typename U>
526bool test_is_equal(const T& actual, const U& expected, bool expect_equal)
527{
528    if ((actual==expected) == expect_equal)
529        return true;
530    // false:
531    std::cerr
532        << "\n    actual   = " << actual
533        << "\n    expected " << (expect_equal ? "= " : "!=") << expected << "\n\n";
534    return false;
535}
536
537/** Creates a random Partial Isometry matrix of given rank.
538  *
539  * A partial isometry is a matrix all of whose singular values are either 0 or 1.
540  * This is very useful to test rank-revealing algorithms.
541  */
542// Forward declaration to avoid ICC warning
543template<typename MatrixType>
544void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m);
545template<typename MatrixType>
546void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m)
547{
548  typedef typename internal::traits<MatrixType>::Scalar Scalar;
549  enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
550
551  typedef Matrix<Scalar, Dynamic, 1> VectorType;
552  typedef Matrix<Scalar, Rows, Rows> MatrixAType;
553  typedef Matrix<Scalar, Cols, Cols> MatrixBType;
554
555  if(desired_rank == 0)
556  {
557    m.setZero(rows,cols);
558    return;
559  }
560
561  if(desired_rank == 1)
562  {
563    // here we normalize the vectors to get a partial isometry
564    m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose();
565    return;
566  }
567
568  MatrixAType a = MatrixAType::Random(rows,rows);
569  MatrixType d = MatrixType::Identity(rows,cols);
570  MatrixBType  b = MatrixBType::Random(cols,cols);
571
572  // set the diagonal such that only desired_rank non-zero entries reamain
573  const Index diag_size = (std::min)(d.rows(),d.cols());
574  if(diag_size != desired_rank)
575    d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank);
576
577  HouseholderQR<MatrixAType> qra(a);
578  HouseholderQR<MatrixBType> qrb(b);
579  m = qra.householderQ() * d * qrb.householderQ();
580}
581
582// Forward declaration to avoid ICC warning
583template<typename PermutationVectorType>
584void randomPermutationVector(PermutationVectorType& v, Index size);
585template<typename PermutationVectorType>
586void randomPermutationVector(PermutationVectorType& v, Index size)
587{
588  typedef typename PermutationVectorType::Scalar Scalar;
589  v.resize(size);
590  for(Index i = 0; i < size; ++i) v(i) = Scalar(i);
591  if(size == 1) return;
592  for(Index n = 0; n < 3 * size; ++n)
593  {
594    Index i = internal::random<Index>(0, size-1);
595    Index j;
596    do j = internal::random<Index>(0, size-1); while(j==i);
597    std::swap(v(i), v(j));
598  }
599}
600
601template<typename T> bool isNotNaN(const T& x)
602{
603  return x==x;
604}
605
606template<typename T> bool isPlusInf(const T& x)
607{
608  return x > NumTraits<T>::highest();
609}
610
611template<typename T> bool isMinusInf(const T& x)
612{
613  return x < NumTraits<T>::lowest();
614}
615
616} // end namespace Eigen
617
618template<typename T> struct GetDifferentType;
619
620template<> struct GetDifferentType<float> { typedef double type; };
621template<> struct GetDifferentType<double> { typedef float type; };
622template<typename T> struct GetDifferentType<std::complex<T> >
623{ typedef std::complex<typename GetDifferentType<T>::type> type; };
624
625// Forward declaration to avoid ICC warning
626template<typename T> std::string type_name();
627template<typename T> std::string type_name()                    { return "other"; }
628template<> std::string type_name<float>()                       { return "float"; }
629template<> std::string type_name<double>()                      { return "double"; }
630template<> std::string type_name<long double>()                 { return "long double"; }
631template<> std::string type_name<int>()                         { return "int"; }
632template<> std::string type_name<std::complex<float> >()        { return "complex<float>"; }
633template<> std::string type_name<std::complex<double> >()       { return "complex<double>"; }
634template<> std::string type_name<std::complex<long double> >()  { return "complex<long double>"; }
635template<> std::string type_name<std::complex<int> >()          { return "complex<int>"; }
636
637// forward declaration of the main test function
638void EIGEN_CAT(test_,EIGEN_TEST_FUNC)();
639
640using namespace Eigen;
641
642inline void set_repeat_from_string(const char *str)
643{
644  errno = 0;
645  g_repeat = int(strtoul(str, 0, 10));
646  if(errno || g_repeat <= 0)
647  {
648    std::cout << "Invalid repeat value " << str << std::endl;
649    exit(EXIT_FAILURE);
650  }
651  g_has_set_repeat = true;
652}
653
654inline void set_seed_from_string(const char *str)
655{
656  errno = 0;
657  g_seed = int(strtoul(str, 0, 10));
658  if(errno || g_seed == 0)
659  {
660    std::cout << "Invalid seed value " << str << std::endl;
661    exit(EXIT_FAILURE);
662  }
663  g_has_set_seed = true;
664}
665
666int main(int argc, char *argv[])
667{
668    g_has_set_repeat = false;
669    g_has_set_seed = false;
670    bool need_help = false;
671
672    for(int i = 1; i < argc; i++)
673    {
674      if(argv[i][0] == 'r')
675      {
676        if(g_has_set_repeat)
677        {
678          std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
679          return 1;
680        }
681        set_repeat_from_string(argv[i]+1);
682      }
683      else if(argv[i][0] == 's')
684      {
685        if(g_has_set_seed)
686        {
687          std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
688          return 1;
689        }
690         set_seed_from_string(argv[i]+1);
691      }
692      else
693      {
694        need_help = true;
695      }
696    }
697
698    if(need_help)
699    {
700      std::cout << "This test application takes the following optional arguments:" << std::endl;
701      std::cout << "  rN     Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl;
702      std::cout << "  sN     Use N as seed for random numbers (default: based on current time)" << std::endl;
703      std::cout << std::endl;
704      std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl;
705      std::cout << "will be used as default values for these parameters." << std::endl;
706      return 1;
707    }
708
709    char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT");
710    if(!g_has_set_repeat && env_EIGEN_REPEAT)
711      set_repeat_from_string(env_EIGEN_REPEAT);
712    char *env_EIGEN_SEED = getenv("EIGEN_SEED");
713    if(!g_has_set_seed && env_EIGEN_SEED)
714      set_seed_from_string(env_EIGEN_SEED);
715
716    if(!g_has_set_seed) g_seed = (unsigned int) time(NULL);
717    if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT;
718
719    std::cout << "Initializing random number generator with seed " << g_seed << std::endl;
720    std::stringstream ss;
721    ss << "Seed: " << g_seed;
722    g_test_stack.push_back(ss.str());
723    srand(g_seed);
724    std::cout << "Repeating each test " << g_repeat << " times" << std::endl;
725
726    Eigen::g_test_stack.push_back(std::string(EI_PP_MAKE_STRING(EIGEN_TEST_FUNC)));
727
728    EIGEN_CAT(test_,EIGEN_TEST_FUNC)();
729    return 0;
730}
731
732// These warning are disabled here such that they are still ON when parsing Eigen's header files.
733#if defined __INTEL_COMPILER
734  // remark #383: value copied to temporary, reference to temporary used
735  //  -> this warning is raised even for legal usage as: g_test_stack.push_back("foo"); where g_test_stack is a std::vector<std::string>
736  // remark #1418: external function definition with no prior declaration
737  //  -> this warning is raised for all our test functions. Declaring them static would fix the issue.
738  // warning #279: controlling expression is constant
739  // remark #1572: floating-point equality and inequality comparisons are unreliable
740  #pragma warning disable 279 383 1418 1572
741#endif
742
743#ifdef _MSC_VER
744  // 4503 - decorated name length exceeded, name was truncated
745  #pragma warning( disable : 4503)
746#endif
747