1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3
4#ifndef EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
5#define EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
6
7namespace Eigen {
8
9/** \class TensorVolumePatch
10  * \ingroup CXX11_Tensor_Module
11  *
12  * \brief Patch extraction specialized for processing of volumetric data.
13  * This assumes that the input has a least 4 dimensions ordered as follows:
14  *  - channels
15  *  - planes
16  *  - rows
17  *  - columns
18  *  - (optional) additional dimensions such as time or batch size.
19  * Calling the volume patch code with patch_planes, patch_rows, and patch_cols
20  * is equivalent to calling the regular patch extraction code with parameters
21  * d, patch_planes, patch_rows, patch_cols, and 1 for all the additional
22  * dimensions.
23  */
24namespace internal {
25template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
26struct traits<TensorVolumePatchOp<Planes, Rows, Cols, XprType> > : public traits<XprType>
27{
28  typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
29  typedef traits<XprType> XprTraits;
30  typedef typename XprTraits::StorageKind StorageKind;
31  typedef typename XprTraits::Index Index;
32  typedef typename XprType::Nested Nested;
33  typedef typename remove_reference<Nested>::type _Nested;
34  static const int NumDimensions = XprTraits::NumDimensions + 1;
35  static const int Layout = XprTraits::Layout;
36};
37
38template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
39struct eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, Eigen::Dense>
40{
41  typedef const TensorVolumePatchOp<Planes, Rows, Cols, XprType>& type;
42};
43
44template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
45struct nested<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, 1, typename eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType> >::type>
46{
47  typedef TensorVolumePatchOp<Planes, Rows, Cols, XprType> type;
48};
49
50}  // end namespace internal
51
52template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
53class TensorVolumePatchOp : public TensorBase<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, ReadOnlyAccessors>
54{
55  public:
56  typedef typename Eigen::internal::traits<TensorVolumePatchOp>::Scalar Scalar;
57  typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
58  typedef typename XprType::CoeffReturnType CoeffReturnType;
59  typedef typename Eigen::internal::nested<TensorVolumePatchOp>::type Nested;
60  typedef typename Eigen::internal::traits<TensorVolumePatchOp>::StorageKind StorageKind;
61  typedef typename Eigen::internal::traits<TensorVolumePatchOp>::Index Index;
62
63  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols,
64                                                            DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides,
65                                                            DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides,
66                                                            DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
67                                                            PaddingType padding_type, Scalar padding_value)
68      : m_xpr(expr), m_patch_planes(patch_planes), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
69        m_plane_strides(plane_strides), m_row_strides(row_strides), m_col_strides(col_strides),
70        m_in_plane_strides(in_plane_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
71        m_plane_inflate_strides(plane_inflate_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
72        m_padding_explicit(false), m_padding_top_z(0), m_padding_bottom_z(0), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0),
73        m_padding_type(padding_type), m_padding_value(padding_value) {}
74
75  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols,
76                                                           DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides,
77                                                           DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides,
78                                                           DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
79                                                           DenseIndex padding_top_z, DenseIndex padding_bottom_z,
80                                                           DenseIndex padding_top, DenseIndex padding_bottom,
81                                                           DenseIndex padding_left, DenseIndex padding_right,
82                                                           Scalar padding_value)
83      : m_xpr(expr), m_patch_planes(patch_planes), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
84        m_plane_strides(plane_strides), m_row_strides(row_strides), m_col_strides(col_strides),
85        m_in_plane_strides(in_plane_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
86        m_plane_inflate_strides(plane_inflate_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
87        m_padding_explicit(true), m_padding_top_z(padding_top_z), m_padding_bottom_z(padding_bottom_z), m_padding_top(padding_top), m_padding_bottom(padding_bottom),
88        m_padding_left(padding_left), m_padding_right(padding_right),
89        m_padding_type(PADDING_VALID), m_padding_value(padding_value) {}
90
91    EIGEN_DEVICE_FUNC
92    DenseIndex patch_planes() const { return m_patch_planes; }
93    EIGEN_DEVICE_FUNC
94    DenseIndex patch_rows() const { return m_patch_rows; }
95    EIGEN_DEVICE_FUNC
96    DenseIndex patch_cols() const { return m_patch_cols; }
97    EIGEN_DEVICE_FUNC
98    DenseIndex plane_strides() const { return m_plane_strides; }
99    EIGEN_DEVICE_FUNC
100    DenseIndex row_strides() const { return m_row_strides; }
101    EIGEN_DEVICE_FUNC
102    DenseIndex col_strides() const { return m_col_strides; }
103    EIGEN_DEVICE_FUNC
104    DenseIndex in_plane_strides() const { return m_in_plane_strides; }
105    EIGEN_DEVICE_FUNC
106    DenseIndex in_row_strides() const { return m_in_row_strides; }
107    EIGEN_DEVICE_FUNC
108    DenseIndex in_col_strides() const { return m_in_col_strides; }
109    EIGEN_DEVICE_FUNC
110    DenseIndex plane_inflate_strides() const { return m_plane_inflate_strides; }
111    EIGEN_DEVICE_FUNC
112    DenseIndex row_inflate_strides() const { return m_row_inflate_strides; }
113    EIGEN_DEVICE_FUNC
114    DenseIndex col_inflate_strides() const { return m_col_inflate_strides; }
115    EIGEN_DEVICE_FUNC
116    bool padding_explicit() const { return m_padding_explicit; }
117    EIGEN_DEVICE_FUNC
118    DenseIndex padding_top_z() const { return m_padding_top_z; }
119    EIGEN_DEVICE_FUNC
120    DenseIndex padding_bottom_z() const { return m_padding_bottom_z; }
121    EIGEN_DEVICE_FUNC
122    DenseIndex padding_top() const { return m_padding_top; }
123    EIGEN_DEVICE_FUNC
124    DenseIndex padding_bottom() const { return m_padding_bottom; }
125    EIGEN_DEVICE_FUNC
126    DenseIndex padding_left() const { return m_padding_left; }
127    EIGEN_DEVICE_FUNC
128    DenseIndex padding_right() const { return m_padding_right; }
129    EIGEN_DEVICE_FUNC
130    PaddingType padding_type() const { return m_padding_type; }
131    EIGEN_DEVICE_FUNC
132    Scalar padding_value() const { return m_padding_value; }
133
134    EIGEN_DEVICE_FUNC
135    const typename internal::remove_all<typename XprType::Nested>::type&
136    expression() const { return m_xpr; }
137
138  protected:
139    typename XprType::Nested m_xpr;
140    const DenseIndex m_patch_planes;
141    const DenseIndex m_patch_rows;
142    const DenseIndex m_patch_cols;
143    const DenseIndex m_plane_strides;
144    const DenseIndex m_row_strides;
145    const DenseIndex m_col_strides;
146    const DenseIndex m_in_plane_strides;
147    const DenseIndex m_in_row_strides;
148    const DenseIndex m_in_col_strides;
149    const DenseIndex m_plane_inflate_strides;
150    const DenseIndex m_row_inflate_strides;
151    const DenseIndex m_col_inflate_strides;
152    const bool m_padding_explicit;
153    const DenseIndex m_padding_top_z;
154    const DenseIndex m_padding_bottom_z;
155    const DenseIndex m_padding_top;
156    const DenseIndex m_padding_bottom;
157    const DenseIndex m_padding_left;
158    const DenseIndex m_padding_right;
159    const PaddingType m_padding_type;
160    const Scalar m_padding_value;
161};
162
163
164// Eval as rvalue
165template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device>
166struct TensorEvaluator<const TensorVolumePatchOp<Planes, Rows, Cols, ArgType>, Device>
167{
168  typedef TensorVolumePatchOp<Planes, Rows, Cols, ArgType> XprType;
169  typedef typename XprType::Index Index;
170  static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
171  static const int NumDims = NumInputDims + 1;
172  typedef DSizes<Index, NumDims> Dimensions;
173  typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
174  typedef typename XprType::CoeffReturnType CoeffReturnType;
175  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
176  static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
177
178  enum {
179    IsAligned = false,
180    PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
181    BlockAccess = false,
182    Layout = TensorEvaluator<ArgType, Device>::Layout,
183    CoordAccess = false,
184    RawAccess = false
185  };
186
187  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
188      : m_impl(op.expression(), device)
189  {
190    EIGEN_STATIC_ASSERT((NumDims >= 5), YOU_MADE_A_PROGRAMMING_MISTAKE);
191
192    m_paddingValue = op.padding_value();
193
194    const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
195
196    // Cache a few variables.
197    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
198      m_inputDepth = input_dims[0];
199      m_inputPlanes = input_dims[1];
200      m_inputRows = input_dims[2];
201      m_inputCols = input_dims[3];
202    } else {
203      m_inputDepth = input_dims[NumInputDims-1];
204      m_inputPlanes = input_dims[NumInputDims-2];
205      m_inputRows = input_dims[NumInputDims-3];
206      m_inputCols = input_dims[NumInputDims-4];
207    }
208
209    m_plane_strides = op.plane_strides();
210    m_row_strides = op.row_strides();
211    m_col_strides = op.col_strides();
212
213    // Input strides and effective input/patch size
214    m_in_plane_strides = op.in_plane_strides();
215    m_in_row_strides = op.in_row_strides();
216    m_in_col_strides = op.in_col_strides();
217    m_plane_inflate_strides = op.plane_inflate_strides();
218    m_row_inflate_strides = op.row_inflate_strides();
219    m_col_inflate_strides = op.col_inflate_strides();
220
221    // The "effective" spatial size after inflating data with zeros.
222    m_input_planes_eff = (m_inputPlanes - 1) * m_plane_inflate_strides + 1;
223    m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
224    m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
225    m_patch_planes_eff = op.patch_planes() + (op.patch_planes() - 1) * (m_in_plane_strides - 1);
226    m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
227    m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);
228
229    if (op.padding_explicit()) {
230      m_outputPlanes = numext::ceil((m_input_planes_eff + op.padding_top_z() + op.padding_bottom_z() - m_patch_planes_eff + 1.f) / static_cast<float>(m_plane_strides));
231      m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
232      m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
233      m_planePaddingTop = op.padding_top_z();
234      m_rowPaddingTop = op.padding_top();
235      m_colPaddingLeft = op.padding_left();
236    } else {
237      // Computing padding from the type
238      switch (op.padding_type()) {
239        case PADDING_VALID:
240          m_outputPlanes = numext::ceil((m_input_planes_eff - m_patch_planes_eff + 1.f) / static_cast<float>(m_plane_strides));
241          m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
242          m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
243          m_planePaddingTop = 0;
244          m_rowPaddingTop = 0;
245          m_colPaddingLeft = 0;
246          break;
247        case PADDING_SAME: {
248          m_outputPlanes = numext::ceil(m_input_planes_eff / static_cast<float>(m_plane_strides));
249          m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides));
250          m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides));
251          const Index dz = m_outputPlanes * m_plane_strides + m_patch_planes_eff - 1 - m_input_planes_eff;
252          const Index dy = m_outputRows * m_row_strides + m_patch_rows_eff - 1 - m_input_rows_eff;
253          const Index dx = m_outputCols * m_col_strides + m_patch_cols_eff - 1 - m_input_cols_eff;
254          m_planePaddingTop = dz - dz / 2;
255          m_rowPaddingTop = dy - dy / 2;
256          m_colPaddingLeft = dx - dx / 2;
257          break;
258        }
259        default:
260          eigen_assert(false && "unexpected padding");
261      }
262    }
263    eigen_assert(m_outputRows > 0);
264    eigen_assert(m_outputCols > 0);
265    eigen_assert(m_outputPlanes > 0);
266
267    // Dimensions for result of extraction.
268    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
269      // ColMajor
270      // 0: depth
271      // 1: patch_planes
272      // 2: patch_rows
273      // 3: patch_cols
274      // 4: number of patches
275      // 5 and beyond: anything else (such as batch).
276      m_dimensions[0] = input_dims[0];
277      m_dimensions[1] = op.patch_planes();
278      m_dimensions[2] = op.patch_rows();
279      m_dimensions[3] = op.patch_cols();
280      m_dimensions[4] = m_outputPlanes * m_outputRows * m_outputCols;
281      for (int i = 5; i < NumDims; ++i) {
282        m_dimensions[i] = input_dims[i-1];
283      }
284    } else {
285      // RowMajor
286      // NumDims-1: depth
287      // NumDims-2: patch_planes
288      // NumDims-3: patch_rows
289      // NumDims-4: patch_cols
290      // NumDims-5: number of patches
291      // NumDims-6 and beyond: anything else (such as batch).
292      m_dimensions[NumDims-1] = input_dims[NumInputDims-1];
293      m_dimensions[NumDims-2] = op.patch_planes();
294      m_dimensions[NumDims-3] = op.patch_rows();
295      m_dimensions[NumDims-4] = op.patch_cols();
296      m_dimensions[NumDims-5] = m_outputPlanes * m_outputRows * m_outputCols;
297      for (int i = NumDims-6; i >= 0; --i) {
298        m_dimensions[i] = input_dims[i];
299      }
300    }
301
302    // Strides for the output tensor.
303    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
304      m_rowStride = m_dimensions[1];
305      m_colStride = m_dimensions[2] * m_rowStride;
306      m_patchStride = m_colStride * m_dimensions[3] * m_dimensions[0];
307      m_otherStride = m_patchStride * m_dimensions[4];
308    } else {
309      m_rowStride = m_dimensions[NumDims-2];
310      m_colStride = m_dimensions[NumDims-3] * m_rowStride;
311      m_patchStride = m_colStride * m_dimensions[NumDims-4] * m_dimensions[NumDims-1];
312      m_otherStride = m_patchStride * m_dimensions[NumDims-5];
313    }
314
315    // Strides for navigating through the input tensor.
316    m_planeInputStride = m_inputDepth;
317    m_rowInputStride = m_inputDepth * m_inputPlanes;
318    m_colInputStride = m_inputDepth * m_inputRows * m_inputPlanes;
319    m_otherInputStride = m_inputDepth * m_inputRows * m_inputCols * m_inputPlanes;
320
321    m_outputPlanesRows = m_outputPlanes * m_outputRows;
322
323    // Fast representations of different variables.
324    m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
325    m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
326    m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
327    m_fastRowStride = internal::TensorIntDivisor<Index>(m_rowStride);
328    m_fastInputRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
329    m_fastInputColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
330    m_fastInputPlaneStride = internal::TensorIntDivisor<Index>(m_plane_inflate_strides);
331    m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
332    m_fastOutputPlanes = internal::TensorIntDivisor<Index>(m_outputPlanes);
333    m_fastOutputPlanesRows = internal::TensorIntDivisor<Index>(m_outputPlanesRows);
334
335    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
336      m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
337    } else {
338      m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
339    }
340  }
341
342  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
343
344  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
345    m_impl.evalSubExprsIfNeeded(NULL);
346    return true;
347  }
348
349  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
350    m_impl.cleanup();
351  }
352
353  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
354  {
355    // Patch index corresponding to the passed in index.
356    const Index patchIndex = index / m_fastPatchStride;
357
358    // Spatial offset within the patch. This has to be translated into 3D
359    // coordinates within the patch.
360    const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
361
362    // Batch, etc.
363    const Index otherIndex = (NumDims == 5) ? 0 : index / m_fastOtherStride;
364    const Index patch3DIndex = (NumDims == 5) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
365
366    // Calculate column index in the input original tensor.
367    const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
368    const Index colOffset = patchOffset / m_fastColStride;
369    const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
370    const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0);
371    if (inputCol < 0 || inputCol >= m_input_cols_eff ||
372        ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
373      return Scalar(m_paddingValue);
374    }
375
376    // Calculate row index in the original input tensor.
377    const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
378    const Index rowOffset = (patchOffset - colOffset * m_colStride) / m_fastRowStride;
379    const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
380    const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0);
381    if (inputRow < 0 || inputRow >= m_input_rows_eff ||
382        ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
383      return Scalar(m_paddingValue);
384    }
385
386    // Calculate plane index in the original input tensor.
387    const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex));
388    const Index planeOffset = patchOffset - colOffset * m_colStride - rowOffset * m_rowStride;
389    const Index inputPlane = planeIndex * m_plane_strides + planeOffset * m_in_plane_strides - m_planePaddingTop;
390    const Index origInputPlane = (m_plane_inflate_strides == 1) ? inputPlane : ((inputPlane >= 0) ? (inputPlane / m_fastInputPlaneStride) : 0);
391    if (inputPlane < 0 || inputPlane >= m_input_planes_eff ||
392        ((m_plane_inflate_strides != 1) && (inputPlane != origInputPlane * m_plane_inflate_strides))) {
393      return Scalar(m_paddingValue);
394    }
395
396    const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
397    const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
398
399    const Index inputIndex = depth +
400        origInputRow * m_rowInputStride +
401        origInputCol * m_colInputStride +
402        origInputPlane * m_planeInputStride +
403        otherIndex * m_otherInputStride;
404
405    return m_impl.coeff(inputIndex);
406  }
407
408  template<int LoadMode>
409  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
410  {
411    EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
412    eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
413
414    if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1 ||
415        m_in_plane_strides != 1 || m_plane_inflate_strides != 1) {
416      return packetWithPossibleZero(index);
417    }
418
419    const Index indices[2] = {index, index + PacketSize - 1};
420    const Index patchIndex = indices[0] / m_fastPatchStride;
421    if (patchIndex != indices[1] / m_fastPatchStride) {
422      return packetWithPossibleZero(index);
423    }
424    const Index otherIndex = (NumDims == 5) ? 0 : indices[0] / m_fastOtherStride;
425    eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
426
427    // Find the offset of the element wrt the location of the first element.
428    const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
429                                   (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};
430
431    const Index patch3DIndex = (NumDims == 5) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
432    eigen_assert(patch3DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
433
434    const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
435    const Index colOffsets[2] = {
436      patchOffsets[0] / m_fastColStride,
437      patchOffsets[1] / m_fastColStride};
438
439    // Calculate col indices in the original input tensor.
440    const Index inputCols[2] = {
441      colIndex * m_col_strides + colOffsets[0] - m_colPaddingLeft,
442      colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
443    if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
444      return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
445    }
446
447    if (inputCols[0] != inputCols[1]) {
448      return packetWithPossibleZero(index);
449    }
450
451    const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
452    const Index rowOffsets[2] = {
453      (patchOffsets[0] - colOffsets[0] * m_colStride) / m_fastRowStride,
454      (patchOffsets[1] - colOffsets[1] * m_colStride) / m_fastRowStride};
455    eigen_assert(rowOffsets[0] <= rowOffsets[1]);
456    // Calculate col indices in the original input tensor.
457    const Index inputRows[2] = {
458      rowIndex * m_row_strides + rowOffsets[0] - m_rowPaddingTop,
459      rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
460
461    if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
462      return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
463    }
464
465    if (inputRows[0] != inputRows[1]) {
466      return packetWithPossibleZero(index);
467    }
468
469    const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex));
470    const Index planeOffsets[2] = {
471      patchOffsets[0] - colOffsets[0] * m_colStride - rowOffsets[0] * m_rowStride,
472      patchOffsets[1] - colOffsets[1] * m_colStride - rowOffsets[1] * m_rowStride};
473    eigen_assert(planeOffsets[0] <= planeOffsets[1]);
474    const Index inputPlanes[2] = {
475      planeIndex * m_plane_strides + planeOffsets[0] - m_planePaddingTop,
476      planeIndex * m_plane_strides + planeOffsets[1] - m_planePaddingTop};
477
478    if (inputPlanes[1] < 0 || inputPlanes[0] >= m_inputPlanes) {
479      return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
480    }
481
482    if (inputPlanes[0] >= 0 && inputPlanes[1] < m_inputPlanes) {
483      // no padding
484      const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
485      const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
486      const Index inputIndex = depth +
487          inputRows[0] * m_rowInputStride +
488          inputCols[0] * m_colInputStride +
489          m_planeInputStride * inputPlanes[0] +
490          otherIndex * m_otherInputStride;
491      return m_impl.template packet<Unaligned>(inputIndex);
492    }
493
494    return packetWithPossibleZero(index);
495  }
496
497  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
498  costPerCoeff(bool vectorized) const {
499    const double compute_cost =
500        10 * TensorOpCost::DivCost<Index>() + 21 * TensorOpCost::MulCost<Index>() +
501        8 * TensorOpCost::AddCost<Index>();
502    return TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
503  }
504
505  EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
506
507  const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
508
509  Index planePaddingTop() const { return m_planePaddingTop; }
510  Index rowPaddingTop() const { return m_rowPaddingTop; }
511  Index colPaddingLeft() const { return m_colPaddingLeft; }
512  Index outputPlanes() const { return m_outputPlanes; }
513  Index outputRows() const { return m_outputRows; }
514  Index outputCols() const { return m_outputCols; }
515  Index userPlaneStride() const { return m_plane_strides; }
516  Index userRowStride() const { return m_row_strides; }
517  Index userColStride() const { return m_col_strides; }
518  Index userInPlaneStride() const { return m_in_plane_strides; }
519  Index userInRowStride() const { return m_in_row_strides; }
520  Index userInColStride() const { return m_in_col_strides; }
521  Index planeInflateStride() const { return m_plane_inflate_strides; }
522  Index rowInflateStride() const { return m_row_inflate_strides; }
523  Index colInflateStride() const { return m_col_inflate_strides; }
524
525 protected:
526  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
527  {
528    EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
529    for (int i = 0; i < PacketSize; ++i) {
530      values[i] = coeff(index+i);
531    }
532    PacketReturnType rslt = internal::pload<PacketReturnType>(values);
533    return rslt;
534  }
535
536  Dimensions m_dimensions;
537
538  // Parameters passed to the costructor.
539  Index m_plane_strides;
540  Index m_row_strides;
541  Index m_col_strides;
542
543  Index m_outputPlanes;
544  Index m_outputRows;
545  Index m_outputCols;
546
547  Index m_planePaddingTop;
548  Index m_rowPaddingTop;
549  Index m_colPaddingLeft;
550
551  Index m_in_plane_strides;
552  Index m_in_row_strides;
553  Index m_in_col_strides;
554
555  Index m_plane_inflate_strides;
556  Index m_row_inflate_strides;
557  Index m_col_inflate_strides;
558
559  // Cached input size.
560  Index m_inputDepth;
561  Index m_inputPlanes;
562  Index m_inputRows;
563  Index m_inputCols;
564
565  // Other cached variables.
566  Index m_outputPlanesRows;
567
568  // Effective input/patch post-inflation size.
569  Index m_input_planes_eff;
570  Index m_input_rows_eff;
571  Index m_input_cols_eff;
572  Index m_patch_planes_eff;
573  Index m_patch_rows_eff;
574  Index m_patch_cols_eff;
575
576  // Strides for the output tensor.
577  Index m_otherStride;
578  Index m_patchStride;
579  Index m_rowStride;
580  Index m_colStride;
581
582  // Strides for the input tensor.
583  Index m_planeInputStride;
584  Index m_rowInputStride;
585  Index m_colInputStride;
586  Index m_otherInputStride;
587
588  internal::TensorIntDivisor<Index> m_fastOtherStride;
589  internal::TensorIntDivisor<Index> m_fastPatchStride;
590  internal::TensorIntDivisor<Index> m_fastColStride;
591  internal::TensorIntDivisor<Index> m_fastRowStride;
592  internal::TensorIntDivisor<Index> m_fastInputPlaneStride;
593  internal::TensorIntDivisor<Index> m_fastInputRowStride;
594  internal::TensorIntDivisor<Index> m_fastInputColStride;
595  internal::TensorIntDivisor<Index> m_fastInputColsEff;
596  internal::TensorIntDivisor<Index> m_fastOutputPlanesRows;
597  internal::TensorIntDivisor<Index> m_fastOutputPlanes;
598  internal::TensorIntDivisor<Index> m_fastOutputDepth;
599
600  Scalar m_paddingValue;
601
602  TensorEvaluator<ArgType, Device> m_impl;
603};
604
605
606} // end namespace Eigen
607
608#endif // EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
609