1/***************************************************************************/
2/*                                                                         */
3/*  ftgrays.c                                                              */
4/*                                                                         */
5/*    A new `perfect' anti-aliasing renderer (body).                       */
6/*                                                                         */
7/*  Copyright 2000-2017 by                                                 */
8/*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
9/*                                                                         */
10/*  This file is part of the FreeType project, and may only be used,       */
11/*  modified, and distributed under the terms of the FreeType project      */
12/*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
13/*  this file you indicate that you have read the license and              */
14/*  understand and accept it fully.                                        */
15/*                                                                         */
16/***************************************************************************/
17
18  /*************************************************************************/
19  /*                                                                       */
20  /* This file can be compiled without the rest of the FreeType engine, by */
21  /* defining the STANDALONE_ macro when compiling it.  You also need to   */
22  /* put the files `ftgrays.h' and `ftimage.h' into the current            */
23  /* compilation directory.  Typically, you could do something like        */
24  /*                                                                       */
25  /* - copy `src/smooth/ftgrays.c' (this file) to your current directory   */
26  /*                                                                       */
27  /* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the */
28  /*   same directory                                                      */
29  /*                                                                       */
30  /* - compile `ftgrays' with the STANDALONE_ macro defined, as in         */
31  /*                                                                       */
32  /*     cc -c -DSTANDALONE_ ftgrays.c                                     */
33  /*                                                                       */
34  /* The renderer can be initialized with a call to                        */
35  /* `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated  */
36  /* with a call to `ft_gray_raster.raster_render'.                        */
37  /*                                                                       */
38  /* See the comments and documentation in the file `ftimage.h' for more   */
39  /* details on how the raster works.                                      */
40  /*                                                                       */
41  /*************************************************************************/
42
43  /*************************************************************************/
44  /*                                                                       */
45  /* This is a new anti-aliasing scan-converter for FreeType 2.  The       */
46  /* algorithm used here is _very_ different from the one in the standard  */
47  /* `ftraster' module.  Actually, `ftgrays' computes the _exact_          */
48  /* coverage of the outline on each pixel cell.                           */
49  /*                                                                       */
50  /* It is based on ideas that I initially found in Raph Levien's          */
51  /* excellent LibArt graphics library (see http://www.levien.com/libart   */
52  /* for more information, though the web pages do not tell anything       */
53  /* about the renderer; you'll have to dive into the source code to       */
54  /* understand how it works).                                             */
55  /*                                                                       */
56  /* Note, however, that this is a _very_ different implementation         */
57  /* compared to Raph's.  Coverage information is stored in a very         */
58  /* different way, and I don't use sorted vector paths.  Also, it doesn't */
59  /* use floating point values.                                            */
60  /*                                                                       */
61  /* This renderer has the following advantages:                           */
62  /*                                                                       */
63  /* - It doesn't need an intermediate bitmap.  Instead, one can supply a  */
64  /*   callback function that will be called by the renderer to draw gray  */
65  /*   spans on any target surface.  You can thus do direct composition on */
66  /*   any kind of bitmap, provided that you give the renderer the right   */
67  /*   callback.                                                           */
68  /*                                                                       */
69  /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on   */
70  /*   each pixel cell.                                                    */
71  /*                                                                       */
72  /* - It performs a single pass on the outline (the `standard' FT2        */
73  /*   renderer makes two passes).                                         */
74  /*                                                                       */
75  /* - It can easily be modified to render to _any_ number of gray levels  */
76  /*   cheaply.                                                            */
77  /*                                                                       */
78  /* - For small (< 20) pixel sizes, it is faster than the standard        */
79  /*   renderer.                                                           */
80  /*                                                                       */
81  /*************************************************************************/
82
83
84  /*************************************************************************/
85  /*                                                                       */
86  /* The macro FT_COMPONENT is used in trace mode.  It is an implicit      */
87  /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log  */
88  /* messages during execution.                                            */
89  /*                                                                       */
90#undef  FT_COMPONENT
91#define FT_COMPONENT  trace_smooth
92
93
94#ifdef STANDALONE_
95
96
97  /* The size in bytes of the render pool used by the scan-line converter  */
98  /* to do all of its work.                                                */
99#define FT_RENDER_POOL_SIZE  16384L
100
101
102  /* Auxiliary macros for token concatenation. */
103#define FT_ERR_XCAT( x, y )  x ## y
104#define FT_ERR_CAT( x, y )   FT_ERR_XCAT( x, y )
105
106#define FT_BEGIN_STMNT  do {
107#define FT_END_STMNT    } while ( 0 )
108
109#define FT_MIN( a, b )  ( (a) < (b) ? (a) : (b) )
110#define FT_MAX( a, b )  ( (a) > (b) ? (a) : (b) )
111#define FT_ABS( a )     ( (a) < 0 ? -(a) : (a) )
112
113
114  /*
115   *  Approximate sqrt(x*x+y*y) using the `alpha max plus beta min'
116   *  algorithm.  We use alpha = 1, beta = 3/8, giving us results with a
117   *  largest error less than 7% compared to the exact value.
118   */
119#define FT_HYPOT( x, y )                 \
120          ( x = FT_ABS( x ),             \
121            y = FT_ABS( y ),             \
122            x > y ? x + ( 3 * y >> 3 )   \
123                  : y + ( 3 * x >> 3 ) )
124
125
126  /* define this to dump debugging information */
127/* #define FT_DEBUG_LEVEL_TRACE */
128
129
130#ifdef FT_DEBUG_LEVEL_TRACE
131#include <stdio.h>
132#include <stdarg.h>
133#endif
134
135#include <stddef.h>
136#include <string.h>
137#include <setjmp.h>
138#include <limits.h>
139#define FT_CHAR_BIT   CHAR_BIT
140#define FT_UINT_MAX   UINT_MAX
141#define FT_INT_MAX    INT_MAX
142#define FT_ULONG_MAX  ULONG_MAX
143
144#define ft_memset   memset
145
146#define ft_setjmp   setjmp
147#define ft_longjmp  longjmp
148#define ft_jmp_buf  jmp_buf
149
150typedef ptrdiff_t  FT_PtrDist;
151
152
153#define ErrRaster_Invalid_Mode      -2
154#define ErrRaster_Invalid_Outline   -1
155#define ErrRaster_Invalid_Argument  -3
156#define ErrRaster_Memory_Overflow   -4
157
158#define FT_BEGIN_HEADER
159#define FT_END_HEADER
160
161#include "ftimage.h"
162#include "ftgrays.h"
163
164
165  /* This macro is used to indicate that a function parameter is unused. */
166  /* Its purpose is simply to reduce compiler warnings.  Note also that  */
167  /* simply defining it as `(void)x' doesn't avoid warnings with certain */
168  /* ANSI compilers (e.g. LCC).                                          */
169#define FT_UNUSED( x )  (x) = (x)
170
171
172  /* we only use level 5 & 7 tracing messages; cf. ftdebug.h */
173
174#ifdef FT_DEBUG_LEVEL_TRACE
175
176  void
177  FT_Message( const char*  fmt,
178              ... )
179  {
180    va_list  ap;
181
182
183    va_start( ap, fmt );
184    vfprintf( stderr, fmt, ap );
185    va_end( ap );
186  }
187
188
189  /* empty function useful for setting a breakpoint to catch errors */
190  int
191  FT_Throw( int          error,
192            int          line,
193            const char*  file )
194  {
195    FT_UNUSED( error );
196    FT_UNUSED( line );
197    FT_UNUSED( file );
198
199    return 0;
200  }
201
202
203  /* we don't handle tracing levels in stand-alone mode; */
204#ifndef FT_TRACE5
205#define FT_TRACE5( varformat )  FT_Message varformat
206#endif
207#ifndef FT_TRACE7
208#define FT_TRACE7( varformat )  FT_Message varformat
209#endif
210#ifndef FT_ERROR
211#define FT_ERROR( varformat )   FT_Message varformat
212#endif
213
214#define FT_THROW( e )                               \
215          ( FT_Throw( FT_ERR_CAT( ErrRaster, e ),   \
216                      __LINE__,                     \
217                      __FILE__ )                  | \
218            FT_ERR_CAT( ErrRaster, e )            )
219
220#else /* !FT_DEBUG_LEVEL_TRACE */
221
222#define FT_TRACE5( x )  do { } while ( 0 )     /* nothing */
223#define FT_TRACE7( x )  do { } while ( 0 )     /* nothing */
224#define FT_ERROR( x )   do { } while ( 0 )     /* nothing */
225#define FT_THROW( e )   FT_ERR_CAT( ErrRaster_, e )
226
227
228#endif /* !FT_DEBUG_LEVEL_TRACE */
229
230
231#define FT_DEFINE_OUTLINE_FUNCS( class_,               \
232                                 move_to_, line_to_,   \
233                                 conic_to_, cubic_to_, \
234                                 shift_, delta_ )      \
235          static const FT_Outline_Funcs class_ =       \
236          {                                            \
237            move_to_,                                  \
238            line_to_,                                  \
239            conic_to_,                                 \
240            cubic_to_,                                 \
241            shift_,                                    \
242            delta_                                     \
243         };
244
245#define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_,            \
246                                raster_new_, raster_reset_,       \
247                                raster_set_mode_, raster_render_, \
248                                raster_done_ )                    \
249          const FT_Raster_Funcs class_ =                          \
250          {                                                       \
251            glyph_format_,                                        \
252            raster_new_,                                          \
253            raster_reset_,                                        \
254            raster_set_mode_,                                     \
255            raster_render_,                                       \
256            raster_done_                                          \
257         };
258
259
260#else /* !STANDALONE_ */
261
262
263#include <ft2build.h>
264#include "ftgrays.h"
265#include FT_INTERNAL_OBJECTS_H
266#include FT_INTERNAL_DEBUG_H
267#include FT_OUTLINE_H
268
269#include "ftsmerrs.h"
270
271#include "ftspic.h"
272
273#define Smooth_Err_Invalid_Mode     Smooth_Err_Cannot_Render_Glyph
274#define Smooth_Err_Memory_Overflow  Smooth_Err_Out_Of_Memory
275#define ErrRaster_Memory_Overflow   Smooth_Err_Out_Of_Memory
276
277
278#endif /* !STANDALONE_ */
279
280
281#ifndef FT_MEM_SET
282#define FT_MEM_SET( d, s, c )  ft_memset( d, s, c )
283#endif
284
285#ifndef FT_MEM_ZERO
286#define FT_MEM_ZERO( dest, count )  FT_MEM_SET( dest, 0, count )
287#endif
288
289#ifndef FT_ZERO
290#define FT_ZERO( p )  FT_MEM_ZERO( p, sizeof ( *(p) ) )
291#endif
292
293  /* as usual, for the speed hungry :-) */
294
295#undef RAS_ARG
296#undef RAS_ARG_
297#undef RAS_VAR
298#undef RAS_VAR_
299
300#ifndef FT_STATIC_RASTER
301
302#define RAS_ARG   gray_PWorker  worker
303#define RAS_ARG_  gray_PWorker  worker,
304
305#define RAS_VAR   worker
306#define RAS_VAR_  worker,
307
308#else /* FT_STATIC_RASTER */
309
310#define RAS_ARG   void
311#define RAS_ARG_  /* empty */
312#define RAS_VAR   /* empty */
313#define RAS_VAR_  /* empty */
314
315#endif /* FT_STATIC_RASTER */
316
317
318  /* must be at least 6 bits! */
319#define PIXEL_BITS  8
320
321#undef FLOOR
322#undef CEILING
323#undef TRUNC
324#undef SCALED
325
326#define ONE_PIXEL       ( 1 << PIXEL_BITS )
327#define TRUNC( x )      ( (TCoord)( (x) >> PIXEL_BITS ) )
328#define SUBPIXELS( x )  ( (TPos)(x) * ONE_PIXEL )
329#define FLOOR( x )      ( (x) & -ONE_PIXEL )
330#define CEILING( x )    ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL )
331#define ROUND( x )      ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL )
332
333#if PIXEL_BITS >= 6
334#define UPSCALE( x )    ( (x) * ( ONE_PIXEL >> 6 ) )
335#define DOWNSCALE( x )  ( (x) >> ( PIXEL_BITS - 6 ) )
336#else
337#define UPSCALE( x )    ( (x) >> ( 6 - PIXEL_BITS ) )
338#define DOWNSCALE( x )  ( (x) * ( 64 >> PIXEL_BITS ) )
339#endif
340
341
342  /* Compute `dividend / divisor' and return both its quotient and     */
343  /* remainder, cast to a specific type.  This macro also ensures that */
344  /* the remainder is always positive.  We use the remainder to keep   */
345  /* track of accumulating errors and compensate for them.             */
346#define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
347  FT_BEGIN_STMNT                                                   \
348    (quotient)  = (type)( (dividend) / (divisor) );                \
349    (remainder) = (type)( (dividend) % (divisor) );                \
350    if ( (remainder) < 0 )                                         \
351    {                                                              \
352      (quotient)--;                                                \
353      (remainder) += (type)(divisor);                              \
354    }                                                              \
355  FT_END_STMNT
356
357#ifdef  __arm__
358  /* Work around a bug specific to GCC which make the compiler fail to */
359  /* optimize a division and modulo operation on the same parameters   */
360  /* into a single call to `__aeabi_idivmod'.  See                     */
361  /*                                                                   */
362  /*  http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721                */
363#undef FT_DIV_MOD
364#define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
365  FT_BEGIN_STMNT                                                   \
366    (quotient)  = (type)( (dividend) / (divisor) );                \
367    (remainder) = (type)( (dividend) - (quotient) * (divisor) );   \
368    if ( (remainder) < 0 )                                         \
369    {                                                              \
370      (quotient)--;                                                \
371      (remainder) += (type)(divisor);                              \
372    }                                                              \
373  FT_END_STMNT
374#endif /* __arm__ */
375
376
377  /* These macros speed up repetitive divisions by replacing them */
378  /* with multiplications and right shifts.                       */
379#define FT_UDIVPREP( c, b )                                        \
380  long  b ## _r = c ? (long)( FT_ULONG_MAX >> PIXEL_BITS ) / ( b ) \
381                    : 0
382#define FT_UDIV( a, b )                                        \
383  ( ( (unsigned long)( a ) * (unsigned long)( b ## _r ) ) >>   \
384    ( sizeof( long ) * FT_CHAR_BIT - PIXEL_BITS ) )
385
386
387  /*************************************************************************/
388  /*                                                                       */
389  /*   TYPE DEFINITIONS                                                    */
390  /*                                                                       */
391
392  /* don't change the following types to FT_Int or FT_Pos, since we might */
393  /* need to define them to "float" or "double" when experimenting with   */
394  /* new algorithms                                                       */
395
396  typedef long  TPos;     /* sub-pixel coordinate              */
397  typedef int   TCoord;   /* integer scanline/pixel coordinate */
398  typedef int   TArea;    /* cell areas, coordinate products   */
399
400
401  typedef struct TCell_*  PCell;
402
403  typedef struct  TCell_
404  {
405    TCoord  x;     /* same with gray_TWorker.ex    */
406    TCoord  cover; /* same with gray_TWorker.cover */
407    TArea   area;
408    PCell   next;
409
410  } TCell;
411
412  typedef struct TPixmap_
413  {
414    unsigned char*  origin;  /* pixmap origin at the bottom-left */
415    int             pitch;   /* pitch to go down one row */
416
417  } TPixmap;
418
419  /* maximum number of gray cells in the buffer */
420#if FT_RENDER_POOL_SIZE > 2048
421#define FT_MAX_GRAY_POOL  ( FT_RENDER_POOL_SIZE / sizeof ( TCell ) )
422#else
423#define FT_MAX_GRAY_POOL  ( 2048 / sizeof ( TCell ) )
424#endif
425
426
427#if defined( _MSC_VER )      /* Visual C++ (and Intel C++) */
428  /* We disable the warning `structure was padded due to   */
429  /* __declspec(align())' in order to compile cleanly with */
430  /* the maximum level of warnings.                        */
431#pragma warning( push )
432#pragma warning( disable : 4324 )
433#endif /* _MSC_VER */
434
435  typedef struct  gray_TWorker_
436  {
437    ft_jmp_buf  jump_buffer;
438
439    TCoord  ex, ey;
440    TCoord  min_ex, max_ex;
441    TCoord  min_ey, max_ey;
442
443    TArea   area;
444    TCoord  cover;
445    int     invalid;
446
447    PCell*      ycells;
448    PCell       cells;
449    FT_PtrDist  max_cells;
450    FT_PtrDist  num_cells;
451
452    TPos    x,  y;
453
454    FT_Outline  outline;
455    TPixmap     target;
456
457    FT_Raster_Span_Func  render_span;
458    void*                render_span_data;
459
460  } gray_TWorker, *gray_PWorker;
461
462#if defined( _MSC_VER )
463#pragma warning( pop )
464#endif
465
466
467#ifndef FT_STATIC_RASTER
468#define ras  (*worker)
469#else
470  static gray_TWorker  ras;
471#endif
472
473
474  typedef struct gray_TRaster_
475  {
476    void*         memory;
477
478  } gray_TRaster, *gray_PRaster;
479
480
481#ifdef FT_DEBUG_LEVEL_TRACE
482
483  /* to be called while in the debugger --                                */
484  /* this function causes a compiler warning since it is unused otherwise */
485  static void
486  gray_dump_cells( RAS_ARG )
487  {
488    int  y;
489
490
491    for ( y = ras.min_ey; y < ras.max_ey; y++ )
492    {
493      PCell  cell = ras.ycells[y - ras.min_ey];
494
495
496      printf( "%3d:", y );
497
498      for ( ; cell != NULL; cell = cell->next )
499        printf( " (%3d, c:%4d, a:%6d)",
500                cell->x, cell->cover, cell->area );
501      printf( "\n" );
502    }
503  }
504
505#endif /* FT_DEBUG_LEVEL_TRACE */
506
507
508  /*************************************************************************/
509  /*                                                                       */
510  /* Record the current cell in the table.                                 */
511  /*                                                                       */
512  static void
513  gray_record_cell( RAS_ARG )
514  {
515    PCell  *pcell, cell;
516    TCoord  x = ras.ex;
517
518
519    pcell = &ras.ycells[ras.ey - ras.min_ey];
520    for (;;)
521    {
522      cell = *pcell;
523      if ( !cell || cell->x > x )
524        break;
525
526      if ( cell->x == x )
527        goto Found;
528
529      pcell = &cell->next;
530    }
531
532    if ( ras.num_cells >= ras.max_cells )
533      ft_longjmp( ras.jump_buffer, 1 );
534
535    /* insert new cell */
536    cell        = ras.cells + ras.num_cells++;
537    cell->x     = x;
538    cell->area  = ras.area;
539    cell->cover = ras.cover;
540
541    cell->next  = *pcell;
542    *pcell      = cell;
543
544    return;
545
546  Found:
547    /* update old cell */
548    cell->area  += ras.area;
549    cell->cover += ras.cover;
550  }
551
552
553  /*************************************************************************/
554  /*                                                                       */
555  /* Set the current cell to a new position.                               */
556  /*                                                                       */
557  static void
558  gray_set_cell( RAS_ARG_ TCoord  ex,
559                          TCoord  ey )
560  {
561    /* Move the cell pointer to a new position.  We set the `invalid'      */
562    /* flag to indicate that the cell isn't part of those we're interested */
563    /* in during the render phase.  This means that:                       */
564    /*                                                                     */
565    /* . the new vertical position must be within min_ey..max_ey-1.        */
566    /* . the new horizontal position must be strictly less than max_ex     */
567    /*                                                                     */
568    /* Note that if a cell is to the left of the clipping region, it is    */
569    /* actually set to the (min_ex-1) horizontal position.                 */
570
571    if ( ex < ras.min_ex )
572      ex = ras.min_ex - 1;
573
574    /* record the current one if it is valid */
575    if ( !ras.invalid )
576      gray_record_cell( RAS_VAR );
577
578    ras.area  = 0;
579    ras.cover = 0;
580    ras.ex    = ex;
581    ras.ey    = ey;
582
583    ras.invalid = ( ey >= ras.max_ey || ey < ras.min_ey ||
584                    ex >= ras.max_ex );
585  }
586
587
588#ifndef FT_LONG64
589
590  /*************************************************************************/
591  /*                                                                       */
592  /* Render a scanline as one or more cells.                               */
593  /*                                                                       */
594  static void
595  gray_render_scanline( RAS_ARG_ TCoord  ey,
596                                 TPos    x1,
597                                 TCoord  y1,
598                                 TPos    x2,
599                                 TCoord  y2 )
600  {
601    TCoord  ex1, ex2, fx1, fx2, first, dy, delta, mod;
602    TPos    p, dx;
603    int     incr;
604
605
606    ex1 = TRUNC( x1 );
607    ex2 = TRUNC( x2 );
608
609    /* trivial case.  Happens often */
610    if ( y1 == y2 )
611    {
612      gray_set_cell( RAS_VAR_ ex2, ey );
613      return;
614    }
615
616    fx1   = (TCoord)( x1 - SUBPIXELS( ex1 ) );
617    fx2   = (TCoord)( x2 - SUBPIXELS( ex2 ) );
618
619    /* everything is located in a single cell.  That is easy! */
620    /*                                                        */
621    if ( ex1 == ex2 )
622      goto End;
623
624    /* ok, we'll have to render a run of adjacent cells on the same */
625    /* scanline...                                                  */
626    /*                                                              */
627    dx = x2 - x1;
628    dy = y2 - y1;
629
630    if ( dx > 0 )
631    {
632      p     = ( ONE_PIXEL - fx1 ) * dy;
633      first = ONE_PIXEL;
634      incr  = 1;
635    }
636    else
637    {
638      p     = fx1 * dy;
639      first = 0;
640      incr  = -1;
641      dx    = -dx;
642    }
643
644    FT_DIV_MOD( TCoord, p, dx, delta, mod );
645
646    ras.area  += (TArea)( ( fx1 + first ) * delta );
647    ras.cover += delta;
648    y1        += delta;
649    ex1       += incr;
650    gray_set_cell( RAS_VAR_ ex1, ey );
651
652    if ( ex1 != ex2 )
653    {
654      TCoord  lift, rem;
655
656
657      p = ONE_PIXEL * dy;
658      FT_DIV_MOD( TCoord, p, dx, lift, rem );
659
660      do
661      {
662        delta = lift;
663        mod  += rem;
664        if ( mod >= (TCoord)dx )
665        {
666          mod -= (TCoord)dx;
667          delta++;
668        }
669
670        ras.area  += (TArea)( ONE_PIXEL * delta );
671        ras.cover += delta;
672        y1        += delta;
673        ex1       += incr;
674        gray_set_cell( RAS_VAR_ ex1, ey );
675      } while ( ex1 != ex2 );
676    }
677
678    fx1 = ONE_PIXEL - first;
679
680  End:
681    dy = y2 - y1;
682
683    ras.area  += (TArea)( ( fx1 + fx2 ) * dy );
684    ras.cover += dy;
685  }
686
687
688  /*************************************************************************/
689  /*                                                                       */
690  /* Render a given line as a series of scanlines.                         */
691  /*                                                                       */
692  static void
693  gray_render_line( RAS_ARG_ TPos  to_x,
694                             TPos  to_y )
695  {
696    TCoord  ey1, ey2, fy1, fy2, first, delta, mod;
697    TPos    p, dx, dy, x, x2;
698    int     incr;
699
700
701    ey1 = TRUNC( ras.y );
702    ey2 = TRUNC( to_y );     /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
703
704    /* perform vertical clipping */
705    if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) ||
706         ( ey1 <  ras.min_ey && ey2 <  ras.min_ey ) )
707      goto End;
708
709    fy1 = (TCoord)( ras.y - SUBPIXELS( ey1 ) );
710    fy2 = (TCoord)( to_y - SUBPIXELS( ey2 ) );
711
712    /* everything is on a single scanline */
713    if ( ey1 == ey2 )
714    {
715      gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 );
716      goto End;
717    }
718
719    dx = to_x - ras.x;
720    dy = to_y - ras.y;
721
722    /* vertical line - avoid calling gray_render_scanline */
723    if ( dx == 0 )
724    {
725      TCoord  ex     = TRUNC( ras.x );
726      TCoord  two_fx = (TCoord)( ( ras.x - SUBPIXELS( ex ) ) << 1 );
727      TArea   area;
728
729
730      if ( dy > 0)
731      {
732        first = ONE_PIXEL;
733        incr  = 1;
734      }
735      else
736      {
737        first = 0;
738        incr  = -1;
739      }
740
741      delta      = first - fy1;
742      ras.area  += (TArea)two_fx * delta;
743      ras.cover += delta;
744      ey1       += incr;
745
746      gray_set_cell( RAS_VAR_ ex, ey1 );
747
748      delta = first + first - ONE_PIXEL;
749      area  = (TArea)two_fx * delta;
750      while ( ey1 != ey2 )
751      {
752        ras.area  += area;
753        ras.cover += delta;
754        ey1       += incr;
755
756        gray_set_cell( RAS_VAR_ ex, ey1 );
757      }
758
759      delta      = fy2 - ONE_PIXEL + first;
760      ras.area  += (TArea)two_fx * delta;
761      ras.cover += delta;
762
763      goto End;
764    }
765
766    /* ok, we have to render several scanlines */
767    if ( dy > 0)
768    {
769      p     = ( ONE_PIXEL - fy1 ) * dx;
770      first = ONE_PIXEL;
771      incr  = 1;
772    }
773    else
774    {
775      p     = fy1 * dx;
776      first = 0;
777      incr  = -1;
778      dy    = -dy;
779    }
780
781    FT_DIV_MOD( TCoord, p, dy, delta, mod );
782
783    x = ras.x + delta;
784    gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first );
785
786    ey1 += incr;
787    gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
788
789    if ( ey1 != ey2 )
790    {
791      TCoord  lift, rem;
792
793
794      p    = ONE_PIXEL * dx;
795      FT_DIV_MOD( TCoord, p, dy, lift, rem );
796
797      do
798      {
799        delta = lift;
800        mod  += rem;
801        if ( mod >= (TCoord)dy )
802        {
803          mod -= (TCoord)dy;
804          delta++;
805        }
806
807        x2 = x + delta;
808        gray_render_scanline( RAS_VAR_ ey1,
809                                       x, ONE_PIXEL - first,
810                                       x2, first );
811        x = x2;
812
813        ey1 += incr;
814        gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
815      } while ( ey1 != ey2 );
816    }
817
818    gray_render_scanline( RAS_VAR_ ey1,
819                                   x, ONE_PIXEL - first,
820                                   to_x, fy2 );
821
822  End:
823    ras.x       = to_x;
824    ras.y       = to_y;
825  }
826
827#else
828
829  /*************************************************************************/
830  /*                                                                       */
831  /* Render a straight line across multiple cells in any direction.        */
832  /*                                                                       */
833  static void
834  gray_render_line( RAS_ARG_ TPos  to_x,
835                             TPos  to_y )
836  {
837    TPos    dx, dy, fx1, fy1, fx2, fy2;
838    TCoord  ex1, ex2, ey1, ey2;
839
840
841    ey1 = TRUNC( ras.y );
842    ey2 = TRUNC( to_y );
843
844    /* perform vertical clipping */
845    if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) ||
846         ( ey1 <  ras.min_ey && ey2 <  ras.min_ey ) )
847      goto End;
848
849    ex1 = TRUNC( ras.x );
850    ex2 = TRUNC( to_x );
851
852    fx1 = ras.x - SUBPIXELS( ex1 );
853    fy1 = ras.y - SUBPIXELS( ey1 );
854
855    dx = to_x - ras.x;
856    dy = to_y - ras.y;
857
858    if ( ex1 == ex2 && ey1 == ey2 )       /* inside one cell */
859      ;
860    else if ( dy == 0 ) /* ex1 != ex2 */  /* any horizontal line */
861    {
862      ex1 = ex2;
863      gray_set_cell( RAS_VAR_ ex1, ey1 );
864    }
865    else if ( dx == 0 )
866    {
867      if ( dy > 0 )                       /* vertical line up */
868        do
869        {
870          fy2 = ONE_PIXEL;
871          ras.cover += ( fy2 - fy1 );
872          ras.area  += ( fy2 - fy1 ) * fx1 * 2;
873          fy1 = 0;
874          ey1++;
875          gray_set_cell( RAS_VAR_ ex1, ey1 );
876        } while ( ey1 != ey2 );
877      else                                /* vertical line down */
878        do
879        {
880          fy2 = 0;
881          ras.cover += ( fy2 - fy1 );
882          ras.area  += ( fy2 - fy1 ) * fx1 * 2;
883          fy1 = ONE_PIXEL;
884          ey1--;
885          gray_set_cell( RAS_VAR_ ex1, ey1 );
886        } while ( ey1 != ey2 );
887    }
888    else                                  /* any other line */
889    {
890      TPos  prod = dx * fy1 - dy * fx1;
891      FT_UDIVPREP( ex1 != ex2, dx );
892      FT_UDIVPREP( ey1 != ey2, dy );
893
894
895      /* The fundamental value `prod' determines which side and the  */
896      /* exact coordinate where the line exits current cell.  It is  */
897      /* also easily updated when moving from one cell to the next.  */
898      do
899      {
900        if      ( prod                                   <= 0 &&
901                  prod - dx * ONE_PIXEL                  >  0 ) /* left */
902        {
903          fx2 = 0;
904          fy2 = (TPos)FT_UDIV( -prod, -dx );
905          prod -= dy * ONE_PIXEL;
906          ras.cover += ( fy2 - fy1 );
907          ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
908          fx1 = ONE_PIXEL;
909          fy1 = fy2;
910          ex1--;
911        }
912        else if ( prod - dx * ONE_PIXEL                  <= 0 &&
913                  prod - dx * ONE_PIXEL + dy * ONE_PIXEL >  0 ) /* up */
914        {
915          prod -= dx * ONE_PIXEL;
916          fx2 = (TPos)FT_UDIV( -prod, dy );
917          fy2 = ONE_PIXEL;
918          ras.cover += ( fy2 - fy1 );
919          ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
920          fx1 = fx2;
921          fy1 = 0;
922          ey1++;
923        }
924        else if ( prod - dx * ONE_PIXEL + dy * ONE_PIXEL <= 0 &&
925                  prod                  + dy * ONE_PIXEL >= 0 ) /* right */
926        {
927          prod += dy * ONE_PIXEL;
928          fx2 = ONE_PIXEL;
929          fy2 = (TPos)FT_UDIV( prod, dx );
930          ras.cover += ( fy2 - fy1 );
931          ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
932          fx1 = 0;
933          fy1 = fy2;
934          ex1++;
935        }
936        else /* ( prod                  + dy * ONE_PIXEL <  0 &&
937                  prod                                   >  0 )    down */
938        {
939          fx2 = (TPos)FT_UDIV( prod, -dy );
940          fy2 = 0;
941          prod += dx * ONE_PIXEL;
942          ras.cover += ( fy2 - fy1 );
943          ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
944          fx1 = fx2;
945          fy1 = ONE_PIXEL;
946          ey1--;
947        }
948
949        gray_set_cell( RAS_VAR_ ex1, ey1 );
950      } while ( ex1 != ex2 || ey1 != ey2 );
951    }
952
953    fx2 = to_x - SUBPIXELS( ex2 );
954    fy2 = to_y - SUBPIXELS( ey2 );
955
956    ras.cover += ( fy2 - fy1 );
957    ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
958
959  End:
960    ras.x       = to_x;
961    ras.y       = to_y;
962  }
963
964#endif
965
966  static void
967  gray_split_conic( FT_Vector*  base )
968  {
969    TPos  a, b;
970
971
972    base[4].x = base[2].x;
973    b = base[1].x;
974    a = base[3].x = ( base[2].x + b ) / 2;
975    b = base[1].x = ( base[0].x + b ) / 2;
976    base[2].x = ( a + b ) / 2;
977
978    base[4].y = base[2].y;
979    b = base[1].y;
980    a = base[3].y = ( base[2].y + b ) / 2;
981    b = base[1].y = ( base[0].y + b ) / 2;
982    base[2].y = ( a + b ) / 2;
983  }
984
985
986  static void
987  gray_render_conic( RAS_ARG_ const FT_Vector*  control,
988                              const FT_Vector*  to )
989  {
990    FT_Vector   bez_stack[16 * 2 + 1];  /* enough to accommodate bisections */
991    FT_Vector*  arc = bez_stack;
992    TPos        dx, dy;
993    int         draw, split;
994
995
996    arc[0].x = UPSCALE( to->x );
997    arc[0].y = UPSCALE( to->y );
998    arc[1].x = UPSCALE( control->x );
999    arc[1].y = UPSCALE( control->y );
1000    arc[2].x = ras.x;
1001    arc[2].y = ras.y;
1002
1003    /* short-cut the arc that crosses the current band */
1004    if ( ( TRUNC( arc[0].y ) >= ras.max_ey &&
1005           TRUNC( arc[1].y ) >= ras.max_ey &&
1006           TRUNC( arc[2].y ) >= ras.max_ey ) ||
1007         ( TRUNC( arc[0].y ) <  ras.min_ey &&
1008           TRUNC( arc[1].y ) <  ras.min_ey &&
1009           TRUNC( arc[2].y ) <  ras.min_ey ) )
1010    {
1011      ras.x = arc[0].x;
1012      ras.y = arc[0].y;
1013      return;
1014    }
1015
1016    dx = FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x );
1017    dy = FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y );
1018    if ( dx < dy )
1019      dx = dy;
1020
1021    /* We can calculate the number of necessary bisections because  */
1022    /* each bisection predictably reduces deviation exactly 4-fold. */
1023    /* Even 32-bit deviation would vanish after 16 bisections.      */
1024    draw = 1;
1025    while ( dx > ONE_PIXEL / 4 )
1026    {
1027      dx   >>= 2;
1028      draw <<= 1;
1029    }
1030
1031    /* We use decrement counter to count the total number of segments */
1032    /* to draw starting from 2^level. Before each draw we split as    */
1033    /* many times as there are trailing zeros in the counter.         */
1034    do
1035    {
1036      split = 1;
1037      while ( ( draw & split ) == 0 )
1038      {
1039        gray_split_conic( arc );
1040        arc += 2;
1041        split <<= 1;
1042      }
1043
1044      gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
1045      arc -= 2;
1046
1047    } while ( --draw );
1048  }
1049
1050
1051  static void
1052  gray_split_cubic( FT_Vector*  base )
1053  {
1054    TPos  a, b, c, d;
1055
1056
1057    base[6].x = base[3].x;
1058    c = base[1].x;
1059    d = base[2].x;
1060    base[1].x = a = ( base[0].x + c ) / 2;
1061    base[5].x = b = ( base[3].x + d ) / 2;
1062    c = ( c + d ) / 2;
1063    base[2].x = a = ( a + c ) / 2;
1064    base[4].x = b = ( b + c ) / 2;
1065    base[3].x = ( a + b ) / 2;
1066
1067    base[6].y = base[3].y;
1068    c = base[1].y;
1069    d = base[2].y;
1070    base[1].y = a = ( base[0].y + c ) / 2;
1071    base[5].y = b = ( base[3].y + d ) / 2;
1072    c = ( c + d ) / 2;
1073    base[2].y = a = ( a + c ) / 2;
1074    base[4].y = b = ( b + c ) / 2;
1075    base[3].y = ( a + b ) / 2;
1076  }
1077
1078
1079  static void
1080  gray_render_cubic( RAS_ARG_ const FT_Vector*  control1,
1081                              const FT_Vector*  control2,
1082                              const FT_Vector*  to )
1083  {
1084    FT_Vector   bez_stack[16 * 3 + 1];  /* enough to accommodate bisections */
1085    FT_Vector*  arc = bez_stack;
1086    TPos        dx, dy, dx_, dy_;
1087    TPos        dx1, dy1, dx2, dy2;
1088    TPos        L, s, s_limit;
1089
1090
1091    arc[0].x = UPSCALE( to->x );
1092    arc[0].y = UPSCALE( to->y );
1093    arc[1].x = UPSCALE( control2->x );
1094    arc[1].y = UPSCALE( control2->y );
1095    arc[2].x = UPSCALE( control1->x );
1096    arc[2].y = UPSCALE( control1->y );
1097    arc[3].x = ras.x;
1098    arc[3].y = ras.y;
1099
1100    /* short-cut the arc that crosses the current band */
1101    if ( ( TRUNC( arc[0].y ) >= ras.max_ey &&
1102           TRUNC( arc[1].y ) >= ras.max_ey &&
1103           TRUNC( arc[2].y ) >= ras.max_ey &&
1104           TRUNC( arc[3].y ) >= ras.max_ey ) ||
1105         ( TRUNC( arc[0].y ) <  ras.min_ey &&
1106           TRUNC( arc[1].y ) <  ras.min_ey &&
1107           TRUNC( arc[2].y ) <  ras.min_ey &&
1108           TRUNC( arc[3].y ) <  ras.min_ey ) )
1109    {
1110      ras.x = arc[0].x;
1111      ras.y = arc[0].y;
1112      return;
1113    }
1114
1115    for (;;)
1116    {
1117      /* Decide whether to split or draw. See `Rapid Termination          */
1118      /* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */
1119      /* F. Hain, at                                                      */
1120      /* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */
1121
1122      /* dx and dy are x and y components of the P0-P3 chord vector. */
1123      dx = dx_ = arc[3].x - arc[0].x;
1124      dy = dy_ = arc[3].y - arc[0].y;
1125
1126      L = FT_HYPOT( dx_, dy_ );
1127
1128      /* Avoid possible arithmetic overflow below by splitting. */
1129      if ( L > 32767 )
1130        goto Split;
1131
1132      /* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */
1133      s_limit = L * (TPos)( ONE_PIXEL / 6 );
1134
1135      /* s is L * the perpendicular distance from P1 to the line P0-P3. */
1136      dx1 = arc[1].x - arc[0].x;
1137      dy1 = arc[1].y - arc[0].y;
1138      s = FT_ABS( dy * dx1 - dx * dy1 );
1139
1140      if ( s > s_limit )
1141        goto Split;
1142
1143      /* s is L * the perpendicular distance from P2 to the line P0-P3. */
1144      dx2 = arc[2].x - arc[0].x;
1145      dy2 = arc[2].y - arc[0].y;
1146      s = FT_ABS( dy * dx2 - dx * dy2 );
1147
1148      if ( s > s_limit )
1149        goto Split;
1150
1151      /* Split super curvy segments where the off points are so far
1152         from the chord that the angles P0-P1-P3 or P0-P2-P3 become
1153         acute as detected by appropriate dot products. */
1154      if ( dx1 * ( dx1 - dx ) + dy1 * ( dy1 - dy ) > 0 ||
1155           dx2 * ( dx2 - dx ) + dy2 * ( dy2 - dy ) > 0 )
1156        goto Split;
1157
1158      gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
1159
1160      if ( arc == bez_stack )
1161        return;
1162
1163      arc -= 3;
1164      continue;
1165
1166    Split:
1167      gray_split_cubic( arc );
1168      arc += 3;
1169    }
1170  }
1171
1172
1173  static int
1174  gray_move_to( const FT_Vector*  to,
1175                gray_PWorker      worker )
1176  {
1177    TPos  x, y;
1178
1179
1180    /* start to a new position */
1181    x = UPSCALE( to->x );
1182    y = UPSCALE( to->y );
1183
1184    gray_set_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) );
1185
1186    ras.x = x;
1187    ras.y = y;
1188    return 0;
1189  }
1190
1191
1192  static int
1193  gray_line_to( const FT_Vector*  to,
1194                gray_PWorker      worker )
1195  {
1196    gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) );
1197    return 0;
1198  }
1199
1200
1201  static int
1202  gray_conic_to( const FT_Vector*  control,
1203                 const FT_Vector*  to,
1204                 gray_PWorker      worker )
1205  {
1206    gray_render_conic( RAS_VAR_ control, to );
1207    return 0;
1208  }
1209
1210
1211  static int
1212  gray_cubic_to( const FT_Vector*  control1,
1213                 const FT_Vector*  control2,
1214                 const FT_Vector*  to,
1215                 gray_PWorker      worker )
1216  {
1217    gray_render_cubic( RAS_VAR_ control1, control2, to );
1218    return 0;
1219  }
1220
1221
1222  static void
1223  gray_hline( RAS_ARG_ TCoord  x,
1224                       TCoord  y,
1225                       TArea   area,
1226                       TCoord  acount )
1227  {
1228    int      coverage;
1229    FT_Span  span;
1230
1231
1232    /* compute the coverage line's coverage, depending on the    */
1233    /* outline fill rule                                         */
1234    /*                                                           */
1235    /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */
1236    /*                                                           */
1237    coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) );
1238                                                    /* use range 0..256 */
1239    if ( coverage < 0 )
1240      coverage = -coverage;
1241
1242    if ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL )
1243    {
1244      coverage &= 511;
1245
1246      if ( coverage > 256 )
1247        coverage = 512 - coverage;
1248      else if ( coverage == 256 )
1249        coverage = 255;
1250    }
1251    else
1252    {
1253      /* normal non-zero winding rule */
1254      if ( coverage >= 256 )
1255        coverage = 255;
1256    }
1257
1258    if ( ras.render_span )  /* for FT_RASTER_FLAG_DIRECT only */
1259    {
1260      span.x        = (short)x;
1261      span.len      = (unsigned short)acount;
1262      span.coverage = (unsigned char)coverage;
1263
1264      ras.render_span( y, 1, &span, ras.render_span_data );
1265    }
1266    else
1267    {
1268      unsigned char*  q = ras.target.origin - ras.target.pitch * y + x;
1269      unsigned char   c = (unsigned char)coverage;
1270
1271
1272      /* For small-spans it is faster to do it by ourselves than
1273       * calling `memset'.  This is mainly due to the cost of the
1274       * function call.
1275       */
1276      switch ( acount )
1277      {
1278      case 7: *q++ = c;
1279      case 6: *q++ = c;
1280      case 5: *q++ = c;
1281      case 4: *q++ = c;
1282      case 3: *q++ = c;
1283      case 2: *q++ = c;
1284      case 1: *q   = c;
1285      case 0: break;
1286      default:
1287        FT_MEM_SET( q, c, acount );
1288      }
1289    }
1290  }
1291
1292
1293  static void
1294  gray_sweep( RAS_ARG )
1295  {
1296    int  y;
1297
1298
1299    FT_TRACE7(( "gray_sweep: start\n" ));
1300
1301    for ( y = ras.min_ey; y < ras.max_ey; y++ )
1302    {
1303      PCell   cell  = ras.ycells[y - ras.min_ey];
1304      TCoord  x     = ras.min_ex;
1305      TArea   cover = 0;
1306      TArea   area;
1307
1308
1309      for ( ; cell != NULL; cell = cell->next )
1310      {
1311        if ( cover != 0 && cell->x > x )
1312          gray_hline( RAS_VAR_ x, y, cover, cell->x - x );
1313
1314        cover += (TArea)cell->cover * ( ONE_PIXEL * 2 );
1315        area   = cover - cell->area;
1316
1317        if ( area != 0 && cell->x >= ras.min_ex )
1318          gray_hline( RAS_VAR_ cell->x, y, area, 1 );
1319
1320        x = cell->x + 1;
1321      }
1322
1323      if ( cover != 0 )
1324        gray_hline( RAS_VAR_ x, y, cover, ras.max_ex - x );
1325    }
1326
1327    FT_TRACE7(( "gray_sweep: end\n" ));
1328  }
1329
1330
1331#ifdef STANDALONE_
1332
1333  /*************************************************************************/
1334  /*                                                                       */
1335  /*  The following functions should only compile in stand-alone mode,     */
1336  /*  i.e., when building this component without the rest of FreeType.     */
1337  /*                                                                       */
1338  /*************************************************************************/
1339
1340  /*************************************************************************/
1341  /*                                                                       */
1342  /* <Function>                                                            */
1343  /*    FT_Outline_Decompose                                               */
1344  /*                                                                       */
1345  /* <Description>                                                         */
1346  /*    Walk over an outline's structure to decompose it into individual   */
1347  /*    segments and Bézier arcs.  This function is also able to emit      */
1348  /*    `move to' and `close to' operations to indicate the start and end  */
1349  /*    of new contours in the outline.                                    */
1350  /*                                                                       */
1351  /* <Input>                                                               */
1352  /*    outline        :: A pointer to the source target.                  */
1353  /*                                                                       */
1354  /*    func_interface :: A table of `emitters', i.e., function pointers   */
1355  /*                      called during decomposition to indicate path     */
1356  /*                      operations.                                      */
1357  /*                                                                       */
1358  /* <InOut>                                                               */
1359  /*    user           :: A typeless pointer which is passed to each       */
1360  /*                      emitter during the decomposition.  It can be     */
1361  /*                      used to store the state during the               */
1362  /*                      decomposition.                                   */
1363  /*                                                                       */
1364  /* <Return>                                                              */
1365  /*    Error code.  0 means success.                                      */
1366  /*                                                                       */
1367  static int
1368  FT_Outline_Decompose( const FT_Outline*        outline,
1369                        const FT_Outline_Funcs*  func_interface,
1370                        void*                    user )
1371  {
1372#undef SCALED
1373#define SCALED( x )  ( ( (x) << shift ) - delta )
1374
1375    FT_Vector   v_last;
1376    FT_Vector   v_control;
1377    FT_Vector   v_start;
1378
1379    FT_Vector*  point;
1380    FT_Vector*  limit;
1381    char*       tags;
1382
1383    int         error;
1384
1385    int   n;         /* index of contour in outline     */
1386    int   first;     /* index of first point in contour */
1387    char  tag;       /* current point's state           */
1388
1389    int   shift;
1390    TPos  delta;
1391
1392
1393    if ( !outline )
1394      return FT_THROW( Invalid_Outline );
1395
1396    if ( !func_interface )
1397      return FT_THROW( Invalid_Argument );
1398
1399    shift = func_interface->shift;
1400    delta = func_interface->delta;
1401    first = 0;
1402
1403    for ( n = 0; n < outline->n_contours; n++ )
1404    {
1405      int  last;  /* index of last point in contour */
1406
1407
1408      FT_TRACE5(( "FT_Outline_Decompose: Outline %d\n", n ));
1409
1410      last  = outline->contours[n];
1411      if ( last < 0 )
1412        goto Invalid_Outline;
1413      limit = outline->points + last;
1414
1415      v_start   = outline->points[first];
1416      v_start.x = SCALED( v_start.x );
1417      v_start.y = SCALED( v_start.y );
1418
1419      v_last   = outline->points[last];
1420      v_last.x = SCALED( v_last.x );
1421      v_last.y = SCALED( v_last.y );
1422
1423      v_control = v_start;
1424
1425      point = outline->points + first;
1426      tags  = outline->tags   + first;
1427      tag   = FT_CURVE_TAG( tags[0] );
1428
1429      /* A contour cannot start with a cubic control point! */
1430      if ( tag == FT_CURVE_TAG_CUBIC )
1431        goto Invalid_Outline;
1432
1433      /* check first point to determine origin */
1434      if ( tag == FT_CURVE_TAG_CONIC )
1435      {
1436        /* first point is conic control.  Yes, this happens. */
1437        if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON )
1438        {
1439          /* start at last point if it is on the curve */
1440          v_start = v_last;
1441          limit--;
1442        }
1443        else
1444        {
1445          /* if both first and last points are conic,         */
1446          /* start at their middle and record its position    */
1447          /* for closure                                      */
1448          v_start.x = ( v_start.x + v_last.x ) / 2;
1449          v_start.y = ( v_start.y + v_last.y ) / 2;
1450
1451          v_last = v_start;
1452        }
1453        point--;
1454        tags--;
1455      }
1456
1457      FT_TRACE5(( "  move to (%.2f, %.2f)\n",
1458                  v_start.x / 64.0, v_start.y / 64.0 ));
1459      error = func_interface->move_to( &v_start, user );
1460      if ( error )
1461        goto Exit;
1462
1463      while ( point < limit )
1464      {
1465        point++;
1466        tags++;
1467
1468        tag = FT_CURVE_TAG( tags[0] );
1469        switch ( tag )
1470        {
1471        case FT_CURVE_TAG_ON:  /* emit a single line_to */
1472          {
1473            FT_Vector  vec;
1474
1475
1476            vec.x = SCALED( point->x );
1477            vec.y = SCALED( point->y );
1478
1479            FT_TRACE5(( "  line to (%.2f, %.2f)\n",
1480                        vec.x / 64.0, vec.y / 64.0 ));
1481            error = func_interface->line_to( &vec, user );
1482            if ( error )
1483              goto Exit;
1484            continue;
1485          }
1486
1487        case FT_CURVE_TAG_CONIC:  /* consume conic arcs */
1488          v_control.x = SCALED( point->x );
1489          v_control.y = SCALED( point->y );
1490
1491        Do_Conic:
1492          if ( point < limit )
1493          {
1494            FT_Vector  vec;
1495            FT_Vector  v_middle;
1496
1497
1498            point++;
1499            tags++;
1500            tag = FT_CURVE_TAG( tags[0] );
1501
1502            vec.x = SCALED( point->x );
1503            vec.y = SCALED( point->y );
1504
1505            if ( tag == FT_CURVE_TAG_ON )
1506            {
1507              FT_TRACE5(( "  conic to (%.2f, %.2f)"
1508                          " with control (%.2f, %.2f)\n",
1509                          vec.x / 64.0, vec.y / 64.0,
1510                          v_control.x / 64.0, v_control.y / 64.0 ));
1511              error = func_interface->conic_to( &v_control, &vec, user );
1512              if ( error )
1513                goto Exit;
1514              continue;
1515            }
1516
1517            if ( tag != FT_CURVE_TAG_CONIC )
1518              goto Invalid_Outline;
1519
1520            v_middle.x = ( v_control.x + vec.x ) / 2;
1521            v_middle.y = ( v_control.y + vec.y ) / 2;
1522
1523            FT_TRACE5(( "  conic to (%.2f, %.2f)"
1524                        " with control (%.2f, %.2f)\n",
1525                        v_middle.x / 64.0, v_middle.y / 64.0,
1526                        v_control.x / 64.0, v_control.y / 64.0 ));
1527            error = func_interface->conic_to( &v_control, &v_middle, user );
1528            if ( error )
1529              goto Exit;
1530
1531            v_control = vec;
1532            goto Do_Conic;
1533          }
1534
1535          FT_TRACE5(( "  conic to (%.2f, %.2f)"
1536                      " with control (%.2f, %.2f)\n",
1537                      v_start.x / 64.0, v_start.y / 64.0,
1538                      v_control.x / 64.0, v_control.y / 64.0 ));
1539          error = func_interface->conic_to( &v_control, &v_start, user );
1540          goto Close;
1541
1542        default:  /* FT_CURVE_TAG_CUBIC */
1543          {
1544            FT_Vector  vec1, vec2;
1545
1546
1547            if ( point + 1 > limit                             ||
1548                 FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
1549              goto Invalid_Outline;
1550
1551            point += 2;
1552            tags  += 2;
1553
1554            vec1.x = SCALED( point[-2].x );
1555            vec1.y = SCALED( point[-2].y );
1556
1557            vec2.x = SCALED( point[-1].x );
1558            vec2.y = SCALED( point[-1].y );
1559
1560            if ( point <= limit )
1561            {
1562              FT_Vector  vec;
1563
1564
1565              vec.x = SCALED( point->x );
1566              vec.y = SCALED( point->y );
1567
1568              FT_TRACE5(( "  cubic to (%.2f, %.2f)"
1569                          " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
1570                          vec.x / 64.0, vec.y / 64.0,
1571                          vec1.x / 64.0, vec1.y / 64.0,
1572                          vec2.x / 64.0, vec2.y / 64.0 ));
1573              error = func_interface->cubic_to( &vec1, &vec2, &vec, user );
1574              if ( error )
1575                goto Exit;
1576              continue;
1577            }
1578
1579            FT_TRACE5(( "  cubic to (%.2f, %.2f)"
1580                        " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
1581                        v_start.x / 64.0, v_start.y / 64.0,
1582                        vec1.x / 64.0, vec1.y / 64.0,
1583                        vec2.x / 64.0, vec2.y / 64.0 ));
1584            error = func_interface->cubic_to( &vec1, &vec2, &v_start, user );
1585            goto Close;
1586          }
1587        }
1588      }
1589
1590      /* close the contour with a line segment */
1591      FT_TRACE5(( "  line to (%.2f, %.2f)\n",
1592                  v_start.x / 64.0, v_start.y / 64.0 ));
1593      error = func_interface->line_to( &v_start, user );
1594
1595   Close:
1596      if ( error )
1597        goto Exit;
1598
1599      first = last + 1;
1600    }
1601
1602    FT_TRACE5(( "FT_Outline_Decompose: Done\n", n ));
1603    return 0;
1604
1605  Exit:
1606    FT_TRACE5(( "FT_Outline_Decompose: Error 0x%x\n", error ));
1607    return error;
1608
1609  Invalid_Outline:
1610    return FT_THROW( Invalid_Outline );
1611  }
1612
1613
1614  /*************************************************************************/
1615  /*                                                                       */
1616  /* <Function>                                                            */
1617  /*    FT_Outline_Get_CBox                                                */
1618  /*                                                                       */
1619  /* <Description>                                                         */
1620  /*    Return an outline's `control box'.  The control box encloses all   */
1621  /*    the outline's points, including Bézier control points.  Though it  */
1622  /*    coincides with the exact bounding box for most glyphs, it can be   */
1623  /*    slightly larger in some situations (like when rotating an outline  */
1624  /*    that contains Bézier outside arcs).                                */
1625  /*                                                                       */
1626  /*    Computing the control box is very fast, while getting the bounding */
1627  /*    box can take much more time as it needs to walk over all segments  */
1628  /*    and arcs in the outline.  To get the latter, you can use the       */
1629  /*    `ftbbox' component, which is dedicated to this single task.        */
1630  /*                                                                       */
1631  /* <Input>                                                               */
1632  /*    outline :: A pointer to the source outline descriptor.             */
1633  /*                                                                       */
1634  /* <Output>                                                              */
1635  /*    acbox   :: The outline's control box.                              */
1636  /*                                                                       */
1637  /* <Note>                                                                */
1638  /*    See @FT_Glyph_Get_CBox for a discussion of tricky fonts.           */
1639  /*                                                                       */
1640
1641  static void
1642  FT_Outline_Get_CBox( const FT_Outline*  outline,
1643                       FT_BBox           *acbox )
1644  {
1645    TPos  xMin, yMin, xMax, yMax;
1646
1647
1648    if ( outline && acbox )
1649    {
1650      if ( outline->n_points == 0 )
1651      {
1652        xMin = 0;
1653        yMin = 0;
1654        xMax = 0;
1655        yMax = 0;
1656      }
1657      else
1658      {
1659        FT_Vector*  vec   = outline->points;
1660        FT_Vector*  limit = vec + outline->n_points;
1661
1662
1663        xMin = xMax = vec->x;
1664        yMin = yMax = vec->y;
1665        vec++;
1666
1667        for ( ; vec < limit; vec++ )
1668        {
1669          TPos  x, y;
1670
1671
1672          x = vec->x;
1673          if ( x < xMin ) xMin = x;
1674          if ( x > xMax ) xMax = x;
1675
1676          y = vec->y;
1677          if ( y < yMin ) yMin = y;
1678          if ( y > yMax ) yMax = y;
1679        }
1680      }
1681      acbox->xMin = xMin;
1682      acbox->xMax = xMax;
1683      acbox->yMin = yMin;
1684      acbox->yMax = yMax;
1685    }
1686  }
1687
1688#endif /* STANDALONE_ */
1689
1690
1691  FT_DEFINE_OUTLINE_FUNCS(
1692    func_interface,
1693
1694    (FT_Outline_MoveTo_Func) gray_move_to,   /* move_to  */
1695    (FT_Outline_LineTo_Func) gray_line_to,   /* line_to  */
1696    (FT_Outline_ConicTo_Func)gray_conic_to,  /* conic_to */
1697    (FT_Outline_CubicTo_Func)gray_cubic_to,  /* cubic_to */
1698
1699    0,                                       /* shift    */
1700    0                                        /* delta    */
1701  )
1702
1703
1704  static int
1705  gray_convert_glyph_inner( RAS_ARG )
1706  {
1707
1708    volatile int  error = 0;
1709
1710#ifdef FT_CONFIG_OPTION_PIC
1711      FT_Outline_Funcs func_interface;
1712      Init_Class_func_interface(&func_interface);
1713#endif
1714
1715    if ( ft_setjmp( ras.jump_buffer ) == 0 )
1716    {
1717      error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras );
1718      if ( !ras.invalid )
1719        gray_record_cell( RAS_VAR );
1720
1721      FT_TRACE7(( "band [%d..%d]: %d cells\n",
1722                  ras.min_ey, ras.max_ey, ras.num_cells ));
1723    }
1724    else
1725    {
1726      error = FT_THROW( Memory_Overflow );
1727
1728      FT_TRACE7(( "band [%d..%d]: to be bisected\n",
1729                  ras.min_ey, ras.max_ey ));
1730    }
1731
1732    return error;
1733  }
1734
1735
1736  static int
1737  gray_convert_glyph( RAS_ARG )
1738  {
1739    TCell    buffer[FT_MAX_GRAY_POOL];
1740    TCoord   band_size = FT_MAX_GRAY_POOL / 8;
1741    TCoord   count = ras.max_ey - ras.min_ey;
1742    int      num_bands;
1743    TCoord   min, max, max_y;
1744    TCoord   bands[32];  /* enough to accommodate bisections */
1745    TCoord*  band;
1746
1747
1748    /* set up vertical bands */
1749    if ( count > band_size )
1750    {
1751      /* two divisions rounded up */
1752      num_bands = (int)( ( count + band_size - 1) / band_size );
1753      band_size = ( count + num_bands - 1 ) / num_bands;
1754    }
1755
1756    min   = ras.min_ey;
1757    max_y = ras.max_ey;
1758
1759    for ( ; min < max_y; min = max )
1760    {
1761      max = min + band_size;
1762      if ( max > max_y )
1763        max = max_y;
1764
1765      band    = bands;
1766      band[1] = min;
1767      band[0] = max;
1768
1769      do
1770      {
1771        TCoord  width = band[0] - band[1];
1772        int     error;
1773
1774
1775        /* memory management */
1776        {
1777          size_t  ycount = (size_t)width;
1778          size_t  cell_start;
1779
1780
1781          cell_start = ( ycount * sizeof ( PCell ) + sizeof ( TCell ) - 1 ) /
1782                       sizeof ( TCell );
1783
1784          ras.cells     = buffer + cell_start;
1785          ras.max_cells = (FT_PtrDist)( FT_MAX_GRAY_POOL - cell_start );
1786          ras.num_cells = 0;
1787
1788          ras.ycells = (PCell*)buffer;
1789          while ( ycount )
1790            ras.ycells[--ycount] = NULL;
1791        }
1792
1793        ras.invalid   = 1;
1794        ras.min_ey    = band[1];
1795        ras.max_ey    = band[0];
1796
1797        error = gray_convert_glyph_inner( RAS_VAR );
1798
1799        if ( !error )
1800        {
1801          gray_sweep( RAS_VAR );
1802          band--;
1803          continue;
1804        }
1805        else if ( error != ErrRaster_Memory_Overflow )
1806          return 1;
1807
1808        /* render pool overflow; we will reduce the render band by half */
1809        width >>= 1;
1810
1811        /* This is too complex for a single scanline; there must */
1812        /* be some problems.                                     */
1813        if ( width == 0 )
1814        {
1815          FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" ));
1816          return 1;
1817        }
1818
1819        band++;
1820        band[1]  = band[0];
1821        band[0] += width;
1822      } while ( band >= bands );
1823    }
1824
1825    return 0;
1826  }
1827
1828
1829  static int
1830  gray_raster_render( FT_Raster                raster,
1831                      const FT_Raster_Params*  params )
1832  {
1833    const FT_Outline*  outline    = (const FT_Outline*)params->source;
1834    const FT_Bitmap*   target_map = params->target;
1835    FT_BBox            cbox, clip;
1836
1837#ifndef FT_STATIC_RASTER
1838    gray_TWorker  worker[1];
1839#endif
1840
1841
1842    if ( !raster )
1843      return FT_THROW( Invalid_Argument );
1844
1845    /* this version does not support monochrome rendering */
1846    if ( !( params->flags & FT_RASTER_FLAG_AA ) )
1847      return FT_THROW( Invalid_Mode );
1848
1849    if ( !outline )
1850      return FT_THROW( Invalid_Outline );
1851
1852    /* return immediately if the outline is empty */
1853    if ( outline->n_points == 0 || outline->n_contours <= 0 )
1854      return 0;
1855
1856    if ( !outline->contours || !outline->points )
1857      return FT_THROW( Invalid_Outline );
1858
1859    if ( outline->n_points !=
1860           outline->contours[outline->n_contours - 1] + 1 )
1861      return FT_THROW( Invalid_Outline );
1862
1863    ras.outline = *outline;
1864
1865    if ( params->flags & FT_RASTER_FLAG_DIRECT )
1866    {
1867      if ( !params->gray_spans )
1868        return 0;
1869
1870      ras.render_span      = (FT_Raster_Span_Func)params->gray_spans;
1871      ras.render_span_data = params->user;
1872    }
1873    else
1874    {
1875      /* if direct mode is not set, we must have a target bitmap */
1876      if ( !target_map )
1877        return FT_THROW( Invalid_Argument );
1878
1879      /* nothing to do */
1880      if ( !target_map->width || !target_map->rows )
1881        return 0;
1882
1883      if ( !target_map->buffer )
1884        return FT_THROW( Invalid_Argument );
1885
1886      if ( target_map->pitch < 0 )
1887        ras.target.origin = target_map->buffer;
1888      else
1889        ras.target.origin = target_map->buffer
1890              + ( target_map->rows - 1 ) * (unsigned int)target_map->pitch;
1891
1892      ras.target.pitch = target_map->pitch;
1893
1894      ras.render_span      = (FT_Raster_Span_Func)NULL;
1895      ras.render_span_data = NULL;
1896    }
1897
1898    FT_Outline_Get_CBox( outline, &cbox );
1899
1900    /* reject too large outline coordinates */
1901    if ( cbox.xMin < -0x1000000L || cbox.xMax > 0x1000000L ||
1902         cbox.yMin < -0x1000000L || cbox.yMax > 0x1000000L )
1903      return FT_THROW( Invalid_Outline );
1904
1905    /* truncate the bounding box to integer pixels */
1906    cbox.xMin = cbox.xMin >> 6;
1907    cbox.yMin = cbox.yMin >> 6;
1908    cbox.xMax = ( cbox.xMax + 63 ) >> 6;
1909    cbox.yMax = ( cbox.yMax + 63 ) >> 6;
1910
1911    /* compute clipping box */
1912    if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
1913    {
1914      /* compute clip box from target pixmap */
1915      clip.xMin = 0;
1916      clip.yMin = 0;
1917      clip.xMax = (FT_Pos)target_map->width;
1918      clip.yMax = (FT_Pos)target_map->rows;
1919    }
1920    else if ( params->flags & FT_RASTER_FLAG_CLIP )
1921      clip = params->clip_box;
1922    else
1923    {
1924      clip.xMin = -32768L;
1925      clip.yMin = -32768L;
1926      clip.xMax =  32767L;
1927      clip.yMax =  32767L;
1928    }
1929
1930    /* clip to target bitmap, exit if nothing to do */
1931    ras.min_ex = FT_MAX( cbox.xMin, clip.xMin );
1932    ras.min_ey = FT_MAX( cbox.yMin, clip.yMin );
1933    ras.max_ex = FT_MIN( cbox.xMax, clip.xMax );
1934    ras.max_ey = FT_MIN( cbox.yMax, clip.yMax );
1935
1936    if ( ras.max_ex <= ras.min_ex || ras.max_ey <= ras.min_ey )
1937      return 0;
1938
1939    return gray_convert_glyph( RAS_VAR );
1940  }
1941
1942
1943  /**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/
1944  /****                         a static object.                   *****/
1945
1946#ifdef STANDALONE_
1947
1948  static int
1949  gray_raster_new( void*       memory,
1950                   FT_Raster*  araster )
1951  {
1952    static gray_TRaster  the_raster;
1953
1954    FT_UNUSED( memory );
1955
1956
1957    *araster = (FT_Raster)&the_raster;
1958    FT_ZERO( &the_raster );
1959
1960    return 0;
1961  }
1962
1963
1964  static void
1965  gray_raster_done( FT_Raster  raster )
1966  {
1967    /* nothing */
1968    FT_UNUSED( raster );
1969  }
1970
1971#else /* !STANDALONE_ */
1972
1973  static int
1974  gray_raster_new( FT_Memory   memory,
1975                   FT_Raster*  araster )
1976  {
1977    FT_Error      error;
1978    gray_PRaster  raster = NULL;
1979
1980
1981    *araster = 0;
1982    if ( !FT_ALLOC( raster, sizeof ( gray_TRaster ) ) )
1983    {
1984      raster->memory = memory;
1985      *araster       = (FT_Raster)raster;
1986    }
1987
1988    return error;
1989  }
1990
1991
1992  static void
1993  gray_raster_done( FT_Raster  raster )
1994  {
1995    FT_Memory  memory = (FT_Memory)((gray_PRaster)raster)->memory;
1996
1997
1998    FT_FREE( raster );
1999  }
2000
2001#endif /* !STANDALONE_ */
2002
2003
2004  static void
2005  gray_raster_reset( FT_Raster       raster,
2006                     unsigned char*  pool_base,
2007                     unsigned long   pool_size )
2008  {
2009    FT_UNUSED( raster );
2010    FT_UNUSED( pool_base );
2011    FT_UNUSED( pool_size );
2012  }
2013
2014
2015  static int
2016  gray_raster_set_mode( FT_Raster      raster,
2017                        unsigned long  mode,
2018                        void*          args )
2019  {
2020    FT_UNUSED( raster );
2021    FT_UNUSED( mode );
2022    FT_UNUSED( args );
2023
2024
2025    return 0; /* nothing to do */
2026  }
2027
2028
2029  FT_DEFINE_RASTER_FUNCS(
2030    ft_grays_raster,
2031
2032    FT_GLYPH_FORMAT_OUTLINE,
2033
2034    (FT_Raster_New_Func)     gray_raster_new,       /* raster_new      */
2035    (FT_Raster_Reset_Func)   gray_raster_reset,     /* raster_reset    */
2036    (FT_Raster_Set_Mode_Func)gray_raster_set_mode,  /* raster_set_mode */
2037    (FT_Raster_Render_Func)  gray_raster_render,    /* raster_render   */
2038    (FT_Raster_Done_Func)    gray_raster_done       /* raster_done     */
2039  )
2040
2041
2042/* END */
2043
2044
2045/* Local Variables: */
2046/* coding: utf-8    */
2047/* End:             */
2048