1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Author: wan@google.com (Zhanyong Wan)
31
32// Google Mock - a framework for writing C++ mock classes.
33//
34// This file implements some commonly used argument matchers.  More
35// matchers can be defined by the user implementing the
36// MatcherInterface<T> interface if necessary.
37
38#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
39#define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
40
41#include <algorithm>
42#include <limits>
43#include <ostream>  // NOLINT
44#include <sstream>
45#include <string>
46#include <utility>
47#include <vector>
48
49#include "gmock/internal/gmock-internal-utils.h"
50#include "gmock/internal/gmock-port.h"
51#include "gtest/gtest.h"
52
53namespace testing {
54
55// To implement a matcher Foo for type T, define:
56//   1. a class FooMatcherImpl that implements the
57//      MatcherInterface<T> interface, and
58//   2. a factory function that creates a Matcher<T> object from a
59//      FooMatcherImpl*.
60//
61// The two-level delegation design makes it possible to allow a user
62// to write "v" instead of "Eq(v)" where a Matcher is expected, which
63// is impossible if we pass matchers by pointers.  It also eases
64// ownership management as Matcher objects can now be copied like
65// plain values.
66
67// MatchResultListener is an abstract class.  Its << operator can be
68// used by a matcher to explain why a value matches or doesn't match.
69//
70// TODO(wan@google.com): add method
71//   bool InterestedInWhy(bool result) const;
72// to indicate whether the listener is interested in why the match
73// result is 'result'.
74class MatchResultListener {
75 public:
76  // Creates a listener object with the given underlying ostream.  The
77  // listener does not own the ostream.
78  explicit MatchResultListener(::std::ostream* os) : stream_(os) {}
79  virtual ~MatchResultListener() = 0;  // Makes this class abstract.
80
81  // Streams x to the underlying ostream; does nothing if the ostream
82  // is NULL.
83  template <typename T>
84  MatchResultListener& operator<<(const T& x) {
85    if (stream_ != NULL)
86      *stream_ << x;
87    return *this;
88  }
89
90  // Returns the underlying ostream.
91  ::std::ostream* stream() { return stream_; }
92
93  // Returns true iff the listener is interested in an explanation of
94  // the match result.  A matcher's MatchAndExplain() method can use
95  // this information to avoid generating the explanation when no one
96  // intends to hear it.
97  bool IsInterested() const { return stream_ != NULL; }
98
99 private:
100  ::std::ostream* const stream_;
101
102  GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener);
103};
104
105inline MatchResultListener::~MatchResultListener() {
106}
107
108// The implementation of a matcher.
109template <typename T>
110class MatcherInterface {
111 public:
112  virtual ~MatcherInterface() {}
113
114  // Returns true iff the matcher matches x; also explains the match
115  // result to 'listener', in the form of a non-restrictive relative
116  // clause ("which ...", "whose ...", etc) that describes x.  For
117  // example, the MatchAndExplain() method of the Pointee(...) matcher
118  // should generate an explanation like "which points to ...".
119  //
120  // You should override this method when defining a new matcher.
121  //
122  // It's the responsibility of the caller (Google Mock) to guarantee
123  // that 'listener' is not NULL.  This helps to simplify a matcher's
124  // implementation when it doesn't care about the performance, as it
125  // can talk to 'listener' without checking its validity first.
126  // However, in order to implement dummy listeners efficiently,
127  // listener->stream() may be NULL.
128  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0;
129
130  // Describes this matcher to an ostream.  The function should print
131  // a verb phrase that describes the property a value matching this
132  // matcher should have.  The subject of the verb phrase is the value
133  // being matched.  For example, the DescribeTo() method of the Gt(7)
134  // matcher prints "is greater than 7".
135  virtual void DescribeTo(::std::ostream* os) const = 0;
136
137  // Describes the negation of this matcher to an ostream.  For
138  // example, if the description of this matcher is "is greater than
139  // 7", the negated description could be "is not greater than 7".
140  // You are not required to override this when implementing
141  // MatcherInterface, but it is highly advised so that your matcher
142  // can produce good error messages.
143  virtual void DescribeNegationTo(::std::ostream* os) const {
144    *os << "not (";
145    DescribeTo(os);
146    *os << ")";
147  }
148};
149
150namespace internal {
151
152// A match result listener that ignores the explanation.
153class DummyMatchResultListener : public MatchResultListener {
154 public:
155  DummyMatchResultListener() : MatchResultListener(NULL) {}
156
157 private:
158  GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener);
159};
160
161// A match result listener that forwards the explanation to a given
162// ostream.  The difference between this and MatchResultListener is
163// that the former is concrete.
164class StreamMatchResultListener : public MatchResultListener {
165 public:
166  explicit StreamMatchResultListener(::std::ostream* os)
167      : MatchResultListener(os) {}
168
169 private:
170  GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener);
171};
172
173// A match result listener that stores the explanation in a string.
174class StringMatchResultListener : public MatchResultListener {
175 public:
176  StringMatchResultListener() : MatchResultListener(&ss_) {}
177
178  // Returns the explanation heard so far.
179  internal::string str() const { return ss_.str(); }
180
181 private:
182  ::std::stringstream ss_;
183
184  GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
185};
186
187// An internal class for implementing Matcher<T>, which will derive
188// from it.  We put functionalities common to all Matcher<T>
189// specializations here to avoid code duplication.
190template <typename T>
191class MatcherBase {
192 public:
193  // Returns true iff the matcher matches x; also explains the match
194  // result to 'listener'.
195  bool MatchAndExplain(T x, MatchResultListener* listener) const {
196    return impl_->MatchAndExplain(x, listener);
197  }
198
199  // Returns true iff this matcher matches x.
200  bool Matches(T x) const {
201    DummyMatchResultListener dummy;
202    return MatchAndExplain(x, &dummy);
203  }
204
205  // Describes this matcher to an ostream.
206  void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
207
208  // Describes the negation of this matcher to an ostream.
209  void DescribeNegationTo(::std::ostream* os) const {
210    impl_->DescribeNegationTo(os);
211  }
212
213  // Explains why x matches, or doesn't match, the matcher.
214  void ExplainMatchResultTo(T x, ::std::ostream* os) const {
215    StreamMatchResultListener listener(os);
216    MatchAndExplain(x, &listener);
217  }
218
219 protected:
220  MatcherBase() {}
221
222  // Constructs a matcher from its implementation.
223  explicit MatcherBase(const MatcherInterface<T>* impl)
224      : impl_(impl) {}
225
226  virtual ~MatcherBase() {}
227
228 private:
229  // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar
230  // interfaces.  The former dynamically allocates a chunk of memory
231  // to hold the reference count, while the latter tracks all
232  // references using a circular linked list without allocating
233  // memory.  It has been observed that linked_ptr performs better in
234  // typical scenarios.  However, shared_ptr can out-perform
235  // linked_ptr when there are many more uses of the copy constructor
236  // than the default constructor.
237  //
238  // If performance becomes a problem, we should see if using
239  // shared_ptr helps.
240  ::testing::internal::linked_ptr<const MatcherInterface<T> > impl_;
241};
242
243}  // namespace internal
244
245// A Matcher<T> is a copyable and IMMUTABLE (except by assignment)
246// object that can check whether a value of type T matches.  The
247// implementation of Matcher<T> is just a linked_ptr to const
248// MatcherInterface<T>, so copying is fairly cheap.  Don't inherit
249// from Matcher!
250template <typename T>
251class Matcher : public internal::MatcherBase<T> {
252 public:
253  // Constructs a null matcher.  Needed for storing Matcher objects in STL
254  // containers.  A default-constructed matcher is not yet initialized.  You
255  // cannot use it until a valid value has been assigned to it.
256  Matcher() {}
257
258  // Constructs a matcher from its implementation.
259  explicit Matcher(const MatcherInterface<T>* impl)
260      : internal::MatcherBase<T>(impl) {}
261
262  // Implicit constructor here allows people to write
263  // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes
264  Matcher(T value);  // NOLINT
265};
266
267// The following two specializations allow the user to write str
268// instead of Eq(str) and "foo" instead of Eq("foo") when a string
269// matcher is expected.
270template <>
271class GTEST_API_ Matcher<const internal::string&>
272    : public internal::MatcherBase<const internal::string&> {
273 public:
274  Matcher() {}
275
276  explicit Matcher(const MatcherInterface<const internal::string&>* impl)
277      : internal::MatcherBase<const internal::string&>(impl) {}
278
279  // Allows the user to write str instead of Eq(str) sometimes, where
280  // str is a string object.
281  Matcher(const internal::string& s);  // NOLINT
282
283  // Allows the user to write "foo" instead of Eq("foo") sometimes.
284  Matcher(const char* s);  // NOLINT
285};
286
287template <>
288class GTEST_API_ Matcher<internal::string>
289    : public internal::MatcherBase<internal::string> {
290 public:
291  Matcher() {}
292
293  explicit Matcher(const MatcherInterface<internal::string>* impl)
294      : internal::MatcherBase<internal::string>(impl) {}
295
296  // Allows the user to write str instead of Eq(str) sometimes, where
297  // str is a string object.
298  Matcher(const internal::string& s);  // NOLINT
299
300  // Allows the user to write "foo" instead of Eq("foo") sometimes.
301  Matcher(const char* s);  // NOLINT
302};
303
304// The PolymorphicMatcher class template makes it easy to implement a
305// polymorphic matcher (i.e. a matcher that can match values of more
306// than one type, e.g. Eq(n) and NotNull()).
307//
308// To define a polymorphic matcher, a user should provide an Impl
309// class that has a DescribeTo() method and a DescribeNegationTo()
310// method, and define a member function (or member function template)
311//
312//   bool MatchAndExplain(const Value& value,
313//                        MatchResultListener* listener) const;
314//
315// See the definition of NotNull() for a complete example.
316template <class Impl>
317class PolymorphicMatcher {
318 public:
319  explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {}
320
321  // Returns a mutable reference to the underlying matcher
322  // implementation object.
323  Impl& mutable_impl() { return impl_; }
324
325  // Returns an immutable reference to the underlying matcher
326  // implementation object.
327  const Impl& impl() const { return impl_; }
328
329  template <typename T>
330  operator Matcher<T>() const {
331    return Matcher<T>(new MonomorphicImpl<T>(impl_));
332  }
333
334 private:
335  template <typename T>
336  class MonomorphicImpl : public MatcherInterface<T> {
337   public:
338    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
339
340    virtual void DescribeTo(::std::ostream* os) const {
341      impl_.DescribeTo(os);
342    }
343
344    virtual void DescribeNegationTo(::std::ostream* os) const {
345      impl_.DescribeNegationTo(os);
346    }
347
348    virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
349      return impl_.MatchAndExplain(x, listener);
350    }
351
352   private:
353    const Impl impl_;
354
355    GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
356  };
357
358  Impl impl_;
359
360  GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher);
361};
362
363// Creates a matcher from its implementation.  This is easier to use
364// than the Matcher<T> constructor as it doesn't require you to
365// explicitly write the template argument, e.g.
366//
367//   MakeMatcher(foo);
368// vs
369//   Matcher<const string&>(foo);
370template <typename T>
371inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) {
372  return Matcher<T>(impl);
373};
374
375// Creates a polymorphic matcher from its implementation.  This is
376// easier to use than the PolymorphicMatcher<Impl> constructor as it
377// doesn't require you to explicitly write the template argument, e.g.
378//
379//   MakePolymorphicMatcher(foo);
380// vs
381//   PolymorphicMatcher<TypeOfFoo>(foo);
382template <class Impl>
383inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
384  return PolymorphicMatcher<Impl>(impl);
385}
386
387// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
388// and MUST NOT BE USED IN USER CODE!!!
389namespace internal {
390
391// The MatcherCastImpl class template is a helper for implementing
392// MatcherCast().  We need this helper in order to partially
393// specialize the implementation of MatcherCast() (C++ allows
394// class/struct templates to be partially specialized, but not
395// function templates.).
396
397// This general version is used when MatcherCast()'s argument is a
398// polymorphic matcher (i.e. something that can be converted to a
399// Matcher but is not one yet; for example, Eq(value)) or a value (for
400// example, "hello").
401template <typename T, typename M>
402class MatcherCastImpl {
403 public:
404  static Matcher<T> Cast(M polymorphic_matcher_or_value) {
405    // M can be a polymorhic matcher, in which case we want to use
406    // its conversion operator to create Matcher<T>.  Or it can be a value
407    // that should be passed to the Matcher<T>'s constructor.
408    //
409    // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
410    // polymorphic matcher because it'll be ambiguous if T has an implicit
411    // constructor from M (this usually happens when T has an implicit
412    // constructor from any type).
413    //
414    // It won't work to unconditionally implict_cast
415    // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
416    // a user-defined conversion from M to T if one exists (assuming M is
417    // a value).
418    return CastImpl(
419        polymorphic_matcher_or_value,
420        BooleanConstant<
421            internal::ImplicitlyConvertible<M, Matcher<T> >::value>());
422  }
423
424 private:
425  static Matcher<T> CastImpl(M value, BooleanConstant<false>) {
426    // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
427    // matcher.  It must be a value then.  Use direct initialization to create
428    // a matcher.
429    return Matcher<T>(ImplicitCast_<T>(value));
430  }
431
432  static Matcher<T> CastImpl(M polymorphic_matcher_or_value,
433                             BooleanConstant<true>) {
434    // M is implicitly convertible to Matcher<T>, which means that either
435    // M is a polymorhpic matcher or Matcher<T> has an implicit constructor
436    // from M.  In both cases using the implicit conversion will produce a
437    // matcher.
438    //
439    // Even if T has an implicit constructor from M, it won't be called because
440    // creating Matcher<T> would require a chain of two user-defined conversions
441    // (first to create T from M and then to create Matcher<T> from T).
442    return polymorphic_matcher_or_value;
443  }
444};
445
446// This more specialized version is used when MatcherCast()'s argument
447// is already a Matcher.  This only compiles when type T can be
448// statically converted to type U.
449template <typename T, typename U>
450class MatcherCastImpl<T, Matcher<U> > {
451 public:
452  static Matcher<T> Cast(const Matcher<U>& source_matcher) {
453    return Matcher<T>(new Impl(source_matcher));
454  }
455
456 private:
457  class Impl : public MatcherInterface<T> {
458   public:
459    explicit Impl(const Matcher<U>& source_matcher)
460        : source_matcher_(source_matcher) {}
461
462    // We delegate the matching logic to the source matcher.
463    virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
464      return source_matcher_.MatchAndExplain(static_cast<U>(x), listener);
465    }
466
467    virtual void DescribeTo(::std::ostream* os) const {
468      source_matcher_.DescribeTo(os);
469    }
470
471    virtual void DescribeNegationTo(::std::ostream* os) const {
472      source_matcher_.DescribeNegationTo(os);
473    }
474
475   private:
476    const Matcher<U> source_matcher_;
477
478    GTEST_DISALLOW_ASSIGN_(Impl);
479  };
480};
481
482// This even more specialized version is used for efficiently casting
483// a matcher to its own type.
484template <typename T>
485class MatcherCastImpl<T, Matcher<T> > {
486 public:
487  static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
488};
489
490}  // namespace internal
491
492// In order to be safe and clear, casting between different matcher
493// types is done explicitly via MatcherCast<T>(m), which takes a
494// matcher m and returns a Matcher<T>.  It compiles only when T can be
495// statically converted to the argument type of m.
496template <typename T, typename M>
497inline Matcher<T> MatcherCast(M matcher) {
498  return internal::MatcherCastImpl<T, M>::Cast(matcher);
499}
500
501// Implements SafeMatcherCast().
502//
503// We use an intermediate class to do the actual safe casting as Nokia's
504// Symbian compiler cannot decide between
505// template <T, M> ... (M) and
506// template <T, U> ... (const Matcher<U>&)
507// for function templates but can for member function templates.
508template <typename T>
509class SafeMatcherCastImpl {
510 public:
511  // This overload handles polymorphic matchers and values only since
512  // monomorphic matchers are handled by the next one.
513  template <typename M>
514  static inline Matcher<T> Cast(M polymorphic_matcher_or_value) {
515    return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value);
516  }
517
518  // This overload handles monomorphic matchers.
519  //
520  // In general, if type T can be implicitly converted to type U, we can
521  // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
522  // contravariant): just keep a copy of the original Matcher<U>, convert the
523  // argument from type T to U, and then pass it to the underlying Matcher<U>.
524  // The only exception is when U is a reference and T is not, as the
525  // underlying Matcher<U> may be interested in the argument's address, which
526  // is not preserved in the conversion from T to U.
527  template <typename U>
528  static inline Matcher<T> Cast(const Matcher<U>& matcher) {
529    // Enforce that T can be implicitly converted to U.
530    GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value),
531                          T_must_be_implicitly_convertible_to_U);
532    // Enforce that we are not converting a non-reference type T to a reference
533    // type U.
534    GTEST_COMPILE_ASSERT_(
535        internal::is_reference<T>::value || !internal::is_reference<U>::value,
536        cannot_convert_non_referentce_arg_to_reference);
537    // In case both T and U are arithmetic types, enforce that the
538    // conversion is not lossy.
539    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
540    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
541    const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
542    const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
543    GTEST_COMPILE_ASSERT_(
544        kTIsOther || kUIsOther ||
545        (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
546        conversion_of_arithmetic_types_must_be_lossless);
547    return MatcherCast<T>(matcher);
548  }
549};
550
551template <typename T, typename M>
552inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) {
553  return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher);
554}
555
556// A<T>() returns a matcher that matches any value of type T.
557template <typename T>
558Matcher<T> A();
559
560// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
561// and MUST NOT BE USED IN USER CODE!!!
562namespace internal {
563
564// If the explanation is not empty, prints it to the ostream.
565inline void PrintIfNotEmpty(const internal::string& explanation,
566                            std::ostream* os) {
567  if (explanation != "" && os != NULL) {
568    *os << ", " << explanation;
569  }
570}
571
572// Returns true if the given type name is easy to read by a human.
573// This is used to decide whether printing the type of a value might
574// be helpful.
575inline bool IsReadableTypeName(const string& type_name) {
576  // We consider a type name readable if it's short or doesn't contain
577  // a template or function type.
578  return (type_name.length() <= 20 ||
579          type_name.find_first_of("<(") == string::npos);
580}
581
582// Matches the value against the given matcher, prints the value and explains
583// the match result to the listener. Returns the match result.
584// 'listener' must not be NULL.
585// Value cannot be passed by const reference, because some matchers take a
586// non-const argument.
587template <typename Value, typename T>
588bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
589                          MatchResultListener* listener) {
590  if (!listener->IsInterested()) {
591    // If the listener is not interested, we do not need to construct the
592    // inner explanation.
593    return matcher.Matches(value);
594  }
595
596  StringMatchResultListener inner_listener;
597  const bool match = matcher.MatchAndExplain(value, &inner_listener);
598
599  UniversalPrint(value, listener->stream());
600#if GTEST_HAS_RTTI
601  const string& type_name = GetTypeName<Value>();
602  if (IsReadableTypeName(type_name))
603    *listener->stream() << " (of type " << type_name << ")";
604#endif
605  PrintIfNotEmpty(inner_listener.str(), listener->stream());
606
607  return match;
608}
609
610// An internal helper class for doing compile-time loop on a tuple's
611// fields.
612template <size_t N>
613class TuplePrefix {
614 public:
615  // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
616  // iff the first N fields of matcher_tuple matches the first N
617  // fields of value_tuple, respectively.
618  template <typename MatcherTuple, typename ValueTuple>
619  static bool Matches(const MatcherTuple& matcher_tuple,
620                      const ValueTuple& value_tuple) {
621    using ::std::tr1::get;
622    return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple)
623        && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple));
624  }
625
626  // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
627  // describes failures in matching the first N fields of matchers
628  // against the first N fields of values.  If there is no failure,
629  // nothing will be streamed to os.
630  template <typename MatcherTuple, typename ValueTuple>
631  static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
632                                     const ValueTuple& values,
633                                     ::std::ostream* os) {
634    using ::std::tr1::tuple_element;
635    using ::std::tr1::get;
636
637    // First, describes failures in the first N - 1 fields.
638    TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
639
640    // Then describes the failure (if any) in the (N - 1)-th (0-based)
641    // field.
642    typename tuple_element<N - 1, MatcherTuple>::type matcher =
643        get<N - 1>(matchers);
644    typedef typename tuple_element<N - 1, ValueTuple>::type Value;
645    Value value = get<N - 1>(values);
646    StringMatchResultListener listener;
647    if (!matcher.MatchAndExplain(value, &listener)) {
648      // TODO(wan): include in the message the name of the parameter
649      // as used in MOCK_METHOD*() when possible.
650      *os << "  Expected arg #" << N - 1 << ": ";
651      get<N - 1>(matchers).DescribeTo(os);
652      *os << "\n           Actual: ";
653      // We remove the reference in type Value to prevent the
654      // universal printer from printing the address of value, which
655      // isn't interesting to the user most of the time.  The
656      // matcher's MatchAndExplain() method handles the case when
657      // the address is interesting.
658      internal::UniversalPrint(value, os);
659      PrintIfNotEmpty(listener.str(), os);
660      *os << "\n";
661    }
662  }
663};
664
665// The base case.
666template <>
667class TuplePrefix<0> {
668 public:
669  template <typename MatcherTuple, typename ValueTuple>
670  static bool Matches(const MatcherTuple& /* matcher_tuple */,
671                      const ValueTuple& /* value_tuple */) {
672    return true;
673  }
674
675  template <typename MatcherTuple, typename ValueTuple>
676  static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
677                                     const ValueTuple& /* values */,
678                                     ::std::ostream* /* os */) {}
679};
680
681// TupleMatches(matcher_tuple, value_tuple) returns true iff all
682// matchers in matcher_tuple match the corresponding fields in
683// value_tuple.  It is a compiler error if matcher_tuple and
684// value_tuple have different number of fields or incompatible field
685// types.
686template <typename MatcherTuple, typename ValueTuple>
687bool TupleMatches(const MatcherTuple& matcher_tuple,
688                  const ValueTuple& value_tuple) {
689  using ::std::tr1::tuple_size;
690  // Makes sure that matcher_tuple and value_tuple have the same
691  // number of fields.
692  GTEST_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value ==
693                        tuple_size<ValueTuple>::value,
694                        matcher_and_value_have_different_numbers_of_fields);
695  return TuplePrefix<tuple_size<ValueTuple>::value>::
696      Matches(matcher_tuple, value_tuple);
697}
698
699// Describes failures in matching matchers against values.  If there
700// is no failure, nothing will be streamed to os.
701template <typename MatcherTuple, typename ValueTuple>
702void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
703                                const ValueTuple& values,
704                                ::std::ostream* os) {
705  using ::std::tr1::tuple_size;
706  TuplePrefix<tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
707      matchers, values, os);
708}
709
710// Implements A<T>().
711template <typename T>
712class AnyMatcherImpl : public MatcherInterface<T> {
713 public:
714  virtual bool MatchAndExplain(
715      T /* x */, MatchResultListener* /* listener */) const { return true; }
716  virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; }
717  virtual void DescribeNegationTo(::std::ostream* os) const {
718    // This is mostly for completeness' safe, as it's not very useful
719    // to write Not(A<bool>()).  However we cannot completely rule out
720    // such a possibility, and it doesn't hurt to be prepared.
721    *os << "never matches";
722  }
723};
724
725// Implements _, a matcher that matches any value of any
726// type.  This is a polymorphic matcher, so we need a template type
727// conversion operator to make it appearing as a Matcher<T> for any
728// type T.
729class AnythingMatcher {
730 public:
731  template <typename T>
732  operator Matcher<T>() const { return A<T>(); }
733};
734
735// Implements a matcher that compares a given value with a
736// pre-supplied value using one of the ==, <=, <, etc, operators.  The
737// two values being compared don't have to have the same type.
738//
739// The matcher defined here is polymorphic (for example, Eq(5) can be
740// used to match an int, a short, a double, etc).  Therefore we use
741// a template type conversion operator in the implementation.
742//
743// We define this as a macro in order to eliminate duplicated source
744// code.
745//
746// The following template definition assumes that the Rhs parameter is
747// a "bare" type (i.e. neither 'const T' nor 'T&').
748#define GMOCK_IMPLEMENT_COMPARISON_MATCHER_( \
749    name, op, relation, negated_relation) \
750  template <typename Rhs> class name##Matcher { \
751   public: \
752    explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \
753    template <typename Lhs> \
754    operator Matcher<Lhs>() const { \
755      return MakeMatcher(new Impl<Lhs>(rhs_)); \
756    } \
757   private: \
758    template <typename Lhs> \
759    class Impl : public MatcherInterface<Lhs> { \
760     public: \
761      explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \
762      virtual bool MatchAndExplain(\
763          Lhs lhs, MatchResultListener* /* listener */) const { \
764        return lhs op rhs_; \
765      } \
766      virtual void DescribeTo(::std::ostream* os) const { \
767        *os << relation  " "; \
768        UniversalPrint(rhs_, os); \
769      } \
770      virtual void DescribeNegationTo(::std::ostream* os) const { \
771        *os << negated_relation  " "; \
772        UniversalPrint(rhs_, os); \
773      } \
774     private: \
775      Rhs rhs_; \
776      GTEST_DISALLOW_ASSIGN_(Impl); \
777    }; \
778    Rhs rhs_; \
779    GTEST_DISALLOW_ASSIGN_(name##Matcher); \
780  }
781
782// Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v)
783// respectively.
784GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Eq, ==, "is equal to", "isn't equal to");
785GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ge, >=, "is >=", "isn't >=");
786GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Gt, >, "is >", "isn't >");
787GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Le, <=, "is <=", "isn't <=");
788GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Lt, <, "is <", "isn't <");
789GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ne, !=, "isn't equal to", "is equal to");
790
791#undef GMOCK_IMPLEMENT_COMPARISON_MATCHER_
792
793// Implements the polymorphic IsNull() matcher, which matches any raw or smart
794// pointer that is NULL.
795class IsNullMatcher {
796 public:
797  template <typename Pointer>
798  bool MatchAndExplain(const Pointer& p,
799                       MatchResultListener* /* listener */) const {
800    return GetRawPointer(p) == NULL;
801  }
802
803  void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
804  void DescribeNegationTo(::std::ostream* os) const {
805    *os << "isn't NULL";
806  }
807};
808
809// Implements the polymorphic NotNull() matcher, which matches any raw or smart
810// pointer that is not NULL.
811class NotNullMatcher {
812 public:
813  template <typename Pointer>
814  bool MatchAndExplain(const Pointer& p,
815                       MatchResultListener* /* listener */) const {
816    return GetRawPointer(p) != NULL;
817  }
818
819  void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
820  void DescribeNegationTo(::std::ostream* os) const {
821    *os << "is NULL";
822  }
823};
824
825// Ref(variable) matches any argument that is a reference to
826// 'variable'.  This matcher is polymorphic as it can match any
827// super type of the type of 'variable'.
828//
829// The RefMatcher template class implements Ref(variable).  It can
830// only be instantiated with a reference type.  This prevents a user
831// from mistakenly using Ref(x) to match a non-reference function
832// argument.  For example, the following will righteously cause a
833// compiler error:
834//
835//   int n;
836//   Matcher<int> m1 = Ref(n);   // This won't compile.
837//   Matcher<int&> m2 = Ref(n);  // This will compile.
838template <typename T>
839class RefMatcher;
840
841template <typename T>
842class RefMatcher<T&> {
843  // Google Mock is a generic framework and thus needs to support
844  // mocking any function types, including those that take non-const
845  // reference arguments.  Therefore the template parameter T (and
846  // Super below) can be instantiated to either a const type or a
847  // non-const type.
848 public:
849  // RefMatcher() takes a T& instead of const T&, as we want the
850  // compiler to catch using Ref(const_value) as a matcher for a
851  // non-const reference.
852  explicit RefMatcher(T& x) : object_(x) {}  // NOLINT
853
854  template <typename Super>
855  operator Matcher<Super&>() const {
856    // By passing object_ (type T&) to Impl(), which expects a Super&,
857    // we make sure that Super is a super type of T.  In particular,
858    // this catches using Ref(const_value) as a matcher for a
859    // non-const reference, as you cannot implicitly convert a const
860    // reference to a non-const reference.
861    return MakeMatcher(new Impl<Super>(object_));
862  }
863
864 private:
865  template <typename Super>
866  class Impl : public MatcherInterface<Super&> {
867   public:
868    explicit Impl(Super& x) : object_(x) {}  // NOLINT
869
870    // MatchAndExplain() takes a Super& (as opposed to const Super&)
871    // in order to match the interface MatcherInterface<Super&>.
872    virtual bool MatchAndExplain(
873        Super& x, MatchResultListener* listener) const {
874      *listener << "which is located @" << static_cast<const void*>(&x);
875      return &x == &object_;
876    }
877
878    virtual void DescribeTo(::std::ostream* os) const {
879      *os << "references the variable ";
880      UniversalPrinter<Super&>::Print(object_, os);
881    }
882
883    virtual void DescribeNegationTo(::std::ostream* os) const {
884      *os << "does not reference the variable ";
885      UniversalPrinter<Super&>::Print(object_, os);
886    }
887
888   private:
889    const Super& object_;
890
891    GTEST_DISALLOW_ASSIGN_(Impl);
892  };
893
894  T& object_;
895
896  GTEST_DISALLOW_ASSIGN_(RefMatcher);
897};
898
899// Polymorphic helper functions for narrow and wide string matchers.
900inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
901  return String::CaseInsensitiveCStringEquals(lhs, rhs);
902}
903
904inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
905                                         const wchar_t* rhs) {
906  return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
907}
908
909// String comparison for narrow or wide strings that can have embedded NUL
910// characters.
911template <typename StringType>
912bool CaseInsensitiveStringEquals(const StringType& s1,
913                                 const StringType& s2) {
914  // Are the heads equal?
915  if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
916    return false;
917  }
918
919  // Skip the equal heads.
920  const typename StringType::value_type nul = 0;
921  const size_t i1 = s1.find(nul), i2 = s2.find(nul);
922
923  // Are we at the end of either s1 or s2?
924  if (i1 == StringType::npos || i2 == StringType::npos) {
925    return i1 == i2;
926  }
927
928  // Are the tails equal?
929  return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
930}
931
932// String matchers.
933
934// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
935template <typename StringType>
936class StrEqualityMatcher {
937 public:
938  typedef typename StringType::const_pointer ConstCharPointer;
939
940  StrEqualityMatcher(const StringType& str, bool expect_eq,
941                     bool case_sensitive)
942      : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}
943
944  // When expect_eq_ is true, returns true iff s is equal to string_;
945  // otherwise returns true iff s is not equal to string_.
946  bool MatchAndExplain(ConstCharPointer s,
947                       MatchResultListener* listener) const {
948    if (s == NULL) {
949      return !expect_eq_;
950    }
951    return MatchAndExplain(StringType(s), listener);
952  }
953
954  bool MatchAndExplain(const StringType& s,
955                       MatchResultListener* /* listener */) const {
956    const bool eq = case_sensitive_ ? s == string_ :
957        CaseInsensitiveStringEquals(s, string_);
958    return expect_eq_ == eq;
959  }
960
961  void DescribeTo(::std::ostream* os) const {
962    DescribeToHelper(expect_eq_, os);
963  }
964
965  void DescribeNegationTo(::std::ostream* os) const {
966    DescribeToHelper(!expect_eq_, os);
967  }
968
969 private:
970  void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
971    *os << (expect_eq ? "is " : "isn't ");
972    *os << "equal to ";
973    if (!case_sensitive_) {
974      *os << "(ignoring case) ";
975    }
976    UniversalPrint(string_, os);
977  }
978
979  const StringType string_;
980  const bool expect_eq_;
981  const bool case_sensitive_;
982
983  GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher);
984};
985
986// Implements the polymorphic HasSubstr(substring) matcher, which
987// can be used as a Matcher<T> as long as T can be converted to a
988// string.
989template <typename StringType>
990class HasSubstrMatcher {
991 public:
992  typedef typename StringType::const_pointer ConstCharPointer;
993
994  explicit HasSubstrMatcher(const StringType& substring)
995      : substring_(substring) {}
996
997  // These overloaded methods allow HasSubstr(substring) to be used as a
998  // Matcher<T> as long as T can be converted to string.  Returns true
999  // iff s contains substring_ as a substring.
1000  bool MatchAndExplain(ConstCharPointer s,
1001                       MatchResultListener* listener) const {
1002    return s != NULL && MatchAndExplain(StringType(s), listener);
1003  }
1004
1005  bool MatchAndExplain(const StringType& s,
1006                       MatchResultListener* /* listener */) const {
1007    return s.find(substring_) != StringType::npos;
1008  }
1009
1010  // Describes what this matcher matches.
1011  void DescribeTo(::std::ostream* os) const {
1012    *os << "has substring ";
1013    UniversalPrint(substring_, os);
1014  }
1015
1016  void DescribeNegationTo(::std::ostream* os) const {
1017    *os << "has no substring ";
1018    UniversalPrint(substring_, os);
1019  }
1020
1021 private:
1022  const StringType substring_;
1023
1024  GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher);
1025};
1026
1027// Implements the polymorphic StartsWith(substring) matcher, which
1028// can be used as a Matcher<T> as long as T can be converted to a
1029// string.
1030template <typename StringType>
1031class StartsWithMatcher {
1032 public:
1033  typedef typename StringType::const_pointer ConstCharPointer;
1034
1035  explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
1036  }
1037
1038  // These overloaded methods allow StartsWith(prefix) to be used as a
1039  // Matcher<T> as long as T can be converted to string.  Returns true
1040  // iff s starts with prefix_.
1041  bool MatchAndExplain(ConstCharPointer s,
1042                       MatchResultListener* listener) const {
1043    return s != NULL && MatchAndExplain(StringType(s), listener);
1044  }
1045
1046  bool MatchAndExplain(const StringType& s,
1047                       MatchResultListener* /* listener */) const {
1048    return s.length() >= prefix_.length() &&
1049        s.substr(0, prefix_.length()) == prefix_;
1050  }
1051
1052  void DescribeTo(::std::ostream* os) const {
1053    *os << "starts with ";
1054    UniversalPrint(prefix_, os);
1055  }
1056
1057  void DescribeNegationTo(::std::ostream* os) const {
1058    *os << "doesn't start with ";
1059    UniversalPrint(prefix_, os);
1060  }
1061
1062 private:
1063  const StringType prefix_;
1064
1065  GTEST_DISALLOW_ASSIGN_(StartsWithMatcher);
1066};
1067
1068// Implements the polymorphic EndsWith(substring) matcher, which
1069// can be used as a Matcher<T> as long as T can be converted to a
1070// string.
1071template <typename StringType>
1072class EndsWithMatcher {
1073 public:
1074  typedef typename StringType::const_pointer ConstCharPointer;
1075
1076  explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1077
1078  // These overloaded methods allow EndsWith(suffix) to be used as a
1079  // Matcher<T> as long as T can be converted to string.  Returns true
1080  // iff s ends with suffix_.
1081  bool MatchAndExplain(ConstCharPointer s,
1082                       MatchResultListener* listener) const {
1083    return s != NULL && MatchAndExplain(StringType(s), listener);
1084  }
1085
1086  bool MatchAndExplain(const StringType& s,
1087                       MatchResultListener* /* listener */) const {
1088    return s.length() >= suffix_.length() &&
1089        s.substr(s.length() - suffix_.length()) == suffix_;
1090  }
1091
1092  void DescribeTo(::std::ostream* os) const {
1093    *os << "ends with ";
1094    UniversalPrint(suffix_, os);
1095  }
1096
1097  void DescribeNegationTo(::std::ostream* os) const {
1098    *os << "doesn't end with ";
1099    UniversalPrint(suffix_, os);
1100  }
1101
1102 private:
1103  const StringType suffix_;
1104
1105  GTEST_DISALLOW_ASSIGN_(EndsWithMatcher);
1106};
1107
1108// Implements polymorphic matchers MatchesRegex(regex) and
1109// ContainsRegex(regex), which can be used as a Matcher<T> as long as
1110// T can be converted to a string.
1111class MatchesRegexMatcher {
1112 public:
1113  MatchesRegexMatcher(const RE* regex, bool full_match)
1114      : regex_(regex), full_match_(full_match) {}
1115
1116  // These overloaded methods allow MatchesRegex(regex) to be used as
1117  // a Matcher<T> as long as T can be converted to string.  Returns
1118  // true iff s matches regular expression regex.  When full_match_ is
1119  // true, a full match is done; otherwise a partial match is done.
1120  bool MatchAndExplain(const char* s,
1121                       MatchResultListener* listener) const {
1122    return s != NULL && MatchAndExplain(internal::string(s), listener);
1123  }
1124
1125  bool MatchAndExplain(const internal::string& s,
1126                       MatchResultListener* /* listener */) const {
1127    return full_match_ ? RE::FullMatch(s, *regex_) :
1128        RE::PartialMatch(s, *regex_);
1129  }
1130
1131  void DescribeTo(::std::ostream* os) const {
1132    *os << (full_match_ ? "matches" : "contains")
1133        << " regular expression ";
1134    UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
1135  }
1136
1137  void DescribeNegationTo(::std::ostream* os) const {
1138    *os << "doesn't " << (full_match_ ? "match" : "contain")
1139        << " regular expression ";
1140    UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
1141  }
1142
1143 private:
1144  const internal::linked_ptr<const RE> regex_;
1145  const bool full_match_;
1146
1147  GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher);
1148};
1149
1150// Implements a matcher that compares the two fields of a 2-tuple
1151// using one of the ==, <=, <, etc, operators.  The two fields being
1152// compared don't have to have the same type.
1153//
1154// The matcher defined here is polymorphic (for example, Eq() can be
1155// used to match a tuple<int, short>, a tuple<const long&, double>,
1156// etc).  Therefore we use a template type conversion operator in the
1157// implementation.
1158//
1159// We define this as a macro in order to eliminate duplicated source
1160// code.
1161#define GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(name, op, relation) \
1162  class name##2Matcher { \
1163   public: \
1164    template <typename T1, typename T2> \
1165    operator Matcher< ::std::tr1::tuple<T1, T2> >() const { \
1166      return MakeMatcher(new Impl< ::std::tr1::tuple<T1, T2> >); \
1167    } \
1168    template <typename T1, typename T2> \
1169    operator Matcher<const ::std::tr1::tuple<T1, T2>&>() const { \
1170      return MakeMatcher(new Impl<const ::std::tr1::tuple<T1, T2>&>); \
1171    } \
1172   private: \
1173    template <typename Tuple> \
1174    class Impl : public MatcherInterface<Tuple> { \
1175     public: \
1176      virtual bool MatchAndExplain( \
1177          Tuple args, \
1178          MatchResultListener* /* listener */) const { \
1179        return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \
1180      } \
1181      virtual void DescribeTo(::std::ostream* os) const { \
1182        *os << "are " relation;                                 \
1183      } \
1184      virtual void DescribeNegationTo(::std::ostream* os) const { \
1185        *os << "aren't " relation; \
1186      } \
1187    }; \
1188  }
1189
1190// Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively.
1191GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Eq, ==, "an equal pair");
1192GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
1193    Ge, >=, "a pair where the first >= the second");
1194GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
1195    Gt, >, "a pair where the first > the second");
1196GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
1197    Le, <=, "a pair where the first <= the second");
1198GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
1199    Lt, <, "a pair where the first < the second");
1200GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ne, !=, "an unequal pair");
1201
1202#undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER_
1203
1204// Implements the Not(...) matcher for a particular argument type T.
1205// We do not nest it inside the NotMatcher class template, as that
1206// will prevent different instantiations of NotMatcher from sharing
1207// the same NotMatcherImpl<T> class.
1208template <typename T>
1209class NotMatcherImpl : public MatcherInterface<T> {
1210 public:
1211  explicit NotMatcherImpl(const Matcher<T>& matcher)
1212      : matcher_(matcher) {}
1213
1214  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1215    return !matcher_.MatchAndExplain(x, listener);
1216  }
1217
1218  virtual void DescribeTo(::std::ostream* os) const {
1219    matcher_.DescribeNegationTo(os);
1220  }
1221
1222  virtual void DescribeNegationTo(::std::ostream* os) const {
1223    matcher_.DescribeTo(os);
1224  }
1225
1226 private:
1227  const Matcher<T> matcher_;
1228
1229  GTEST_DISALLOW_ASSIGN_(NotMatcherImpl);
1230};
1231
1232// Implements the Not(m) matcher, which matches a value that doesn't
1233// match matcher m.
1234template <typename InnerMatcher>
1235class NotMatcher {
1236 public:
1237  explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1238
1239  // This template type conversion operator allows Not(m) to be used
1240  // to match any type m can match.
1241  template <typename T>
1242  operator Matcher<T>() const {
1243    return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1244  }
1245
1246 private:
1247  InnerMatcher matcher_;
1248
1249  GTEST_DISALLOW_ASSIGN_(NotMatcher);
1250};
1251
1252// Implements the AllOf(m1, m2) matcher for a particular argument type
1253// T. We do not nest it inside the BothOfMatcher class template, as
1254// that will prevent different instantiations of BothOfMatcher from
1255// sharing the same BothOfMatcherImpl<T> class.
1256template <typename T>
1257class BothOfMatcherImpl : public MatcherInterface<T> {
1258 public:
1259  BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1260      : matcher1_(matcher1), matcher2_(matcher2) {}
1261
1262  virtual void DescribeTo(::std::ostream* os) const {
1263    *os << "(";
1264    matcher1_.DescribeTo(os);
1265    *os << ") and (";
1266    matcher2_.DescribeTo(os);
1267    *os << ")";
1268  }
1269
1270  virtual void DescribeNegationTo(::std::ostream* os) const {
1271    *os << "(";
1272    matcher1_.DescribeNegationTo(os);
1273    *os << ") or (";
1274    matcher2_.DescribeNegationTo(os);
1275    *os << ")";
1276  }
1277
1278  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1279    // If either matcher1_ or matcher2_ doesn't match x, we only need
1280    // to explain why one of them fails.
1281    StringMatchResultListener listener1;
1282    if (!matcher1_.MatchAndExplain(x, &listener1)) {
1283      *listener << listener1.str();
1284      return false;
1285    }
1286
1287    StringMatchResultListener listener2;
1288    if (!matcher2_.MatchAndExplain(x, &listener2)) {
1289      *listener << listener2.str();
1290      return false;
1291    }
1292
1293    // Otherwise we need to explain why *both* of them match.
1294    const internal::string s1 = listener1.str();
1295    const internal::string s2 = listener2.str();
1296
1297    if (s1 == "") {
1298      *listener << s2;
1299    } else {
1300      *listener << s1;
1301      if (s2 != "") {
1302        *listener << ", and " << s2;
1303      }
1304    }
1305    return true;
1306  }
1307
1308 private:
1309  const Matcher<T> matcher1_;
1310  const Matcher<T> matcher2_;
1311
1312  GTEST_DISALLOW_ASSIGN_(BothOfMatcherImpl);
1313};
1314
1315// Used for implementing the AllOf(m_1, ..., m_n) matcher, which
1316// matches a value that matches all of the matchers m_1, ..., and m_n.
1317template <typename Matcher1, typename Matcher2>
1318class BothOfMatcher {
1319 public:
1320  BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1321      : matcher1_(matcher1), matcher2_(matcher2) {}
1322
1323  // This template type conversion operator allows a
1324  // BothOfMatcher<Matcher1, Matcher2> object to match any type that
1325  // both Matcher1 and Matcher2 can match.
1326  template <typename T>
1327  operator Matcher<T>() const {
1328    return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_),
1329                                               SafeMatcherCast<T>(matcher2_)));
1330  }
1331
1332 private:
1333  Matcher1 matcher1_;
1334  Matcher2 matcher2_;
1335
1336  GTEST_DISALLOW_ASSIGN_(BothOfMatcher);
1337};
1338
1339// Implements the AnyOf(m1, m2) matcher for a particular argument type
1340// T.  We do not nest it inside the AnyOfMatcher class template, as
1341// that will prevent different instantiations of AnyOfMatcher from
1342// sharing the same EitherOfMatcherImpl<T> class.
1343template <typename T>
1344class EitherOfMatcherImpl : public MatcherInterface<T> {
1345 public:
1346  EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1347      : matcher1_(matcher1), matcher2_(matcher2) {}
1348
1349  virtual void DescribeTo(::std::ostream* os) const {
1350    *os << "(";
1351    matcher1_.DescribeTo(os);
1352    *os << ") or (";
1353    matcher2_.DescribeTo(os);
1354    *os << ")";
1355  }
1356
1357  virtual void DescribeNegationTo(::std::ostream* os) const {
1358    *os << "(";
1359    matcher1_.DescribeNegationTo(os);
1360    *os << ") and (";
1361    matcher2_.DescribeNegationTo(os);
1362    *os << ")";
1363  }
1364
1365  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1366    // If either matcher1_ or matcher2_ matches x, we just need to
1367    // explain why *one* of them matches.
1368    StringMatchResultListener listener1;
1369    if (matcher1_.MatchAndExplain(x, &listener1)) {
1370      *listener << listener1.str();
1371      return true;
1372    }
1373
1374    StringMatchResultListener listener2;
1375    if (matcher2_.MatchAndExplain(x, &listener2)) {
1376      *listener << listener2.str();
1377      return true;
1378    }
1379
1380    // Otherwise we need to explain why *both* of them fail.
1381    const internal::string s1 = listener1.str();
1382    const internal::string s2 = listener2.str();
1383
1384    if (s1 == "") {
1385      *listener << s2;
1386    } else {
1387      *listener << s1;
1388      if (s2 != "") {
1389        *listener << ", and " << s2;
1390      }
1391    }
1392    return false;
1393  }
1394
1395 private:
1396  const Matcher<T> matcher1_;
1397  const Matcher<T> matcher2_;
1398
1399  GTEST_DISALLOW_ASSIGN_(EitherOfMatcherImpl);
1400};
1401
1402// Used for implementing the AnyOf(m_1, ..., m_n) matcher, which
1403// matches a value that matches at least one of the matchers m_1, ...,
1404// and m_n.
1405template <typename Matcher1, typename Matcher2>
1406class EitherOfMatcher {
1407 public:
1408  EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1409      : matcher1_(matcher1), matcher2_(matcher2) {}
1410
1411  // This template type conversion operator allows a
1412  // EitherOfMatcher<Matcher1, Matcher2> object to match any type that
1413  // both Matcher1 and Matcher2 can match.
1414  template <typename T>
1415  operator Matcher<T>() const {
1416    return Matcher<T>(new EitherOfMatcherImpl<T>(
1417        SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_)));
1418  }
1419
1420 private:
1421  Matcher1 matcher1_;
1422  Matcher2 matcher2_;
1423
1424  GTEST_DISALLOW_ASSIGN_(EitherOfMatcher);
1425};
1426
1427// Used for implementing Truly(pred), which turns a predicate into a
1428// matcher.
1429template <typename Predicate>
1430class TrulyMatcher {
1431 public:
1432  explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1433
1434  // This method template allows Truly(pred) to be used as a matcher
1435  // for type T where T is the argument type of predicate 'pred'.  The
1436  // argument is passed by reference as the predicate may be
1437  // interested in the address of the argument.
1438  template <typename T>
1439  bool MatchAndExplain(T& x,  // NOLINT
1440                       MatchResultListener* /* listener */) const {
1441    // Without the if-statement, MSVC sometimes warns about converting
1442    // a value to bool (warning 4800).
1443    //
1444    // We cannot write 'return !!predicate_(x);' as that doesn't work
1445    // when predicate_(x) returns a class convertible to bool but
1446    // having no operator!().
1447    if (predicate_(x))
1448      return true;
1449    return false;
1450  }
1451
1452  void DescribeTo(::std::ostream* os) const {
1453    *os << "satisfies the given predicate";
1454  }
1455
1456  void DescribeNegationTo(::std::ostream* os) const {
1457    *os << "doesn't satisfy the given predicate";
1458  }
1459
1460 private:
1461  Predicate predicate_;
1462
1463  GTEST_DISALLOW_ASSIGN_(TrulyMatcher);
1464};
1465
1466// Used for implementing Matches(matcher), which turns a matcher into
1467// a predicate.
1468template <typename M>
1469class MatcherAsPredicate {
1470 public:
1471  explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1472
1473  // This template operator() allows Matches(m) to be used as a
1474  // predicate on type T where m is a matcher on type T.
1475  //
1476  // The argument x is passed by reference instead of by value, as
1477  // some matcher may be interested in its address (e.g. as in
1478  // Matches(Ref(n))(x)).
1479  template <typename T>
1480  bool operator()(const T& x) const {
1481    // We let matcher_ commit to a particular type here instead of
1482    // when the MatcherAsPredicate object was constructed.  This
1483    // allows us to write Matches(m) where m is a polymorphic matcher
1484    // (e.g. Eq(5)).
1485    //
1486    // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1487    // compile when matcher_ has type Matcher<const T&>; if we write
1488    // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1489    // when matcher_ has type Matcher<T>; if we just write
1490    // matcher_.Matches(x), it won't compile when matcher_ is
1491    // polymorphic, e.g. Eq(5).
1492    //
1493    // MatcherCast<const T&>() is necessary for making the code work
1494    // in all of the above situations.
1495    return MatcherCast<const T&>(matcher_).Matches(x);
1496  }
1497
1498 private:
1499  M matcher_;
1500
1501  GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate);
1502};
1503
1504// For implementing ASSERT_THAT() and EXPECT_THAT().  The template
1505// argument M must be a type that can be converted to a matcher.
1506template <typename M>
1507class PredicateFormatterFromMatcher {
1508 public:
1509  explicit PredicateFormatterFromMatcher(const M& m) : matcher_(m) {}
1510
1511  // This template () operator allows a PredicateFormatterFromMatcher
1512  // object to act as a predicate-formatter suitable for using with
1513  // Google Test's EXPECT_PRED_FORMAT1() macro.
1514  template <typename T>
1515  AssertionResult operator()(const char* value_text, const T& x) const {
1516    // We convert matcher_ to a Matcher<const T&> *now* instead of
1517    // when the PredicateFormatterFromMatcher object was constructed,
1518    // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1519    // know which type to instantiate it to until we actually see the
1520    // type of x here.
1521    //
1522    // We write MatcherCast<const T&>(matcher_) instead of
1523    // Matcher<const T&>(matcher_), as the latter won't compile when
1524    // matcher_ has type Matcher<T> (e.g. An<int>()).
1525    const Matcher<const T&> matcher = MatcherCast<const T&>(matcher_);
1526    StringMatchResultListener listener;
1527    if (MatchPrintAndExplain(x, matcher, &listener))
1528      return AssertionSuccess();
1529
1530    ::std::stringstream ss;
1531    ss << "Value of: " << value_text << "\n"
1532       << "Expected: ";
1533    matcher.DescribeTo(&ss);
1534    ss << "\n  Actual: " << listener.str();
1535    return AssertionFailure() << ss.str();
1536  }
1537
1538 private:
1539  const M matcher_;
1540
1541  GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher);
1542};
1543
1544// A helper function for converting a matcher to a predicate-formatter
1545// without the user needing to explicitly write the type.  This is
1546// used for implementing ASSERT_THAT() and EXPECT_THAT().
1547template <typename M>
1548inline PredicateFormatterFromMatcher<M>
1549MakePredicateFormatterFromMatcher(const M& matcher) {
1550  return PredicateFormatterFromMatcher<M>(matcher);
1551}
1552
1553// Implements the polymorphic floating point equality matcher, which
1554// matches two float values using ULP-based approximation.  The
1555// template is meant to be instantiated with FloatType being either
1556// float or double.
1557template <typename FloatType>
1558class FloatingEqMatcher {
1559 public:
1560  // Constructor for FloatingEqMatcher.
1561  // The matcher's input will be compared with rhs.  The matcher treats two
1562  // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
1563  // equality comparisons between NANs will always return false.
1564  FloatingEqMatcher(FloatType rhs, bool nan_eq_nan) :
1565    rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
1566
1567  // Implements floating point equality matcher as a Matcher<T>.
1568  template <typename T>
1569  class Impl : public MatcherInterface<T> {
1570   public:
1571    Impl(FloatType rhs, bool nan_eq_nan) :
1572      rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
1573
1574    virtual bool MatchAndExplain(T value,
1575                                 MatchResultListener* /* listener */) const {
1576      const FloatingPoint<FloatType> lhs(value), rhs(rhs_);
1577
1578      // Compares NaNs first, if nan_eq_nan_ is true.
1579      if (nan_eq_nan_ && lhs.is_nan()) {
1580        return rhs.is_nan();
1581      }
1582
1583      return lhs.AlmostEquals(rhs);
1584    }
1585
1586    virtual void DescribeTo(::std::ostream* os) const {
1587      // os->precision() returns the previously set precision, which we
1588      // store to restore the ostream to its original configuration
1589      // after outputting.
1590      const ::std::streamsize old_precision = os->precision(
1591          ::std::numeric_limits<FloatType>::digits10 + 2);
1592      if (FloatingPoint<FloatType>(rhs_).is_nan()) {
1593        if (nan_eq_nan_) {
1594          *os << "is NaN";
1595        } else {
1596          *os << "never matches";
1597        }
1598      } else {
1599        *os << "is approximately " << rhs_;
1600      }
1601      os->precision(old_precision);
1602    }
1603
1604    virtual void DescribeNegationTo(::std::ostream* os) const {
1605      // As before, get original precision.
1606      const ::std::streamsize old_precision = os->precision(
1607          ::std::numeric_limits<FloatType>::digits10 + 2);
1608      if (FloatingPoint<FloatType>(rhs_).is_nan()) {
1609        if (nan_eq_nan_) {
1610          *os << "isn't NaN";
1611        } else {
1612          *os << "is anything";
1613        }
1614      } else {
1615        *os << "isn't approximately " << rhs_;
1616      }
1617      // Restore original precision.
1618      os->precision(old_precision);
1619    }
1620
1621   private:
1622    const FloatType rhs_;
1623    const bool nan_eq_nan_;
1624
1625    GTEST_DISALLOW_ASSIGN_(Impl);
1626  };
1627
1628  // The following 3 type conversion operators allow FloatEq(rhs) and
1629  // NanSensitiveFloatEq(rhs) to be used as a Matcher<float>, a
1630  // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1631  // (While Google's C++ coding style doesn't allow arguments passed
1632  // by non-const reference, we may see them in code not conforming to
1633  // the style.  Therefore Google Mock needs to support them.)
1634  operator Matcher<FloatType>() const {
1635    return MakeMatcher(new Impl<FloatType>(rhs_, nan_eq_nan_));
1636  }
1637
1638  operator Matcher<const FloatType&>() const {
1639    return MakeMatcher(new Impl<const FloatType&>(rhs_, nan_eq_nan_));
1640  }
1641
1642  operator Matcher<FloatType&>() const {
1643    return MakeMatcher(new Impl<FloatType&>(rhs_, nan_eq_nan_));
1644  }
1645
1646 private:
1647  const FloatType rhs_;
1648  const bool nan_eq_nan_;
1649
1650  GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher);
1651};
1652
1653// Implements the Pointee(m) matcher for matching a pointer whose
1654// pointee matches matcher m.  The pointer can be either raw or smart.
1655template <typename InnerMatcher>
1656class PointeeMatcher {
1657 public:
1658  explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1659
1660  // This type conversion operator template allows Pointee(m) to be
1661  // used as a matcher for any pointer type whose pointee type is
1662  // compatible with the inner matcher, where type Pointer can be
1663  // either a raw pointer or a smart pointer.
1664  //
1665  // The reason we do this instead of relying on
1666  // MakePolymorphicMatcher() is that the latter is not flexible
1667  // enough for implementing the DescribeTo() method of Pointee().
1668  template <typename Pointer>
1669  operator Matcher<Pointer>() const {
1670    return MakeMatcher(new Impl<Pointer>(matcher_));
1671  }
1672
1673 private:
1674  // The monomorphic implementation that works for a particular pointer type.
1675  template <typename Pointer>
1676  class Impl : public MatcherInterface<Pointer> {
1677   public:
1678    typedef typename PointeeOf<GTEST_REMOVE_CONST_(  // NOLINT
1679        GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee;
1680
1681    explicit Impl(const InnerMatcher& matcher)
1682        : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1683
1684    virtual void DescribeTo(::std::ostream* os) const {
1685      *os << "points to a value that ";
1686      matcher_.DescribeTo(os);
1687    }
1688
1689    virtual void DescribeNegationTo(::std::ostream* os) const {
1690      *os << "does not point to a value that ";
1691      matcher_.DescribeTo(os);
1692    }
1693
1694    virtual bool MatchAndExplain(Pointer pointer,
1695                                 MatchResultListener* listener) const {
1696      if (GetRawPointer(pointer) == NULL)
1697        return false;
1698
1699      *listener << "which points to ";
1700      return MatchPrintAndExplain(*pointer, matcher_, listener);
1701    }
1702
1703   private:
1704    const Matcher<const Pointee&> matcher_;
1705
1706    GTEST_DISALLOW_ASSIGN_(Impl);
1707  };
1708
1709  const InnerMatcher matcher_;
1710
1711  GTEST_DISALLOW_ASSIGN_(PointeeMatcher);
1712};
1713
1714// Implements the Field() matcher for matching a field (i.e. member
1715// variable) of an object.
1716template <typename Class, typename FieldType>
1717class FieldMatcher {
1718 public:
1719  FieldMatcher(FieldType Class::*field,
1720               const Matcher<const FieldType&>& matcher)
1721      : field_(field), matcher_(matcher) {}
1722
1723  void DescribeTo(::std::ostream* os) const {
1724    *os << "is an object whose given field ";
1725    matcher_.DescribeTo(os);
1726  }
1727
1728  void DescribeNegationTo(::std::ostream* os) const {
1729    *os << "is an object whose given field ";
1730    matcher_.DescribeNegationTo(os);
1731  }
1732
1733  template <typename T>
1734  bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
1735    return MatchAndExplainImpl(
1736        typename ::testing::internal::
1737            is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
1738        value, listener);
1739  }
1740
1741 private:
1742  // The first argument of MatchAndExplainImpl() is needed to help
1743  // Symbian's C++ compiler choose which overload to use.  Its type is
1744  // true_type iff the Field() matcher is used to match a pointer.
1745  bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
1746                           MatchResultListener* listener) const {
1747    *listener << "whose given field is ";
1748    return MatchPrintAndExplain(obj.*field_, matcher_, listener);
1749  }
1750
1751  bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
1752                           MatchResultListener* listener) const {
1753    if (p == NULL)
1754      return false;
1755
1756    *listener << "which points to an object ";
1757    // Since *p has a field, it must be a class/struct/union type and
1758    // thus cannot be a pointer.  Therefore we pass false_type() as
1759    // the first argument.
1760    return MatchAndExplainImpl(false_type(), *p, listener);
1761  }
1762
1763  const FieldType Class::*field_;
1764  const Matcher<const FieldType&> matcher_;
1765
1766  GTEST_DISALLOW_ASSIGN_(FieldMatcher);
1767};
1768
1769// Implements the Property() matcher for matching a property
1770// (i.e. return value of a getter method) of an object.
1771template <typename Class, typename PropertyType>
1772class PropertyMatcher {
1773 public:
1774  // The property may have a reference type, so 'const PropertyType&'
1775  // may cause double references and fail to compile.  That's why we
1776  // need GTEST_REFERENCE_TO_CONST, which works regardless of
1777  // PropertyType being a reference or not.
1778  typedef GTEST_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty;
1779
1780  PropertyMatcher(PropertyType (Class::*property)() const,
1781                  const Matcher<RefToConstProperty>& matcher)
1782      : property_(property), matcher_(matcher) {}
1783
1784  void DescribeTo(::std::ostream* os) const {
1785    *os << "is an object whose given property ";
1786    matcher_.DescribeTo(os);
1787  }
1788
1789  void DescribeNegationTo(::std::ostream* os) const {
1790    *os << "is an object whose given property ";
1791    matcher_.DescribeNegationTo(os);
1792  }
1793
1794  template <typename T>
1795  bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
1796    return MatchAndExplainImpl(
1797        typename ::testing::internal::
1798            is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
1799        value, listener);
1800  }
1801
1802 private:
1803  // The first argument of MatchAndExplainImpl() is needed to help
1804  // Symbian's C++ compiler choose which overload to use.  Its type is
1805  // true_type iff the Property() matcher is used to match a pointer.
1806  bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
1807                           MatchResultListener* listener) const {
1808    *listener << "whose given property is ";
1809    // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
1810    // which takes a non-const reference as argument.
1811    RefToConstProperty result = (obj.*property_)();
1812    return MatchPrintAndExplain(result, matcher_, listener);
1813  }
1814
1815  bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
1816                           MatchResultListener* listener) const {
1817    if (p == NULL)
1818      return false;
1819
1820    *listener << "which points to an object ";
1821    // Since *p has a property method, it must be a class/struct/union
1822    // type and thus cannot be a pointer.  Therefore we pass
1823    // false_type() as the first argument.
1824    return MatchAndExplainImpl(false_type(), *p, listener);
1825  }
1826
1827  PropertyType (Class::*property_)() const;
1828  const Matcher<RefToConstProperty> matcher_;
1829
1830  GTEST_DISALLOW_ASSIGN_(PropertyMatcher);
1831};
1832
1833// Type traits specifying various features of different functors for ResultOf.
1834// The default template specifies features for functor objects.
1835// Functor classes have to typedef argument_type and result_type
1836// to be compatible with ResultOf.
1837template <typename Functor>
1838struct CallableTraits {
1839  typedef typename Functor::result_type ResultType;
1840  typedef Functor StorageType;
1841
1842  static void CheckIsValid(Functor /* functor */) {}
1843  template <typename T>
1844  static ResultType Invoke(Functor f, T arg) { return f(arg); }
1845};
1846
1847// Specialization for function pointers.
1848template <typename ArgType, typename ResType>
1849struct CallableTraits<ResType(*)(ArgType)> {
1850  typedef ResType ResultType;
1851  typedef ResType(*StorageType)(ArgType);
1852
1853  static void CheckIsValid(ResType(*f)(ArgType)) {
1854    GTEST_CHECK_(f != NULL)
1855        << "NULL function pointer is passed into ResultOf().";
1856  }
1857  template <typename T>
1858  static ResType Invoke(ResType(*f)(ArgType), T arg) {
1859    return (*f)(arg);
1860  }
1861};
1862
1863// Implements the ResultOf() matcher for matching a return value of a
1864// unary function of an object.
1865template <typename Callable>
1866class ResultOfMatcher {
1867 public:
1868  typedef typename CallableTraits<Callable>::ResultType ResultType;
1869
1870  ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher)
1871      : callable_(callable), matcher_(matcher) {
1872    CallableTraits<Callable>::CheckIsValid(callable_);
1873  }
1874
1875  template <typename T>
1876  operator Matcher<T>() const {
1877    return Matcher<T>(new Impl<T>(callable_, matcher_));
1878  }
1879
1880 private:
1881  typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
1882
1883  template <typename T>
1884  class Impl : public MatcherInterface<T> {
1885   public:
1886    Impl(CallableStorageType callable, const Matcher<ResultType>& matcher)
1887        : callable_(callable), matcher_(matcher) {}
1888
1889    virtual void DescribeTo(::std::ostream* os) const {
1890      *os << "is mapped by the given callable to a value that ";
1891      matcher_.DescribeTo(os);
1892    }
1893
1894    virtual void DescribeNegationTo(::std::ostream* os) const {
1895      *os << "is mapped by the given callable to a value that ";
1896      matcher_.DescribeNegationTo(os);
1897    }
1898
1899    virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const {
1900      *listener << "which is mapped by the given callable to ";
1901      // Cannot pass the return value (for example, int) to
1902      // MatchPrintAndExplain, which takes a non-const reference as argument.
1903      ResultType result =
1904          CallableTraits<Callable>::template Invoke<T>(callable_, obj);
1905      return MatchPrintAndExplain(result, matcher_, listener);
1906    }
1907
1908   private:
1909    // Functors often define operator() as non-const method even though
1910    // they are actualy stateless. But we need to use them even when
1911    // 'this' is a const pointer. It's the user's responsibility not to
1912    // use stateful callables with ResultOf(), which does't guarantee
1913    // how many times the callable will be invoked.
1914    mutable CallableStorageType callable_;
1915    const Matcher<ResultType> matcher_;
1916
1917    GTEST_DISALLOW_ASSIGN_(Impl);
1918  };  // class Impl
1919
1920  const CallableStorageType callable_;
1921  const Matcher<ResultType> matcher_;
1922
1923  GTEST_DISALLOW_ASSIGN_(ResultOfMatcher);
1924};
1925
1926// Implements an equality matcher for any STL-style container whose elements
1927// support ==. This matcher is like Eq(), but its failure explanations provide
1928// more detailed information that is useful when the container is used as a set.
1929// The failure message reports elements that are in one of the operands but not
1930// the other. The failure messages do not report duplicate or out-of-order
1931// elements in the containers (which don't properly matter to sets, but can
1932// occur if the containers are vectors or lists, for example).
1933//
1934// Uses the container's const_iterator, value_type, operator ==,
1935// begin(), and end().
1936template <typename Container>
1937class ContainerEqMatcher {
1938 public:
1939  typedef internal::StlContainerView<Container> View;
1940  typedef typename View::type StlContainer;
1941  typedef typename View::const_reference StlContainerReference;
1942
1943  // We make a copy of rhs in case the elements in it are modified
1944  // after this matcher is created.
1945  explicit ContainerEqMatcher(const Container& rhs) : rhs_(View::Copy(rhs)) {
1946    // Makes sure the user doesn't instantiate this class template
1947    // with a const or reference type.
1948    (void)testing::StaticAssertTypeEq<Container,
1949        GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>();
1950  }
1951
1952  void DescribeTo(::std::ostream* os) const {
1953    *os << "equals ";
1954    UniversalPrint(rhs_, os);
1955  }
1956  void DescribeNegationTo(::std::ostream* os) const {
1957    *os << "does not equal ";
1958    UniversalPrint(rhs_, os);
1959  }
1960
1961  template <typename LhsContainer>
1962  bool MatchAndExplain(const LhsContainer& lhs,
1963                       MatchResultListener* listener) const {
1964    // GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug
1965    // that causes LhsContainer to be a const type sometimes.
1966    typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)>
1967        LhsView;
1968    typedef typename LhsView::type LhsStlContainer;
1969    StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
1970    if (lhs_stl_container == rhs_)
1971      return true;
1972
1973    ::std::ostream* const os = listener->stream();
1974    if (os != NULL) {
1975      // Something is different. Check for extra values first.
1976      bool printed_header = false;
1977      for (typename LhsStlContainer::const_iterator it =
1978               lhs_stl_container.begin();
1979           it != lhs_stl_container.end(); ++it) {
1980        if (internal::ArrayAwareFind(rhs_.begin(), rhs_.end(), *it) ==
1981            rhs_.end()) {
1982          if (printed_header) {
1983            *os << ", ";
1984          } else {
1985            *os << "which has these unexpected elements: ";
1986            printed_header = true;
1987          }
1988          UniversalPrint(*it, os);
1989        }
1990      }
1991
1992      // Now check for missing values.
1993      bool printed_header2 = false;
1994      for (typename StlContainer::const_iterator it = rhs_.begin();
1995           it != rhs_.end(); ++it) {
1996        if (internal::ArrayAwareFind(
1997                lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
1998            lhs_stl_container.end()) {
1999          if (printed_header2) {
2000            *os << ", ";
2001          } else {
2002            *os << (printed_header ? ",\nand" : "which")
2003                << " doesn't have these expected elements: ";
2004            printed_header2 = true;
2005          }
2006          UniversalPrint(*it, os);
2007        }
2008      }
2009    }
2010
2011    return false;
2012  }
2013
2014 private:
2015  const StlContainer rhs_;
2016
2017  GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher);
2018};
2019
2020// A comparator functor that uses the < operator to compare two values.
2021struct LessComparator {
2022  template <typename T, typename U>
2023  bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
2024};
2025
2026// Implements WhenSortedBy(comparator, container_matcher).
2027template <typename Comparator, typename ContainerMatcher>
2028class WhenSortedByMatcher {
2029 public:
2030  WhenSortedByMatcher(const Comparator& comparator,
2031                      const ContainerMatcher& matcher)
2032      : comparator_(comparator), matcher_(matcher) {}
2033
2034  template <typename LhsContainer>
2035  operator Matcher<LhsContainer>() const {
2036    return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
2037  }
2038
2039  template <typename LhsContainer>
2040  class Impl : public MatcherInterface<LhsContainer> {
2041   public:
2042    typedef internal::StlContainerView<
2043         GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
2044    typedef typename LhsView::type LhsStlContainer;
2045    typedef typename LhsView::const_reference LhsStlContainerReference;
2046    typedef typename LhsStlContainer::value_type LhsValue;
2047
2048    Impl(const Comparator& comparator, const ContainerMatcher& matcher)
2049        : comparator_(comparator), matcher_(matcher) {}
2050
2051    virtual void DescribeTo(::std::ostream* os) const {
2052      *os << "(when sorted) ";
2053      matcher_.DescribeTo(os);
2054    }
2055
2056    virtual void DescribeNegationTo(::std::ostream* os) const {
2057      *os << "(when sorted) ";
2058      matcher_.DescribeNegationTo(os);
2059    }
2060
2061    virtual bool MatchAndExplain(LhsContainer lhs,
2062                                 MatchResultListener* listener) const {
2063      LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2064      std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
2065                                             lhs_stl_container.end());
2066      std::sort(sorted_container.begin(), sorted_container.end(), comparator_);
2067
2068      if (!listener->IsInterested()) {
2069        // If the listener is not interested, we do not need to
2070        // construct the inner explanation.
2071        return matcher_.Matches(sorted_container);
2072      }
2073
2074      *listener << "which is ";
2075      UniversalPrint(sorted_container, listener->stream());
2076      *listener << " when sorted";
2077
2078      StringMatchResultListener inner_listener;
2079      const bool match = matcher_.MatchAndExplain(sorted_container,
2080                                                  &inner_listener);
2081      PrintIfNotEmpty(inner_listener.str(), listener->stream());
2082      return match;
2083    }
2084
2085   private:
2086    const Comparator comparator_;
2087    const Matcher<const std::vector<LhsValue>&> matcher_;
2088
2089    GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
2090  };
2091
2092 private:
2093  const Comparator comparator_;
2094  const ContainerMatcher matcher_;
2095
2096  GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher);
2097};
2098
2099// Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher
2100// must be able to be safely cast to Matcher<tuple<const T1&, const
2101// T2&> >, where T1 and T2 are the types of elements in the LHS
2102// container and the RHS container respectively.
2103template <typename TupleMatcher, typename RhsContainer>
2104class PointwiseMatcher {
2105 public:
2106  typedef internal::StlContainerView<RhsContainer> RhsView;
2107  typedef typename RhsView::type RhsStlContainer;
2108  typedef typename RhsStlContainer::value_type RhsValue;
2109
2110  // Like ContainerEq, we make a copy of rhs in case the elements in
2111  // it are modified after this matcher is created.
2112  PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
2113      : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {
2114    // Makes sure the user doesn't instantiate this class template
2115    // with a const or reference type.
2116    (void)testing::StaticAssertTypeEq<RhsContainer,
2117        GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>();
2118  }
2119
2120  template <typename LhsContainer>
2121  operator Matcher<LhsContainer>() const {
2122    return MakeMatcher(new Impl<LhsContainer>(tuple_matcher_, rhs_));
2123  }
2124
2125  template <typename LhsContainer>
2126  class Impl : public MatcherInterface<LhsContainer> {
2127   public:
2128    typedef internal::StlContainerView<
2129         GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
2130    typedef typename LhsView::type LhsStlContainer;
2131    typedef typename LhsView::const_reference LhsStlContainerReference;
2132    typedef typename LhsStlContainer::value_type LhsValue;
2133    // We pass the LHS value and the RHS value to the inner matcher by
2134    // reference, as they may be expensive to copy.  We must use tuple
2135    // instead of pair here, as a pair cannot hold references (C++ 98,
2136    // 20.2.2 [lib.pairs]).
2137    typedef std::tr1::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
2138
2139    Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
2140        // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
2141        : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
2142          rhs_(rhs) {}
2143
2144    virtual void DescribeTo(::std::ostream* os) const {
2145      *os << "contains " << rhs_.size()
2146          << " values, where each value and its corresponding value in ";
2147      UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
2148      *os << " ";
2149      mono_tuple_matcher_.DescribeTo(os);
2150    }
2151    virtual void DescribeNegationTo(::std::ostream* os) const {
2152      *os << "doesn't contain exactly " << rhs_.size()
2153          << " values, or contains a value x at some index i"
2154          << " where x and the i-th value of ";
2155      UniversalPrint(rhs_, os);
2156      *os << " ";
2157      mono_tuple_matcher_.DescribeNegationTo(os);
2158    }
2159
2160    virtual bool MatchAndExplain(LhsContainer lhs,
2161                                 MatchResultListener* listener) const {
2162      LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2163      const size_t actual_size = lhs_stl_container.size();
2164      if (actual_size != rhs_.size()) {
2165        *listener << "which contains " << actual_size << " values";
2166        return false;
2167      }
2168
2169      typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
2170      typename RhsStlContainer::const_iterator right = rhs_.begin();
2171      for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
2172        const InnerMatcherArg value_pair(*left, *right);
2173
2174        if (listener->IsInterested()) {
2175          StringMatchResultListener inner_listener;
2176          if (!mono_tuple_matcher_.MatchAndExplain(
2177                  value_pair, &inner_listener)) {
2178            *listener << "where the value pair (";
2179            UniversalPrint(*left, listener->stream());
2180            *listener << ", ";
2181            UniversalPrint(*right, listener->stream());
2182            *listener << ") at index #" << i << " don't match";
2183            PrintIfNotEmpty(inner_listener.str(), listener->stream());
2184            return false;
2185          }
2186        } else {
2187          if (!mono_tuple_matcher_.Matches(value_pair))
2188            return false;
2189        }
2190      }
2191
2192      return true;
2193    }
2194
2195   private:
2196    const Matcher<InnerMatcherArg> mono_tuple_matcher_;
2197    const RhsStlContainer rhs_;
2198
2199    GTEST_DISALLOW_ASSIGN_(Impl);
2200  };
2201
2202 private:
2203  const TupleMatcher tuple_matcher_;
2204  const RhsStlContainer rhs_;
2205
2206  GTEST_DISALLOW_ASSIGN_(PointwiseMatcher);
2207};
2208
2209// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
2210template <typename Container>
2211class QuantifierMatcherImpl : public MatcherInterface<Container> {
2212 public:
2213  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2214  typedef StlContainerView<RawContainer> View;
2215  typedef typename View::type StlContainer;
2216  typedef typename View::const_reference StlContainerReference;
2217  typedef typename StlContainer::value_type Element;
2218
2219  template <typename InnerMatcher>
2220  explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
2221      : inner_matcher_(
2222           testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
2223
2224  // Checks whether:
2225  // * All elements in the container match, if all_elements_should_match.
2226  // * Any element in the container matches, if !all_elements_should_match.
2227  bool MatchAndExplainImpl(bool all_elements_should_match,
2228                           Container container,
2229                           MatchResultListener* listener) const {
2230    StlContainerReference stl_container = View::ConstReference(container);
2231    size_t i = 0;
2232    for (typename StlContainer::const_iterator it = stl_container.begin();
2233         it != stl_container.end(); ++it, ++i) {
2234      StringMatchResultListener inner_listener;
2235      const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2236
2237      if (matches != all_elements_should_match) {
2238        *listener << "whose element #" << i
2239                  << (matches ? " matches" : " doesn't match");
2240        PrintIfNotEmpty(inner_listener.str(), listener->stream());
2241        return !all_elements_should_match;
2242      }
2243    }
2244    return all_elements_should_match;
2245  }
2246
2247 protected:
2248  const Matcher<const Element&> inner_matcher_;
2249
2250  GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl);
2251};
2252
2253// Implements Contains(element_matcher) for the given argument type Container.
2254// Symmetric to EachMatcherImpl.
2255template <typename Container>
2256class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
2257 public:
2258  template <typename InnerMatcher>
2259  explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
2260      : QuantifierMatcherImpl<Container>(inner_matcher) {}
2261
2262  // Describes what this matcher does.
2263  virtual void DescribeTo(::std::ostream* os) const {
2264    *os << "contains at least one element that ";
2265    this->inner_matcher_.DescribeTo(os);
2266  }
2267
2268  virtual void DescribeNegationTo(::std::ostream* os) const {
2269    *os << "doesn't contain any element that ";
2270    this->inner_matcher_.DescribeTo(os);
2271  }
2272
2273  virtual bool MatchAndExplain(Container container,
2274                               MatchResultListener* listener) const {
2275    return this->MatchAndExplainImpl(false, container, listener);
2276  }
2277
2278 private:
2279  GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl);
2280};
2281
2282// Implements Each(element_matcher) for the given argument type Container.
2283// Symmetric to ContainsMatcherImpl.
2284template <typename Container>
2285class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
2286 public:
2287  template <typename InnerMatcher>
2288  explicit EachMatcherImpl(InnerMatcher inner_matcher)
2289      : QuantifierMatcherImpl<Container>(inner_matcher) {}
2290
2291  // Describes what this matcher does.
2292  virtual void DescribeTo(::std::ostream* os) const {
2293    *os << "only contains elements that ";
2294    this->inner_matcher_.DescribeTo(os);
2295  }
2296
2297  virtual void DescribeNegationTo(::std::ostream* os) const {
2298    *os << "contains some element that ";
2299    this->inner_matcher_.DescribeNegationTo(os);
2300  }
2301
2302  virtual bool MatchAndExplain(Container container,
2303                               MatchResultListener* listener) const {
2304    return this->MatchAndExplainImpl(true, container, listener);
2305  }
2306
2307 private:
2308  GTEST_DISALLOW_ASSIGN_(EachMatcherImpl);
2309};
2310
2311// Implements polymorphic Contains(element_matcher).
2312template <typename M>
2313class ContainsMatcher {
2314 public:
2315  explicit ContainsMatcher(M m) : inner_matcher_(m) {}
2316
2317  template <typename Container>
2318  operator Matcher<Container>() const {
2319    return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_));
2320  }
2321
2322 private:
2323  const M inner_matcher_;
2324
2325  GTEST_DISALLOW_ASSIGN_(ContainsMatcher);
2326};
2327
2328// Implements polymorphic Each(element_matcher).
2329template <typename M>
2330class EachMatcher {
2331 public:
2332  explicit EachMatcher(M m) : inner_matcher_(m) {}
2333
2334  template <typename Container>
2335  operator Matcher<Container>() const {
2336    return MakeMatcher(new EachMatcherImpl<Container>(inner_matcher_));
2337  }
2338
2339 private:
2340  const M inner_matcher_;
2341
2342  GTEST_DISALLOW_ASSIGN_(EachMatcher);
2343};
2344
2345// Implements Key(inner_matcher) for the given argument pair type.
2346// Key(inner_matcher) matches an std::pair whose 'first' field matches
2347// inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
2348// std::map that contains at least one element whose key is >= 5.
2349template <typename PairType>
2350class KeyMatcherImpl : public MatcherInterface<PairType> {
2351 public:
2352  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2353  typedef typename RawPairType::first_type KeyType;
2354
2355  template <typename InnerMatcher>
2356  explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2357      : inner_matcher_(
2358          testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
2359  }
2360
2361  // Returns true iff 'key_value.first' (the key) matches the inner matcher.
2362  virtual bool MatchAndExplain(PairType key_value,
2363                               MatchResultListener* listener) const {
2364    StringMatchResultListener inner_listener;
2365    const bool match = inner_matcher_.MatchAndExplain(key_value.first,
2366                                                      &inner_listener);
2367    const internal::string explanation = inner_listener.str();
2368    if (explanation != "") {
2369      *listener << "whose first field is a value " << explanation;
2370    }
2371    return match;
2372  }
2373
2374  // Describes what this matcher does.
2375  virtual void DescribeTo(::std::ostream* os) const {
2376    *os << "has a key that ";
2377    inner_matcher_.DescribeTo(os);
2378  }
2379
2380  // Describes what the negation of this matcher does.
2381  virtual void DescribeNegationTo(::std::ostream* os) const {
2382    *os << "doesn't have a key that ";
2383    inner_matcher_.DescribeTo(os);
2384  }
2385
2386 private:
2387  const Matcher<const KeyType&> inner_matcher_;
2388
2389  GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl);
2390};
2391
2392// Implements polymorphic Key(matcher_for_key).
2393template <typename M>
2394class KeyMatcher {
2395 public:
2396  explicit KeyMatcher(M m) : matcher_for_key_(m) {}
2397
2398  template <typename PairType>
2399  operator Matcher<PairType>() const {
2400    return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_));
2401  }
2402
2403 private:
2404  const M matcher_for_key_;
2405
2406  GTEST_DISALLOW_ASSIGN_(KeyMatcher);
2407};
2408
2409// Implements Pair(first_matcher, second_matcher) for the given argument pair
2410// type with its two matchers. See Pair() function below.
2411template <typename PairType>
2412class PairMatcherImpl : public MatcherInterface<PairType> {
2413 public:
2414  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2415  typedef typename RawPairType::first_type FirstType;
2416  typedef typename RawPairType::second_type SecondType;
2417
2418  template <typename FirstMatcher, typename SecondMatcher>
2419  PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
2420      : first_matcher_(
2421            testing::SafeMatcherCast<const FirstType&>(first_matcher)),
2422        second_matcher_(
2423            testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
2424  }
2425
2426  // Describes what this matcher does.
2427  virtual void DescribeTo(::std::ostream* os) const {
2428    *os << "has a first field that ";
2429    first_matcher_.DescribeTo(os);
2430    *os << ", and has a second field that ";
2431    second_matcher_.DescribeTo(os);
2432  }
2433
2434  // Describes what the negation of this matcher does.
2435  virtual void DescribeNegationTo(::std::ostream* os) const {
2436    *os << "has a first field that ";
2437    first_matcher_.DescribeNegationTo(os);
2438    *os << ", or has a second field that ";
2439    second_matcher_.DescribeNegationTo(os);
2440  }
2441
2442  // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second'
2443  // matches second_matcher.
2444  virtual bool MatchAndExplain(PairType a_pair,
2445                               MatchResultListener* listener) const {
2446    if (!listener->IsInterested()) {
2447      // If the listener is not interested, we don't need to construct the
2448      // explanation.
2449      return first_matcher_.Matches(a_pair.first) &&
2450             second_matcher_.Matches(a_pair.second);
2451    }
2452    StringMatchResultListener first_inner_listener;
2453    if (!first_matcher_.MatchAndExplain(a_pair.first,
2454                                        &first_inner_listener)) {
2455      *listener << "whose first field does not match";
2456      PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
2457      return false;
2458    }
2459    StringMatchResultListener second_inner_listener;
2460    if (!second_matcher_.MatchAndExplain(a_pair.second,
2461                                         &second_inner_listener)) {
2462      *listener << "whose second field does not match";
2463      PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
2464      return false;
2465    }
2466    ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
2467                   listener);
2468    return true;
2469  }
2470
2471 private:
2472  void ExplainSuccess(const internal::string& first_explanation,
2473                      const internal::string& second_explanation,
2474                      MatchResultListener* listener) const {
2475    *listener << "whose both fields match";
2476    if (first_explanation != "") {
2477      *listener << ", where the first field is a value " << first_explanation;
2478    }
2479    if (second_explanation != "") {
2480      *listener << ", ";
2481      if (first_explanation != "") {
2482        *listener << "and ";
2483      } else {
2484        *listener << "where ";
2485      }
2486      *listener << "the second field is a value " << second_explanation;
2487    }
2488  }
2489
2490  const Matcher<const FirstType&> first_matcher_;
2491  const Matcher<const SecondType&> second_matcher_;
2492
2493  GTEST_DISALLOW_ASSIGN_(PairMatcherImpl);
2494};
2495
2496// Implements polymorphic Pair(first_matcher, second_matcher).
2497template <typename FirstMatcher, typename SecondMatcher>
2498class PairMatcher {
2499 public:
2500  PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
2501      : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
2502
2503  template <typename PairType>
2504  operator Matcher<PairType> () const {
2505    return MakeMatcher(
2506        new PairMatcherImpl<PairType>(
2507            first_matcher_, second_matcher_));
2508  }
2509
2510 private:
2511  const FirstMatcher first_matcher_;
2512  const SecondMatcher second_matcher_;
2513
2514  GTEST_DISALLOW_ASSIGN_(PairMatcher);
2515};
2516
2517// Implements ElementsAre() and ElementsAreArray().
2518template <typename Container>
2519class ElementsAreMatcherImpl : public MatcherInterface<Container> {
2520 public:
2521  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2522  typedef internal::StlContainerView<RawContainer> View;
2523  typedef typename View::type StlContainer;
2524  typedef typename View::const_reference StlContainerReference;
2525  typedef typename StlContainer::value_type Element;
2526
2527  // Constructs the matcher from a sequence of element values or
2528  // element matchers.
2529  template <typename InputIter>
2530  ElementsAreMatcherImpl(InputIter first, size_t a_count) {
2531    matchers_.reserve(a_count);
2532    InputIter it = first;
2533    for (size_t i = 0; i != a_count; ++i, ++it) {
2534      matchers_.push_back(MatcherCast<const Element&>(*it));
2535    }
2536  }
2537
2538  // Describes what this matcher does.
2539  virtual void DescribeTo(::std::ostream* os) const {
2540    if (count() == 0) {
2541      *os << "is empty";
2542    } else if (count() == 1) {
2543      *os << "has 1 element that ";
2544      matchers_[0].DescribeTo(os);
2545    } else {
2546      *os << "has " << Elements(count()) << " where\n";
2547      for (size_t i = 0; i != count(); ++i) {
2548        *os << "element #" << i << " ";
2549        matchers_[i].DescribeTo(os);
2550        if (i + 1 < count()) {
2551          *os << ",\n";
2552        }
2553      }
2554    }
2555  }
2556
2557  // Describes what the negation of this matcher does.
2558  virtual void DescribeNegationTo(::std::ostream* os) const {
2559    if (count() == 0) {
2560      *os << "isn't empty";
2561      return;
2562    }
2563
2564    *os << "doesn't have " << Elements(count()) << ", or\n";
2565    for (size_t i = 0; i != count(); ++i) {
2566      *os << "element #" << i << " ";
2567      matchers_[i].DescribeNegationTo(os);
2568      if (i + 1 < count()) {
2569        *os << ", or\n";
2570      }
2571    }
2572  }
2573
2574  virtual bool MatchAndExplain(Container container,
2575                               MatchResultListener* listener) const {
2576    StlContainerReference stl_container = View::ConstReference(container);
2577    const size_t actual_count = stl_container.size();
2578    if (actual_count != count()) {
2579      // The element count doesn't match.  If the container is empty,
2580      // there's no need to explain anything as Google Mock already
2581      // prints the empty container.  Otherwise we just need to show
2582      // how many elements there actually are.
2583      if (actual_count != 0) {
2584        *listener << "which has " << Elements(actual_count);
2585      }
2586      return false;
2587    }
2588
2589    typename StlContainer::const_iterator it = stl_container.begin();
2590    // explanations[i] is the explanation of the element at index i.
2591    std::vector<internal::string> explanations(count());
2592    for (size_t i = 0; i != count();  ++it, ++i) {
2593      StringMatchResultListener s;
2594      if (matchers_[i].MatchAndExplain(*it, &s)) {
2595        explanations[i] = s.str();
2596      } else {
2597        // The container has the right size but the i-th element
2598        // doesn't match its expectation.
2599        *listener << "whose element #" << i << " doesn't match";
2600        PrintIfNotEmpty(s.str(), listener->stream());
2601        return false;
2602      }
2603    }
2604
2605    // Every element matches its expectation.  We need to explain why
2606    // (the obvious ones can be skipped).
2607    bool reason_printed = false;
2608    for (size_t i = 0; i != count(); ++i) {
2609      const internal::string& s = explanations[i];
2610      if (!s.empty()) {
2611        if (reason_printed) {
2612          *listener << ",\nand ";
2613        }
2614        *listener << "whose element #" << i << " matches, " << s;
2615        reason_printed = true;
2616      }
2617    }
2618
2619    return true;
2620  }
2621
2622 private:
2623  static Message Elements(size_t count) {
2624    return Message() << count << (count == 1 ? " element" : " elements");
2625  }
2626
2627  size_t count() const { return matchers_.size(); }
2628  std::vector<Matcher<const Element&> > matchers_;
2629
2630  GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl);
2631};
2632
2633// Implements ElementsAre() of 0 arguments.
2634class ElementsAreMatcher0 {
2635 public:
2636  ElementsAreMatcher0() {}
2637
2638  template <typename Container>
2639  operator Matcher<Container>() const {
2640    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2641    typedef typename internal::StlContainerView<RawContainer>::type::value_type
2642        Element;
2643
2644    const Matcher<const Element&>* const matchers = NULL;
2645    return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 0));
2646  }
2647};
2648
2649// Implements ElementsAreArray().
2650template <typename T>
2651class ElementsAreArrayMatcher {
2652 public:
2653  ElementsAreArrayMatcher(const T* first, size_t count) :
2654      first_(first), count_(count) {}
2655
2656  template <typename Container>
2657  operator Matcher<Container>() const {
2658    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2659    typedef typename internal::StlContainerView<RawContainer>::type::value_type
2660        Element;
2661
2662    return MakeMatcher(new ElementsAreMatcherImpl<Container>(first_, count_));
2663  }
2664
2665 private:
2666  const T* const first_;
2667  const size_t count_;
2668
2669  GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher);
2670};
2671
2672// Returns the description for a matcher defined using the MATCHER*()
2673// macro where the user-supplied description string is "", if
2674// 'negation' is false; otherwise returns the description of the
2675// negation of the matcher.  'param_values' contains a list of strings
2676// that are the print-out of the matcher's parameters.
2677GTEST_API_ string FormatMatcherDescription(bool negation,
2678                                           const char* matcher_name,
2679                                           const Strings& param_values);
2680
2681}  // namespace internal
2682
2683// _ is a matcher that matches anything of any type.
2684//
2685// This definition is fine as:
2686//
2687//   1. The C++ standard permits using the name _ in a namespace that
2688//      is not the global namespace or ::std.
2689//   2. The AnythingMatcher class has no data member or constructor,
2690//      so it's OK to create global variables of this type.
2691//   3. c-style has approved of using _ in this case.
2692const internal::AnythingMatcher _ = {};
2693// Creates a matcher that matches any value of the given type T.
2694template <typename T>
2695inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); }
2696
2697// Creates a matcher that matches any value of the given type T.
2698template <typename T>
2699inline Matcher<T> An() { return A<T>(); }
2700
2701// Creates a polymorphic matcher that matches anything equal to x.
2702// Note: if the parameter of Eq() were declared as const T&, Eq("foo")
2703// wouldn't compile.
2704template <typename T>
2705inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); }
2706
2707// Constructs a Matcher<T> from a 'value' of type T.  The constructed
2708// matcher matches any value that's equal to 'value'.
2709template <typename T>
2710Matcher<T>::Matcher(T value) { *this = Eq(value); }
2711
2712// Creates a monomorphic matcher that matches anything with type Lhs
2713// and equal to rhs.  A user may need to use this instead of Eq(...)
2714// in order to resolve an overloading ambiguity.
2715//
2716// TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x))
2717// or Matcher<T>(x), but more readable than the latter.
2718//
2719// We could define similar monomorphic matchers for other comparison
2720// operations (e.g. TypedLt, TypedGe, and etc), but decided not to do
2721// it yet as those are used much less than Eq() in practice.  A user
2722// can always write Matcher<T>(Lt(5)) to be explicit about the type,
2723// for example.
2724template <typename Lhs, typename Rhs>
2725inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); }
2726
2727// Creates a polymorphic matcher that matches anything >= x.
2728template <typename Rhs>
2729inline internal::GeMatcher<Rhs> Ge(Rhs x) {
2730  return internal::GeMatcher<Rhs>(x);
2731}
2732
2733// Creates a polymorphic matcher that matches anything > x.
2734template <typename Rhs>
2735inline internal::GtMatcher<Rhs> Gt(Rhs x) {
2736  return internal::GtMatcher<Rhs>(x);
2737}
2738
2739// Creates a polymorphic matcher that matches anything <= x.
2740template <typename Rhs>
2741inline internal::LeMatcher<Rhs> Le(Rhs x) {
2742  return internal::LeMatcher<Rhs>(x);
2743}
2744
2745// Creates a polymorphic matcher that matches anything < x.
2746template <typename Rhs>
2747inline internal::LtMatcher<Rhs> Lt(Rhs x) {
2748  return internal::LtMatcher<Rhs>(x);
2749}
2750
2751// Creates a polymorphic matcher that matches anything != x.
2752template <typename Rhs>
2753inline internal::NeMatcher<Rhs> Ne(Rhs x) {
2754  return internal::NeMatcher<Rhs>(x);
2755}
2756
2757// Creates a polymorphic matcher that matches any NULL pointer.
2758inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
2759  return MakePolymorphicMatcher(internal::IsNullMatcher());
2760}
2761
2762// Creates a polymorphic matcher that matches any non-NULL pointer.
2763// This is convenient as Not(NULL) doesn't compile (the compiler
2764// thinks that that expression is comparing a pointer with an integer).
2765inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
2766  return MakePolymorphicMatcher(internal::NotNullMatcher());
2767}
2768
2769// Creates a polymorphic matcher that matches any argument that
2770// references variable x.
2771template <typename T>
2772inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
2773  return internal::RefMatcher<T&>(x);
2774}
2775
2776// Creates a matcher that matches any double argument approximately
2777// equal to rhs, where two NANs are considered unequal.
2778inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
2779  return internal::FloatingEqMatcher<double>(rhs, false);
2780}
2781
2782// Creates a matcher that matches any double argument approximately
2783// equal to rhs, including NaN values when rhs is NaN.
2784inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
2785  return internal::FloatingEqMatcher<double>(rhs, true);
2786}
2787
2788// Creates a matcher that matches any float argument approximately
2789// equal to rhs, where two NANs are considered unequal.
2790inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
2791  return internal::FloatingEqMatcher<float>(rhs, false);
2792}
2793
2794// Creates a matcher that matches any double argument approximately
2795// equal to rhs, including NaN values when rhs is NaN.
2796inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
2797  return internal::FloatingEqMatcher<float>(rhs, true);
2798}
2799
2800// Creates a matcher that matches a pointer (raw or smart) that points
2801// to a value that matches inner_matcher.
2802template <typename InnerMatcher>
2803inline internal::PointeeMatcher<InnerMatcher> Pointee(
2804    const InnerMatcher& inner_matcher) {
2805  return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
2806}
2807
2808// Creates a matcher that matches an object whose given field matches
2809// 'matcher'.  For example,
2810//   Field(&Foo::number, Ge(5))
2811// matches a Foo object x iff x.number >= 5.
2812template <typename Class, typename FieldType, typename FieldMatcher>
2813inline PolymorphicMatcher<
2814  internal::FieldMatcher<Class, FieldType> > Field(
2815    FieldType Class::*field, const FieldMatcher& matcher) {
2816  return MakePolymorphicMatcher(
2817      internal::FieldMatcher<Class, FieldType>(
2818          field, MatcherCast<const FieldType&>(matcher)));
2819  // The call to MatcherCast() is required for supporting inner
2820  // matchers of compatible types.  For example, it allows
2821  //   Field(&Foo::bar, m)
2822  // to compile where bar is an int32 and m is a matcher for int64.
2823}
2824
2825// Creates a matcher that matches an object whose given property
2826// matches 'matcher'.  For example,
2827//   Property(&Foo::str, StartsWith("hi"))
2828// matches a Foo object x iff x.str() starts with "hi".
2829template <typename Class, typename PropertyType, typename PropertyMatcher>
2830inline PolymorphicMatcher<
2831  internal::PropertyMatcher<Class, PropertyType> > Property(
2832    PropertyType (Class::*property)() const, const PropertyMatcher& matcher) {
2833  return MakePolymorphicMatcher(
2834      internal::PropertyMatcher<Class, PropertyType>(
2835          property,
2836          MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
2837  // The call to MatcherCast() is required for supporting inner
2838  // matchers of compatible types.  For example, it allows
2839  //   Property(&Foo::bar, m)
2840  // to compile where bar() returns an int32 and m is a matcher for int64.
2841}
2842
2843// Creates a matcher that matches an object iff the result of applying
2844// a callable to x matches 'matcher'.
2845// For example,
2846//   ResultOf(f, StartsWith("hi"))
2847// matches a Foo object x iff f(x) starts with "hi".
2848// callable parameter can be a function, function pointer, or a functor.
2849// Callable has to satisfy the following conditions:
2850//   * It is required to keep no state affecting the results of
2851//     the calls on it and make no assumptions about how many calls
2852//     will be made. Any state it keeps must be protected from the
2853//     concurrent access.
2854//   * If it is a function object, it has to define type result_type.
2855//     We recommend deriving your functor classes from std::unary_function.
2856template <typename Callable, typename ResultOfMatcher>
2857internal::ResultOfMatcher<Callable> ResultOf(
2858    Callable callable, const ResultOfMatcher& matcher) {
2859  return internal::ResultOfMatcher<Callable>(
2860          callable,
2861          MatcherCast<typename internal::CallableTraits<Callable>::ResultType>(
2862              matcher));
2863  // The call to MatcherCast() is required for supporting inner
2864  // matchers of compatible types.  For example, it allows
2865  //   ResultOf(Function, m)
2866  // to compile where Function() returns an int32 and m is a matcher for int64.
2867}
2868
2869// String matchers.
2870
2871// Matches a string equal to str.
2872inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2873    StrEq(const internal::string& str) {
2874  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2875      str, true, true));
2876}
2877
2878// Matches a string not equal to str.
2879inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2880    StrNe(const internal::string& str) {
2881  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2882      str, false, true));
2883}
2884
2885// Matches a string equal to str, ignoring case.
2886inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2887    StrCaseEq(const internal::string& str) {
2888  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2889      str, true, false));
2890}
2891
2892// Matches a string not equal to str, ignoring case.
2893inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2894    StrCaseNe(const internal::string& str) {
2895  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2896      str, false, false));
2897}
2898
2899// Creates a matcher that matches any string, std::string, or C string
2900// that contains the given substring.
2901inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> >
2902    HasSubstr(const internal::string& substring) {
2903  return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>(
2904      substring));
2905}
2906
2907// Matches a string that starts with 'prefix' (case-sensitive).
2908inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> >
2909    StartsWith(const internal::string& prefix) {
2910  return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>(
2911      prefix));
2912}
2913
2914// Matches a string that ends with 'suffix' (case-sensitive).
2915inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> >
2916    EndsWith(const internal::string& suffix) {
2917  return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>(
2918      suffix));
2919}
2920
2921// Matches a string that fully matches regular expression 'regex'.
2922// The matcher takes ownership of 'regex'.
2923inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
2924    const internal::RE* regex) {
2925  return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true));
2926}
2927inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
2928    const internal::string& regex) {
2929  return MatchesRegex(new internal::RE(regex));
2930}
2931
2932// Matches a string that contains regular expression 'regex'.
2933// The matcher takes ownership of 'regex'.
2934inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
2935    const internal::RE* regex) {
2936  return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false));
2937}
2938inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
2939    const internal::string& regex) {
2940  return ContainsRegex(new internal::RE(regex));
2941}
2942
2943#if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
2944// Wide string matchers.
2945
2946// Matches a string equal to str.
2947inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2948    StrEq(const internal::wstring& str) {
2949  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2950      str, true, true));
2951}
2952
2953// Matches a string not equal to str.
2954inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2955    StrNe(const internal::wstring& str) {
2956  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2957      str, false, true));
2958}
2959
2960// Matches a string equal to str, ignoring case.
2961inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2962    StrCaseEq(const internal::wstring& str) {
2963  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2964      str, true, false));
2965}
2966
2967// Matches a string not equal to str, ignoring case.
2968inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2969    StrCaseNe(const internal::wstring& str) {
2970  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2971      str, false, false));
2972}
2973
2974// Creates a matcher that matches any wstring, std::wstring, or C wide string
2975// that contains the given substring.
2976inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> >
2977    HasSubstr(const internal::wstring& substring) {
2978  return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>(
2979      substring));
2980}
2981
2982// Matches a string that starts with 'prefix' (case-sensitive).
2983inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> >
2984    StartsWith(const internal::wstring& prefix) {
2985  return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>(
2986      prefix));
2987}
2988
2989// Matches a string that ends with 'suffix' (case-sensitive).
2990inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> >
2991    EndsWith(const internal::wstring& suffix) {
2992  return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>(
2993      suffix));
2994}
2995
2996#endif  // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
2997
2998// Creates a polymorphic matcher that matches a 2-tuple where the
2999// first field == the second field.
3000inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
3001
3002// Creates a polymorphic matcher that matches a 2-tuple where the
3003// first field >= the second field.
3004inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
3005
3006// Creates a polymorphic matcher that matches a 2-tuple where the
3007// first field > the second field.
3008inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
3009
3010// Creates a polymorphic matcher that matches a 2-tuple where the
3011// first field <= the second field.
3012inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
3013
3014// Creates a polymorphic matcher that matches a 2-tuple where the
3015// first field < the second field.
3016inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
3017
3018// Creates a polymorphic matcher that matches a 2-tuple where the
3019// first field != the second field.
3020inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
3021
3022// Creates a matcher that matches any value of type T that m doesn't
3023// match.
3024template <typename InnerMatcher>
3025inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
3026  return internal::NotMatcher<InnerMatcher>(m);
3027}
3028
3029// Returns a matcher that matches anything that satisfies the given
3030// predicate.  The predicate can be any unary function or functor
3031// whose return type can be implicitly converted to bool.
3032template <typename Predicate>
3033inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
3034Truly(Predicate pred) {
3035  return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
3036}
3037
3038// Returns a matcher that matches an equal container.
3039// This matcher behaves like Eq(), but in the event of mismatch lists the
3040// values that are included in one container but not the other. (Duplicate
3041// values and order differences are not explained.)
3042template <typename Container>
3043inline PolymorphicMatcher<internal::ContainerEqMatcher<  // NOLINT
3044                            GTEST_REMOVE_CONST_(Container)> >
3045    ContainerEq(const Container& rhs) {
3046  // This following line is for working around a bug in MSVC 8.0,
3047  // which causes Container to be a const type sometimes.
3048  typedef GTEST_REMOVE_CONST_(Container) RawContainer;
3049  return MakePolymorphicMatcher(
3050      internal::ContainerEqMatcher<RawContainer>(rhs));
3051}
3052
3053// Returns a matcher that matches a container that, when sorted using
3054// the given comparator, matches container_matcher.
3055template <typename Comparator, typename ContainerMatcher>
3056inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
3057WhenSortedBy(const Comparator& comparator,
3058             const ContainerMatcher& container_matcher) {
3059  return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
3060      comparator, container_matcher);
3061}
3062
3063// Returns a matcher that matches a container that, when sorted using
3064// the < operator, matches container_matcher.
3065template <typename ContainerMatcher>
3066inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
3067WhenSorted(const ContainerMatcher& container_matcher) {
3068  return
3069      internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
3070          internal::LessComparator(), container_matcher);
3071}
3072
3073// Matches an STL-style container or a native array that contains the
3074// same number of elements as in rhs, where its i-th element and rhs's
3075// i-th element (as a pair) satisfy the given pair matcher, for all i.
3076// TupleMatcher must be able to be safely cast to Matcher<tuple<const
3077// T1&, const T2&> >, where T1 and T2 are the types of elements in the
3078// LHS container and the RHS container respectively.
3079template <typename TupleMatcher, typename Container>
3080inline internal::PointwiseMatcher<TupleMatcher,
3081                                  GTEST_REMOVE_CONST_(Container)>
3082Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
3083  // This following line is for working around a bug in MSVC 8.0,
3084  // which causes Container to be a const type sometimes.
3085  typedef GTEST_REMOVE_CONST_(Container) RawContainer;
3086  return internal::PointwiseMatcher<TupleMatcher, RawContainer>(
3087      tuple_matcher, rhs);
3088}
3089
3090// Matches an STL-style container or a native array that contains at
3091// least one element matching the given value or matcher.
3092//
3093// Examples:
3094//   ::std::set<int> page_ids;
3095//   page_ids.insert(3);
3096//   page_ids.insert(1);
3097//   EXPECT_THAT(page_ids, Contains(1));
3098//   EXPECT_THAT(page_ids, Contains(Gt(2)));
3099//   EXPECT_THAT(page_ids, Not(Contains(4)));
3100//
3101//   ::std::map<int, size_t> page_lengths;
3102//   page_lengths[1] = 100;
3103//   EXPECT_THAT(page_lengths,
3104//               Contains(::std::pair<const int, size_t>(1, 100)));
3105//
3106//   const char* user_ids[] = { "joe", "mike", "tom" };
3107//   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
3108template <typename M>
3109inline internal::ContainsMatcher<M> Contains(M matcher) {
3110  return internal::ContainsMatcher<M>(matcher);
3111}
3112
3113// Matches an STL-style container or a native array that contains only
3114// elements matching the given value or matcher.
3115//
3116// Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
3117// the messages are different.
3118//
3119// Examples:
3120//   ::std::set<int> page_ids;
3121//   // Each(m) matches an empty container, regardless of what m is.
3122//   EXPECT_THAT(page_ids, Each(Eq(1)));
3123//   EXPECT_THAT(page_ids, Each(Eq(77)));
3124//
3125//   page_ids.insert(3);
3126//   EXPECT_THAT(page_ids, Each(Gt(0)));
3127//   EXPECT_THAT(page_ids, Not(Each(Gt(4))));
3128//   page_ids.insert(1);
3129//   EXPECT_THAT(page_ids, Not(Each(Lt(2))));
3130//
3131//   ::std::map<int, size_t> page_lengths;
3132//   page_lengths[1] = 100;
3133//   page_lengths[2] = 200;
3134//   page_lengths[3] = 300;
3135//   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
3136//   EXPECT_THAT(page_lengths, Each(Key(Le(3))));
3137//
3138//   const char* user_ids[] = { "joe", "mike", "tom" };
3139//   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
3140template <typename M>
3141inline internal::EachMatcher<M> Each(M matcher) {
3142  return internal::EachMatcher<M>(matcher);
3143}
3144
3145// Key(inner_matcher) matches an std::pair whose 'first' field matches
3146// inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
3147// std::map that contains at least one element whose key is >= 5.
3148template <typename M>
3149inline internal::KeyMatcher<M> Key(M inner_matcher) {
3150  return internal::KeyMatcher<M>(inner_matcher);
3151}
3152
3153// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
3154// matches first_matcher and whose 'second' field matches second_matcher.  For
3155// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
3156// to match a std::map<int, string> that contains exactly one element whose key
3157// is >= 5 and whose value equals "foo".
3158template <typename FirstMatcher, typename SecondMatcher>
3159inline internal::PairMatcher<FirstMatcher, SecondMatcher>
3160Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
3161  return internal::PairMatcher<FirstMatcher, SecondMatcher>(
3162      first_matcher, second_matcher);
3163}
3164
3165// Returns a predicate that is satisfied by anything that matches the
3166// given matcher.
3167template <typename M>
3168inline internal::MatcherAsPredicate<M> Matches(M matcher) {
3169  return internal::MatcherAsPredicate<M>(matcher);
3170}
3171
3172// Returns true iff the value matches the matcher.
3173template <typename T, typename M>
3174inline bool Value(const T& value, M matcher) {
3175  return testing::Matches(matcher)(value);
3176}
3177
3178// Matches the value against the given matcher and explains the match
3179// result to listener.
3180template <typename T, typename M>
3181inline bool ExplainMatchResult(
3182    M matcher, const T& value, MatchResultListener* listener) {
3183  return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
3184}
3185
3186// AllArgs(m) is a synonym of m.  This is useful in
3187//
3188//   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
3189//
3190// which is easier to read than
3191//
3192//   EXPECT_CALL(foo, Bar(_, _)).With(Eq());
3193template <typename InnerMatcher>
3194inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
3195
3196// These macros allow using matchers to check values in Google Test
3197// tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
3198// succeed iff the value matches the matcher.  If the assertion fails,
3199// the value and the description of the matcher will be printed.
3200#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
3201    ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
3202#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
3203    ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
3204
3205}  // namespace testing
3206
3207#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
3208