1// Copyright (C) 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3/*
4*******************************************************************************
5*
6*   Copyright (C) 2005-2016, International Business Machines
7*   Corporation and others.  All Rights Reserved.
8*
9*******************************************************************************
10*   file name:  utext.cpp
11*   encoding:   US-ASCII
12*   tab size:   8 (not used)
13*   indentation:4
14*
15*   created on: 2005apr12
16*   created by: Markus W. Scherer
17*/
18
19#include "unicode/utypes.h"
20#include "unicode/ustring.h"
21#include "unicode/unistr.h"
22#include "unicode/chariter.h"
23#include "unicode/utext.h"
24#include "unicode/utf.h"
25#include "unicode/utf8.h"
26#include "unicode/utf16.h"
27#include "ustr_imp.h"
28#include "cmemory.h"
29#include "cstring.h"
30#include "uassert.h"
31#include "putilimp.h"
32
33U_NAMESPACE_USE
34
35#define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex))
36
37
38static UBool
39utext_access(UText *ut, int64_t index, UBool forward) {
40    return ut->pFuncs->access(ut, index, forward);
41}
42
43
44
45U_CAPI UBool U_EXPORT2
46utext_moveIndex32(UText *ut, int32_t delta) {
47    UChar32  c;
48    if (delta > 0) {
49        do {
50            if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, TRUE)) {
51                return FALSE;
52            }
53            c = ut->chunkContents[ut->chunkOffset];
54            if (U16_IS_SURROGATE(c)) {
55                c = utext_next32(ut);
56                if (c == U_SENTINEL) {
57                    return FALSE;
58                }
59            } else {
60                ut->chunkOffset++;
61            }
62        } while(--delta>0);
63
64    } else if (delta<0) {
65        do {
66            if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, FALSE)) {
67                return FALSE;
68            }
69            c = ut->chunkContents[ut->chunkOffset-1];
70            if (U16_IS_SURROGATE(c)) {
71                c = utext_previous32(ut);
72                if (c == U_SENTINEL) {
73                    return FALSE;
74                }
75            } else {
76                ut->chunkOffset--;
77            }
78        } while(++delta<0);
79    }
80
81    return TRUE;
82}
83
84
85U_CAPI int64_t U_EXPORT2
86utext_nativeLength(UText *ut) {
87    return ut->pFuncs->nativeLength(ut);
88}
89
90
91U_CAPI UBool U_EXPORT2
92utext_isLengthExpensive(const UText *ut) {
93    UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0;
94    return r;
95}
96
97
98U_CAPI int64_t U_EXPORT2
99utext_getNativeIndex(const UText *ut) {
100    if(ut->chunkOffset <= ut->nativeIndexingLimit) {
101        return ut->chunkNativeStart+ut->chunkOffset;
102    } else {
103        return ut->pFuncs->mapOffsetToNative(ut);
104    }
105}
106
107
108U_CAPI void U_EXPORT2
109utext_setNativeIndex(UText *ut, int64_t index) {
110    if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
111        // The desired position is outside of the current chunk.
112        // Access the new position.  Assume a forward iteration from here,
113        // which will also be optimimum for a single random access.
114        // Reverse iterations may suffer slightly.
115        ut->pFuncs->access(ut, index, TRUE);
116    } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) {
117        // utf-16 indexing.
118        ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart);
119    } else {
120         ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
121    }
122    // The convention is that the index must always be on a code point boundary.
123    // Adjust the index position if it is in the middle of a surrogate pair.
124    if (ut->chunkOffset<ut->chunkLength) {
125        UChar c= ut->chunkContents[ut->chunkOffset];
126        if (U16_IS_TRAIL(c)) {
127            if (ut->chunkOffset==0) {
128                ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE);
129            }
130            if (ut->chunkOffset>0) {
131                UChar lead = ut->chunkContents[ut->chunkOffset-1];
132                if (U16_IS_LEAD(lead)) {
133                    ut->chunkOffset--;
134                }
135            }
136        }
137    }
138}
139
140
141
142U_CAPI int64_t U_EXPORT2
143utext_getPreviousNativeIndex(UText *ut) {
144    //
145    //  Fast-path the common case.
146    //     Common means current position is not at the beginning of a chunk
147    //     and the preceding character is not supplementary.
148    //
149    int32_t i = ut->chunkOffset - 1;
150    int64_t result;
151    if (i >= 0) {
152        UChar c = ut->chunkContents[i];
153        if (U16_IS_TRAIL(c) == FALSE) {
154            if (i <= ut->nativeIndexingLimit) {
155                result = ut->chunkNativeStart + i;
156            } else {
157                ut->chunkOffset = i;
158                result = ut->pFuncs->mapOffsetToNative(ut);
159                ut->chunkOffset++;
160            }
161            return result;
162        }
163    }
164
165    // If at the start of text, simply return 0.
166    if (ut->chunkOffset==0 && ut->chunkNativeStart==0) {
167        return 0;
168    }
169
170    // Harder, less common cases.  We are at a chunk boundary, or on a surrogate.
171    //    Keep it simple, use other functions to handle the edges.
172    //
173    utext_previous32(ut);
174    result = UTEXT_GETNATIVEINDEX(ut);
175    utext_next32(ut);
176    return result;
177}
178
179
180//
181//  utext_current32.  Get the UChar32 at the current position.
182//                    UText iteration position is always on a code point boundary,
183//                    never on the trail half of a surrogate pair.
184//
185U_CAPI UChar32 U_EXPORT2
186utext_current32(UText *ut) {
187    UChar32  c;
188    if (ut->chunkOffset==ut->chunkLength) {
189        // Current position is just off the end of the chunk.
190        if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
191            // Off the end of the text.
192            return U_SENTINEL;
193        }
194    }
195
196    c = ut->chunkContents[ut->chunkOffset];
197    if (U16_IS_LEAD(c) == FALSE) {
198        // Normal, non-supplementary case.
199        return c;
200    }
201
202    //
203    //  Possible supplementary char.
204    //
205    UChar32   trail = 0;
206    UChar32   supplementaryC = c;
207    if ((ut->chunkOffset+1) < ut->chunkLength) {
208        // The trail surrogate is in the same chunk.
209        trail = ut->chunkContents[ut->chunkOffset+1];
210    } else {
211        //  The trail surrogate is in a different chunk.
212        //     Because we must maintain the iteration position, we need to switch forward
213        //     into the new chunk, get the trail surrogate, then revert the chunk back to the
214        //     original one.
215        //     An edge case to be careful of:  the entire text may end with an unpaired
216        //        leading surrogate.  The attempt to access the trail will fail, but
217        //        the original position before the unpaired lead still needs to be restored.
218        int64_t  nativePosition = ut->chunkNativeLimit;
219        int32_t  originalOffset = ut->chunkOffset;
220        if (ut->pFuncs->access(ut, nativePosition, TRUE)) {
221            trail = ut->chunkContents[ut->chunkOffset];
222        }
223        UBool r = ut->pFuncs->access(ut, nativePosition, FALSE);  // reverse iteration flag loads preceding chunk
224        U_ASSERT(r==TRUE);
225        ut->chunkOffset = originalOffset;
226        if(!r) {
227            return U_SENTINEL;
228        }
229    }
230
231    if (U16_IS_TRAIL(trail)) {
232        supplementaryC = U16_GET_SUPPLEMENTARY(c, trail);
233    }
234    return supplementaryC;
235
236}
237
238
239U_CAPI UChar32 U_EXPORT2
240utext_char32At(UText *ut, int64_t nativeIndex) {
241    UChar32 c = U_SENTINEL;
242
243    // Fast path the common case.
244    if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) {
245        ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart);
246        c = ut->chunkContents[ut->chunkOffset];
247        if (U16_IS_SURROGATE(c) == FALSE) {
248            return c;
249        }
250    }
251
252
253    utext_setNativeIndex(ut, nativeIndex);
254    if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) {
255        c = ut->chunkContents[ut->chunkOffset];
256        if (U16_IS_SURROGATE(c)) {
257            // For surrogates, let current32() deal with the complications
258            //    of supplementaries that may span chunk boundaries.
259            c = utext_current32(ut);
260        }
261    }
262    return c;
263}
264
265
266U_CAPI UChar32 U_EXPORT2
267utext_next32(UText *ut) {
268    UChar32       c;
269
270    if (ut->chunkOffset >= ut->chunkLength) {
271        if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
272            return U_SENTINEL;
273        }
274    }
275
276    c = ut->chunkContents[ut->chunkOffset++];
277    if (U16_IS_LEAD(c) == FALSE) {
278        // Normal case, not supplementary.
279        //   (A trail surrogate seen here is just returned as is, as a surrogate value.
280        //    It cannot be part of a pair.)
281        return c;
282    }
283
284    if (ut->chunkOffset >= ut->chunkLength) {
285        if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
286            // c is an unpaired lead surrogate at the end of the text.
287            // return it as it is.
288            return c;
289        }
290    }
291    UChar32 trail = ut->chunkContents[ut->chunkOffset];
292    if (U16_IS_TRAIL(trail) == FALSE) {
293        // c was an unpaired lead surrogate, not at the end of the text.
294        // return it as it is (unpaired).  Iteration position is on the
295        // following character, possibly in the next chunk, where the
296        //  trail surrogate would have been if it had existed.
297        return c;
298    }
299
300    UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail);
301    ut->chunkOffset++;   // move iteration position over the trail surrogate.
302    return supplementary;
303    }
304
305
306U_CAPI UChar32 U_EXPORT2
307utext_previous32(UText *ut) {
308    UChar32       c;
309
310    if (ut->chunkOffset <= 0) {
311        if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
312            return U_SENTINEL;
313        }
314    }
315    ut->chunkOffset--;
316    c = ut->chunkContents[ut->chunkOffset];
317    if (U16_IS_TRAIL(c) == FALSE) {
318        // Normal case, not supplementary.
319        //   (A lead surrogate seen here is just returned as is, as a surrogate value.
320        //    It cannot be part of a pair.)
321        return c;
322    }
323
324    if (ut->chunkOffset <= 0) {
325        if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
326            // c is an unpaired trail surrogate at the start of the text.
327            // return it as it is.
328            return c;
329        }
330    }
331
332    UChar32 lead = ut->chunkContents[ut->chunkOffset-1];
333    if (U16_IS_LEAD(lead) == FALSE) {
334        // c was an unpaired trail surrogate, not at the end of the text.
335        // return it as it is (unpaired).  Iteration position is at c
336        return c;
337    }
338
339    UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c);
340    ut->chunkOffset--;   // move iteration position over the lead surrogate.
341    return supplementary;
342}
343
344
345
346U_CAPI UChar32 U_EXPORT2
347utext_next32From(UText *ut, int64_t index) {
348    UChar32       c      = U_SENTINEL;
349
350    if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
351        // Desired position is outside of the current chunk.
352        if(!ut->pFuncs->access(ut, index, TRUE)) {
353            // no chunk available here
354            return U_SENTINEL;
355        }
356    } else if (index - ut->chunkNativeStart  <= (int64_t)ut->nativeIndexingLimit) {
357        // Desired position is in chunk, with direct 1:1 native to UTF16 indexing
358        ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
359    } else {
360        // Desired position is in chunk, with non-UTF16 indexing.
361        ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index);
362    }
363
364    c = ut->chunkContents[ut->chunkOffset++];
365    if (U16_IS_SURROGATE(c)) {
366        // Surrogates.  Many edge cases.  Use other functions that already
367        //              deal with the problems.
368        utext_setNativeIndex(ut, index);
369        c = utext_next32(ut);
370    }
371    return c;
372}
373
374
375U_CAPI UChar32 U_EXPORT2
376utext_previous32From(UText *ut, int64_t index) {
377    //
378    //  Return the character preceding the specified index.
379    //  Leave the iteration position at the start of the character that was returned.
380    //
381    UChar32     cPrev;    // The character preceding cCurr, which is what we will return.
382
383    // Address the chunk containg the position preceding the incoming index
384    // A tricky edge case:
385    //   We try to test the requested native index against the chunkNativeStart to determine
386    //    whether the character preceding the one at the index is in the current chunk.
387    //    BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the
388    //    requested index is on something other than the first position of the first char.
389    //
390    if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) {
391        // Requested native index is outside of the current chunk.
392        if(!ut->pFuncs->access(ut, index, FALSE)) {
393            // no chunk available here
394            return U_SENTINEL;
395        }
396    } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) {
397        // Direct UTF-16 indexing.
398        ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
399    } else {
400        ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
401        if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, FALSE)) {
402            // no chunk available here
403            return U_SENTINEL;
404        }
405    }
406
407    //
408    // Simple case with no surrogates.
409    //
410    ut->chunkOffset--;
411    cPrev = ut->chunkContents[ut->chunkOffset];
412
413    if (U16_IS_SURROGATE(cPrev)) {
414        // Possible supplementary.  Many edge cases.
415        // Let other functions do the heavy lifting.
416        utext_setNativeIndex(ut, index);
417        cPrev = utext_previous32(ut);
418    }
419    return cPrev;
420}
421
422
423U_CAPI int32_t U_EXPORT2
424utext_extract(UText *ut,
425             int64_t start, int64_t limit,
426             UChar *dest, int32_t destCapacity,
427             UErrorCode *status) {
428                 return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status);
429             }
430
431
432
433U_CAPI UBool U_EXPORT2
434utext_equals(const UText *a, const UText *b) {
435    if (a==NULL || b==NULL ||
436        a->magic != UTEXT_MAGIC ||
437        b->magic != UTEXT_MAGIC) {
438            // Null or invalid arguments don't compare equal to anything.
439            return FALSE;
440    }
441
442    if (a->pFuncs != b->pFuncs) {
443        // Different types of text providers.
444        return FALSE;
445    }
446
447    if (a->context != b->context) {
448        // Different sources (different strings)
449        return FALSE;
450    }
451    if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) {
452        // Different current position in the string.
453        return FALSE;
454    }
455
456    return TRUE;
457}
458
459U_CAPI UBool U_EXPORT2
460utext_isWritable(const UText *ut)
461{
462    UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0;
463    return b;
464}
465
466
467U_CAPI void U_EXPORT2
468utext_freeze(UText *ut) {
469    // Zero out the WRITABLE flag.
470    ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE));
471}
472
473
474U_CAPI UBool U_EXPORT2
475utext_hasMetaData(const UText *ut)
476{
477    UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0;
478    return b;
479}
480
481
482
483U_CAPI int32_t U_EXPORT2
484utext_replace(UText *ut,
485             int64_t nativeStart, int64_t nativeLimit,
486             const UChar *replacementText, int32_t replacementLength,
487             UErrorCode *status)
488{
489    if (U_FAILURE(*status)) {
490        return 0;
491    }
492    if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
493        *status = U_NO_WRITE_PERMISSION;
494        return 0;
495    }
496    int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status);
497    return i;
498}
499
500U_CAPI void U_EXPORT2
501utext_copy(UText *ut,
502          int64_t nativeStart, int64_t nativeLimit,
503          int64_t destIndex,
504          UBool move,
505          UErrorCode *status)
506{
507    if (U_FAILURE(*status)) {
508        return;
509    }
510    if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
511        *status = U_NO_WRITE_PERMISSION;
512        return;
513    }
514    ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status);
515}
516
517
518
519U_CAPI UText * U_EXPORT2
520utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) {
521    if (U_FAILURE(*status)) {
522        return dest;
523    }
524    UText *result = src->pFuncs->clone(dest, src, deep, status);
525    if (U_FAILURE(*status)) {
526        return result;
527    }
528    if (result == NULL) {
529        *status = U_MEMORY_ALLOCATION_ERROR;
530        return result;
531    }
532    if (readOnly) {
533        utext_freeze(result);
534    }
535    return result;
536}
537
538
539
540//------------------------------------------------------------------------------
541//
542//   UText common functions implementation
543//
544//------------------------------------------------------------------------------
545
546//
547//  UText.flags bit definitions
548//
549enum {
550    UTEXT_HEAP_ALLOCATED  = 1,      //  1 if ICU has allocated this UText struct on the heap.
551                                    //  0 if caller provided storage for the UText.
552
553    UTEXT_EXTRA_HEAP_ALLOCATED = 2, //  1 if ICU has allocated extra storage as a separate
554                                    //     heap block.
555                                    //  0 if there is no separate allocation.  Either no extra
556                                    //     storage was requested, or it is appended to the end
557                                    //     of the main UText storage.
558
559    UTEXT_OPEN = 4                  //  1 if this UText is currently open
560                                    //  0 if this UText is not open.
561};
562
563
564//
565//  Extended form of a UText.  The purpose is to aid in computing the total size required
566//    when a provider asks for a UText to be allocated with extra storage.
567
568struct ExtendedUText {
569    UText          ut;
570    UAlignedMemory extension;
571};
572
573static const UText emptyText = UTEXT_INITIALIZER;
574
575U_CAPI UText * U_EXPORT2
576utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) {
577    if (U_FAILURE(*status)) {
578        return ut;
579    }
580
581    if (ut == NULL) {
582        // We need to heap-allocate storage for the new UText
583        int32_t spaceRequired = sizeof(UText);
584        if (extraSpace > 0) {
585            spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(UAlignedMemory);
586        }
587        ut = (UText *)uprv_malloc(spaceRequired);
588        if (ut == NULL) {
589            *status = U_MEMORY_ALLOCATION_ERROR;
590            return NULL;
591        } else {
592            *ut = emptyText;
593            ut->flags |= UTEXT_HEAP_ALLOCATED;
594            if (spaceRequired>0) {
595                ut->extraSize = extraSpace;
596                ut->pExtra    = &((ExtendedUText *)ut)->extension;
597            }
598        }
599    } else {
600        // We have been supplied with an already existing UText.
601        // Verify that it really appears to be a UText.
602        if (ut->magic != UTEXT_MAGIC) {
603            *status = U_ILLEGAL_ARGUMENT_ERROR;
604            return ut;
605        }
606        // If the ut is already open and there's a provider supplied close
607        //   function, call it.
608        if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != NULL)  {
609            ut->pFuncs->close(ut);
610        }
611        ut->flags &= ~UTEXT_OPEN;
612
613        // If extra space was requested by our caller, check whether
614        //   sufficient already exists, and allocate new if needed.
615        if (extraSpace > ut->extraSize) {
616            // Need more space.  If there is existing separately allocated space,
617            //   delete it first, then allocate new space.
618            if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
619                uprv_free(ut->pExtra);
620                ut->extraSize = 0;
621            }
622            ut->pExtra = uprv_malloc(extraSpace);
623            if (ut->pExtra == NULL) {
624                *status = U_MEMORY_ALLOCATION_ERROR;
625            } else {
626                ut->extraSize = extraSpace;
627                ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED;
628            }
629        }
630    }
631    if (U_SUCCESS(*status)) {
632        ut->flags |= UTEXT_OPEN;
633
634        // Initialize all remaining fields of the UText.
635        //
636        ut->context             = NULL;
637        ut->chunkContents       = NULL;
638        ut->p                   = NULL;
639        ut->q                   = NULL;
640        ut->r                   = NULL;
641        ut->a                   = 0;
642        ut->b                   = 0;
643        ut->c                   = 0;
644        ut->chunkOffset         = 0;
645        ut->chunkLength         = 0;
646        ut->chunkNativeStart    = 0;
647        ut->chunkNativeLimit    = 0;
648        ut->nativeIndexingLimit = 0;
649        ut->providerProperties  = 0;
650        ut->privA               = 0;
651        ut->privB               = 0;
652        ut->privC               = 0;
653        ut->privP               = NULL;
654        if (ut->pExtra!=NULL && ut->extraSize>0)
655            uprv_memset(ut->pExtra, 0, ut->extraSize);
656
657    }
658    return ut;
659}
660
661
662U_CAPI UText * U_EXPORT2
663utext_close(UText *ut) {
664    if (ut==NULL ||
665        ut->magic != UTEXT_MAGIC ||
666        (ut->flags & UTEXT_OPEN) == 0)
667    {
668        // The supplied ut is not an open UText.
669        // Do nothing.
670        return ut;
671    }
672
673    // If the provider gave us a close function, call it now.
674    // This will clean up anything allocated specifically by the provider.
675    if (ut->pFuncs->close != NULL) {
676        ut->pFuncs->close(ut);
677    }
678    ut->flags &= ~UTEXT_OPEN;
679
680    // If we (the framework) allocated the UText or subsidiary storage,
681    //   delete it.
682    if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
683        uprv_free(ut->pExtra);
684        ut->pExtra = NULL;
685        ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED;
686        ut->extraSize = 0;
687    }
688
689    // Zero out function table of the closed UText.  This is a defensive move,
690    //   inteded to cause applications that inadvertantly use a closed
691    //   utext to crash with null pointer errors.
692    ut->pFuncs        = NULL;
693
694    if (ut->flags & UTEXT_HEAP_ALLOCATED) {
695        // This UText was allocated by UText setup.  We need to free it.
696        // Clear magic, so we can detect if the user messes up and immediately
697        //  tries to reopen another UText using the deleted storage.
698        ut->magic = 0;
699        uprv_free(ut);
700        ut = NULL;
701    }
702    return ut;
703}
704
705
706
707
708//
709// invalidateChunk   Reset a chunk to have no contents, so that the next call
710//                   to access will cause new data to load.
711//                   This is needed when copy/move/replace operate directly on the
712//                   backing text, potentially putting it out of sync with the
713//                   contents in the chunk.
714//
715static void
716invalidateChunk(UText *ut) {
717    ut->chunkLength = 0;
718    ut->chunkNativeLimit = 0;
719    ut->chunkNativeStart = 0;
720    ut->chunkOffset = 0;
721    ut->nativeIndexingLimit = 0;
722}
723
724//
725// pinIndex        Do range pinning on a native index parameter.
726//                 64 bit pinning is done in place.
727//                 32 bit truncated result is returned as a convenience for
728//                        use in providers that don't need 64 bits.
729static int32_t
730pinIndex(int64_t &index, int64_t limit) {
731    if (index<0) {
732        index = 0;
733    } else if (index > limit) {
734        index = limit;
735    }
736    return (int32_t)index;
737}
738
739
740U_CDECL_BEGIN
741
742//
743// Pointer relocation function,
744//   a utility used by shallow clone.
745//   Adjust a pointer that refers to something within one UText (the source)
746//   to refer to the same relative offset within a another UText (the target)
747//
748static void adjustPointer(UText *dest, const void **destPtr, const UText *src) {
749    // convert all pointers to (char *) so that byte address arithmetic will work.
750    char  *dptr = (char *)*destPtr;
751    char  *dUText = (char *)dest;
752    char  *sUText = (char *)src;
753
754    if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) {
755        // target ptr was to something within the src UText's pExtra storage.
756        //   relocate it into the target UText's pExtra region.
757        *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra);
758    } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) {
759        // target ptr was pointing to somewhere within the source UText itself.
760        //   Move it to the same offset within the target UText.
761        *destPtr = dUText + (dptr-sUText);
762    }
763}
764
765
766//
767//  Clone.  This is a generic copy-the-utext-by-value clone function that can be
768//          used as-is with some utext types, and as a helper by other clones.
769//
770static UText * U_CALLCONV
771shallowTextClone(UText * dest, const UText * src, UErrorCode * status) {
772    if (U_FAILURE(*status)) {
773        return NULL;
774    }
775    int32_t  srcExtraSize = src->extraSize;
776
777    //
778    // Use the generic text_setup to allocate storage if required.
779    //
780    dest = utext_setup(dest, srcExtraSize, status);
781    if (U_FAILURE(*status)) {
782        return dest;
783    }
784
785    //
786    //  flags (how the UText was allocated) and the pointer to the
787    //   extra storage must retain the values in the cloned utext that
788    //   were set up by utext_setup.  Save them separately before
789    //   copying the whole struct.
790    //
791    void *destExtra = dest->pExtra;
792    int32_t flags   = dest->flags;
793
794
795    //
796    //  Copy the whole UText struct by value.
797    //  Any "Extra" storage is copied also.
798    //
799    int sizeToCopy = src->sizeOfStruct;
800    if (sizeToCopy > dest->sizeOfStruct) {
801        sizeToCopy = dest->sizeOfStruct;
802    }
803    uprv_memcpy(dest, src, sizeToCopy);
804    dest->pExtra = destExtra;
805    dest->flags  = flags;
806    if (srcExtraSize > 0) {
807        uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize);
808    }
809
810    //
811    // Relocate any pointers in the target that refer to the UText itself
812    //   to point to the cloned copy rather than the original source.
813    //
814    adjustPointer(dest, &dest->context, src);
815    adjustPointer(dest, &dest->p, src);
816    adjustPointer(dest, &dest->q, src);
817    adjustPointer(dest, &dest->r, src);
818    adjustPointer(dest, (const void **)&dest->chunkContents, src);
819
820    // The newly shallow-cloned UText does _not_ own the underlying storage for the text.
821    // (The source for the clone may or may not have owned the text.)
822
823    dest->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
824
825    return dest;
826}
827
828
829U_CDECL_END
830
831
832
833//------------------------------------------------------------------------------
834//
835//     UText implementation for UTF-8 char * strings (read-only)
836//     Limitation:  string length must be <= 0x7fffffff in length.
837//                  (length must for in an int32_t variable)
838//
839//         Use of UText data members:
840//              context    pointer to UTF-8 string
841//              utext.b    is the input string length (bytes).
842//              utext.c    Length scanned so far in string
843//                           (for optimizing finding length of zero terminated strings.)
844//              utext.p    pointer to the current buffer
845//              utext.q    pointer to the other buffer.
846//
847//------------------------------------------------------------------------------
848
849// Chunk size.
850//     Must be less than 85, because of byte mapping from UChar indexes to native indexes.
851//     Worst case is three native bytes to one UChar.  (Supplemenaries are 4 native bytes
852//     to two UChars.)
853//
854enum { UTF8_TEXT_CHUNK_SIZE=32 };
855
856//
857// UTF8Buf  Two of these structs will be set up in the UText's extra allocated space.
858//          Each contains the UChar chunk buffer, the to and from native maps, and
859//          header info.
860//
861//     because backwards iteration fills the buffers starting at the end and
862//     working towards the front, the filled part of the buffers may not begin
863//     at the start of the available storage for the buffers.
864//
865//     Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for
866//     the last character added being a supplementary, and thus requiring a surrogate
867//     pair.  Doing this is simpler than checking for the edge case.
868//
869
870struct UTF8Buf {
871    int32_t   bufNativeStart;                        // Native index of first char in UChar buf
872    int32_t   bufNativeLimit;                        // Native index following last char in buf.
873    int32_t   bufStartIdx;                           // First filled position in buf.
874    int32_t   bufLimitIdx;                           // Limit of filled range in buf.
875    int32_t   bufNILimit;                            // Limit of native indexing part of buf
876    int32_t   toUCharsMapStart;                      // Native index corresponding to
877                                                     //   mapToUChars[0].
878                                                     //   Set to bufNativeStart when filling forwards.
879                                                     //   Set to computed value when filling backwards.
880
881    UChar     buf[UTF8_TEXT_CHUNK_SIZE+4];           // The UChar buffer.  Requires one extra position beyond the
882                                                     //   the chunk size, to allow for surrogate at the end.
883                                                     //   Length must be identical to mapToNative array, below,
884                                                     //   because of the way indexing works when the array is
885                                                     //   filled backwards during a reverse iteration.  Thus,
886                                                     //   the additional extra size.
887    uint8_t   mapToNative[UTF8_TEXT_CHUNK_SIZE+4];   // map UChar index in buf to
888                                                     //  native offset from bufNativeStart.
889                                                     //  Requires two extra slots,
890                                                     //    one for a supplementary starting in the last normal position,
891                                                     //    and one for an entry for the buffer limit position.
892    uint8_t   mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to
893                                                     //   correspoding offset in filled part of buf.
894    int32_t   align;
895};
896
897U_CDECL_BEGIN
898
899//
900//   utf8TextLength
901//
902//        Get the length of the string.  If we don't already know it,
903//              we'll need to scan for the trailing  nul.
904//
905static int64_t U_CALLCONV
906utf8TextLength(UText *ut) {
907    if (ut->b < 0) {
908        // Zero terminated string, and we haven't scanned to the end yet.
909        // Scan it now.
910        const char *r = (const char *)ut->context + ut->c;
911        while (*r != 0) {
912            r++;
913        }
914        if ((r - (const char *)ut->context) < 0x7fffffff) {
915            ut->b = (int32_t)(r - (const char *)ut->context);
916        } else {
917            // Actual string was bigger (more than 2 gig) than we
918            //   can handle.  Clip it to 2 GB.
919            ut->b = 0x7fffffff;
920        }
921        ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
922    }
923    return ut->b;
924}
925
926
927
928
929
930
931static UBool U_CALLCONV
932utf8TextAccess(UText *ut, int64_t index, UBool forward) {
933    //
934    //  Apologies to those who are allergic to goto statements.
935    //    Consider each goto to a labelled block to be the equivalent of
936    //         call the named block as if it were a function();
937    //         return;
938    //
939    const uint8_t *s8=(const uint8_t *)ut->context;
940    UTF8Buf *u8b = NULL;
941    int32_t  length = ut->b;         // Length of original utf-8
942    int32_t  ix= (int32_t)index;     // Requested index, trimmed to 32 bits.
943    int32_t  mapIndex = 0;
944    if (index<0) {
945        ix=0;
946    } else if (index > 0x7fffffff) {
947        // Strings with 64 bit lengths not supported by this UTF-8 provider.
948        ix = 0x7fffffff;
949    }
950
951    // Pin requested index to the string length.
952    if (ix>length) {
953        if (length>=0) {
954            ix=length;
955        } else if (ix>=ut->c) {
956            // Zero terminated string, and requested index is beyond
957            //   the region that has already been scanned.
958            //   Scan up to either the end of the string or to the
959            //   requested position, whichever comes first.
960            while (ut->c<ix && s8[ut->c]!=0) {
961                ut->c++;
962            }
963            //  TODO:  support for null terminated string length > 32 bits.
964            if (s8[ut->c] == 0) {
965                // We just found the actual length of the string.
966                //  Trim the requested index back to that.
967                ix     = ut->c;
968                ut->b  = ut->c;
969                length = ut->c;
970                ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
971            }
972        }
973    }
974
975    //
976    // Dispatch to the appropriate action for a forward iteration request.
977    //
978    if (forward) {
979        if (ix==ut->chunkNativeLimit) {
980            // Check for normal sequential iteration cases first.
981            if (ix==length) {
982                // Just reached end of string
983                // Don't swap buffers, but do set the
984                //   current buffer position.
985                ut->chunkOffset = ut->chunkLength;
986                return FALSE;
987            } else {
988                // End of current buffer.
989                //   check whether other buffer already has what we need.
990                UTF8Buf *altB = (UTF8Buf *)ut->q;
991                if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) {
992                    goto swapBuffers;
993                }
994            }
995        }
996
997        // A random access.  Desired index could be in either or niether buf.
998        // For optimizing the order of testing, first check for the index
999        //    being in the other buffer.  This will be the case for uses that
1000        //    move back and forth over a fairly limited range
1001        {
1002            u8b = (UTF8Buf *)ut->q;   // the alternate buffer
1003            if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) {
1004                // Requested index is in the other buffer.
1005                goto swapBuffers;
1006            }
1007            if (ix == length) {
1008                // Requested index is end-of-string.
1009                //   (this is the case of randomly seeking to the end.
1010                //    The case of iterating off the end is handled earlier.)
1011                if (ix == ut->chunkNativeLimit) {
1012                    // Current buffer extends up to the end of the string.
1013                    //   Leave it as the current buffer.
1014                    ut->chunkOffset = ut->chunkLength;
1015                    return FALSE;
1016                }
1017                if (ix == u8b->bufNativeLimit) {
1018                    // Alternate buffer extends to the end of string.
1019                    //   Swap it in as the current buffer.
1020                    goto swapBuffersAndFail;
1021                }
1022
1023                // Neither existing buffer extends to the end of the string.
1024                goto makeStubBuffer;
1025            }
1026
1027            if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) {
1028                // Requested index is in neither buffer.
1029                goto fillForward;
1030            }
1031
1032            // Requested index is in this buffer.
1033            u8b = (UTF8Buf *)ut->p;   // the current buffer
1034            mapIndex = ix - u8b->toUCharsMapStart;
1035            ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1036            return TRUE;
1037
1038        }
1039    }
1040
1041
1042    //
1043    // Dispatch to the appropriate action for a
1044    //   Backwards Diretion iteration request.
1045    //
1046    if (ix==ut->chunkNativeStart) {
1047        // Check for normal sequential iteration cases first.
1048        if (ix==0) {
1049            // Just reached the start of string
1050            // Don't swap buffers, but do set the
1051            //   current buffer position.
1052            ut->chunkOffset = 0;
1053            return FALSE;
1054        } else {
1055            // Start of current buffer.
1056            //   check whether other buffer already has what we need.
1057            UTF8Buf *altB = (UTF8Buf *)ut->q;
1058            if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) {
1059                goto swapBuffers;
1060            }
1061        }
1062    }
1063
1064    // A random access.  Desired index could be in either or niether buf.
1065    // For optimizing the order of testing,
1066    //    Most likely case:  in the other buffer.
1067    //    Second most likely: in neither buffer.
1068    //    Unlikely, but must work:  in the current buffer.
1069    u8b = (UTF8Buf *)ut->q;   // the alternate buffer
1070    if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) {
1071        // Requested index is in the other buffer.
1072        goto swapBuffers;
1073    }
1074    // Requested index is start-of-string.
1075    //   (this is the case of randomly seeking to the start.
1076    //    The case of iterating off the start is handled earlier.)
1077    if (ix==0) {
1078        if (u8b->bufNativeStart==0) {
1079            // Alternate buffer contains the data for the start string.
1080            // Make it be the current buffer.
1081            goto swapBuffersAndFail;
1082        } else {
1083            // Request for data before the start of string,
1084            //   neither buffer is usable.
1085            //   set up a zero-length buffer.
1086            goto makeStubBuffer;
1087        }
1088    }
1089
1090    if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) {
1091        // Requested index is in neither buffer.
1092        goto fillReverse;
1093    }
1094
1095    // Requested index is in this buffer.
1096    //   Set the utf16 buffer index.
1097    u8b = (UTF8Buf *)ut->p;
1098    mapIndex = ix - u8b->toUCharsMapStart;
1099    ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1100    if (ut->chunkOffset==0) {
1101        // This occurs when the first character in the text is
1102        //   a multi-byte UTF-8 char, and the requested index is to
1103        //   one of the trailing bytes.  Because there is no preceding ,
1104        //   character, this access fails.  We can't pick up on the
1105        //   situation sooner because the requested index is not zero.
1106        return FALSE;
1107    } else {
1108        return TRUE;
1109    }
1110
1111
1112
1113swapBuffers:
1114    //  The alternate buffer (ut->q) has the string data that was requested.
1115    //  Swap the primary and alternate buffers, and set the
1116    //   chunk index into the new primary buffer.
1117    {
1118        u8b   = (UTF8Buf *)ut->q;
1119        ut->q = ut->p;
1120        ut->p = u8b;
1121        ut->chunkContents       = &u8b->buf[u8b->bufStartIdx];
1122        ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
1123        ut->chunkNativeStart    = u8b->bufNativeStart;
1124        ut->chunkNativeLimit    = u8b->bufNativeLimit;
1125        ut->nativeIndexingLimit = u8b->bufNILimit;
1126
1127        // Index into the (now current) chunk
1128        // Use the map to set the chunk index.  It's more trouble than it's worth
1129        //    to check whether native indexing can be used.
1130        U_ASSERT(ix>=u8b->bufNativeStart);
1131        U_ASSERT(ix<=u8b->bufNativeLimit);
1132        mapIndex = ix - u8b->toUCharsMapStart;
1133        U_ASSERT(mapIndex>=0);
1134        U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars));
1135        ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1136
1137        return TRUE;
1138    }
1139
1140
1141 swapBuffersAndFail:
1142    // We got a request for either the start or end of the string,
1143    //  with iteration continuing in the out-of-bounds direction.
1144    // The alternate buffer already contains the data up to the
1145    //  start/end.
1146    // Swap the buffers, then return failure, indicating that we couldn't
1147    //  make things correct for continuing the iteration in the requested
1148    //  direction.  The position & buffer are correct should the
1149    //  user decide to iterate in the opposite direction.
1150    u8b   = (UTF8Buf *)ut->q;
1151    ut->q = ut->p;
1152    ut->p = u8b;
1153    ut->chunkContents       = &u8b->buf[u8b->bufStartIdx];
1154    ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
1155    ut->chunkNativeStart    = u8b->bufNativeStart;
1156    ut->chunkNativeLimit    = u8b->bufNativeLimit;
1157    ut->nativeIndexingLimit = u8b->bufNILimit;
1158
1159    // Index into the (now current) chunk
1160    //  For this function  (swapBuffersAndFail), the requested index
1161    //    will always be at either the start or end of the chunk.
1162    if (ix==u8b->bufNativeLimit) {
1163        ut->chunkOffset = ut->chunkLength;
1164    } else  {
1165        ut->chunkOffset = 0;
1166        U_ASSERT(ix == u8b->bufNativeStart);
1167    }
1168    return FALSE;
1169
1170makeStubBuffer:
1171    //   The user has done a seek/access past the start or end
1172    //   of the string.  Rather than loading data that is likely
1173    //   to never be used, just set up a zero-length buffer at
1174    //   the position.
1175    u8b = (UTF8Buf *)ut->q;
1176    u8b->bufNativeStart   = ix;
1177    u8b->bufNativeLimit   = ix;
1178    u8b->bufStartIdx      = 0;
1179    u8b->bufLimitIdx      = 0;
1180    u8b->bufNILimit       = 0;
1181    u8b->toUCharsMapStart = ix;
1182    u8b->mapToNative[0]   = 0;
1183    u8b->mapToUChars[0]   = 0;
1184    goto swapBuffersAndFail;
1185
1186
1187
1188fillForward:
1189    {
1190        // Move the incoming index to a code point boundary.
1191        U8_SET_CP_START(s8, 0, ix);
1192
1193        // Swap the UText buffers.
1194        //  We want to fill what was previously the alternate buffer,
1195        //  and make what was the current buffer be the new alternate.
1196        UTF8Buf *u8b = (UTF8Buf *)ut->q;
1197        ut->q = ut->p;
1198        ut->p = u8b;
1199
1200        int32_t strLen = ut->b;
1201        UBool   nulTerminated = FALSE;
1202        if (strLen < 0) {
1203            strLen = 0x7fffffff;
1204            nulTerminated = TRUE;
1205        }
1206
1207        UChar   *buf = u8b->buf;
1208        uint8_t *mapToNative  = u8b->mapToNative;
1209        uint8_t *mapToUChars  = u8b->mapToUChars;
1210        int32_t  destIx       = 0;
1211        int32_t  srcIx        = ix;
1212        UBool    seenNonAscii = FALSE;
1213        UChar32  c = 0;
1214
1215        // Fill the chunk buffer and mapping arrays.
1216        while (destIx<UTF8_TEXT_CHUNK_SIZE) {
1217            c = s8[srcIx];
1218            if (c>0 && c<0x80) {
1219                // Special case ASCII range for speed.
1220                //   zero is excluded to simplify bounds checking.
1221                buf[destIx] = (UChar)c;
1222                mapToNative[destIx]    = (uint8_t)(srcIx - ix);
1223                mapToUChars[srcIx-ix]  = (uint8_t)destIx;
1224                srcIx++;
1225                destIx++;
1226            } else {
1227                // General case, handle everything.
1228                if (seenNonAscii == FALSE) {
1229                    seenNonAscii = TRUE;
1230                    u8b->bufNILimit = destIx;
1231                }
1232
1233                int32_t  cIx      = srcIx;
1234                int32_t  dIx      = destIx;
1235                int32_t  dIxSaved = destIx;
1236                U8_NEXT_OR_FFFD(s8, srcIx, strLen, c);
1237                if (c==0 && nulTerminated) {
1238                    srcIx--;
1239                    break;
1240                }
1241
1242                U16_APPEND_UNSAFE(buf, destIx, c);
1243                do {
1244                    mapToNative[dIx++] = (uint8_t)(cIx - ix);
1245                } while (dIx < destIx);
1246
1247                do {
1248                    mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved;
1249                } while (cIx < srcIx);
1250            }
1251            if (srcIx>=strLen) {
1252                break;
1253            }
1254
1255        }
1256
1257        //  store Native <--> Chunk Map entries for the end of the buffer.
1258        //    There is no actual character here, but the index position is valid.
1259        mapToNative[destIx]     = (uint8_t)(srcIx - ix);
1260        mapToUChars[srcIx - ix] = (uint8_t)destIx;
1261
1262        //  fill in Buffer descriptor
1263        u8b->bufNativeStart     = ix;
1264        u8b->bufNativeLimit     = srcIx;
1265        u8b->bufStartIdx        = 0;
1266        u8b->bufLimitIdx        = destIx;
1267        if (seenNonAscii == FALSE) {
1268            u8b->bufNILimit     = destIx;
1269        }
1270        u8b->toUCharsMapStart   = u8b->bufNativeStart;
1271
1272        // Set UText chunk to refer to this buffer.
1273        ut->chunkContents       = buf;
1274        ut->chunkOffset         = 0;
1275        ut->chunkLength         = u8b->bufLimitIdx;
1276        ut->chunkNativeStart    = u8b->bufNativeStart;
1277        ut->chunkNativeLimit    = u8b->bufNativeLimit;
1278        ut->nativeIndexingLimit = u8b->bufNILimit;
1279
1280        // For zero terminated strings, keep track of the maximum point
1281        //   scanned so far.
1282        if (nulTerminated && srcIx>ut->c) {
1283            ut->c = srcIx;
1284            if (c==0) {
1285                // We scanned to the end.
1286                //   Remember the actual length.
1287                ut->b = srcIx;
1288                ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1289            }
1290        }
1291        return TRUE;
1292    }
1293
1294
1295fillReverse:
1296    {
1297        // Move the incoming index to a code point boundary.
1298        // Can only do this if the incoming index is somewhere in the interior of the string.
1299        //   If index is at the end, there is no character there to look at.
1300        if (ix != ut->b) {
1301            U8_SET_CP_START(s8, 0, ix);
1302        }
1303
1304        // Swap the UText buffers.
1305        //  We want to fill what was previously the alternate buffer,
1306        //  and make what was the current buffer be the new alternate.
1307        UTF8Buf *u8b = (UTF8Buf *)ut->q;
1308        ut->q = ut->p;
1309        ut->p = u8b;
1310
1311        UChar   *buf = u8b->buf;
1312        uint8_t *mapToNative = u8b->mapToNative;
1313        uint8_t *mapToUChars = u8b->mapToUChars;
1314        int32_t  toUCharsMapStart = ix - (UTF8_TEXT_CHUNK_SIZE*3 + 1);
1315        int32_t  destIx = UTF8_TEXT_CHUNK_SIZE+2;   // Start in the overflow region
1316                                                    //   at end of buffer to leave room
1317                                                    //   for a surrogate pair at the
1318                                                    //   buffer start.
1319        int32_t  srcIx  = ix;
1320        int32_t  bufNILimit = destIx;
1321        UChar32   c;
1322
1323        // Map to/from Native Indexes, fill in for the position at the end of
1324        //   the buffer.
1325        //
1326        mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1327        mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1328
1329        // Fill the chunk buffer
1330        // Work backwards, filling from the end of the buffer towards the front.
1331        //
1332        while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) {
1333            srcIx--;
1334            destIx--;
1335
1336            // Get last byte of the UTF-8 character
1337            c = s8[srcIx];
1338            if (c<0x80) {
1339                // Special case ASCII range for speed.
1340                buf[destIx] = (UChar)c;
1341                mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1342                mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1343            } else {
1344                // General case, handle everything non-ASCII.
1345
1346                int32_t  sIx      = srcIx;  // ix of last byte of multi-byte u8 char
1347
1348                // Get the full character from the UTF8 string.
1349                //   use code derived from tbe macros in utf8.h
1350                //   Leaves srcIx pointing at the first byte of the UTF-8 char.
1351                //
1352                c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -3);
1353                // leaves srcIx at first byte of the multi-byte char.
1354
1355                // Store the character in UTF-16 buffer.
1356                if (c<0x10000) {
1357                    buf[destIx] = (UChar)c;
1358                    mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1359                } else {
1360                    buf[destIx]         = U16_TRAIL(c);
1361                    mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1362                    buf[--destIx]       = U16_LEAD(c);
1363                    mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1364                }
1365
1366                // Fill in the map from native indexes to UChars buf index.
1367                do {
1368                    mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx;
1369                } while (sIx >= srcIx);
1370
1371                // Set native indexing limit to be the current position.
1372                //   We are processing a non-ascii, non-native-indexing char now;
1373                //     the limit will be here if the rest of the chars to be
1374                //     added to this buffer are ascii.
1375                bufNILimit = destIx;
1376            }
1377        }
1378        u8b->bufNativeStart     = srcIx;
1379        u8b->bufNativeLimit     = ix;
1380        u8b->bufStartIdx        = destIx;
1381        u8b->bufLimitIdx        = UTF8_TEXT_CHUNK_SIZE+2;
1382        u8b->bufNILimit         = bufNILimit - u8b->bufStartIdx;
1383        u8b->toUCharsMapStart   = toUCharsMapStart;
1384
1385        ut->chunkContents       = &buf[u8b->bufStartIdx];
1386        ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
1387        ut->chunkOffset         = ut->chunkLength;
1388        ut->chunkNativeStart    = u8b->bufNativeStart;
1389        ut->chunkNativeLimit    = u8b->bufNativeLimit;
1390        ut->nativeIndexingLimit = u8b->bufNILimit;
1391        return TRUE;
1392    }
1393
1394}
1395
1396
1397
1398//
1399//  This is a slightly modified copy of u_strFromUTF8,
1400//     Inserts a Replacement Char rather than failing on invalid UTF-8
1401//     Removes unnecessary features.
1402//
1403static UChar*
1404utext_strFromUTF8(UChar *dest,
1405              int32_t destCapacity,
1406              int32_t *pDestLength,
1407              const char* src,
1408              int32_t srcLength,        // required.  NUL terminated not supported.
1409              UErrorCode *pErrorCode
1410              )
1411{
1412
1413    UChar *pDest = dest;
1414    UChar *pDestLimit = (dest!=NULL)?(dest+destCapacity):NULL;
1415    UChar32 ch=0;
1416    int32_t index = 0;
1417    int32_t reqLength = 0;
1418    uint8_t* pSrc = (uint8_t*) src;
1419
1420
1421    while((index < srcLength)&&(pDest<pDestLimit)){
1422        ch = pSrc[index++];
1423        if(ch <=0x7f){
1424            *pDest++=(UChar)ch;
1425        }else{
1426            ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1427            if(U_IS_BMP(ch)){
1428                *(pDest++)=(UChar)ch;
1429            }else{
1430                *(pDest++)=U16_LEAD(ch);
1431                if(pDest<pDestLimit){
1432                    *(pDest++)=U16_TRAIL(ch);
1433                }else{
1434                    reqLength++;
1435                    break;
1436                }
1437            }
1438        }
1439    }
1440    /* donot fill the dest buffer just count the UChars needed */
1441    while(index < srcLength){
1442        ch = pSrc[index++];
1443        if(ch <= 0x7f){
1444            reqLength++;
1445        }else{
1446            ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1447            reqLength+=U16_LENGTH(ch);
1448        }
1449    }
1450
1451    reqLength+=(int32_t)(pDest - dest);
1452
1453    if(pDestLength){
1454        *pDestLength = reqLength;
1455    }
1456
1457    /* Terminate the buffer */
1458    u_terminateUChars(dest,destCapacity,reqLength,pErrorCode);
1459
1460    return dest;
1461}
1462
1463
1464
1465static int32_t U_CALLCONV
1466utf8TextExtract(UText *ut,
1467                int64_t start, int64_t limit,
1468                UChar *dest, int32_t destCapacity,
1469                UErrorCode *pErrorCode) {
1470    if(U_FAILURE(*pErrorCode)) {
1471        return 0;
1472    }
1473    if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1474        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
1475        return 0;
1476    }
1477    int32_t  length  = ut->b;
1478    int32_t  start32 = pinIndex(start, length);
1479    int32_t  limit32 = pinIndex(limit, length);
1480
1481    if(start32>limit32) {
1482        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
1483        return 0;
1484    }
1485
1486
1487    // adjust the incoming indexes to land on code point boundaries if needed.
1488    //    adjust by no more than three, because that is the largest number of trail bytes
1489    //    in a well formed UTF8 character.
1490    const uint8_t *buf = (const uint8_t *)ut->context;
1491    int i;
1492    if (start32 < ut->chunkNativeLimit) {
1493        for (i=0; i<3; i++) {
1494            if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) {
1495                break;
1496            }
1497            start32--;
1498        }
1499    }
1500
1501    if (limit32 < ut->chunkNativeLimit) {
1502        for (i=0; i<3; i++) {
1503            if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) {
1504                break;
1505            }
1506            limit32--;
1507        }
1508    }
1509
1510    // Do the actual extract.
1511    int32_t destLength=0;
1512    utext_strFromUTF8(dest, destCapacity, &destLength,
1513                    (const char *)ut->context+start32, limit32-start32,
1514                    pErrorCode);
1515    utf8TextAccess(ut, limit32, TRUE);
1516    return destLength;
1517}
1518
1519//
1520// utf8TextMapOffsetToNative
1521//
1522// Map a chunk (UTF-16) offset to a native index.
1523static int64_t U_CALLCONV
1524utf8TextMapOffsetToNative(const UText *ut) {
1525    //
1526    UTF8Buf *u8b = (UTF8Buf *)ut->p;
1527    U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength);
1528    int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart;
1529    U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit);
1530    return nativeOffset;
1531}
1532
1533//
1534// Map a native index to the corrsponding chunk offset
1535//
1536static int32_t U_CALLCONV
1537utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) {
1538    U_ASSERT(index64 <= 0x7fffffff);
1539    int32_t index = (int32_t)index64;
1540    UTF8Buf *u8b = (UTF8Buf *)ut->p;
1541    U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit);
1542    U_ASSERT(index<=ut->chunkNativeLimit);
1543    int32_t mapIndex = index - u8b->toUCharsMapStart;
1544    int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1545    U_ASSERT(offset>=0 && offset<=ut->chunkLength);
1546    return offset;
1547}
1548
1549static UText * U_CALLCONV
1550utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status)
1551{
1552    // First do a generic shallow clone.  Does everything needed for the UText struct itself.
1553    dest = shallowTextClone(dest, src, status);
1554
1555    // For deep clones, make a copy of the string.
1556    //  The copied storage is owned by the newly created clone.
1557    //
1558    // TODO:  There is an isssue with using utext_nativeLength().
1559    //        That function is non-const in cases where the input was NUL terminated
1560    //          and the length has not yet been determined.
1561    //        This function (clone()) is const.
1562    //        There potentially a thread safety issue lurking here.
1563    //
1564    if (deep && U_SUCCESS(*status)) {
1565        int32_t  len = (int32_t)utext_nativeLength((UText *)src);
1566        char *copyStr = (char *)uprv_malloc(len+1);
1567        if (copyStr == NULL) {
1568            *status = U_MEMORY_ALLOCATION_ERROR;
1569        } else {
1570            uprv_memcpy(copyStr, src->context, len+1);
1571            dest->context = copyStr;
1572            dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1573        }
1574    }
1575    return dest;
1576}
1577
1578
1579static void U_CALLCONV
1580utf8TextClose(UText *ut) {
1581    // Most of the work of close is done by the generic UText framework close.
1582    // All that needs to be done here is to delete the UTF8 string if the UText
1583    //  owns it.  This occurs if the UText was created by cloning.
1584    if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1585        char *s = (char *)ut->context;
1586        uprv_free(s);
1587        ut->context = NULL;
1588    }
1589}
1590
1591U_CDECL_END
1592
1593
1594static const struct UTextFuncs utf8Funcs =
1595{
1596    sizeof(UTextFuncs),
1597    0, 0, 0,             // Reserved alignment padding
1598    utf8TextClone,
1599    utf8TextLength,
1600    utf8TextAccess,
1601    utf8TextExtract,
1602    NULL,                /* replace*/
1603    NULL,                /* copy   */
1604    utf8TextMapOffsetToNative,
1605    utf8TextMapIndexToUTF16,
1606    utf8TextClose,
1607    NULL,                // spare 1
1608    NULL,                // spare 2
1609    NULL                 // spare 3
1610};
1611
1612
1613static const char gEmptyString[] = {0};
1614
1615U_CAPI UText * U_EXPORT2
1616utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) {
1617    if(U_FAILURE(*status)) {
1618        return NULL;
1619    }
1620    if(s==NULL && length==0) {
1621        s = gEmptyString;
1622    }
1623
1624    if(s==NULL || length<-1 || length>INT32_MAX) {
1625        *status=U_ILLEGAL_ARGUMENT_ERROR;
1626        return NULL;
1627    }
1628
1629    ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status);
1630    if (U_FAILURE(*status)) {
1631        return ut;
1632    }
1633
1634    ut->pFuncs  = &utf8Funcs;
1635    ut->context = s;
1636    ut->b       = (int32_t)length;
1637    ut->c       = (int32_t)length;
1638    if (ut->c < 0) {
1639        ut->c = 0;
1640        ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1641    }
1642    ut->p = ut->pExtra;
1643    ut->q = (char *)ut->pExtra + sizeof(UTF8Buf);
1644    return ut;
1645
1646}
1647
1648
1649
1650
1651
1652
1653
1654
1655//------------------------------------------------------------------------------
1656//
1657//     UText implementation wrapper for Replaceable (read/write)
1658//
1659//         Use of UText data members:
1660//            context    pointer to Replaceable.
1661//            p          pointer to Replaceable if it is owned by the UText.
1662//
1663//------------------------------------------------------------------------------
1664
1665
1666
1667// minimum chunk size for this implementation: 3
1668// to allow for possible trimming for code point boundaries
1669enum { REP_TEXT_CHUNK_SIZE=10 };
1670
1671struct ReplExtra {
1672    /*
1673     * Chunk UChars.
1674     * +1 to simplify filling with surrogate pair at the end.
1675     */
1676    UChar s[REP_TEXT_CHUNK_SIZE+1];
1677};
1678
1679
1680U_CDECL_BEGIN
1681
1682static UText * U_CALLCONV
1683repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
1684    // First do a generic shallow clone.  Does everything needed for the UText struct itself.
1685    dest = shallowTextClone(dest, src, status);
1686
1687    // For deep clones, make a copy of the Replaceable.
1688    //  The copied Replaceable storage is owned by the newly created UText clone.
1689    //  A non-NULL pointer in UText.p is the signal to the close() function to delete
1690    //    it.
1691    //
1692    if (deep && U_SUCCESS(*status)) {
1693        const Replaceable *replSrc = (const Replaceable *)src->context;
1694        dest->context = replSrc->clone();
1695        dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1696
1697        // with deep clone, the copy is writable, even when the source is not.
1698        dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
1699    }
1700    return dest;
1701}
1702
1703
1704static void U_CALLCONV
1705repTextClose(UText *ut) {
1706    // Most of the work of close is done by the generic UText framework close.
1707    // All that needs to be done here is delete the Replaceable if the UText
1708    //  owns it.  This occurs if the UText was created by cloning.
1709    if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1710        Replaceable *rep = (Replaceable *)ut->context;
1711        delete rep;
1712        ut->context = NULL;
1713    }
1714}
1715
1716
1717static int64_t U_CALLCONV
1718repTextLength(UText *ut) {
1719    const Replaceable *replSrc = (const Replaceable *)ut->context;
1720    int32_t  len = replSrc->length();
1721    return len;
1722}
1723
1724
1725static UBool U_CALLCONV
1726repTextAccess(UText *ut, int64_t index, UBool forward) {
1727    const Replaceable *rep=(const Replaceable *)ut->context;
1728    int32_t length=rep->length();   // Full length of the input text (bigger than a chunk)
1729
1730    // clip the requested index to the limits of the text.
1731    int32_t index32 = pinIndex(index, length);
1732    U_ASSERT(index<=INT32_MAX);
1733
1734
1735    /*
1736     * Compute start/limit boundaries around index, for a segment of text
1737     * to be extracted.
1738     * To allow for the possibility that our user gave an index to the trailing
1739     * half of a surrogate pair, we must request one extra preceding UChar when
1740     * going in the forward direction.  This will ensure that the buffer has the
1741     * entire code point at the specified index.
1742     */
1743    if(forward) {
1744
1745        if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) {
1746            // Buffer already contains the requested position.
1747            ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
1748            return TRUE;
1749        }
1750        if (index32>=length && ut->chunkNativeLimit==length) {
1751            // Request for end of string, and buffer already extends up to it.
1752            // Can't get the data, but don't change the buffer.
1753            ut->chunkOffset = length - (int32_t)ut->chunkNativeStart;
1754            return FALSE;
1755        }
1756
1757        ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1;
1758        // Going forward, so we want to have the buffer with stuff at and beyond
1759        //   the requested index.  The -1 gets us one code point before the
1760        //   requested index also, to handle the case of the index being on
1761        //   a trail surrogate of a surrogate pair.
1762        if(ut->chunkNativeLimit > length) {
1763            ut->chunkNativeLimit = length;
1764        }
1765        // unless buffer ran off end, start is index-1.
1766        ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE;
1767        if(ut->chunkNativeStart < 0) {
1768            ut->chunkNativeStart = 0;
1769        }
1770    } else {
1771        // Reverse iteration.  Fill buffer with data preceding the requested index.
1772        if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) {
1773            // Requested position already in buffer.
1774            ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart;
1775            return TRUE;
1776        }
1777        if (index32==0 && ut->chunkNativeStart==0) {
1778            // Request for start, buffer already begins at start.
1779            //  No data, but keep the buffer as is.
1780            ut->chunkOffset = 0;
1781            return FALSE;
1782        }
1783
1784        // Figure out the bounds of the chunk to extract for reverse iteration.
1785        // Need to worry about chunk not splitting surrogate pairs, and while still
1786        // containing the data we need.
1787        // Fix by requesting a chunk that includes an extra UChar at the end.
1788        // If this turns out to be a lead surrogate, we can lop it off and still have
1789        //   the data we wanted.
1790        ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE;
1791        if (ut->chunkNativeStart < 0) {
1792            ut->chunkNativeStart = 0;
1793        }
1794
1795        ut->chunkNativeLimit = index32 + 1;
1796        if (ut->chunkNativeLimit > length) {
1797            ut->chunkNativeLimit = length;
1798        }
1799    }
1800
1801    // Extract the new chunk of text from the Replaceable source.
1802    ReplExtra *ex = (ReplExtra *)ut->pExtra;
1803    // UnicodeString with its buffer a writable alias to the chunk buffer
1804    UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/);
1805    rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer);
1806
1807    ut->chunkContents  = ex->s;
1808    ut->chunkLength    = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart);
1809    ut->chunkOffset    = (int32_t)(index32 - ut->chunkNativeStart);
1810
1811    // Surrogate pairs from the input text must not span chunk boundaries.
1812    // If end of chunk could be the start of a surrogate, trim it off.
1813    if (ut->chunkNativeLimit < length &&
1814        U16_IS_LEAD(ex->s[ut->chunkLength-1])) {
1815            ut->chunkLength--;
1816            ut->chunkNativeLimit--;
1817            if (ut->chunkOffset > ut->chunkLength) {
1818                ut->chunkOffset = ut->chunkLength;
1819            }
1820        }
1821
1822    // if the first UChar in the chunk could be the trailing half of a surrogate pair,
1823    // trim it off.
1824    if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) {
1825        ++(ut->chunkContents);
1826        ++(ut->chunkNativeStart);
1827        --(ut->chunkLength);
1828        --(ut->chunkOffset);
1829    }
1830
1831    // adjust the index/chunkOffset to a code point boundary
1832    U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset);
1833
1834    // Use fast indexing for get/setNativeIndex()
1835    ut->nativeIndexingLimit = ut->chunkLength;
1836
1837    return TRUE;
1838}
1839
1840
1841
1842static int32_t U_CALLCONV
1843repTextExtract(UText *ut,
1844               int64_t start, int64_t limit,
1845               UChar *dest, int32_t destCapacity,
1846               UErrorCode *status) {
1847    const Replaceable *rep=(const Replaceable *)ut->context;
1848    int32_t  length=rep->length();
1849
1850    if(U_FAILURE(*status)) {
1851        return 0;
1852    }
1853    if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1854        *status=U_ILLEGAL_ARGUMENT_ERROR;
1855    }
1856    if(start>limit) {
1857        *status=U_INDEX_OUTOFBOUNDS_ERROR;
1858        return 0;
1859    }
1860
1861    int32_t  start32 = pinIndex(start, length);
1862    int32_t  limit32 = pinIndex(limit, length);
1863
1864    // adjust start, limit if they point to trail half of surrogates
1865    if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) &&
1866        U_IS_SUPPLEMENTARY(rep->char32At(start32))){
1867            start32--;
1868    }
1869    if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) &&
1870        U_IS_SUPPLEMENTARY(rep->char32At(limit32))){
1871            limit32--;
1872    }
1873
1874    length=limit32-start32;
1875    if(length>destCapacity) {
1876        limit32 = start32 + destCapacity;
1877    }
1878    UnicodeString buffer(dest, 0, destCapacity); // writable alias
1879    rep->extractBetween(start32, limit32, buffer);
1880    repTextAccess(ut, limit32, TRUE);
1881
1882    return u_terminateUChars(dest, destCapacity, length, status);
1883}
1884
1885static int32_t U_CALLCONV
1886repTextReplace(UText *ut,
1887               int64_t start, int64_t limit,
1888               const UChar *src, int32_t length,
1889               UErrorCode *status) {
1890    Replaceable *rep=(Replaceable *)ut->context;
1891    int32_t oldLength;
1892
1893    if(U_FAILURE(*status)) {
1894        return 0;
1895    }
1896    if(src==NULL && length!=0) {
1897        *status=U_ILLEGAL_ARGUMENT_ERROR;
1898        return 0;
1899    }
1900    oldLength=rep->length(); // will subtract from new length
1901    if(start>limit ) {
1902        *status=U_INDEX_OUTOFBOUNDS_ERROR;
1903        return 0;
1904    }
1905
1906    int32_t start32 = pinIndex(start, oldLength);
1907    int32_t limit32 = pinIndex(limit, oldLength);
1908
1909    // Snap start & limit to code point boundaries.
1910    if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) &&
1911        start32>0 && U16_IS_LEAD(rep->charAt(start32-1)))
1912    {
1913            start32--;
1914    }
1915    if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) &&
1916        U16_IS_TRAIL(rep->charAt(limit32)))
1917    {
1918            limit32++;
1919    }
1920
1921    // Do the actual replace operation using methods of the Replaceable class
1922    UnicodeString replStr((UBool)(length<0), src, length); // read-only alias
1923    rep->handleReplaceBetween(start32, limit32, replStr);
1924    int32_t newLength = rep->length();
1925    int32_t lengthDelta = newLength - oldLength;
1926
1927    // Is the UText chunk buffer OK?
1928    if (ut->chunkNativeLimit > start32) {
1929        // this replace operation may have impacted the current chunk.
1930        // invalidate it, which will force a reload on the next access.
1931        invalidateChunk(ut);
1932    }
1933
1934    // set the iteration position to the end of the newly inserted replacement text.
1935    int32_t newIndexPos = limit32 + lengthDelta;
1936    repTextAccess(ut, newIndexPos, TRUE);
1937
1938    return lengthDelta;
1939}
1940
1941
1942static void U_CALLCONV
1943repTextCopy(UText *ut,
1944                int64_t start, int64_t limit,
1945                int64_t destIndex,
1946                UBool move,
1947                UErrorCode *status)
1948{
1949    Replaceable *rep=(Replaceable *)ut->context;
1950    int32_t length=rep->length();
1951
1952    if(U_FAILURE(*status)) {
1953        return;
1954    }
1955    if (start>limit || (start<destIndex && destIndex<limit))
1956    {
1957        *status=U_INDEX_OUTOFBOUNDS_ERROR;
1958        return;
1959    }
1960
1961    int32_t start32     = pinIndex(start, length);
1962    int32_t limit32     = pinIndex(limit, length);
1963    int32_t destIndex32 = pinIndex(destIndex, length);
1964
1965    // TODO:  snap input parameters to code point boundaries.
1966
1967    if(move) {
1968        // move: copy to destIndex, then replace original with nothing
1969        int32_t segLength=limit32-start32;
1970        rep->copy(start32, limit32, destIndex32);
1971        if(destIndex32<start32) {
1972            start32+=segLength;
1973            limit32+=segLength;
1974        }
1975        rep->handleReplaceBetween(start32, limit32, UnicodeString());
1976    } else {
1977        // copy
1978        rep->copy(start32, limit32, destIndex32);
1979    }
1980
1981    // If the change to the text touched the region in the chunk buffer,
1982    //  invalidate the buffer.
1983    int32_t firstAffectedIndex = destIndex32;
1984    if (move && start32<firstAffectedIndex) {
1985        firstAffectedIndex = start32;
1986    }
1987    if (firstAffectedIndex < ut->chunkNativeLimit) {
1988        // changes may have affected range covered by the chunk
1989        invalidateChunk(ut);
1990    }
1991
1992    // Put iteration position at the newly inserted (moved) block,
1993    int32_t  nativeIterIndex = destIndex32 + limit32 - start32;
1994    if (move && destIndex32>start32) {
1995        // moved a block of text towards the end of the string.
1996        nativeIterIndex = destIndex32;
1997    }
1998
1999    // Set position, reload chunk if needed.
2000    repTextAccess(ut, nativeIterIndex, TRUE);
2001}
2002
2003static const struct UTextFuncs repFuncs =
2004{
2005    sizeof(UTextFuncs),
2006    0, 0, 0,           // Reserved alignment padding
2007    repTextClone,
2008    repTextLength,
2009    repTextAccess,
2010    repTextExtract,
2011    repTextReplace,
2012    repTextCopy,
2013    NULL,              // MapOffsetToNative,
2014    NULL,              // MapIndexToUTF16,
2015    repTextClose,
2016    NULL,              // spare 1
2017    NULL,              // spare 2
2018    NULL               // spare 3
2019};
2020
2021
2022U_CAPI UText * U_EXPORT2
2023utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status)
2024{
2025    if(U_FAILURE(*status)) {
2026        return NULL;
2027    }
2028    if(rep==NULL) {
2029        *status=U_ILLEGAL_ARGUMENT_ERROR;
2030        return NULL;
2031    }
2032    ut = utext_setup(ut, sizeof(ReplExtra), status);
2033    if(U_FAILURE(*status)) {
2034        return ut;
2035    }
2036
2037    ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2038    if(rep->hasMetaData()) {
2039        ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA);
2040    }
2041
2042    ut->pFuncs  = &repFuncs;
2043    ut->context =  rep;
2044    return ut;
2045}
2046
2047U_CDECL_END
2048
2049
2050
2051
2052
2053
2054
2055
2056//------------------------------------------------------------------------------
2057//
2058//     UText implementation for UnicodeString (read/write)  and
2059//                    for const UnicodeString (read only)
2060//             (same implementation, only the flags are different)
2061//
2062//         Use of UText data members:
2063//            context    pointer to UnicodeString
2064//            p          pointer to UnicodeString IF this UText owns the string
2065//                       and it must be deleted on close().  NULL otherwise.
2066//
2067//------------------------------------------------------------------------------
2068
2069U_CDECL_BEGIN
2070
2071
2072static UText * U_CALLCONV
2073unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
2074    // First do a generic shallow clone.  Does everything needed for the UText struct itself.
2075    dest = shallowTextClone(dest, src, status);
2076
2077    // For deep clones, make a copy of the UnicodeSring.
2078    //  The copied UnicodeString storage is owned by the newly created UText clone.
2079    //  A non-NULL pointer in UText.p is the signal to the close() function to delete
2080    //    the UText.
2081    //
2082    if (deep && U_SUCCESS(*status)) {
2083        const UnicodeString *srcString = (const UnicodeString *)src->context;
2084        dest->context = new UnicodeString(*srcString);
2085        dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2086
2087        // with deep clone, the copy is writable, even when the source is not.
2088        dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2089    }
2090    return dest;
2091}
2092
2093static void U_CALLCONV
2094unistrTextClose(UText *ut) {
2095    // Most of the work of close is done by the generic UText framework close.
2096    // All that needs to be done here is delete the UnicodeString if the UText
2097    //  owns it.  This occurs if the UText was created by cloning.
2098    if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2099        UnicodeString *str = (UnicodeString *)ut->context;
2100        delete str;
2101        ut->context = NULL;
2102    }
2103}
2104
2105
2106static int64_t U_CALLCONV
2107unistrTextLength(UText *t) {
2108    return ((const UnicodeString *)t->context)->length();
2109}
2110
2111
2112static UBool U_CALLCONV
2113unistrTextAccess(UText *ut, int64_t index, UBool  forward) {
2114    int32_t length  = ut->chunkLength;
2115    ut->chunkOffset = pinIndex(index, length);
2116
2117    // Check whether request is at the start or end
2118    UBool retVal = (forward && index<length) || (!forward && index>0);
2119    return retVal;
2120}
2121
2122
2123
2124static int32_t U_CALLCONV
2125unistrTextExtract(UText *t,
2126                  int64_t start, int64_t limit,
2127                  UChar *dest, int32_t destCapacity,
2128                  UErrorCode *pErrorCode) {
2129    const UnicodeString *us=(const UnicodeString *)t->context;
2130    int32_t length=us->length();
2131
2132    if(U_FAILURE(*pErrorCode)) {
2133        return 0;
2134    }
2135    if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
2136        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2137    }
2138    if(start<0 || start>limit) {
2139        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2140        return 0;
2141    }
2142
2143    int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length;
2144    int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length;
2145
2146    length=limit32-start32;
2147    if (destCapacity>0 && dest!=NULL) {
2148        int32_t trimmedLength = length;
2149        if(trimmedLength>destCapacity) {
2150            trimmedLength=destCapacity;
2151        }
2152        us->extract(start32, trimmedLength, dest);
2153        t->chunkOffset = start32+trimmedLength;
2154    } else {
2155        t->chunkOffset = start32;
2156    }
2157    u_terminateUChars(dest, destCapacity, length, pErrorCode);
2158    return length;
2159}
2160
2161static int32_t U_CALLCONV
2162unistrTextReplace(UText *ut,
2163                  int64_t start, int64_t limit,
2164                  const UChar *src, int32_t length,
2165                  UErrorCode *pErrorCode) {
2166    UnicodeString *us=(UnicodeString *)ut->context;
2167    int32_t oldLength;
2168
2169    if(U_FAILURE(*pErrorCode)) {
2170        return 0;
2171    }
2172    if(src==NULL && length!=0) {
2173        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2174    }
2175    if(start>limit) {
2176        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2177        return 0;
2178    }
2179    oldLength=us->length();
2180    int32_t start32 = pinIndex(start, oldLength);
2181    int32_t limit32 = pinIndex(limit, oldLength);
2182    if (start32 < oldLength) {
2183        start32 = us->getChar32Start(start32);
2184    }
2185    if (limit32 < oldLength) {
2186        limit32 = us->getChar32Start(limit32);
2187    }
2188
2189    // replace
2190    us->replace(start32, limit32-start32, src, length);
2191    int32_t newLength = us->length();
2192
2193    // Update the chunk description.
2194    ut->chunkContents    = us->getBuffer();
2195    ut->chunkLength      = newLength;
2196    ut->chunkNativeLimit = newLength;
2197    ut->nativeIndexingLimit = newLength;
2198
2199    // Set iteration position to the point just following the newly inserted text.
2200    int32_t lengthDelta = newLength - oldLength;
2201    ut->chunkOffset = limit32 + lengthDelta;
2202
2203    return lengthDelta;
2204}
2205
2206static void U_CALLCONV
2207unistrTextCopy(UText *ut,
2208               int64_t start, int64_t limit,
2209               int64_t destIndex,
2210               UBool move,
2211               UErrorCode *pErrorCode) {
2212    UnicodeString *us=(UnicodeString *)ut->context;
2213    int32_t length=us->length();
2214
2215    if(U_FAILURE(*pErrorCode)) {
2216        return;
2217    }
2218    int32_t start32 = pinIndex(start, length);
2219    int32_t limit32 = pinIndex(limit, length);
2220    int32_t destIndex32 = pinIndex(destIndex, length);
2221
2222    if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) {
2223        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2224        return;
2225    }
2226
2227    if(move) {
2228        // move: copy to destIndex, then replace original with nothing
2229        int32_t segLength=limit32-start32;
2230        us->copy(start32, limit32, destIndex32);
2231        if(destIndex32<start32) {
2232            start32+=segLength;
2233        }
2234        us->replace(start32, segLength, NULL, 0);
2235    } else {
2236        // copy
2237        us->copy(start32, limit32, destIndex32);
2238    }
2239
2240    // update chunk description, set iteration position.
2241    ut->chunkContents = us->getBuffer();
2242    if (move==FALSE) {
2243        // copy operation, string length grows
2244        ut->chunkLength += limit32-start32;
2245        ut->chunkNativeLimit = ut->chunkLength;
2246        ut->nativeIndexingLimit = ut->chunkLength;
2247    }
2248
2249    // Iteration position to end of the newly inserted text.
2250    ut->chunkOffset = destIndex32+limit32-start32;
2251    if (move && destIndex32>start32) {
2252        ut->chunkOffset = destIndex32;
2253    }
2254
2255}
2256
2257static const struct UTextFuncs unistrFuncs =
2258{
2259    sizeof(UTextFuncs),
2260    0, 0, 0,             // Reserved alignment padding
2261    unistrTextClone,
2262    unistrTextLength,
2263    unistrTextAccess,
2264    unistrTextExtract,
2265    unistrTextReplace,
2266    unistrTextCopy,
2267    NULL,                // MapOffsetToNative,
2268    NULL,                // MapIndexToUTF16,
2269    unistrTextClose,
2270    NULL,                // spare 1
2271    NULL,                // spare 2
2272    NULL                 // spare 3
2273};
2274
2275
2276
2277U_CDECL_END
2278
2279
2280U_CAPI UText * U_EXPORT2
2281utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
2282    ut = utext_openConstUnicodeString(ut, s, status);
2283    if (U_SUCCESS(*status)) {
2284        ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2285    }
2286    return ut;
2287}
2288
2289
2290
2291U_CAPI UText * U_EXPORT2
2292utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) {
2293    if (U_SUCCESS(*status) && s->isBogus()) {
2294        // The UnicodeString is bogus, but we still need to detach the UText
2295        //   from whatever it was hooked to before, if anything.
2296        utext_openUChars(ut, NULL, 0, status);
2297        *status = U_ILLEGAL_ARGUMENT_ERROR;
2298        return ut;
2299    }
2300    ut = utext_setup(ut, 0, status);
2301    //    note:  use the standard (writable) function table for UnicodeString.
2302    //           The flag settings disable writing, so having the functions in
2303    //           the table is harmless.
2304    if (U_SUCCESS(*status)) {
2305        ut->pFuncs              = &unistrFuncs;
2306        ut->context             = s;
2307        ut->providerProperties  = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2308        ut->chunkContents       = s->getBuffer();
2309        ut->chunkLength         = s->length();
2310        ut->chunkNativeStart    = 0;
2311        ut->chunkNativeLimit    = ut->chunkLength;
2312        ut->nativeIndexingLimit = ut->chunkLength;
2313    }
2314    return ut;
2315}
2316
2317//------------------------------------------------------------------------------
2318//
2319//     UText implementation for const UChar * strings
2320//
2321//         Use of UText data members:
2322//            context    pointer to UnicodeString
2323//            a          length.  -1 if not yet known.
2324//
2325//         TODO:  support 64 bit lengths.
2326//
2327//------------------------------------------------------------------------------
2328
2329U_CDECL_BEGIN
2330
2331
2332static UText * U_CALLCONV
2333ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) {
2334    // First do a generic shallow clone.
2335    dest = shallowTextClone(dest, src, status);
2336
2337    // For deep clones, make a copy of the string.
2338    //  The copied storage is owned by the newly created clone.
2339    //  A non-NULL pointer in UText.p is the signal to the close() function to delete
2340    //    it.
2341    //
2342    if (deep && U_SUCCESS(*status)) {
2343        U_ASSERT(utext_nativeLength(dest) < INT32_MAX);
2344        int32_t  len = (int32_t)utext_nativeLength(dest);
2345
2346        // The cloned string IS going to be NUL terminated, whether or not the original was.
2347        const UChar *srcStr = (const UChar *)src->context;
2348        UChar *copyStr = (UChar *)uprv_malloc((len+1) * sizeof(UChar));
2349        if (copyStr == NULL) {
2350            *status = U_MEMORY_ALLOCATION_ERROR;
2351        } else {
2352            int64_t i;
2353            for (i=0; i<len; i++) {
2354                copyStr[i] = srcStr[i];
2355            }
2356            copyStr[len] = 0;
2357            dest->context = copyStr;
2358            dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2359        }
2360    }
2361    return dest;
2362}
2363
2364
2365static void U_CALLCONV
2366ucstrTextClose(UText *ut) {
2367    // Most of the work of close is done by the generic UText framework close.
2368    // All that needs to be done here is delete the string if the UText
2369    //  owns it.  This occurs if the UText was created by cloning.
2370    if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2371        UChar *s = (UChar *)ut->context;
2372        uprv_free(s);
2373        ut->context = NULL;
2374    }
2375}
2376
2377
2378
2379static int64_t U_CALLCONV
2380ucstrTextLength(UText *ut) {
2381    if (ut->a < 0) {
2382        // null terminated, we don't yet know the length.  Scan for it.
2383        //    Access is not convenient for doing this
2384        //    because the current interation postion can't be changed.
2385        const UChar  *str = (const UChar *)ut->context;
2386        for (;;) {
2387            if (str[ut->chunkNativeLimit] == 0) {
2388                break;
2389            }
2390            ut->chunkNativeLimit++;
2391        }
2392        ut->a = ut->chunkNativeLimit;
2393        ut->chunkLength = (int32_t)ut->chunkNativeLimit;
2394        ut->nativeIndexingLimit = ut->chunkLength;
2395        ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2396    }
2397    return ut->a;
2398}
2399
2400
2401static UBool U_CALLCONV
2402ucstrTextAccess(UText *ut, int64_t index, UBool  forward) {
2403    const UChar *str   = (const UChar *)ut->context;
2404
2405    // pin the requested index to the bounds of the string,
2406    //  and set current iteration position.
2407    if (index<0) {
2408        index = 0;
2409    } else if (index < ut->chunkNativeLimit) {
2410        // The request data is within the chunk as it is known so far.
2411        // Put index on a code point boundary.
2412        U16_SET_CP_START(str, 0, index);
2413    } else if (ut->a >= 0) {
2414        // We know the length of this string, and the user is requesting something
2415        // at or beyond the length.  Pin the requested index to the length.
2416        index = ut->a;
2417    } else {
2418        // Null terminated string, length not yet known, and the requested index
2419        //  is beyond where we have scanned so far.
2420        //  Scan to 32 UChars beyond the requested index.  The strategy here is
2421        //  to avoid fully scanning a long string when the caller only wants to
2422        //  see a few characters at its beginning.
2423        int32_t scanLimit = (int32_t)index + 32;
2424        if ((index + 32)>INT32_MAX || (index + 32)<0 ) {   // note: int64 expression
2425            scanLimit = INT32_MAX;
2426        }
2427
2428        int32_t chunkLimit = (int32_t)ut->chunkNativeLimit;
2429        for (; chunkLimit<scanLimit; chunkLimit++) {
2430            if (str[chunkLimit] == 0) {
2431                // We found the end of the string.  Remember it, pin the requested index to it,
2432                //  and bail out of here.
2433                ut->a = chunkLimit;
2434                ut->chunkLength = chunkLimit;
2435                ut->nativeIndexingLimit = chunkLimit;
2436                if (index >= chunkLimit) {
2437                    index = chunkLimit;
2438                } else {
2439                    U16_SET_CP_START(str, 0, index);
2440                }
2441
2442                ut->chunkNativeLimit = chunkLimit;
2443                ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2444                goto breakout;
2445            }
2446        }
2447        // We scanned through the next batch of UChars without finding the end.
2448        U16_SET_CP_START(str, 0, index);
2449        if (chunkLimit == INT32_MAX) {
2450            // Scanned to the limit of a 32 bit length.
2451            // Forceably trim the overlength string back so length fits in int32
2452            //  TODO:  add support for 64 bit strings.
2453            ut->a = chunkLimit;
2454            ut->chunkLength = chunkLimit;
2455            ut->nativeIndexingLimit = chunkLimit;
2456            if (index > chunkLimit) {
2457                index = chunkLimit;
2458            }
2459            ut->chunkNativeLimit = chunkLimit;
2460            ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2461        } else {
2462            // The endpoint of a chunk must not be left in the middle of a surrogate pair.
2463            // If the current end is on a lead surrogate, back the end up by one.
2464            // It doesn't matter if the end char happens to be an unpaired surrogate,
2465            //    and it's simpler not to worry about it.
2466            if (U16_IS_LEAD(str[chunkLimit-1])) {
2467                --chunkLimit;
2468            }
2469            // Null-terminated chunk with end still unknown.
2470            // Update the chunk length to reflect what has been scanned thus far.
2471            // That the full length is still unknown is (still) flagged by
2472            //    ut->a being < 0.
2473            ut->chunkNativeLimit = chunkLimit;
2474            ut->nativeIndexingLimit = chunkLimit;
2475            ut->chunkLength = chunkLimit;
2476        }
2477
2478    }
2479breakout:
2480    U_ASSERT(index<=INT32_MAX);
2481    ut->chunkOffset = (int32_t)index;
2482
2483    // Check whether request is at the start or end
2484    UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0);
2485    return retVal;
2486}
2487
2488
2489
2490static int32_t U_CALLCONV
2491ucstrTextExtract(UText *ut,
2492                  int64_t start, int64_t limit,
2493                  UChar *dest, int32_t destCapacity,
2494                  UErrorCode *pErrorCode)
2495{
2496    if(U_FAILURE(*pErrorCode)) {
2497        return 0;
2498    }
2499    if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2500        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2501        return 0;
2502    }
2503
2504    //const UChar *s=(const UChar *)ut->context;
2505    int32_t si, di;
2506
2507    int32_t start32;
2508    int32_t limit32;
2509
2510    // Access the start.  Does two things we need:
2511    //   Pins 'start' to the length of the string, if it came in out-of-bounds.
2512    //   Snaps 'start' to the beginning of a code point.
2513    ucstrTextAccess(ut, start, TRUE);
2514    const UChar *s=ut->chunkContents;
2515    start32 = ut->chunkOffset;
2516
2517    int32_t strLength=(int32_t)ut->a;
2518    if (strLength >= 0) {
2519        limit32 = pinIndex(limit, strLength);
2520    } else {
2521        limit32 = pinIndex(limit, INT32_MAX);
2522    }
2523    di = 0;
2524    for (si=start32; si<limit32; si++) {
2525        if (strLength<0 && s[si]==0) {
2526            // Just hit the end of a null-terminated string.
2527            ut->a = si;               // set string length for this UText
2528            ut->chunkNativeLimit    = si;
2529            ut->chunkLength         = si;
2530            ut->nativeIndexingLimit = si;
2531            strLength               = si;
2532            limit32                 = si;
2533            break;
2534        }
2535        U_ASSERT(di>=0); /* to ensure di never exceeds INT32_MAX, which must not happen logically */
2536        if (di<destCapacity) {
2537            // only store if there is space.
2538            dest[di] = s[si];
2539        } else {
2540            if (strLength>=0) {
2541                // We have filled the destination buffer, and the string length is known.
2542                //  Cut the loop short.  There is no need to scan string termination.
2543                di = limit32 - start32;
2544                si = limit32;
2545                break;
2546            }
2547        }
2548        di++;
2549    }
2550
2551    // If the limit index points to a lead surrogate of a pair,
2552    //   add the corresponding trail surrogate to the destination.
2553    if (si>0 && U16_IS_LEAD(s[si-1]) &&
2554            ((si<strLength || strLength<0)  && U16_IS_TRAIL(s[si])))
2555    {
2556        if (di<destCapacity) {
2557            // store only if there is space in the output buffer.
2558            dest[di++] = s[si];
2559        }
2560        si++;
2561    }
2562
2563    // Put iteration position at the point just following the extracted text
2564    if (si <= ut->chunkNativeLimit) {
2565        ut->chunkOffset = si;
2566    } else {
2567        ucstrTextAccess(ut, si, TRUE);
2568    }
2569
2570    // Add a terminating NUL if space in the buffer permits,
2571    // and set the error status as required.
2572    u_terminateUChars(dest, destCapacity, di, pErrorCode);
2573    return di;
2574}
2575
2576static const struct UTextFuncs ucstrFuncs =
2577{
2578    sizeof(UTextFuncs),
2579    0, 0, 0,           // Reserved alignment padding
2580    ucstrTextClone,
2581    ucstrTextLength,
2582    ucstrTextAccess,
2583    ucstrTextExtract,
2584    NULL,              // Replace
2585    NULL,              // Copy
2586    NULL,              // MapOffsetToNative,
2587    NULL,              // MapIndexToUTF16,
2588    ucstrTextClose,
2589    NULL,              // spare 1
2590    NULL,              // spare 2
2591    NULL,              // spare 3
2592};
2593
2594U_CDECL_END
2595
2596static const UChar gEmptyUString[] = {0};
2597
2598U_CAPI UText * U_EXPORT2
2599utext_openUChars(UText *ut, const UChar *s, int64_t length, UErrorCode *status) {
2600    if (U_FAILURE(*status)) {
2601        return NULL;
2602    }
2603    if(s==NULL && length==0) {
2604        s = gEmptyUString;
2605    }
2606    if (s==NULL || length < -1 || length>INT32_MAX) {
2607        *status = U_ILLEGAL_ARGUMENT_ERROR;
2608        return NULL;
2609    }
2610    ut = utext_setup(ut, 0, status);
2611    if (U_SUCCESS(*status)) {
2612        ut->pFuncs               = &ucstrFuncs;
2613        ut->context              = s;
2614        ut->providerProperties   = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2615        if (length==-1) {
2616            ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2617        }
2618        ut->a                    = length;
2619        ut->chunkContents        = s;
2620        ut->chunkNativeStart     = 0;
2621        ut->chunkNativeLimit     = length>=0? length : 0;
2622        ut->chunkLength          = (int32_t)ut->chunkNativeLimit;
2623        ut->chunkOffset          = 0;
2624        ut->nativeIndexingLimit  = ut->chunkLength;
2625    }
2626    return ut;
2627}
2628
2629
2630//------------------------------------------------------------------------------
2631//
2632//     UText implementation for text from ICU CharacterIterators
2633//
2634//         Use of UText data members:
2635//            context    pointer to the CharacterIterator
2636//            a          length of the full text.
2637//            p          pointer to  buffer 1
2638//            b          start index of local buffer 1 contents
2639//            q          pointer to buffer 2
2640//            c          start index of local buffer 2 contents
2641//            r          pointer to the character iterator if the UText owns it.
2642//                       Null otherwise.
2643//
2644//------------------------------------------------------------------------------
2645#define CIBufSize 16
2646
2647U_CDECL_BEGIN
2648static void U_CALLCONV
2649charIterTextClose(UText *ut) {
2650    // Most of the work of close is done by the generic UText framework close.
2651    // All that needs to be done here is delete the CharacterIterator if the UText
2652    //  owns it.  This occurs if the UText was created by cloning.
2653    CharacterIterator *ci = (CharacterIterator *)ut->r;
2654    delete ci;
2655    ut->r = NULL;
2656}
2657
2658static int64_t U_CALLCONV
2659charIterTextLength(UText *ut) {
2660    return (int32_t)ut->a;
2661}
2662
2663static UBool U_CALLCONV
2664charIterTextAccess(UText *ut, int64_t index, UBool  forward) {
2665    CharacterIterator *ci   = (CharacterIterator *)ut->context;
2666
2667    int32_t clippedIndex = (int32_t)index;
2668    if (clippedIndex<0) {
2669        clippedIndex=0;
2670    } else if (clippedIndex>=ut->a) {
2671        clippedIndex=(int32_t)ut->a;
2672    }
2673    int32_t neededIndex = clippedIndex;
2674    if (!forward && neededIndex>0) {
2675        // reverse iteration, want the position just before what was asked for.
2676        neededIndex--;
2677    } else if (forward && neededIndex==ut->a && neededIndex>0) {
2678        // Forward iteration, don't ask for something past the end of the text.
2679        neededIndex--;
2680    }
2681
2682    // Find the native index of the start of the buffer containing what we want.
2683    neededIndex -= neededIndex % CIBufSize;
2684
2685    UChar *buf = NULL;
2686    UBool  needChunkSetup = TRUE;
2687    int    i;
2688    if (ut->chunkNativeStart == neededIndex) {
2689        // The buffer we want is already the current chunk.
2690        needChunkSetup = FALSE;
2691    } else if (ut->b == neededIndex) {
2692        // The first buffer (buffer p) has what we need.
2693        buf = (UChar *)ut->p;
2694    } else if (ut->c == neededIndex) {
2695        // The second buffer (buffer q) has what we need.
2696        buf = (UChar *)ut->q;
2697    } else {
2698        // Neither buffer already has what we need.
2699        // Load new data from the character iterator.
2700        // Use the buf that is not the current buffer.
2701        buf = (UChar *)ut->p;
2702        if (ut->p == ut->chunkContents) {
2703            buf = (UChar *)ut->q;
2704        }
2705        ci->setIndex(neededIndex);
2706        for (i=0; i<CIBufSize; i++) {
2707            buf[i] = ci->nextPostInc();
2708            if (i+neededIndex > ut->a) {
2709                break;
2710            }
2711        }
2712    }
2713
2714    // We have a buffer with the data we need.
2715    // Set it up as the current chunk, if it wasn't already.
2716    if (needChunkSetup) {
2717        ut->chunkContents = buf;
2718        ut->chunkLength   = CIBufSize;
2719        ut->chunkNativeStart = neededIndex;
2720        ut->chunkNativeLimit = neededIndex + CIBufSize;
2721        if (ut->chunkNativeLimit > ut->a) {
2722            ut->chunkNativeLimit = ut->a;
2723            ut->chunkLength  = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart);
2724        }
2725        ut->nativeIndexingLimit = ut->chunkLength;
2726        U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize);
2727    }
2728    ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart;
2729    UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>0);
2730    return success;
2731}
2732
2733static UText * U_CALLCONV
2734charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) {
2735    if (U_FAILURE(*status)) {
2736        return NULL;
2737    }
2738
2739    if (deep) {
2740        // There is no CharacterIterator API for cloning the underlying text storage.
2741        *status = U_UNSUPPORTED_ERROR;
2742        return NULL;
2743    } else {
2744        CharacterIterator *srcCI =(CharacterIterator *)src->context;
2745        srcCI = srcCI->clone();
2746        dest = utext_openCharacterIterator(dest, srcCI, status);
2747        if (U_FAILURE(*status)) {
2748            return dest;
2749        }
2750        // cast off const on getNativeIndex.
2751        //   For CharacterIterator based UTexts, this is safe, the operation is const.
2752        int64_t  ix = utext_getNativeIndex((UText *)src);
2753        utext_setNativeIndex(dest, ix);
2754        dest->r = srcCI;    // flags that this UText owns the CharacterIterator
2755    }
2756    return dest;
2757}
2758
2759static int32_t U_CALLCONV
2760charIterTextExtract(UText *ut,
2761                  int64_t start, int64_t limit,
2762                  UChar *dest, int32_t destCapacity,
2763                  UErrorCode *status)
2764{
2765    if(U_FAILURE(*status)) {
2766        return 0;
2767    }
2768    if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2769        *status=U_ILLEGAL_ARGUMENT_ERROR;
2770        return 0;
2771    }
2772    int32_t  length  = (int32_t)ut->a;
2773    int32_t  start32 = pinIndex(start, length);
2774    int32_t  limit32 = pinIndex(limit, length);
2775    int32_t  desti   = 0;
2776    int32_t  srci;
2777    int32_t  copyLimit;
2778
2779    CharacterIterator *ci = (CharacterIterator *)ut->context;
2780    ci->setIndex32(start32);   // Moves ix to lead of surrogate pair, if needed.
2781    srci = ci->getIndex();
2782    copyLimit = srci;
2783    while (srci<limit32) {
2784        UChar32 c = ci->next32PostInc();
2785        int32_t  len = U16_LENGTH(c);
2786        U_ASSERT(desti+len>0); /* to ensure desti+len never exceeds MAX_INT32, which must not happen logically */
2787        if (desti+len <= destCapacity) {
2788            U16_APPEND_UNSAFE(dest, desti, c);
2789            copyLimit = srci+len;
2790        } else {
2791            desti += len;
2792            *status = U_BUFFER_OVERFLOW_ERROR;
2793        }
2794        srci += len;
2795    }
2796
2797    charIterTextAccess(ut, copyLimit, TRUE);
2798
2799    u_terminateUChars(dest, destCapacity, desti, status);
2800    return desti;
2801}
2802
2803static const struct UTextFuncs charIterFuncs =
2804{
2805    sizeof(UTextFuncs),
2806    0, 0, 0,             // Reserved alignment padding
2807    charIterTextClone,
2808    charIterTextLength,
2809    charIterTextAccess,
2810    charIterTextExtract,
2811    NULL,                // Replace
2812    NULL,                // Copy
2813    NULL,                // MapOffsetToNative,
2814    NULL,                // MapIndexToUTF16,
2815    charIterTextClose,
2816    NULL,                // spare 1
2817    NULL,                // spare 2
2818    NULL                 // spare 3
2819};
2820U_CDECL_END
2821
2822
2823U_CAPI UText * U_EXPORT2
2824utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) {
2825    if (U_FAILURE(*status)) {
2826        return NULL;
2827    }
2828
2829    if (ci->startIndex() > 0) {
2830        // No support for CharacterIterators that do not start indexing from zero.
2831        *status = U_UNSUPPORTED_ERROR;
2832        return NULL;
2833    }
2834
2835    // Extra space in UText for 2 buffers of CIBufSize UChars each.
2836    int32_t  extraSpace = 2 * CIBufSize * sizeof(UChar);
2837    ut = utext_setup(ut, extraSpace, status);
2838    if (U_SUCCESS(*status)) {
2839        ut->pFuncs                = &charIterFuncs;
2840        ut->context              = ci;
2841        ut->providerProperties   = 0;
2842        ut->a                    = ci->endIndex();        // Length of text
2843        ut->p                    = ut->pExtra;            // First buffer
2844        ut->b                    = -1;                    // Native index of first buffer contents
2845        ut->q                    = (UChar*)ut->pExtra+CIBufSize;  // Second buffer
2846        ut->c                    = -1;                    // Native index of second buffer contents
2847
2848        // Initialize current chunk contents to be empty.
2849        //   First access will fault something in.
2850        //   Note:  The initial nativeStart and chunkOffset must sum to zero
2851        //          so that getNativeIndex() will correctly compute to zero
2852        //          if no call to Access() has ever been made.  They can't be both
2853        //          zero without Access() thinking that the chunk is valid.
2854        ut->chunkContents        = (UChar *)ut->p;
2855        ut->chunkNativeStart     = -1;
2856        ut->chunkOffset          = 1;
2857        ut->chunkNativeLimit     = 0;
2858        ut->chunkLength          = 0;
2859        ut->nativeIndexingLimit  = ut->chunkOffset;  // enables native indexing
2860    }
2861    return ut;
2862}
2863